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Hierarchical Schemas and Goals in the Control of Sequential Behavior
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Traditional accounts of sequential behavior assume that schemas and goals play a causal role in the
control of behavior. In contrast, M. Botvinick and D. C. Plaut (2004) argued that, at least in routine
behavior, schemas and goals are epiphenomenal. The authors evaluate the Botvinick and Plaut account
by contrasting the simple recurrent network model of Botvinick and Plaut with their own more traditional
hierarchically structured interactive activation model (R. P. Cooper & T. Shallice, 2000). The authors
present a range of arguments and additional simulations that demonstrate theoretical and empirical
difficulties for both Botvinick and Plaut’'s model and their theoretical position. The authors conclude that
explicit hierarchically organized and causally efficacious schema and goal representations are required to
provide an adequate account of the flexibility of sequential behavior.

Keywords: control of routine behavior, localist versus distributed representations, simple recurrent
networks, neuropsychological impairments of action

It has become a commonplace in many areas of psychology ovenechanisms, which are better represented as regions or trajectories
the past 50 years that there exist discrete representations thaithin continuous state spaces created by connectionist networks.
correspond to qualitatively different states of the organism. The The core issues in the debate, which has raged since 1985 (e.qg.,
accessing, activation, or selection in some other way of one oBroadbent, 1985; McClelland & Rumelhart, 1985; Pinker &
these states rather than another is held to have qualitatively difPrince, 1988; Rumelhart & McClelland, 1985; etc.), have princi-
ferent effects on the selection of subsequent states and of subsgally concerned areas in psycholinguistics and neurolinguistics
quent behavior. Moreover, the selection of the current state is heldihere the existence of discrete representations (e.g., phonemes,
to be the result of the effecting of discrete operations or rulesmorphemes) and of discrete operators (syntactic rules) was made
typically by analogy with a computer program. plausible by developments in independent disciplines such as

More recently, there has been a challenge to this perspective. Bhonology and linguistics (e.g., Chomsky, 1957, 1980; Chomsky
has been strongly argued that this assumed discreteness both of theqalle, 1968). In addition, the debate has concerned areas where
representations and of the structures that select them arises frofjle-based mappings had already been postulated on other
the familiarity of such concepts in other domains (e.g., computeyrounds, as in spelling-to-sound translation in reading (e.g., Colt-
science) rather than reflecting the operation of the underlyintheart, Curtis, Atkins, & Haller, 1993; Plaut, McClelland, Seiden-
mechanism in the human mind. Instead, the apparent discreteneggrg, & Patterson, 1996; Wijk, 1966; see also Zorzi, Houghton, &
reflects inputs or outputs rather than the states of the internabiterworth, 1998).

However, despite over 15 years of research in these areas, it
would be premature to say that the structuralist view has been

Richard P. Cooper, School of Psychology, Birkbeck, University of convincingly rejected in any one of them. Yet there are other areas
London, London, England, and Institute of Cognitive Neuroscience, Uni-of psychology where the assumption of discrete internal units is
versity College London, London, England; Tim Shallice, Institute of Cog- mainly driven by their apparent behavioral manifestations and not
nitive Neuroscignce, Univergity Cc_JIIege_London,_Lon_don, England, andby any other well-organized discipline such as linguistics. In
Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy. particular, concepts such ashemas, scriptsand frameswith a
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concept when referring to “organised models of ourselves” thaparticular time can be specified. Goals, even more than schemas,
“modify the impressions produced by incoming sensory impulsesave a long history within psychology (cf. Miller et al., 1960).
in such a way that the final sensations of position, or of locality, They have become central to the control of behavior in production-
rise into consciousness charged with a relation to something thaystem cognitive architectures such as Soar (Laird, Newell, &
has happened before” (Head, 1920, pp. 607—608). Bartlett (193Zrosenbloom, 1987) and ACT-R (Anderson et al., 2004), where
generalized the notion to apply to the units in which the memorytheir role is to effectively limit production rules that might be
of all past experience is held and not merely to the positions ofipplied in a situation to the subset of productions relevant to the
parts of the body. In neither case was the concept more than vemurrent goal. Within more mainstream cognitive psychology, goals
vague. However, Bartlett's usage contained the idea that forgettingerve a similar function. Thus, in Duncan’s (1993) account of
could lead to loss of detail in the schema while the core structurattentional selection and behavioral control, they provide a means
remained intact. In the mid-1970s, Bobrow and Norman (1975)or selecting from all possible stimulus—response relationships just
made the idea somewhat more explicit by proposing that “eaclthose relevant at the current point in time.
schema is a self-contained memory structure, capable of perform- Given the preceding definition of a goal, a schema may be seen
ing operations because it contains procedural definitions of iteas a means of achieving a goal or subgoal. More generally, recent
potential functions and operations” (p. 138). Moreover, the ideacomputational accounts of the contention scheduling system (Coo-
that the structure would contain argument slots and explicit defaulper, Schwartz, Yule, & Shallice, 2005; Cooper & Shallice, 2000;
values was proposed by Rumelhart and Ortony (1977). see also Cooper, Shallice, & Farringdon, 1995) take schemas to be
These last two ideas were then combined in the domain of actiogoal-directed structures, with goals serving to mediate schema—
control by Norman and Shallice (1980, 1986) in an informal subschema relationships. Thus, schemas achieve goals and, apart
model. It was argued that the effecting of routine behavior involvedrom at the lowest level of the schema hierarchy, consist of
producing behavior routines, controlled by schemas, with thepartially ordered sets of subgoals (which may themselves be
constraints imposed by the specific environment being mediatedchieved by other schemas). Again, there is a parallel with plan-
through argument selection. It was also claimed that nonroutinging systems from the Al literature, where goals and methods (the
behavior is controlled in a qualitatively different manner. On this Al equivalent of schemas) may be structured iraad/or tree(see,
approach, the key theoretical issues for the control of routinee.g., Charniak & McDermott, 1985), with multiple methods pos-
behavior are the organization and selection of schemas, whereassible for any goal (th@r component of the tree), but each method
key theoretical issue for the control of nonroutine behavior is theconsisting of a conjunction of subgoals (i#wed component of the
mechanism by which nonroutine behavior interfaces or interactéree). These views see goals as playing a critical role in guiding
with routine behavior. behavior (without distinguishing between routine and nonroutine
Norman and Shallice’s (1980, 1986) schema-based account afomains).
routine behavior was motivated largely by phenomenological and There is, however, another way of conceiving of a concept like
neuropsychological evidence, but the mechanism they hypotheschema. Within the context of early connectionism, Rumelhart,
sized—contention scheduling—has considerable similarity toSmolensky, McClelland, and Hinton (1986) argued,
concepts in Al approaches to planning and engineering solutions to
the control of robots (Gat, 1998; Glasspool, 2005; Maes, 1989; see There is no representational object which is a schema. Rather, sche-
also Shallice, 1988, pp. 350—-352). A common approach within mata emerge the mqment they are needed frqm the interactior_1 of large
these domains is to delegate common behaviors to one system (the numbers of much simpler elem'.an.ts all_ \_/vorkmg In concert .W'th. one
. . . another. Schemata are not explicit entities, but rather are implicit in
rqutlne Sub§ystem) that at. any one time Select§ from a Ilbrary of our knowledge and are created by the very environment that they are
simple routines (the plan library). These behaviors relate to situ-  yiyg 1o interpret—as it is interpreting them. . . . In our case, nothing
ations where the goals and context are familiar or an immediate  stored corresponds very closely to a schema. (Rumelhart et al., 1986,
response is required. The routine control subsystem is supple- pp. 20-21)
mented by a deliberative subsystem—a processing-intensive plan-
ning system that is invoked when no suitable behavior is availablé-rom this tradition, Botvinick and Plaut (2004; see also Botvinick
in the routine subsystem’s plan library. & Plaut, 2002) questioned the functional roles of both schemas and
One aspect of the concept of schema in the Norman and Shallicgoals and the need for assuming hierarchical structures with their
(1980, 1986) account is that every manifestation of a particulasimple recurrent network (SRN) model of routine action. Specif-
type of routine behavior depends upon the activation and selectioitally, they claimed that their model provides a good account of a
of one particular internal unit, its schema node. Moreover, therange of empirical phenomena without recourse to either construct.
hierarchical structure that is frequently manifested in routine acAlthough Botvinick and Plaut (2004) claimed that they did not
tions is assumed to be controlled by the activation of a hierarchydeny “the existence or psychological importance of explicit goal
of schema nodes. In this respect, the Norman and Shallice mode¢presentations” (p. 424), they speculated that “much of cognition
merely echoes the ideas of many theorists (e.g., Fuster, 198@nd behavior . .. may share a basic reliance on mechanisms of the
Humphreys & Forde, 1998; Miller, Galanter, & Pribram, 1960). sort illustrated in the present [SRN] model” (p. 424). What makes
A second concept used in the Norman and Shallice (1980, 198@heir claim particularly important is that the schema concept in
approach that naturally complements that of schema is that of godlorman and Shallice (1980, 1986) is a hybrid with interactive
or purpose, which may be defined as a state of affairs that an ageattivation aspects but also with symbolic rule-following ones. If
aims to achieve. Here, too, the concept derives from a simpl@otvinick and Plaut are right, then the symbolic rule-following
mixture of phenomenology and functional biology; there is noaspects of the models are an unnecessary postulate, and the po-
separate discipline through which the subject’s goal or goals at antential power of connectionist models is clear. The current article,
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however, challenges their view by investigating the limits of their mas that are routinely performed with the corresponding objects
model. This involves reports, detailed in the Appendix, of newand vice versa.

simulations conducted with a reimplementation of Botvinick and The IAN model also has symbolic aspects. Links between nodes
Plaut's SRN model to address critical issues. The investigatiorin the networks explicitly reflect rulelike relationships between the
raises a series of principled difficulties—ones that are both theoelements represented by the nodes. For instance, within the schema
retical and empirical in character and that challenge the eliminanetwork, links exist between superordinate schemas and lower

tivist view. level schemas that achieve the subgoals of the superordinate
schema. Also, schemas have an argument structure, with the ar-
Two Models of Routine Action Selection guments being filled by the outputs of the object representation

In Botvinick and Plaut's (2004) critique of schema-based hielr_networks. In addition, activation flow between schema nodes is
archical models of action, they took as their key example thegated by preconditions and postconditions that relate to the
. . L ' . . ; achievement of goals.
interactive activation model of routine action selection (henceforth Normal functioning of the IAN model bedins with direct exci
referred to as the IAN model) proposed by us and our colleagues . . 9 . | DEg S i
(Cooper & Shallice, 2000; Cooper et al., 2005; see also Cooper ettaltlon of an intended schema. This excitation, which is assumed to
al., 1995), which i,n turn’ is based on,the ir;formally specified typically originate from a separate delibgratiye supsystdm, .
contention scheduling part of the theory of Norman and Shallice®UPErVISOry system_auses the schema’s activation to rise. When 't_
(1980, 1986). The IAN model has both activation-based and Sym(_axceeds the selection threshold (a parameter of the model), acti-

bolic aspects. The activation-based component consists of threétion is passed from that schema to any schemas that may achieve

interactive activation networks (see Figure 1). Nodes within thethe original schema’s subgoals (subject to ordering constraints that

schema network represent goal-directed action schemas of varyirff stated in the form of preconditions on subgoals). Normally, one
levels of complexity (ranging from, e.gprepare instant coffeat subschema then becomes active and is selected. This process

the highest level tpick up implemenat the lowest level). Nodes continues until a schema that corresponds to a simple action (e.g.,
within the object representation network correspond to ways ofick up is selected. The corresponding action is then performed,
using objects present in the immediate environment (fogk,as  With the object to which the action is applied determined by the
an implemenbr juice glass as a targgtNodes within the effector Most active relevant item in the object representation network. On
network correspond to special-purpose cognitive subsystems th&@mpletion of an action, its corresponding schema is inhibited,
can be recruited to act upon the world (e.g., motor subsystems fallowing another schema to become activated and another action to
each effector). All nodes have continuous valued activation level®e performed. Figure 2 illustrates the activations of schema nodes
that vary according to standard principles of interactive activationas time progresses while performing a typical routine task, that of
(McClelland, 1992) and with nodes functioning as leaky accumu-reparing instant coffee. The figure shows how the activation of
lators (Usher & McClelland, 2001). Nodes that correspond tonodes accumulates over time and how the activation of lower level
schemas that are mutually exclusive (e.g., because they hawehema nodes occurs within the context of active higher level
overlapping requirements for special-purpose cognitive subschema nodes.

systems) have mutually inhibitory links, whereas nodes corre- We and our colleagues have shown how the processes of inter-
sponding to object representations have excitatory links to scheactive activation implemented within the IAN model can result in
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Figure 1. Functional components of the interactive activation model. Object Rembject representations.
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Figure 2. Activation profiles of schema nodes within the interactive activation model during the task of
preparing instant coffee. From “Contention Scheduling and the Control of Routine Activities,” by R. P. Cooper
and T. Shallice, 2000Cognitive Neuropsychology, 1B, 319, Figure 5. Copyright 2000 by the Psychology
Press. Reprinted with permission. See http://www.psypress.co.uk/journals.asp.

extended sequences of behavior, such as those involved in everframework is capable of reproducing extended sequences of actions
day behavioral routines, for example, preparing a mug of instantomparable in complexity to those achieved by the IAN model
coffee (Cooper & Shallice, 2000) or preparing and packing awithout explicit goal representations. Recurrent activation, the basic
child’s lunch box (Cooper et al., 2005). We have also shown thasequencing mechanism of the SRN model, uses activation propagat-
the IAN model can mimic the effects of neurological damage thating around a set of neuronlike units. Within the SRN model (see
impairs execution of routine or everyday action. Figure 3), input units representing held or fixated objects are activated
Botvinick and Plaut's (2004) approach operates on two levelshy features present in the representation of the environment. On each
Verbally, for instance, they accepted that goals are useful for théme cycle, activation is passed along weighted connections from
cognitive system as a whole and assumed that learning skills is these units to a set of hidden units, which also receive recirculated
two-stage process. However, their specific implementation, the SRMctivation. Further weighted connections lead from the hidden units to
model, lacks both of these characteristics. Indeed, an attractive featueefinal set of output units, which encode possible actions, such as
of their SRN model—which was developed largely in response to thdixating on specific objects or picking up the fixated object. Concep-
IAN model—is that it demonstrates that a recurrent connectionistually, the recirculated activation of the hidden units provides a

Held Fixated Instruction
Object Object
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Y
Environment [o eceeocoo oo o oo o Hidden/Context
Units
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Figure 3. Functional components of the simple recurrent network model. Adapted from “Representing Task
Context: Proposals Based on a Connectionist Model of Action,” by M. Botvinick and D. C. Plaut, 2002,
Psychological Research, 66, 300, Figure 1, with kind permission of Springer Science and Business Media.
Copyright 2002 by Springer-Verlag.
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running context. Input activation is incorporated into this context bothof distraction or fatigue and also for the disorganization of action
to provide an output and to generate an updated context for use witthat occurs in certain classes of neurological patient. Significantly,
the next input. Crucially, the weights of all the connections arethe SRN model contrasts with previous accounts of routine se-
acquired from a set of input—output exemplar sequences, and thguential action by doing this in the absence of any explicit repre-
hidden unit representations that develop from this learning process asentations of action schemas or goals. It thus instantiates a novel
distributed across the units and not open to transparent unit-by-uniheory of the organization and control of routine sequential action.
interpretation. Thus, individual hidden units do not encode specifid=or this reason, it makes an important contribution to the field.
actions or the position of an action or subtask within a task. More generally, the contrast between the IAN model and the
Within the SRN model, one action is selected on each and ever$RN model takes the general debate on the utility for cognitive
processing cycle. Thus, activation does not accumulate as in thecience of unitized internal representations and internal structures
IAN model. Instead, the flow of activation typically results in one linking them into a new critical area. Moreover, as the hierarchical
output unit being highly active on each cycle while all other outputstructures that link schemas of different levels on the IAN model
units are inactive. Figure 4 illustrates this aspect of the model'sare not derived from any external discipline but are internal as-
behavior while the model performs a variant of the coffee-makingsumptions of the model, this makes the a priori plausibility of
task as described by Botvinick and Plaut (2004). On all but oneBotvinick and Plaut's (2004) approach the greater. It therefore
processing cycle, a single output unit is activated. In the one casenables one to examine a model of a complex domain, which we
when two output units are activated (Step 11), the action correrefer to aseliminativist in the a priori most plausible situation.
sponding to the most active output unit is performed, but thisThis article therefore considers the two models directly and in
corresponds to a case when two actions are equally possible, apérticular considers whether the eliminativist aspects of the SRN
different attempts at the coffee-preparation task (with context unitsnodel are justified.
initialized to different random patterns) can lead to selection of
either action. _ . Theoretical Differences and the Key Metatheoretical
Both we (Cooper & Shallice, 2000) and Botvinick and Plaut Choice
(2004) have used our respective models to account for the occa-
sional slips and lapses that arise in routine action under conditions We see several theoretical differences between the models de-
veloped by Botvinick and Plaut (2004) and by us (Cooper &
Shallice, 2000). Most fundamentally, the underlying computa-
tional processes—of recurrent activation with distributed repre-

Step Output Vector Most Active Node  Activation ! X . ) _ X )
O T N Fixate coffee packet 091157 gentauorys versus |_nteract|ve ac_tl\{atlon with localist representa-
N | 1 Pick up 0.99951 tions—differ, and indeed, Botvinick and Plaut presented the
: _: | n i:‘xllzfcpf:p 32332; representational difference as the critical one distinguishing be-
5 (I M Pour 0.99980 tween the two approaches. The relation between distributed and
6 [LI]1 || Fixate spoon 0.99934 localist models of a processing domain can vary along an abstract
7 [ Put down 0.99980 . . . .
s W1 Pick up 0.99992 dimension with, at the one end, the former models being more
9 [ Fixate cup 0.99968 detailed implementations of the latter. In this situation, to each
. _l T e caron Pt internal representation within the latter type of model there corre-
2 [l Put down 0.99922 sponds a clearly characterizable state of the former type. At the
13 M1 Pick up 0.99950 other end of the continuum, the internal states are not homomor-
14 | | Peel open 0.99501 .. . . ..
15 [ || Fixate cup 0.99965 phic in any simply characterizable way. Botvinick and Plaut ex-
16 [T Pour 0.99856 acerbated the conceptual difficulties their model faces by taking an
17 [ Fixate spoon 0.99853 L . . .
15 [l Put down 0.99910 extreme nonreductionist position with respect to the relation be-
19 W Pick up 0.99990 tween the models. This, however, makes the contrast between
20 | | Fixate cup 0.99967 : :
P B P 0.99752 models espeually _reveallng.
22 B | Fixate sugar 0.98690 We term Botvinick and Plaut’'s (2004) conceptual framework
23 [ Put down 0.99952 eliminativist because, at least within the domain of routine action,
24 [ || Pull off 0.99654 . . .
25 | | Fixate spoon 0.99909 Botvinick and Plaut considered three theoretical constructs of
26 [ Put down 0.99781 classical action control to play no causal role. First, Botvinick and
27 L1 Pick up 0.99932 . g . )
28 B Fixate sugar bowl 0.99317 Plaut rejected the explicit representation of action schemas. As
29 || Scoop 0.99796 described above, we (Cooper & Shallice, 2000) have represented
2? mm _| IF);X:‘I‘”“" ggggég schemas as nodes within an interactive activation network, and
2 1] | | Stir 0.99680 those nodes play a causal role in the control and selection of
» % _II_ Put down 000014 routine action. Schemas are explicit in the sense that they are
1CK U] 8 . . . .
35 || Sip P 0.99961 discrete and unitary. There is a one-to-one mapping between
36 | Sip 0.99772 schemas and nodes in the schema network, and nodes in the
37 W | Say done 0.99836

schema network may be individually and directly activated or

Figure 4. Activation of the simple recurrent network model’s output units Inhibited by other cognitive systems (specifically, by the hypoth-

during the 37 steps of the coffee-making task. The shading indicates th&Sized supervisory system during deliberate control of behavior).
level of activation, with white corresponding to zero and black correspond-Botvinick and Plaut claimed instead that schema is just a descrip-
ing to one. tive term linked to the emergent regularities of the trajectories
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traced through the model's continuous state space. Second, osequences—in particular, those concerning adding sugar—identi-
model uses a hierarchical network to structure schemas and subal to subsequences of the coffee-making task.

schemas, whereas Botvinick and Plaut claimed explicit hierarchi-
cal structure to be unnecessary for the control of routine behavior.
Third, goals play an essential role in our model, whereas Botvinick

and Plaut considered that much routine action is not under the \wjithin the IAN model, a schema is a complex entity. It consists
control of explicit goals. These three differences place the SRNy 5 goal, a triggering condition (i.e., a condition that specifies the
model and the IAN model in opposition with respect to the critical yegree to which states of the world excite the schema), an activa-
issues that motivate this article, as discussed in the introductonygn value, and a set of subgoals (with each subgoal having a
section, above. precondition and a postconditiohSchemas are explicit and play

A further difference between the models, one that is not relateg; causal role in determining behavior: Excitation and subsequent
to Botvinick and Plaut’s (2004) eliminativist position, relates to the gelection of a schema cause excitation and then selection of sub-
representation of objects to which actions apply. We (Cooper &chemas or actions. In contrast, the SRN model's behavior is
Shallice, 2000) have represented objects explicitly in a further sefietermined by the activation of its input and hidden/context units,
of interactive activation networks, with the targets of aCtionStogether with its training history (which shapes the connection
determined by the most active object representations, whereageights to and from the hidden/context units). These connection
Botvinick and Plaut employed a deictic scheme in which actionsweights encode a kind of sequential attractor—sequences of re-
operate on attended objects, with attention being directed by a s@fons within the multidimensional space of hidden unit activations
of object-specificattend actions (such adixate cupand fixate  that the trained model tends to follow. Thus, it does this in the
spoor). This approach eliminates the need for object representagpsence of explicit task instructions, as in Botvinick and Plaut's
tions to be used by the action control system. (2004) Simulation 1, where the model reproduced either coffee- or

Returning to the fundamental representational difference betea-preparation sequences even when no instruction unit was set,
tween the models, there has been much debate about the pros aggly in the presence of noise, as in their Simulation 2, in which the

cons of localist and distributed representations (cf. Page, 2000, anflodel tended to produce tea- or coffee-preparation sequences even
the commentaries following that target article). For example, lo-jn the presence of low levels of noise.

calist representations have been argued to result in models with
more perspicuous functioning (because the interpretation of the .
model's state is straightforward). Although the interpretation of theON the Importance of the Training Set
IAN model's state is more direct than that of the SRN model's

. . . There is a strong sense in which one may equate the sequential
state,_ Botvmlgk an_d P_Iaut (2004) provided exter}swe analy_ses Ozfalttractors of the SRN model with schemas, although the attractors
the hidden unit activations that largely address differences in easge

; . 2 : . are implicit and emergent rather than explicit and prespecified.
of interpretation. Thus, the use of distributed representations is noﬁowever the method of learning employed by the SRN model—
in our view, necessarily problematic. However, the many difficul- back-probagation through time with minimization of cross-

ties that a model in the domain of action selection needs to .
e ntropy—means that the sequential attractors developed by the
confront have been accentuated by Botvinick and Plaut’s relateg Py 4 P y

metatheoretical choices, namely, their eliminativist interpretation rained model are fully determined by the training set. The com-
- » Namely, . p position of the training set is therefore critical in determining the
of their model and the detailed mechanisms they proposed.

S : ., _behavior of the model in both normal and impaired functioning.
The present article is structured as follows. We first consider . :
SRNSs that learn by back-propagation through time are essen-

Z?sf:r::s(;fintg?hraebeogfhgfiistggsrefxgltklsezﬂsﬁcg ;‘;;noggfg:spi?iré?%ially statistical devices that encode the conditional probability of
- . o “an output given an input and the context established by the current
that show the limitations of the Botvinick and Plaut (2004) ap- putg b Y

; . ask. Given the training sets employed by Botvinick and Plaut
proach clearly. For each issue that we consider, we also assess t g oy y

o S 04) for the coffee-making task, the SRN model, for example,
criticisms made by Botvinick and Plaut of the IAN model. The learns that the context and input established by adding cream leads

empirical domain over which the contrasts between the two mOdi/vith a probability of 1.0 to the action of adding sugar if sugar has

els are mainly made consists of coffee and tea making. Weﬁot already been added but with a probability of 1.0 to drinking if

(Cooper & Shallice, 2000) have |mp!ement_ed the IAN model 'niE has. Crucially, it is easier for the network to learn temporal
terms of the subsequences involved in making coffee from the se

of packets and containers typically found on the breakfast tra OFeIations that operate over shorter times, so the effects of imme-
P ypicaly Y OYiate prior context tend to be more pronounced or more robust than

a hospitalized neurological patient (this was an abstraction fron%he effects of more distant prior context. Thus, in the above
the breakfast-tray task analyzed empirically by Schwartz, Reed ' '

. : . “éxample, if the context is degraded or the task is not sufficiently
Montgomery, Palmer, & Mayer, 1991). This task involves adding ell learned, the information concerning whether or not sugar has
coffee grounds, sugar, and cream to a mug of hot water. A total o!:l

12 different types of basic action (e.gick up, pour, teay struc- een added may be corrupted or inaccessible at the end of the
. yp . -ick up, pour, te routine for adding cream. This may result in sugar being added
tured in a three-level-deep hierarchy are used to realize a sequenge.

. . : . fifice (once before and once after adding cream—a recurrent
of actions. In addition, objects are involved, both to be used and to ( 9
act as distractions. Botvinick and Plaut took essentially the same

b?‘SiC tQSk in their fi\{e simulations. H9W9V9r: .in several of the 1gypgoal preconditions encode ordering constraints and subgoal-option
simulations, they trained the model in addition on a secondality, whereas subgoal postconditions enable monitoring. Basic-level sche-

task, tea making. Significantly, this second task has somenas have no subgoals but instead interface directly with the motor system.

The Role and Representation of Schemas



HIERARCHICAL SCHEMAS AND GOALS IN ROUTINE BEHAVIOR 893

perseverative error) or failure to add sugar at all (an omissiorpackets before opening them. The task thus provides ample op-
error). portunity for this particular error, and Botvinick and Plaut cited
This analysis demonstrates how the SRN model can simulate thene such error produced by the model—pouring from the cream
occurrence of two important types of error that occur both in thecontainer before it has been opened (see Botvinick & Plaut, 2004,
Iapses of normal SUbjeCts and in the errorful behavior of patientq'ame 6) However, in a Samp|e of 47,572 errors Occurring in a
with frontal brain damage (cf. Schwartz et al., 1991, 1998). How-¢corpus of 22,000 trials produced by our reimplementation of the
ever, it also demonstrates that the ability of the model to generat§rN model with varying levels of noise, there was not a single
either type of error is critically dependent on the training set. Thisye.yrrence of this form of anticipation error. (See Simulation 1,
produces two problems: one concerning the model’s susceptibilit)Analysis D in the Appendix for details.) Such errors are thus

to specific errors and the other concerning generalization fron]axceedingly rare in the behavior of the SRN model. The reason is

Experience. that pouring from a sealed container is something that never

The first problem with the selection of the training set is that the . . i L o
. . - S appens in the training set: The probability within the training set
model is especially prone to an error consisting of the omission o . . ) .
of selectingpour when holding a sealed container is zero. In

the subsequence B in the larger sequence-B — C only if the -
contrast, actions such gmit downor tear (or any of the other

training set also contains sequences including=AC. Thus, . ) -
Botvinick and Plaut's (2004) training set for the coffee-making actions related to opening) have nonzero probability of occurrence.
Thus, although noise could in principle leadaour being selected

task involves four different action sequences. Critically, it includes
sequences where thsounps subtask is followed byucar and ~ When holding a sealed containg@ut downor any of the various

then cream and others where it is followed immediately by the OPen actions are far more likely to be selected. Similar comments
crReam subtask. Without exposure to such sequences, the traine@Pply to tool omission errors (e.g., attempting to use a finger to stir
model would not be prone to omission of tlsecar subtask. the coffee), which never occur in the training set, are unlikely to
Similarly, the model is most prone to an error consisting of aarise with substantial frequency in normal behavior, but are rela-
recurrent perseveration of the subtask B in the larger sequence #vely frequent in the behavior of some neurological patients (see,
— B — C (i.e., a delayed erroneous repetition of B as in-AB e.g., Rumiati, Zanini, Vorano, & Shallice, 2001). Again, common

— C — B — C) if the training set also contains sequencestool omissions, such as stirring or scooping without a spoon, were
including C — B. Again, Botvinick and Plaut’s training set in- not observed in our error corpus.

cludes sequences where tirounpssubtask is followed bgucar These analyses are important because several researchers (e.g.,
and thencream and others where theream subtask is followed  Henson, 1998; Houghton, 1990; Houghton & Hartley, 1995) have
immediately by thesucar subtask. Without such sequences in the syggested that recurrent networks essentially implement a chaining
training set, the model would not be prone to recurrent perseveragpproach to sequential behavior (where the current action is de-
tion of the suear subtask. On the basis of this logic, one might (ermined by the previous action and the current input), and omis-
expect the SRN model to be prone to omission ofdbearand o errors and recurrent perseverative errors are two error types
CREAM Subtasks when mal.<|ng.coffee but not prone to omission Ofthat would seem unlikely within such an account (Lashley, 1951).
the GROUNDS Sl.JbFaSk' which is always the first task of coffee {ndeed, these and related order errors led us to express skepticism
preparation. Similarly, the model should not be prone to recurren L
about whether recurrent networks could account for certain kinds

perseveration of therounps subtask. . : L
To explore these predictions, we reimplemented and trained th f sl!p_s and errors (Cooper & Shallice, 2000)—ske_p_t|0|sm that
otvinick and Plaut (2004) took as a challenge. A critical empir-

SRN model as described by Botvinick and Plaut (2004). Noise wa R ]
then introduced, and the specific errors produced by the modépal_questlon is then whether aII_order grrors of no_rmal subje_cts and
were tabulated. When noise was low (at the levels used by BotvinPatients may be traced to a training history that includes different
ick & Plaut, 2004, to simulate normal slips and lapses), theorders of the relevant actions or subsequences. This may possibly
predictions were observed to hold: No omissions or perseverationg€ true, but it remains far from having been demonstrated.

of TEa or GrRounDs subtasks occurred in 1,000 attempts at tea The second problem with the selection of the training set is that
making and 1,000 attempts at coffee making when the standarthe model needs to be trained on all legitimate sequence orders.
deviation of noise held at 0.10, the level used by Botvinick andThus, the SRN model cannot form an abstract representation of
Plaut to simulate action slips and lapses in normal subjects. Iisugaring from the four sequences of the coffee task, with two
contrast, thesucar subtask was omitted on 464 out of 2,000 different orderings of adding sugar and cream and two different
occasions and repeated 168 times, whereasrbev subtask was ~ ways of adding sugar, and generalize from one version of the tea
omitted on 367 out of 1,000 occasions and repeated 28 fifia.  task, for example, that witucar (BowL), to the other version, in
details of the simulation are given in the appendix (see Simulationhijs case that witlsucar (Pack)—see Simulation 3 in the Appen-

1, Analysis A.

It is clear that the tendency of the SRN model to produce errors
that consist predominantly of subsequences occurring in the mod-
el’s_traini.ng history is empirically unsatisfactory. .For e>_<ample, Onethe TEA and GROUNDs subtasks did occur. However, in these cases, the
anticipation error commonly produced by patients involves at'model’s behavior was in general far more disordered, with many different

tempting to pour from a sealed container (e.g., De Renzi &grors of different types occurring in combination with these omission and
Lucchelli, 1988; Schwartz et al., 1991). Within the domain inves-perseveration errors. In these cases, the action sequences produced by the

tigated by Botvinick and Plaut (2004), this error might be manifestmodel suggest that behavior either consisted of the tail end of a trained
by the model attempting to pour from the coffee, sugar, or creamsequence or (at very high levels of noise) was effectively random.

2 At higher levels of noise, omission and perseveration of fragments of
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dix for details® Similarly, the SRN model cannot produce the that the acquired schema representations automatically encode
fourth coffee-preparation sequence by abstracting from the otheschema similarity. Evidence for this was provided, for instance, by
three. The difficulty in these cases arises from the fact that thehe similarity of the multidimensional scaling plots of thecar
SRN model does not represent the sugaring subtask (or any sulack) subsequence within the different contexts of coffee prepa-
task for that matter) as a distinct entity separate from the contextation and tea preparation (cf. Botvinick & Plaut, 2004, Figure 4);
in which it occurs. Thus, if the SRN model encounters sugaringthis results in a tendency of the model when lesioned to produce
within an unfamiliar context, it may succeed in adding sugar, bUTcapture errors (James, 1890; Norman, 1981), where behavior on
the model has no way of ensuring that critical aspects of the priopne task is captured by a related overlearned action sequence (see
context are preserved during the subtask and, therefore, no way @fotyinick & Plaut, 2004, Simulation 2A). However, it is incorrect
ensuring that, once sugar has been added, it can continue the think of schema representations within the IAN model as being
original higher order task in an appropriate fashion. disjoint and nonoverlapping. Although schema nodes may be

Similar problems of the limits of generalization arise from gigerete elements of the schema network, hierarchical relations
variations in the task environment. If, for example, the SRN mOdelbetween nodes mean that schemas may share subschemas (where
Is trained if‘ atask environment with th_e sugar bOYV' inially closed schema’s subschemas are defined as those schemas that achieve
yvhep making .tea but open wheln.maklr.]g coffee, it cannot. succee§ subgoal of the schema). Botvinick and Plaut accepted this but
in either task if the bowl is not initially in the state for which the - . S

o ) . . . .argued that this form of subschema sharing carries “less represen-

model was specifically trained. (See Simulation 4 in the Appendlxtational richness and flexibility than the idea of information shar-
for details.) The SRN model therefore makes the counterintuitive

- o X . Ing implies” (Botvinick & Plaut, 2002, p. 308).
rediction that generalization of variants of a subtask (e.g., differ- ) . . .
P 9 (e.g STwo considerations led Botvinick and Plaut (2002) to this

ent ways of adding sugar) across tasks that share those subtasks """ ) .
(e.g., coffee making and tea making) is not possible negative assessment. First, they argued that higher level schemas

Thus, the composition of the training set and particularly theCan share subschemas only if the execution of those subschemas is
ordering of subsequences within that set are critical in ensuring®2Solutely invariant with respect to context” (Botvinick & Plaut,

both that the model learns to produce all legitimate orders and that002; P- 308). In fact, this is not correct. The use of preconditions
the model is able to produce the right kinds of order errors.and postconditions within the IAN model overcomes this diffi-
Botvinick and Plaut (2004) accepted that the training history has &ulty: Within the IAN model, actions that are normally realized by
critical influence on the SRN model's behavior and saw this as @& schema are not expressed in behavior if those actions would
strength, stating, for example, that “the specifics of the sequencingerely contribute toward the achievement of the current states of
mechanism are shaped by learning, with the result that they araffairs or if the schema is terminated early because its postcondi-
closely adapted to the details of specific task domains” (Botvinicktions are met. Differences in context may also arise if, for example,
& Plaut, 2004, p. 420). However, they made only limited com- tea is prepared with a small teaspoonful of sugar but coffee with a
ments on the origins of the training set, and these were restrictelleaped teaspoonful of sugar. It is true that this form of contextual
to the way that they included single-step (i.e., nonsequentialyariation has not been addressed within the IAN model, but it
background examples within the training set. Such examples areould be addressed by augmenting the IAN model with manner
critical in producing many of the SRN model’s errors, but to fully and quality features that are inherited by subschemas from super-
explore the SRN model's predictions, it is necessary to haverdinate schemas. Second, they suggested that some abstract pat-
independent justification for the selection of individual sequencesgerns of behavior do not decompose simply into tasks and subtasks.
and of the assignment of their frequencies in the training setBotvinick and Plaut (2002, p. 308) gave the exampldixite X,
Hence, although it mlght appear preferable for schemas to b%ach for X, grasp X, fixate Y, move handto Y, put dowwbéere
acquired {da Botvinick & Plaut, 2004) rather than specified by x andY may be instantiated with different object descriptions for
hand (da Cooper & Shallice, 2000), in effect, Botvinick and Plaut gitferent tasks. Again, this form of structure sharing does not
simply transferred the burden of schema specification from arhresent difficulties for the IAN model. As object representations
explicit schema hierarchy to a training set. In principle, thatang schema nodes inhabit separate subnetworks within the model,
training set might be empirically determined through observatiory; is possible for two different high-level schemas to activate a

of the sequences observed by the leamer, but this has yet t0 Rg, e move X to Yschema with different object representations
attempted. It therefore appears that Botvinick and Plaut’s approach

merely replaces one problematic aspect of the IAN model (hand_____

coding of action schemas) with another (hand selection of training 2 Botvinick and Plaut (2004) suggested that their model is capable of
exemplars). precisely this kind of generalization, citing unpublished observations in
which “systems of this sort . . . infer sequence equivalence, interchanging
equivalent sequences in a way that produces overall sequences the network
has not observed during training.” (pp. 423-424). We were unable to
|replicate this effect with our implementation of the SRN model on the

It is generally agreed that there is an element of sharing 0coffee and tea-making tasks. Matthew Botvinick (personal communica
overlap in the mental representations of similar action sequences g 1asks. pers u

g . ] tion, October 14, 2005) has confirmed that these unpublished observations
(see, e.g., Botvinick & Plaut, 2002; Grafman, 1995; Schank &relate to a scaled-down version of the model using a modified training

Abelson, 1977). Evidence from transfer, learning, and neurologicalegime. The conditions under which the SRN model itself can generalize
breakdown has been cited in support of this view. Botvinick andsybsequences to contexts beyond those encountered in its training history
Plaut (2004; see also Botvinick & Plaut, 2002) argued that oneand subsequently continue with the original task without being captured by
advantage of the SRN model in comparison to the IAN model isan example from the training history therefore remain to be identified.

Schema Similarity
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being activated (by higher level schemas) for source and target imtended to explain” (p. 398). This claim is misguided on two
each case. counts.

Capture errors are also possible in the IAN model, although their First, it fails to take into account the fact that a selected schema
origin differs from that in the SRN model. The IAN model in- may excite multiple component schemas if the preconditions of
cludes mutual interactions between schemas and object represehose component schemas are satisfied. Thus, in the IAN model as
tations, and these may lead to capture errors. Thus, if an objeetpplied to the coffee-preparation task, selection ofatid sugar
satisfies the triggering conditions of two schemas, then it tends térom bowlschema results in excitation of schema nodes for pick-
excite both schemas. Furthermore, if one of the schemas is highlyng up an implement, dipping an implement in an open source
active, it tends to excite the representation of the object, and this isontainer, and emptying the implement into an open target con-
turn tends to excite the other schema. If this excitation of the othetainer. All three subschemas receive top-down excitation. Sequen-
schema is not regulated (e.g., through sufficient lateral inhibitiortial order is imposed by bottom-up excitation in the form of
in the schema network), the schema may become inappropriatelyiggering conditions (comparable to affordances), whereby pick-
selected and capture behavior. ing up an implement initially receives excitation from the repre-

A related feature of the SRN model is that it automatically sentation of the environment (because that is the only component
encodes schema frequency, with more frequent tasks creatirgchema that may be performed given an initial state of the envi-
stronger attractors than less frequent tasks. This results in freonment in which an implement is not held). Therefore, although
quency effects, such as the tendency for behavior on less frequegating of top-down excitation by precondition achievement is an
tasks to be captured by more frequent tasks (see Botvinick & Plautmportant factor in determining the sequential order of the model’s
2004, Simulation 2A). The automatic encoding of schema fre-behavior, it is not the only factor.
quency is not present in the implementation of the IAN model, and Second, the IAN model does not deny that gating of top-down
this may appear to be a weakness of that approach. However, in tlexcitation is implemented in neural terms. Rather, it assumes that
verbal description of the contention scheduling theory, Normamormal and impaired behavior may be modeled without recourse to
and Shallice (1980, 1986) suggested that different schemas makle neural implementation of the mechanism, and the results of
have different selection thresholds (i.e., different activation levelsCooper and Shallice (2000) and Cooper et al. (2005) support this.
that result in the selection of the schema). Specifically, well-Thus, the issue is one of the level at which the theory is specified.
learned schemas were held to have lower selection thresholds. TheA further question raised by Botvinick and Plaut (2004) with
evidence cited by Botvinick and Plaut (2004) in favor of their respect to sequencing concerns the time course of reflex inhibition.
frequency-dependent encoding is not inconsistent with this basi@Vithin the IAN model, units at the lowest level of the schema
theory. In addition, Botvinick and Plaut failed to show that the hierarchy are inhibited immediately after selection, allowing other
results of their Simulation 1 hold when sequence frequency idow-level units to become active, but selected units higher in the
varied, as in their Simulation 2A. As discussed below in thehierarchy are only inhibited once all of their subgoals have been
section titled The Implementation of Choice (see also Simulatiorachieved. Botvinick and Plaut took issue with this, claiming of the
2 in the Appendix), our own simulations suggest that the frequencyAN model that “the actual mechanisms responsible for goal-
of sequences in the training set must be finely balanced if the SRNhonitoring and schema inhibition ... remain to be explained”
model is to be able to generate all sequences on which it has beéBotvinick & Plaut, 2004, p. 398). Again, this is an issue of the
trained. level at which the theory is specified, and the comments in the

preceding paragraph apply.

Sequential and Hierarchical Control Structures of Routine
Action Learning

On the IAN model, actions are organized through a hierarchical A key advantage of the SRN model over the IAN model,
structure. Botvinick and Plaut (2004) rejected this approach. Theyccording to Botvinick and Plaut (2004), is that the SRN model
argued that it has problems over how the hierarchy is learned, ovegrovides an account of the acquisition of routine action, with
how multilevel control of behavior is sequenced, and, in thequasi-hierarchical structuring emerging from the model as it ac-
interactive activation version at least, over how it accounts forquires action sequences. However, the approach to skill acquisition
error data. within the SRN model has serious failings. Thus, as discussed
below in the section titled Goals and Learning, the SRN model
adopts implausible assumptions concerning the role (or lack
thereof) of explicit subtask structure in task acquisition.

Within the IAN model, sequential behavior results from the Most clearly problematic is how the SRN model deals with the
activation, eventual selection, and then inhibition of nodes withinproblem of catastrophic interference. First, it should be noted that
the schema hierarchy. An important source of schema excitation ifie SRN model is severely subject to this potentially grave prob-
top-down excitation from a parent schema to its component schdem for many connectionist models. To ascertain this, we trained
mas. When a parent schema is selected, however, it does not exciter replication of the SRN model first on preparing tea. Once the
all of its component schemas, just those whose preconditions am@odel mastered this task, the training set was changed, and the
satisfied and whose postconditions are not satisfied. As the mechmodel was trained on the coffee-preparation task. Once this task
anism by which this selective excitation of component schemas isvas learned, the training set was then switched back to that for the
not specified further, Botvinick and Plaut (2004) claimed that thetea task, and so on. Performance on each task was monitored after
IAN model assumes “an important part of the functionality it is each training epoch. The reverse situation, learning the coffee task

Sequencing
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first, was also explored. (See Simulation 5 in the Appendix for full model. Critical in the training phase is, however, the other system,
details.) Figure 5 shows the performance of the model on the twehe goal-directed action system, which, by contrast, requires the
tasks as learning progressed. Not surprisingly, switching the trainprefrontal cortex, the pre—supplementary motor area, and the dor-
ing set led to immediate impairment of the previously masteredsomedial striatum (Yin, Knowlton, & Balleine, 2004). Thus, it is
task, and the model alternated between mastery of each task as tthe prefrontal cortex and the dorsomedial striatum that tend to be
training set was switched. Granted, less training was required omvolved early in learning a motor skill. For instance, Jueptner et
each subsequent switch for the model to regain its previous levell. (1997) scanned subjects both while they were performing a new
of performance, such that after many alternations, the model didnotor sequence and when they had already learned it well. The set
eventually acquire both tasks. However, this does not diminish thef regions active when the task was well learned (cingulate,
basic problem of catastrophic interference—that acquisition of asupplementary motor area, premotor cortex, motor cortex, left
second task impairs performance on previously acquired tasks. parietal cortex, basal ganglia, and cerebellum) was even more
The requirement that the model be exposed to all trainingactive when the task was novel. In addition, however, when the
sequences on every training epoch is clearly unrealistic. To coptask was novel, the prefrontal cortex, particularly the right, was
with this problem, Botvinick and Plaut (2004) imported a hypo- also strongly active. (See also Aron, Monsell, Sahakian, & Rob-
thetical and complex learning mechanism previously postulated tbins, 2004, and Alexander, Stuss, Shallice, Picton, & Gillingham,
deal with the potential for catastrophic interference in learning2005, for the involvement of the left prefrontal cortex in the
semantic representations (McClelland, McNaughton, & O’Reilly, acquisition of task switching and serial reaction time, respectively,
1995). Botvinick and Plaut proposed that the learning of actionand Hollerman, Tremblay, & Schultz, 2000, for relevant basal
sequences occurs in two stages. Thus, they adopted the McClaedanglia evidence.) Moreover, the striatal region that is indirectly
land et al. (1995) position that acquisition is initially in the hip- connected to the hippocampus is the dorsomedial striatum, and not
pocampus, which then trains the cortex, so as to reduce ththe dorsolateral striatum controlling habit (Devan & White, 1999;
possibility of catastrophic interference in learning multiple input— Poldrack, Prabakharan, Seger, & Gabrieli, 1999; see also Graybiel,
output mappings in the cortex (see Botvinick & Plaut, 2004, pp.1998). As far as the habit system is concerned, one thus has a much
401, 403). This however creates a number of problems. Thenore distant and tenuous anatomical relation to the hippocampus
McClelland et al. model is controversial even for the retention ofwhen one compares it with the links that inferior anterior temporal
semantic (i.e., nonsequential) information (see, e.g., Nadel &structures involved in semantics have with the hippocampus,
Moscovitch, 1997). More critically, there is no evidence that thenamely, the ones required by the initial McClelland et al. (1995)
hippocampus can retain and order completely accurately a vergnodel of overcoming catastrophic interference. Indeed, it is most
long sequence of input-to-output mappings that would be requireglausible that any training input from the hippocampus to an
to implement hippocampal training of the action sequence. habitual action system could occur only when mediated by the
This hypothesis also fits very poorly with other neuroscientific goal-directed action system, yet Botvinick and Plaut’'s appeal to
evidence. Learning of instrumental behaviors, an animal precursdrippocampal systems to overcome catastrophic interference as-
of motor skills, involves two systems—an inflexible, automatic sumes that goal directedness plays no part.
habit stimulus—response system and a flexible goal-directed action The situation with respect to learning in the SRN model is
system (Dickinson, 1985; Knowlton, Mangels, & Squire, 1996). further complicated by the fact that, as Botvinick and Plaut (2004)
Thus, the process of reward devaluation affects goal-directed aacknowledged, learning may occur via a variety of means and that
tion, which is employed early in learning a novel action, but doestheir implementation includes only one of these (learning by
not influence the operation of the habit-based system that controlsnitation). It is far from clear how the model might be extended to
action later (e.g., Balleine & Dickinson, 1998). Key structures ininclude other learning mechanisms or how such mechanisms
the implementation of automatic habit repertoires are the dorsowould impact upon the model's behavior. Acquisition of routine
lateral striatum and the premotor and motor cortices (Graybielaction sequences is not in fact addressed in the IAN model, and as
1998). Although Botvinick and Plaut (2004) did not draw the Botvinick and Plaut pointed out, although sequence learning has
connection, this is clearly a system that could relate to the SRNbeen addressed within the interactive activation framework (e.g.,
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Burgess & Hitch, 1992; Grossberg, 1986; Hartley & Houghton, routine, one needs to have a representation of what one is counting.
1996; Henson, 1998; Houghton, 1990; Houghton, Glasspool, &This is debarred on the Botvinick and Plaut approach as there is no
Shallice, 1994), hierarchical interactive activation models, includ-explicit representation of the sugaring subroutine—one is forced
ing those of Estes (1972), Rumelhart and Norman (1982), MacKayo assume that whatever processes in the brain are used in the
(1985), and Cooper and Shallice (2000), all rely upon appropriaténitial training phase and whatever types of representation they
hand-coded hierarchical structure. However, the basic approach groduce are irrelevant for the final state of the SRN. It needs to be
this set of models consists of maintaining a time-varying contexiassumed that the system observes its own input and own output,
representation and associating this representation at successikewever produced, and learns the pairings. In contrast, we would
points in time with successive sequence nodes within an interaanodel the waiter scenario within the IAN model by assuming that,
tive activation network (i.e., a set of mutually inhibitory, seman- although a schema may exist for one version of the coffee task,
tically interpretable nodes). The approach—competitive queu-other versions would be controlled through temporary schemas
ing—can account for rapid (one-trial) learning of sequential created and maintained by higher level systems throughout the task
structure, and Humphreys and Forde (1998) have suggested that(d@f. Shallice, 2004; Shallice & Burgess, 1996). This is facilitated
might be extended to the domain of routine sequential actionby the explicit representation of schemas at all levels within the
Botvinick and Plaut’s (2004) only criticism of this work was that IAN model.
it assumes an ability to identify sequence boundaries—a criticism At the same time, routine behavior can indeed be highly context
we address below. Note, however, that the supervisory processegnsitive. A more realistic example involves the preparation of a
described below as putatively responsible for the development dbeverage from different initial situations. On the IAN model, there
the schema hierarchy structure can be localized in the prefrontalo not need to exist different schemas for coffee preparation for
cortex (Shallice, 2004; Shallice & Burgess, 1996), and this issituations in which the milk container is initially closed or initially
consistent with the empirical evidence of Jueptner et al. (1997ppen or different schemas for buttering toast depending on whether
cited above. one is currently holding a butter knife (from a previous task) or
A further aspect of learning within the contention schedulingnot. Rather, schemas are held to include optional elements; their
framework (beyond acquisition of hierarchy and sequence) relatemclusion on any particular occasion is determined by the context
to the acquisition of schema triggering conditions. This can ben which the schema is performed. The association of precondi-
viewed as the result of Hebbian or delta-rule learning that associtions and postconditions with subgoals within a schema within the
ates representations of the environment in which a schema isurrent version of the IAN model allows for just such optional
performed with the schema representation within the contentiorelements (Cooper et al., 2005).
scheduling system. Preliminary work has demonstrated that this A further example of context sensitivity was discussed by
can account for the acquisition of triggering conditions for indi- Botvinick and Plaut (2002). Making coffee and making cocoa both
vidual actions (Cooper & Glasspool, 2001), and the generalizatioimnvolve scooping an ingredient into the target mug. In the case of
of this approach to schemas is straightforward. coffee, this is a moderate size scoop of sugar, whereas, in the case
of cocoa, this is a large scoop of cocoa mix. Botvinick and Plaut
discussed how this might be accommodated within the SRN model
through the addition of an extra output unit to represent the
Botvinick and Plaut (2004) claimed that for the routine systemmaodifier large (which should be activated on the same step as
itself, a nonhierarchical system is preferable. In claiming this, theyscoopwhen scooping cocoa, but not when scooping sugar). This
cited Agre (1988) and situated themselves by analogy with the Aform of context sensitivity can also be addressed within the IAN
reactive planners of the 1980s who dispensed with intelligenmodel through an appropriate augmentation, namely, through the
planning systems (Agre & Chapman, 1987; Firby, 1987; but seeaddition of manner features (such lasge or quickly) that act as
Gat, 1998; Glasspool, 2005). Thus, they explicitly stated thatmodifiers of actions and that are specified at higher levels of the
“performance of a routine should vary with the larger behavioralschema hierarchy and inherited by schemas at lower levels.
context” (Botvinick & Plaut, 2004, p. 398). To illustrate this,
Botvinick and P!aut askgd the reader_to imagine avyaiter with three Goals and Subgoals: Explicit or Redundant?
coffee-preparation routines (appropriate to three different custom-
ers) differing only in the amount of sugar (zero, one, or two An important element of the concept of a schema as employed
teaspoons) added in each routine. They claimed that the IANy us (Cooper & Shallice, 2000) is that schemas are goal directed:
model, when applied to this task, could not capture the inherenfction schemas are invoked to achieve goals, and successful
similarities between the routines but would need three separateerformance of a schema entails that the schema’s goal is
coffee-preparation schemas. achieved. The term goal is used synonymously with purpose:
In our opinion, the example is not convincing. First, the idea thatSchemas are held to be purposeful, and behavior is held to consist
one would learn that A has one sugar and B has two sugars withowif segments of purposeful action. This is far from a novel claim,
using an explicit representation of one and two and a countingeither at the level of complex tasks (cf. Miller et al., 1960) or the
routine is implausible. There are many routine acts where a spdevel of routine activities (Schwartz et al., 1991).
cific number of operations are required: in using a recipe, in
making tea with a pot, in taking pills, and so on. For the_l?fotvin_ick Two Arguments Against Goals
and Plaut (2004) model, numbers cannot be used explicitly, either
in the skilled implementation of the task or, even more critically, Botvinick and Plaut (2004) were equivocal with respect to the
when it is being learned. Furthermore, if one uses a countingmportance of goals within routine behavior. At a general level,

Context Sensitivity and Quasi-Hierarchical Sequences
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they accepted that “in some circumstances human action doesxecution of the crux (e.g., removing the lid of the sugar bowl) or
involve instantiation of explicit goal representations” (Botvinick & serve a subsidiary tidying function to enable further action (e.g.,
Plaut, 2004, p. 424). At they same time, goals play no role in thediscarding the empty sugar packet). Intuitively, the crux action
functioning of the SRN model. They presented two argumentswithin a sequence is the one that achieves the primary goal of the
against goals as constructs that necessarily play a role in structugequence. It is also the one that is most essential. Thus, if the sugar
ing routine behavior. First, they claimed that the concept of goal ihowl’s lid has already been removed, the action may be safely
too rigid to account for “the extent to which goals may be contextomitted. Even the act of discarding the spoon on completion of the
dependent” (Botvinick & Plaut, 2004, p. 423). The only example sequence can be omitted if the spoon is required by the next
they gave was of how one’s goals in cleaning the house may vargequence; indeed, discarding the spoon should be omitted if the
depending on whether one is tidying up or preparing for a visitnext action would only result in picking it up again. What cannot
from one’s mother. It is not at all clear what the sense of contexbe omitted is the crux action: the act of actually depositing sugar
is here; for instance, it does not relate to aspects of the immediat@to the mug.

environment. Instead, the example is simply characterizable as The concept of a goal and the related concepts of enabling, crux,
behavior attempting to realize one of two related but distinct goalsand tidying actions facilitate the efficient assembly of action
In any case, the reservation ignored the way that, within the IANsequences into novel combinations as required even in simple
model, contention scheduling operates in tandem with a supervisituations when, for example, one is required to butter two slices of
sory system whose functions include the modulation of contentionoast and one spontaneously assembles two instances lwiittiee
scheduling in nonroutine contexts. Second, Botvinick and Plautoastschema by leaving out the inessential tidying-up actions of
argued that there are behaviors “for which it is not straightforwardthe first instance and the preparatory actions of the second instance
to identify discrete, explicit goals” (Botvinick & Plaut, 2004, p. and running the crux actions together. Although the original IAN
423). The example they gave was of playing a violin. Anyone whomodel (Cooper & Shallice, 2000) is not capable of such flexibility,
has ever tried to play the instrument is very well aware that they revised model does show precisely this flexibility, largely be-
goal is to produce a particular type of attractive aesthetic soundgause of the explicit goal-directed nature of schemas (cf. Cooper et
and for a novice, this is very difficult to achieve. It is true that the 5| | 2005). Within the revised model, each subgoal of a schema has
goal in this case is not easily made explicit. However the top-downy precondition and a postcondition. When a schema is selected,
flow of control in contention scheduling does not require that thegctivation is passed to the nodes for schemas corresponding to
higher levels of the structure have a full representation of all tha%ubgoals that have preconditions that are met and postconditions
is produced by the lower level schemas. Thus, in the case of violifhat are not. At the same time, nodes for selected schemas corre-
playing, the higher level schemas do not need to have a represegponding to subgoals whose postconditions are met receive inhi-
tation of the individual finger, arm, and wrist movements requiredption, Transferring butter from the butter container to the butter
to produce a specific melody. knife and from the butter knife to the toast are two subgoals of the
butter toastschema, but the postcondition of the second (that a
butter knife, without butter on its blade, be heldjatches the
precondition of the first. Moreover, the postcondition of the

Regardless of the above objections to assuming the involvemerutter toastschema generally is met once butter has been
of goals, it is appropriate to ask what purposes are served by goafplied to the toast, even if the knife is still held. Running two
within the IAN model and how or to what extent these purposesversions of the sequence together therefore results in the first
are achieved within the SRN model. Goals are critical within theinstance ofbutter toastbeing inhibited and deselected once
IAN model for four different types of reason. First, they provide a butter has been transferred to toast (prior to discarding the
source of activation for the units controlling behavior. Second,knife), and selection of the second instance does not activate
they allow one to distinguish between different roles of actionspicking up of the knife (because it is already held). The net
within a sequence and hence compute and assemble specific d@sult is that the transfer actions of both instances are performed
tions that are necessary in a given situation. Third, goals enabl@ithout an intervening put-down/pick-up of the knife. Note that
schemas to be treated as interchangeable. Fourth, goals facilitatleis behavior is achieved within the IAN model through pre-
the learning process by helping to realize the chunking structure ofonditions and postconditions associated with the subgoals of a
a longer sequence in terms of specific subroutines. The first oschema and without explicit marking of crux, enabling, and
these types of reason is specific to the IAN model. The remainingidying actions. The model therefore does not require that each
three are of general significance. schema have precisely one crux action.

Goals and enabling, crux, and tidying actionsGoals allow a Analogous processing occurs in the more complex situation of
distinction to be made between critical behaviors and enabling ofask interleaving, where objects that are to be used again may be
tidying behaviors. This is realized in the concept of a crux actionspontaneously left in an appropriate state for later use and novel
(Schwartz et al., 1991). Within many routines, certain actions arection sequences that maintain a joint purpose are constructed on
more important to successful completion of the routine than othersthe fly (cf. Joe, Ferraro, & Schwartz, 2002). The explicit repre-
Thus, in adding sugar to a beverage, the crux action is that isentation of goals within the IAN model means that it is fully
which the sugar is actually added (either pouring the contents ofompatible with all of the requirements of interleaving, and in the
the sugar packet into the mug or emptying a spoonful of sugar int@emicomplex task of preparing and packing a child’s lunch box,
the mug). Other actions in the sequence serve to enable successthe model is able to either prepare all items before packing them or

Three Arguments for Goals
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interleave the preparation and packing operations (Cooper et alAlternatively—or in conjunction—learning may use imitation,
2005)% and studies on learning by imitation have suggested that the
Goals and the interchangeability of schema$Vithin the  processes involved mediate action execution through explicit or
coffee-preparation task, adding sugar may be achieved either hynplicit goals (Wohlschilger, Gattis, & Bekkering, 2003). More-
using a packet of sugar or by using a sugar bowl. It is the sharedver, in a fuller model including a supervisory system, goals would
goal (of sweetening the beverage) that allows these schemas to b#low the system to institute monitoring and checking procedures
interchanged. Botvinick and Plaut (2004, p. 423) suggested thasee Shallice, 2004).
their model can give the impression of being goal directed without
any representation of goals because it can learn to perform the W oing Without Goals
different sugar-adding subsequences as if they were interchange-
able. Although this is true, as discussed above, the SRN model as The case for goals, even in the performance of routine or
presented by Botvinick and Plaut can only do this if it is trained everyday activities, appears strong. How then does the SRN model
with each and every variant of sugar addition in the context of eactachieve its impressive performance in the absence of any goal
and every task that employs sugar (but see footnote 3, above). fepresentations? The answer is twofold. First, at the level of the
cannot spontaneously generalize or transfer this learning to useomplete task, Botvinick and Plaut’s (2004) instruction units serve
different sugar-addition methods in a related task (e.g., making tedp specify an intention. Although the network learns to immedi-
because, in its current instantiation, the model has no way ofitely encode this intention in its context units, it is nevertheless
representing subtasks as discrete entities and no way of knowirigitialized with an intention (as, in our opinion, it should be). This
how to preserve context information (e.g., whether it is making teds true in both their basic simulations of tea and coffee preparation
or coffee) across a subtask (e.g., adding sugar) unless it hd8otvinick & Plaut, 2004, Simulation 1, where two mutually
received explicit training on that variant of the task. Simulationsexclusive instruction units are employed) and the additional sim-
supporting this claim are described in Simulation 3 in theulations of coffee preparation with zero, one, or two sugars
Appendix. (Botvinick & Plaut, 2004, Simulation 1A, where three mutually
Goals and learning. Botvinick and Plaut (2004, p. 397) argued €Xclusive instruction units are employed). In addition, in all cases,
that learning presents a serious difficulty for hierarchical ap-the model is trained to select tisay doneaction when the goal is
proaches to action. In particular, they suggested that a significarchieved.
factor limiting the extension of existing approaches to learning Second, close inspection of the SRN model's performance re-
within interactive activation networks (e.g., Grossberg, 1986;veals that performance is not that impressive; it lacks the kind of
Houghton, 1990) to the learning of hierarchical structure concern§ehavioral flexibility seen in everyday human action. Although the
the determination of sequence boundaries. Indeed, if one considnodel is able to learn six action sequences (including four with 37
ers, say, the perception of familiar speech units (Saffran, 2001)steps) and although those sequences contain some overlap in the
such a criticism is appropriate. However, this relates to perceptiorform of subsequences that notionally achieve subgoals, the learned
not production. Furthermore, if subsequences achieve subgoa@gtion subsequences cannot be combined in novel ways, and as
and subgoals are explicit at least initially in learning, then thenoted above, the model breaks down if the task environment in
problem of determining sequence boundaries dissolves. Thus, thghich it is applied is not identical to that in which it was trained
idea that the child, when learning coffee making, would have(e.g., if the lid has been left off the sugar bowl).
difficulty in separating out the subroutines conceptually or that the
child, when adding sugar, would not understand that sugar is sweet Linking Actions With Objects

and would not have the goal of making the drink sweet seems o o )
highly implausible. Goals can therefore facilitate the learning Botvinick and Plaut (2004) employed a deictic scheme to link

process by helping to realize the chunking structure that break&ctions to objects. It is implemented through separate fixate or attend
down longer sequences of perception—action pairs into the prodgctions for each object relevant to the task. There is much evidence in
ucts of specific subroutines. support of a deictic scheme (e.g., Hayhoe, 2000; Land, Mennie, &
We suggest that tasks such as coffee preparation are primari?UStead' 1999)_. However, such a scheme is orthogonal to the issue of
acquired through instruction of the contention scheduling systeni€ representation of schemas or the underlying computational pro-
by the supervisory system. High-level goal-directed problem solv-€SS€s—it I fully consistent with either explicit representations of
ing would initially be responsible for developing solutions to schemas or implicit schemas and with either a recurrent or an inter-
simple subtasks such as adding sugar or milk to a beveragé‘.Ctive computational substrate (see below). What is not independent is

Schemas that embody these solutions develop with practice withif® detailed implementation of such a scheme. Botvinick and Plaut
contention scheduling and are then available for use in morévoided any internal representation of objects. The key difference is
complex tasks, such as preparing coffee, which again are coriberefore notthe use of deictic reference but the explicit representation

trolled initially through biasing of behavior by a supervisory ©f objects within the IAN model.
system but which, with practice, are also transferred to contention
scheduling. In this way, hierarchical structure is not abstracted by ,

Notwithstanding this, intentional interleaving (as in the six-element

unguided imitation or observation of lengthy, apparently PUrPOSE+55k introduced by Shallice & Burgess, 1991) would appear to require some

less action sequences. Rather, it develops as a result of top-dovikchanism to switch away from the current task even when that task is
problem solving and bears strong similarities to the mechanism ofrogressing adequately. We assume this to be a supervisory system func-
learning by chunking within the Soar cognitive architecture tion that operates by intentional inhibition of an ongoing schema and
(Laird et al., 1987; Newell, 1990; see also Duncan, 2001).excitation of an alternative schema.
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Studies of the action selection of neurologically intact individ- SRN model therefore provides no account of how the presence of
uals and certain classes of neurological patient have providedistractor objects may slow action selection or lead to omission
several strands of evidence that may help to differentiate therrors. This insensitivity of the SRN model’s behavior to distractor
approaches to linking actions with objects. Thus, patient studiesbjects is not an implementation issue that can be addressed by
(e.g., De Renzi & Lucchelli, 1988; Giovannetti, Libon, Buxbaum, increasing the number of objects in the task environment (and
& Schwartz, 2002; Humphreys & Forde, 1998; Rumiati et al., hence increasing the number of associated fixate actions that might
2001; Schwartz et al., 1991, 1998) have revealed that objedbe produced by the model). To have any effect, such a modifica-
substitution errors, in which an appropriate action is performedion would need to be accompanied by training of the modified
with an incorrect object (e.g., a fork is used in place of a knife formodel on tasks involving the new objects. However, an object can
spreading butter on toast), are relatively common in the actions ofnly affect the SRN model’s behavior if the SRN first fixates the
many different patient groups. Mild forms of such errors also occurpbject, and that fixate action is internally generated by associations
in the slips and lapses of unimpaired individuals (Reason, 1979earned through the SRN. So, extending the model in this way does
1984). If objects are represented implicitly only in terms of fixate not result in more errors when distractor objects are present than
or attend actions, then such errors must arise from either thghen they are not because the distractor objects are not fixated.
selection of an incorrect fixate action or an error in some addi- The SRN model also provides no real account of object substi-
tional, downstream system responsible for performing fixate acyytion errors, either in slips of normal action selection or in errors
tions. Representing objects explicitly and incorporating a mechagf impaired action selection. Thus, although Botvinick and Plaut
nism for associating objects with actions (as in the Cooper andz004) provided an example of an object substitution error pro-
Shallice, 2000, approach) constitute one way of effectively Specyyced by their model (stirring with the coffee packet), our reimple-
ifying this additional system, except that the interactions between,antation of the SRN model revealed that such errors were ex-
object representation qnits and schema units within thg IAN modp eedingly rare. Table 1 shows the number of object substitution
mean that the system is not downstream from the action selectiogyq s yroduced by the reimplementation at various levels of noise.
system but is reciprocally and interactively connected with it. £ cejl represents the cumulative results of 1,000 attempts at the

tea task and 1,000 attempts at the coffee task. As the table illus-
The Influence of Distractor Objects trates, object substitution errors made up less than 0.5% of all
. . - . errors when noise was 0.10 or less (the level used by Botvinick and

There is substantial gmpmcal e\(ldence for .the effect. of the pr es_F?aut, 2004, to simulate normal slips of action). This rose to a
ence of unattended or distractor objects on action selection. Studies A ximum of less than 2.0% at higher values of noise. (For full
reaching behavior both in normal subjects (Pratt & Abrams, 1994; se ] :

also Tipper, Lortie, & Baylis, 1992) and in neurological patients etail; o.f the simulation; and a breakdoyvn pf the specific. object
(Riddoch Iédwardé Humphr’eys West, & Heafield, 1998) haVesubstltutlon errors, see SimulationAnalysis Bin the Appendix.)
! ; . ' ' To understand why object substitution errors are rare in the

shown that action initiation in reaching tasks is delayed when distrac- - : )
. behavior of the SRN model following damage, consider the error
tors are present as compared with when they are not present. In

related fashion, Meegan and Tipper (1998) found that normal subjecg pouring the coffee into the sugar bowl (assuming that the sugar
made nonnegligible numbers of errors in a simple reaching task whe owl is open). The corrept target is the coffee mug, so, once the
distractors were present. Furthermore, several neuropsychologictL:{POpeneOI coffee packet is held, the sequence of actions should be
group studies with action-disordered patients, including closed heatf2" Packet, fixate mug, pouFor the object substitution error to
injury patients (Schwartz et al., 1998), left-hemisphere stroke patientdCCUr. the centrdixate mugmust be replaced biyxate sugar bowl
(Buxbaum, Schwartz, & Montgomery, 1998), right-hemispherew'thOUt aﬁectlng th_e subsequepour. This is unllkely_ to happen
stroke patients (Schwartz et al., 1999), and dementia patients (Giecause, after fixating on the sugar bowl, pouring is not likely to
vannetti et al., 2002), have demonstrated that the presence of addi® Supported by either the model's context representation or its
tional distractor objects in the local environment affects error profilesNPUts. It is unlikely to be supported by the context representation
when performing a range of simple activities of daily living, with all because that representation must have been corrupted to generate
patient groups omitting more actions when distractor objects werd1® €rror in the previous fixate action. It is also unlikely to be
present than when they were not. supported by the input because the training set does not include

The presence of distractor objects can also lead to outrigh®ny cases of pouring the coffee packet into the sugar bowl, so that
object substitution errors. These account for one of the four mairfonfiguration of held and fixated objects should not facilitate
categories of reported slips of routine action by normal subjectgouring. In fact, within the SRN model, all object substitution
(Reason, 1984), and such errors made up 17% of all errors olfrrors must begin with an incorrect fixate action, but this fixate
served by Schwartz et al. (1998) in the behavior of a healthyaction is likely to result in subsequent actions being captured by
control group completing a range of everyday tasks. Boththe fixated object rather than being driven by the task or subtask in
Schwartz et al. and Humphreys and Forde (1998) reported tharhich the fixate error occurred. In contrast, the explicit represen-
object substitution errors accounted for approximately 10% of thdation of objects in the IAN model means that all objects physically
errors produced by their frontal patients. present in the environment can influence the selection of actions

If objects are represented only in terms of relevant fixate orwithin the model. Thus, Cooper et al. (2005) demonstrated that,
attend actions and, in addition, environmental input to the systemwhen the IAN model is appropriately damaged, the addition of
is limited only to the representation of the objects that are attendedistractor objects to the representation of the environment pro-
and held, as in the SRN model, then only those objects that arduces error profiles similar to those reported by Schwartz et al.
actually attended or held can influence later action selection. Th€1998) for action disorganization patients.
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Table 1
Object Substitution Errors as a Percentage of Total Errors Produced by the Single Recurrent Network Model With the Standard
Deviation of Noise Varying From 0.00 to 0.50

Noise SD
Error type/statistic 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Total object substitution errors 0 0 9 37 57 89 94 103 104 133 134
Total errors 0 922 1,909 3,056 4,077 4,940 5,473 6,126 6,604 7,091 7,374
% object substitution errors 0.0 0.5 1.2 1.4 1.8 1.7 1.7 1.6 1.9 1.8
Deictic Reference in the IAN Model important because, within the Cooper and Shallice (2000) ap-

o . . _proach, the two different methods would correspond to two dif-
The above effects argue for the explicit representation of ObJeCt?erent schemas with a common goal.

at some level in the action selection system, yet the evidence for A simple attempt at implementing this kind of choice within the

fixate or attend actions remains strong. In recent work (Cooper, irbeneral framework of the SRN model would be to employ two
press), we have therefore incorporated deictic object selection intfiterent fixate actionsfixate sugar packeindfixate sugar bowlthe

the IAN model. Specifically, the array of pick-up actiomsek up 5 sygaring subsequences would then begin with different fixate
source pick up ta_rget, pick up |m_plemera_nd_p|ck up them)a_has operations. However, this approach fails, at least in the sense that
been replaceq with an array _of fixate actiofizdte s_ource,_flxate when trained in this fashion, the model always adds cream before
ta“-?’et’ flxat_e implementand fixate themgand a smglt_a pick-up adding sugar, whereas when sequences in which sugar is added first
action. As_ln the SRN_modeI, _aII arguments of actions are Sehppear in the training set, they are never spontaneously reproduced.
through prior fixate actions (spick up operates on Whatever is - 1 yeason for this lies in the statistical structure of the training set.
being fixated, angbour pours whatever is held into whatever is i, o distinct subsequences for adding sugar, the transition prob-

fi>_<ated). All task .schemas have been adjusted accordingly (so allyjiies in the coffee-related subset of the training set are as follows:
pick up sourceactions have been replaced by a schema of the form

fixate source, pick upand allpour actions have been replaced by GROUNDS —> SUGAR (PACK) 0.25
a schema of the fortfixate target, pouretc.). This approach takes

. . 0.25
from Botvinick and Plaut (2004) the use of deictic reference but GROUNDS — SUGAR (BOWL)
differs because it retains the explicit representation of objects, ~GROUNDS—> CREAM 0.50
which we take to be essential in accounting for the distractor and N . )
object substitution effects enumerated above. With these transition probabilities, the context established upon

The modified model was applied to five multiple-object tasks stir.ring.in the coffee ground; strongly fa\./ors. adding cream, and the
commonly used to assess ideational apraxia, such as lighting activation _of th_e output units after stirring in the goﬁee grounds
candle and juicing an orange. The model was able to perform alféflects this, withfixate cream cartorbeing approximately 0.50
tasks without error using the same parameter settings as in oth@pdfixate sugar packeandfixate sugar boweach being approx-
recent work (i.e., as in Cooper et al., 2005). More critically, imately 0.25. Noise in the initial values of the context units means
Rumiati et al. (2001) described two ideational apraxic patients withfnat these activations are only approximate, but that noise is never
tendencies toward different types of action error. Patient DR'sSufficient to change the superiority ékate cream cartonCon-
dominant error type involved misusing objects (e.g., attempting to>€duently, the winner-take-all approach at the output layer of the
cut an orange with a knife by using a pushing, rather than a sawingg,RN model means that sugar is never added immediately after the
motion), whereas Patient FG's dominant error type involved using°ffee grounds. _ o
objects correctly but in the wrong location (e.q., striking a match Botvinick and Plaut (2004) ignored this issue. Instead, they
on the inside of the drawer of the matchbox). Both patientsemployed a singldixate sugaraction that initiates both sugar-
produced a number of other errors characteristic of ideationa®dding subsequences. This action results in fixation moving to
apraxia. The modified IAN model was able to provide good €ither the sugar bowl or the sugar packet with equal probability.
quantitative fits to the error profiles of both patients by assuming,Because the fixated object is input to the network, this then allows
in one case, that the patient's deficit affected the link strengthdhe network to proceed with whichever of the two sugaring sub-
from the object representation to the schema networks and, in theedquences fits with the fixated object. The net effect of this
other, that the deficit affected the reverse links. (See Cooper, ifi"€rging of the initial stages of the two sugar-adding subsequences
press, for further details.) It is unclear how the pattern of impair-is that the transition probabilities to the first action of adding sugar

ments and particularly the differences between patients might b@8nd adding cream after stirring in the grounds are equal. This is
accounted for by the SRN model. critical if the model is to reproduce all training sequences, as

demonstrated in Table 4 of Botvinick and Plaut (2004).
On the positive side, the implementation of the sugaring sub-
tasks within the SRN model demonstrates that the model is able to
A key feature of the SRN model is its ability to simultaneously develop behaviors that are responsive to environmental feedback:
encode two different methods for adding sugar—from a packet ott is the environmental feedback that first differentiates which of
from a bowl—and to automatically select between the two. This isthe two sugaring subsequences is being performed, and this feed-

The Implementation of Choice
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back is sufficient to ensure that whichever subsequence is selectd®91, 1998) and ideational apraxia (De Renzi & Lucchelli, 1988;
by the environment is performed without error. There are, how-Rumiati et al., 2001), as well as recent empirical evidence relating
ever, three serious difficulties with the approach. First, the modeto errors in neurologically healthy adults following interruption
imposes strong constraints on the tasks that it might acquire. liBotvinick & Bylsma, 2005). This consideration raises some sub-
particular, if two tasks share an initial subsequence, the SRNtantive difficulties for the SRN model, primarily because the
model can acquire those tasks only if all options at the point ofimplicit representation of schemas and the lack of any explicit
divergence are equally common in the training set. If all optionsrepresentation of objects in that model mean that all errors are
are not equally common, then any option that is underrepresentegssentially capture errors.
is produced with greatly reduced frequency, if at all. Simulation 2
in the Appendix demonstrates this difficulty. Second, and moreThe SRN Model
critically, the fixate sugaraction effectively implements a goal: ] o S )
that of adding sugar. The choice of which method of adding sugar A major criticism of the SRN model lies in its inability to fit
is selected is left to the environment. Thus, the model has no wa§Mmpirical findings. Although the model does capture several ef-
of influencing which subsequence might be selected. Although if€cts (€-9., the effect of relative task frequency on capture errors,
appears that the model adds sugar from the packet on 50% de monotonic increase in _mdep_en_dent actions with severity of
occasions and from the bowl on the remaining 50% of occasionsd@mage, and the increase in omission errors with damage), close
there is no way for the model to bias selection toward eitherinspection of its behavior reveals several deficiencies in the em-
alternative because that selection is entirely the product of th@irical fits offered by the model.
implementation of thdixate sugaraction, which itself is random. 1. The relative frequency of error typesWe have already
Third, the model cannot adapt the probability of each sugar-addingiscussed how the SRN model has great difficulty in producing
subsequence to reflect the probability of the subsequences in ﬂfg)_Ject sqbstltutlon errors _(see the section titled Linking Actl_ons
training set. Thus, if, during training, sugar is normally added fromWith Objects, above). It is also unclear how the model might
the bowl when making coffee but from the pack when making tea@ccount for specific anticipatory errors (e.g., attempting to pour
this bias cannot be reflected in the trained model's performancdVithout first opening a container; see the section tit@d the
(see Simulation 2 in the Appendix). Importance of t_he Tra_lnlng Seabove) or specn‘_lc tool_omlss_lon
One way around the first of these difficulties may be to rein- €Tors (e.g., using a finger ms_t(_ead of a utensil to stir a drink or
terpret the activation of the vector of output units as a frequencysPreéad butter). Equally as critically, although the SRN model
distribution and select action probabilistically from this distribu- Predicts increasing rates of omission errors with severity, it tends
tion. On this approach, actions that are rare within a context would® produce more omission errors than either controls or patients.
still have a chance of being selected. In addition, the approacfP™Mission errors were indeed common in Schwartz et al.’s (1998)
would not lead to high error rates in the absence of noise becausBatients, making up 38% of errors, by contrast with only 3% of the
as demonstrated in Figure 4, the activity of output units for correc€ors of controls. However, Botvinick and Plaut (2004) reported
actions is almost always near 1.0, whereas the activity of incorrecdhat at noise of 0.2 (equivalent to a mild impairment on their
output action units is invariably small (typically less than 0.01). criteria), 77% of their model’s errors were omissions. Our reimple-
This approach would also address the third difficulty if, in addi- mentation of the SRN model replicated this, although there was
tion, the fixate sugaraction were to be replaced with separate considerable variability resulting from the initial randomization of

fixate sugar packeand fixate sugar bowlactions. The second network weights. Table 2 shows the average proportion of omis-
difficulty, however, remains. sion errors produced by 10 instances of the SRN model at varying

levels of noise. At low levels of noise, the model produced, on

average, more than 10 times the proportion of omission errors

produced by Schwartz et al.’s healthy control subjects, whereas, at
Having considered general issues arising from conceptual difhigh levels of noise, the omission rate is still at least double that

ferences between how the SRN and IAN models work, we turnobserved in patient behavior. (See SimulatioAdalysis G in the

now to the specific issue of the models’ accounts of error data. IrAppendix for further details.)

particular, we consider how each of the models accounts for the One might argue that the differences in frequency of error types

range of errors produced by patients with action disorganizatiorbetween the behavior of the SRN model and the results of the

syndrome (ADS; Humphreys & Forde, 1998; Schwartz et al.,patient studies could be addressed through some minor modifica-

Accounting for Error Data in Coffee-Making Tasks

Table 2
Omission Errors as a Proportion of Total Errors Produced by the Simple Recurrent Network Model With the Standard Deviation of
Noise Varying From 0.00 to 0.50

Noise SD
Error type/statistic 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Total omission errors 0 383 925 1,581 2,175 2,730 3,285 3,835 4,354 4,810 5,126
Total errors 0 922 1,909 3,056 4,077 4,940 5,473 6,126 6,604 7,091 7,374

% omissions 41.5 48.5 51.7 53.3 55.3 60.0 62.6 65.9 67.8 69.5
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tion of the SRN model. However, it is unclear what that modifi- in disorders such as Parkinson’s disease or amphetamine psycho-
cation might be. For example, augmenting the SRN with a threshsis. Similarly, it cannot account for any effects of the rate of action
olding mechanism such that an action is performed only when then error profiles as would be anticipated by extrapolating results
SRN’s output exceeds that threshold does not help. As is cleaor studies of speech production (e.g., Dell, Burger, & Svec, 1997)
from Figure 4 (especially Step 11 of the coffee-making task), wherto the action domain (cf. Gupta & Dell, 1999; MacKay, 1985;
the SRN model is run without noise, the activation of output unitsVousden & Brown, 1998). Although the IAN model has not been
tends to be all or none. A threshold of less than 0.99 would havepplied to modeling the latter effects, it has addressed empirical
no effect on most selections. The only exception is when multiplephenomena in both Parkinson’s disease and amphetamine psycho-
outputs are possible, where the coffee-making task requires sis (Cooper & Shallice, 2000).
threshold of at most 0.5 for normal functioning. In simulations that 4. Dissociations between individual patients and between pa-
we do not report in detail here, combining a threshold with noisetient groups. The SRN model attempts to account for all action
led to an even greater tendency toward omission errors and awasfrors in essentially the same way: through corruption of the
from, for example, object substitution errors. context representation by the addition of noise. Yet, even ignoring

In fact, the root cause of many of these empirical difficulties is disorders of rate, there are distinct cognitive-level action-related
that all sequential action within the SRN model is guided by thedisorders. Many, although not all, commentators, for example,
sequential attractors that the model develops from its training setave differentiated the generalized action disorganization found in
Consequently, all errors result ultimately from the context unitspatients with prefrontal and supplementary motor area lesions (cf.
corresponding to a point in one sequential attractor drifting to aDuncan, 1986; Humphreys & Forde, 1998; Luria, 1966; Schwartz
nearby point either at a different stage in the same sequentiat al., 1991) on the one hand from ideational apraxia (De Renzi &
attractor or in another sequential attractor. They are essentially Bucchelli, 1988; Rumiati et al., 2001) that may occur following
form of capture error. Omissions or perseverations result if thedamage to left temporoparietal regions on the other hand. It is,
drift is to some nonconsecutive point in the same sequentiahowever, accepted that these deficits may have similar behavioral
attractor. Explicit capture errors result if the drift is to another consequences on semicomplex everyday tasks (Buxbaum et al.,
sequential attractor, but given the structure of Botvinick and1998). Surprisingly, there is no clear quantitative study differen-
Plaut's (2004) training corpus, such errors are hard to positivelptiating the properties of these types of patient. However, as dis-
identify, and they may easily be misidentified as any type of errorcussed above, Rumiati et al. (2001) described two ideational
(including omission or perseverationDmissions and persevera apraxic patients with tendencies toward different types of error.
tions are common in the SRN simulations because there are just skxtrapolation from qualitative differences between the patterns of
attractors, and these attractors are so closely related that genuidésorder exhibited by patients to qualitative differences between
capture errors appear more like omission or perseveration errofsci of impairment can be somewhat hazardous (see, e.g., Plaut,
(e.g., coffee preparation being captured by tea preparation is equik995; Shallice, 1988; but see Bullinaria, 2003). However, with
alent to coffee preparation with the omission of ttream sub-  only one source of error, it is unclear how the SRN model could
task). It is likely that the addition of more distinct tasks to the lead to such a differentiation in hypothetical patient patterns. By
training set would result in fewer omission and perseverationcontrast, as discussed in more detail earlier, Cooper (in press)
errors but more clear-cut capture errors. Although the reduction ishowed how one pattern of symptoms fits with an impairment of
omission errors would be in line with empirical findings, the the pathway from action schema representations to object repre-
corresponding increase in capture errors would not. In any caseentations, whereas the other would reflect an impairment to the
this analysis further demonstrates the sensitivity of the model’severse pathway.
behavior to its training set. 5. Susceptibility to error following interruption. Botvinick and

2. The effect of the presence of distractor objects on errorPlaut (2004) demonstrated that, in the SRN model, context infor-
profiles. In a series of group studies, Schwartz and colleaguesnation within the hidden units is more sensitive to noise within
have demonstrated a reliable effect of the presence of distract@ubtasks (e.g., within adding sugar) than between subtasks (e.g.,
objects on the error profiles of ADS patients (Buxbaum et al.,between adding sugar and adding cream). On the basis of this and
1998; Schwartz et al., 1998, 1999). Closed head injury patientsspecific simulations, they predicted that interruptions that occur
left-hemisphere stroke patients, and right-hemisphere stroke pavithin subtasks are likely to result in more errors at the following
tients all tended to produce more omission errors when distractasubtask boundary than interruptions that occur between subtasks.
objects were present. Whether the SRN model could account fofhis prediction has since been confirmed by empirical work
this effect given that it contains no separate representation ofBotvinick & Bylsma, 2005) in which a coffee-making routine
objects (see the section titldthe Influence of Distractor Objects, involving adding sugar and cream was interrupted at unpredictable
above) is unclear. One possibility is that distractors could produceoints by a short subtraction task.
impairments in fixation behavior, but this, as well as its conse-
quences for behavior, needs to be demonstrated. In contrast, noi
within the schema network of the IAN model has recently been

shown to yield the pattern of behavior observed in the various Botvinick and Plaut (2004) made three criticisms of our account

patient_ groups (Cooper etal., 2005). ) (Cooper & Shallice, 2000) of error data: that although ADS pa-
3. Disorders affecting the rate of action and effects of the rate

of action on error profiles. The SRN model selects one action on

every processing cycle. It is therefore difficult to see how it can 5 See Simulation 3 in the Appendix for evidence in support of this
give an account of the action-related impairments of rate occurringnterpretation of the SRN model's error behavior.

The IAN Model
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tients produce several types of error, it was necessary to vargamely, concerning schemas and object arguments, respectively
different parameters in the model to simulate different error types(Cooper, in press; Cooper et al., 2005). Similarly, as discussed
that the IAN model did not naturally produce one type of error— above, the disorder of utilization behavior fits naturally with the
recurrent perseverations—without the addition of special mechaaccount of the control of routine action offered by the IAN model.
nisms; and that the IAN model did not reproduce the finding The IAN model has not been applied to the Botvinick and
reported by Schwartz et al. (1998) that more severely impaireBylsma (2005) paradigm, and it remains to be demonstrated that
patients tended to produce disproportionately more omissiorthe IAN model can match the success of the SRN model in this
errors. situation. However, contrary to Botvinick and Bylsma, the ob-
The use of different parameter variations in the simulation ofserved error pattern does not seem to be counterintuitive. If the
different error types was an expository device we (Cooper &interruption leads to insufficient information being available in the
Shallice, 2000) used to clarify how the various error types mightaction system to allow the action to be completed, then what
arise within the IAN model. In fact, only one parameter study wasadditional information is required to resume? In the within-subtask
reported in detail: that involving the reduction in top-down exci- case, it is hecessary to resume the current subtask and recall which
tation within the schema network coupled with a complementarysubtasks from the overall task have been completed, as the subject
increase in the bottom-up excitation within the network. This studyis required to vary the order of subtasks from trial to trial. Only the
was motivated by theoretical claims that ADS is a consequence adecond of these need be recalled in the between-subtasks case.
this form of dysfunction (Schwartz et al., 1991). The effects of Botvinick and Bylsma did not score errors on resumption of the
increasing noise within the IAN model—the mechanism employedcurrent subtask, but errors are unlikely as it is generally possible to
by Botvinick and Plaut (2004) to capture simultaneously the rangenfer one’s position in the subtask from the state of the task
of ADS error types—were not reported. However, more recentenvironment. Making such an inference could, however, poten-
work has suggested that an imbalance in top-down and bottom-ugially interfere with one’s recollection of completed subtasks and
excitation within the schema network is more consistent withhence result shortly thereafter in the kind of omission or perse-
another action selection disorder, utilization behavior (Boccardiyveration errors observed by Botvinick and Bylsma.
Della Sala, Motto, & Spinnler, 2002; Lhermitte, 1983; Shallice,
Burgess, Schon, & Baxter, 1989), whereas increased noise within The Place of Routine Action Systems in the Overall

the schema network does indeed produce the full range of error Architecture: The Interface With Higher Cognition
types (Cooper et al., 2005). Furthermore, increased noise also '

leads the model to reproduce the relation between omission errors The neuroscience evidence strongly supports the existence of
and severity reported by Schwartz et al. (1998), as well as atwo systems in the acquisition of action sequences—a habit-
additional effect—the effect of distractor objects on patients’ errorlearning system and a goal-directed system. In humans, these
profiles—that would appear problematic for the SRN model (aswould correspond to the contention scheduling and the supervisory
discussed in the preceding section). systems. Botvinick and Plaut (2004) emphasized that their model
The failure of the basic IAN model to exhibit recurrent persevera-is intended as one of routine habitual action, but they accepted that
tive errors is also not of major concern. Humphreys and Forde (1998)onroutine action probably requires additional mechanisms. In-
reported two patients with extensive frontal damage and behaviadeed, they appeared to accept the position of Norman and Shallice
characteristic of ADS. The patients were comparable in terms of th¢1980, 1986) that behavior is the product of a routine system
severity of their action selection impairment, yet the perseverativenodulated or biased by one or more other systems when nonrou-
errors of one patient were generally of the recurrent type, whereaine behavior is required. However, Botvinick and Plaut provided
those of the other patient were generally of the continuous type. Thusio account of how other systems might interact with their pro-
the two types of perseverative error can dissociate. Sandson ammbsed routine system. This is critical because, although it may be
Albert (1984) also suggested that the two types of perseveration reswdrgued that much behavior consists of routines, those routines are
from different forms of neural damage. However, Shallice, Venablegenerally assembled in nonroutine ways. Thus, processes such as
and Rumiati (2005) argued that the relative immediacy of perseveraerror correction, inhibition of an inappropriate or undesirable be-
tive actions across patients lies on a continuum rather than forming lhavior, and interleaving of behavioral routines all present a major
dichotomy. Thus, the empirical phenomena in this domain are noissue for the model: How can the output of the proposed routine
well established. However, it is likely that recurrent perseverativesystem be controlled or biased by other systems in these
errors would be produced by the IAN model if the model’s represensituations?
tations of achieved subgoals were to be corrupted. Therefore, these Within the SRN model, this excitatory or inhibitory biasing is
observations are consistent with the account offered of perseveratiyoblematic. Consider the case of error detection and correction.
errors by the IAN model, and although they do not preclude a varietyClearly, mechanisms exist by which one may compare intention
of other models, they would, as discussed above, appear to presenaad effect (to use the phrasing of Luria, 1966). Without such
problem for any model (such as the SRN model) in which a singlemechanisms, Reason’s (1979, 1984) self-report diary studies
impairment necessarily leads to both forms of perseveration. would have yielded no data, for his participants would not have
With regard to the specific difficulties relating to accounting for been aware of their errors. Equally clearly, once a person detects
dissociations between patients and patient groups within the SRIdn error in his or her actions, he or she is also normally able to
model, it should be noted that within the IAN model, there are atcorrect that error. Thus, if, on preparing to shave, a person picks up
least two sources of content errors—over schemas and over objedeodorant instead of shaving foam, the person generally detects
representations. This allows us to suggest that different types dhis before significant harm is done, puts down the deodorant,
patient might have qualitatively different sorts of content errors,picks up the shaving foam, and resumes the shaving routine. How
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might one give an account of this fragment of behavior if routine Now, consider how the fragment of behavior described above
action is controlled by a system such as that of Botvinick and Plautmight be accounted for within a system built around the IAN model.
(2004)? Accounting for the slip itself, through corruption of the The error might arise because some corruption in the processing of the
context representation, is only a small part of the solution (al-object representation network (modeled as noise) results in the rep-
though we have already discussed the difficulties that the SRNesentation of the deodorant container winning the competition within
model has in producing object substitution errors). To detect thehe source object representation network. Once the error has occurred,
slip once it has occurred, some mechanism is required to compalt®wever, monitoring mechanisms that check the context-specific
actual behavior with expected behavior. Botvinick and Plaut propostconditions of a schema would detect the error. Note that these
vided no account of this, but the mechanism would seem to requirenechanisms make use of an explicit representation of expectations. In
some representation of the expected or intended behavior. One alfuis case, monitoring mechanisms would detect a mismatch between
requires a mechanism to plan and effect the repair. Planning mighhe expected and actual states of the system and invoke appropriate
reasonably be relegated to some other system, but effecting therror-correction mechanisms. The shaving schema could then be
repair is problematic because it requires performing a simple butemporarily suspended while the correction is applied. Performance of
potentially novel subsequence of actions, which the SRN modethe shaving schema would then be resumed from where it was
cannot do. Finally, one needs a mechanism to resume the intesuspended. The use of explicit goals, preconditions, and postcondi-
rupted shaving sequence from the point at which the error aroseions within the IAN model means that it is not necessary to store the
The SRN model provides no mechanism whereby a routine can bentire state of the system while the repair is being carried out—all that
entered midway through. It would seem necessary either to resumeeds to be stored is the high-level goal. Reactivating schemas for this
the routine from scratch or to learn the tail ends of all routines fromgoal on completion of the repair would not result in repetition of any
each and every step within the routine just in case they might beompleted subschemas (because their postconditions would be met)
required for error correction. but would instead result in activation and, hence, selection of all
These difficulties reflect a more general difference betweenappropriate remaining subschemas. Thus, although the interface with
models that use localist as opposed to distributed representdtigher cognitive functions does not raise significant issues for the IAN
tions—a difference Page (2000) referred to as ease of manipulanodel, it raises major issues for any model of routine action that
tion. Botvinick and Plaut’s (2004) eliminativist position limits the avoids explicit representation of schemas or goals and more generally
extent to which representations used by the routine system can Wer Botvinick and Plaut’s (2004) eliminativist position.
communicated to and manipulated by the nonroutine system. The
simplest way in which the SRN model might be interfaced with
higher level control follows from the observation that the SRN
model effectively performs the actions of a schema if its hidden Our prime concern in this article has been to present a series of
units are initialized to appropriate activation levels (and the fixatedarguments for the explicit representation of schemas and goals
and held objects are also appropriate for the first step of thavithin the system or systems responsible for the generation and
schema). Hence, one might envisage a system that maintaircontrol of routine sequential action. In doing this, we have con-
associations between higher level representations of schemas atrdsted our model (Cooper & Shallice, 2000) and that of Botvinick
the hidden unit patterns that result in those schemas being peand Plaut (2004). To develop the argument, we have aimed to
formed. A supervisory system could then interface with the SRNclarify the key differences between the approach of Botvinick and
model to yield controlled behavior (when required) by deliberatelyPlaut and our approach to routine sequential action, to demonstrate
instantiating the hidden units with the corresponding activationsthat Botvinick and Plaut’s criticisms of the hierarchical interactive
This is clearly what Botvinick and Plaut had in mind when they activation approach are not substantive, and, most critically, to
suggested the addition of “a new group of units dedicated tqorovide a set of major problems that the recurrent network ap-
representing desired states of the system or environment” (Botvinproach currently faces. We do not believe these difficulties are
ick & Plaut, 2004, p. 424; see also Botvinick, 2005). There is alsonecessarily insurmountable hurdles to the basic SRN approach.
a sense in which the instruction units already present in the SRNMowever, in our view, they provide a set of daunting challenges
model do just this for the two basic tasks of preparing tea andor Botvinick and Plaut’s eliminativist position with respect to
preparing coffee. However, this approach to interfacing the routinesschemas and goals.
system with a controlling system requires discrete (although not The great attraction of the SRN model is that it replaces hand-
necessarily localist) representations of schemas elsewhere. Crittoded specification of a model by gradual shaping of connection
cally, it requires a one-to-one mapping between such representaveights with a learning algorithm. However, the end product does
tions and all schemas at all levels (i.e., for both complete tasksiot produce, when damaged, errors such as those produced by
such as preparing coffee and subtasks such as adding sugar gpatients. In particular, it does not produce anticipation errors or
cream) and from all possible starting states of the world (i.e., fromobject substitution errors at more than a minuscule rate, and it
starting states in which any object may be held or fixated). Thesg@roduces inappropriate rates of omission errors. These character-
additions would result in the SRN model mimicking the explicit istics and others, such as its inflexibility in behavior, stem from a
hierarchical structuring of schemas and goals within the |ANvery basic flaw that is a natural consequence of its architecture.
model. It also does not address the issues of how the controllinghis is that it can only produce—even as errors—sequences of
system might inhibit an undesirable behavior or how the higheractions on which it has been substantively trained. As a conse-
level system might monitor behavior and know either when aquence of this characteristic, for other critical aspects of its be-
deliberately triggered schema has been completed or when an errbavior, the training set has to be fine-tuned to produce the appro-
has occurred. priate output. In other words, the negative property of being hand

Conclusion



906 COOPER AND SHALLICE

coded is merely transferred from the weights for the IAN model toa model, the network would need to be trained with, in addition to
the training set for the SRN model. Most critically, the attempt toits environmental inputs and motor outputs, a representation of its
do away with hierarchical control structures and goals fails. Tocurrent hierarchy of goals and subgoals. When taken in conjunc-
avoid postulating hierarchical control structures for schemas whilgion with the point attractor approach, such nodes may be seen as
not suffering from catastrophic interference, the SRN model isproviding a kind of activation gradient across such attractors,
forced to adopt a learning procedure—hippocampal training of thémplementing Lashley’s (1951) insight that multiple responses
habit system—that is neuroscientifically and cognitively implau- may be simultaneously activated, with competitive processes en-
sible. Moreover, the arguments presented against goals are weaduring that only one is selected at any time. A fourth possibility is
and the use of goals has been shown to have many advantagesat one might attempt to develop an SRN model that uses a
Thus, goals allow functionally equivalent schemas to be inter4earning algorithm that does not presuppose a training set.
changed and noncritical preparatory and tidying actions to be Working along the last of these lines, Ruh, Cooper, and Mare-
dispensed with when appropriate. In addition, studies of learningchal (2005) have demonstrated how an SRN embedded within an
by imitation have suggested that goals greatly facilitate learning.actor—critic architecture using reinforcement leaning (Sutton &
We have concentrated on differences between the IAN and thgarto, 1998) can learn goal-directed multistep sequences. Rein-
SRN models; there are also similarities between them, angorcement learning has two substantial advantages over standard
progress seems most likely to come through the development of gack-propagation through time as described by Wiliams and
hybrid system that builds upon both. To this end, it is relevant tozipser (1995) and used by Botvinick and Plaut (2004) to train the
note that, in both models, schemas, whether explicit and hangrRN modeF First, reinforcement learning does not assume a
coded or implicit and emergent, play a key role in determiningtraining set. The network generates initially random sequences of
behavior and that, in both models, action results from the interacactions, and learning occurs through positive or negative feedback
tion of bottom-up inputs, schemas available to the system that argsinforcing desirable behaviors and extinguishing undesirable
triggered by those inputs, and current activity in the systemgnes. Of course, it is necessary to specify which behaviors are
Finally, both models are consistent with a dual-systems approacfesirable and undesirable. However, a second advantage of rein-
to the control of action—with one system for routine action and afgrcement learning is that by giving positive feedback when a goal
second for nonroutine action and with the second operating bys gchieved and using temporal difference learning (Sutton &
modulating or biasing the first. It can be argued that the conceptugbarto, 1998), action becomes goal directed. The network does not
interface, the bridge law, between the symbolic domain and th§ear, explicit sequences; rather, it learns to select actions that move
parallel distributed one is that between the attractor basin and thg from whatever state it happens to be in toward a goal state. With
symbol in Newell's (1990) sense. In addition, Cooper (2003) hasyygficient exposure to possible input states, this gives the network
suggested that recurrent networks and interactive activation nely, inpuiit sensitivity to the initial state of the world and an
works may be reconciled through the mapping of nodes within they ;jomatic error-recovery mechanism: Whatever the initial state of
interactive activation network to discrete point attractors (as 0pine world, the network selects actions that move it toward its goal,
posed to sequential attractors) within the recurrent network. Wend if an error occurs (momentarily causing the network to move
therefore see the prime error of the Botvinick and Plaut (2004)away from its goal), the network automatically resumes moving
framework to be the eliminativist position they have taken ony, .- 4 is goal on the next processing step. This approach is a

implementation. _If one rejects that perspective, then, we be"evesignificant departure from Botvinick and Plaut's SRN model, and
one can be optimistic abou_t the develt_)pr_nent of a mo_del tha& currently has significant limitations. The implementation of Ruh
functions at one level according to the principles of Botvinick and

Pl d h di c & Shalli 2000et al. can learn to achieve only one goal at a time, for example. At
prﬁ:j:ti;}gs at another according to our (Cooper allice, }he same time, that implementation has no representation of its

There are clearly numerous ways in which the SRN model
might be modified to address specific issues that we have raise

For example, in the section titled The Implementation of Choice, None of these suggestions address the issue of the relation

above, we have suggested that output unit activations might bBetween object representations and the action selection sys-

interpreted as representing the frequencies of each action at ea{:ehrp(s)—another aspect of the SRN model with which we have

step. As dlsc_ussed above,_ this has some advantage_s, but it does B¥en issue. Nevertheless, they demonstrate that the objections
address the issue of how intentional control might bias the systenrwaised in this article are not objections to SRNs per se. As argued
toward one or another method of, for example, adding sugar, :

Alternatively or in conjunction, one might attempt to train a above, they are objections to Botvinick and Plaut’s (2004) elimi-

recurrent network to settle to a point attractor state before selectioﬂaﬂvISt metatheoretical position. Most critically, this article has

. . . - . tattempted to demonstrate that even in a domain as loose as the
of an action, with each point attractor corresponding to a differen o ) . . )
grganization of everyday routine action, one cannot simply dis-

action. This approach would have the advantage of being able toense with units or discrete states representing action subroutines
make contact with data on the rate or timing of action. One mighlp P 9

also explore how intentional control could be used to bias such gnd goals.

network toward or away from specific attractors. It is, however,

not obvious how to produce a detailed implementation of such a e gt reinforcement learning as discussed here and standard back-
scheme. A third possibility would be to augment the basic SRNprgpagation through time involve propagation of an error signal back
with a bank of goal units that feed (together with the units repre-through the network. The difference lies in the origin of the error signal and
senting the fixated and held objects) into the hidden layer. In suclthe information contained within it.

goal. It is likely that the extension to multiple goals requires such
representation and the integration of this representation with the
einforcement-learning mechanism.
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Appendix

Simulation Studies

Simulation 1: Error Rates as a Function of Noise involve the subsequences of adding coffee grounds and then adding cream
. and of adding cream and then drinking. To demonstrate the model's
Rationale and Method propensity for specific perseverative and omission errors, we therefore

tabulated the perseverative and omission errors in the action corpus de-

Botvinick and Plaut (2004) argued that their simple recurrent networkscriped above. The results are shown in Table A1, where each cell indicates
(SRN) model provides an account of action errors in both normal andne frequency of the error in 1,000 trials with the tea instruction set and
impaired populations. In support of this, they cited several findings con-1 0o trials with the coffee instruction set.
cerning error rates and types (e.g., the omission-rate effect: that assuming o can be seen from Table A1, when noise was low (standard deviation
varying severity, the proportion of omission errors rises as the overall erropf .05), the error pattern was as predicted: Omissions consisted almost
rate rises) and demonstrated that their model reproduces these finding@mirdy of omission of milk or sugar, whereas the most common types of
However, we have argued that specific errors (e.g., specific forms Ofecyrrent perseveration involved repeated attempts at sugaring and adding
perseverative errors) occur rarely, if at all, because of the structure of thgream. Perseverative adding of cream was noticeably less frequent than
training set. In addition, as noted in the main body of the article, theperseverative adding of sugar. This may be attributed to the two idiosyn-
quantitative results reported by Botvinick and Plaut raise some concerns. lgrasies of the task set-up: Sugar is used in both tasks, whereas cream is
Simulation 1, therefore, we sought to conduct a more thorough analysis gfised only in coffee making, and there is only one source of cream but two
the SRN model’s specific errors following the addition of noise to context soyrces of sugar. Once cream has been added, the cream carton is open and,
units. hence, not in the state from which adding cream has been learned, whereas

The model as described by Botvinick and Plaut (2004) was reimple-sygar can be added successfully once from the packet and once from the
mented from scratch in the C programming language. The reimplementgyqy|.
tion was kept as close to the published description as possible, using the g noise increased, the predicted error pattern broke down. Persevera-
same network architecture, the same featural representations for input afe errors became more rare, whereas omissions became more frequent,
output, the same learning algorithm and parameters, and the same targgid omission of the first subtask—adding coffee grounds or steeping the
sequences. To the best of our knowledge, the only difference between thga__gccurred. This is because, as Botvinick and Plaut (2004) noted, at
original and our reimplementation concerns the one-step background eXych levels of noise, the model’'s behavior includes within-subtask errors.
amples included in the training set: Botvinick and Plaut included 267t gych an error occurs within the initial subtask and prevents the crux
examples, whereas we found and included 339. Our own simulation studiegction of that subtask from being correctly performed, then the scoring
found, however, that inclusion or exclusion of the background sequencegrogram would count an omission error. (This is consistent with the scoring
had little observable effect on the trained simulation’s behavior. To verify yrocedures used in patient studies.) Nevertheless, omission of the initial
the correctness of the reimplementation, we reproduced several of Botvingptask was still far less common than omission of the sugaring or
ick and Plaut's key results, including their Tables 4 and 6 and their Figuregreaming subtasks.
4,7, 8, and 15.

Botvinick and Plaut (2004) simulated errors by training their model on R . . . o
the full set of sequences for 20,000 epochs and then introducing noise int'g‘nalySIs B: The Relative Scarcity of Object Substitution Errors
the context units while testing. The reimplementation was therefore trained Object substitution errors, where an incorrect object is used in a task-

on all sequences and background examples for 20,000 epochs. To guagd,ropriate way, make up a significant proportion of errors in the behavior
against chance effects associated with specific trained networks, we res hoth control subjects and action disorganization syndrome (ADS) pa-
peated this procedure with different random weight initializations to givejenis Thus, object substitution errors made up 17% of all errors produced
10 trained models. Each trained model was then run 100 times with the tegy, 5cpyartz et al.’s (1998) control subjects and 9% of all errors produced
instruction sgt gnd 100‘ times vy|th the coffee |nstruct|0_n set, with theby their closed head injury (CHI) patients. Analysis B sought to determine
standard deylatlpn of noig¥ ranging from 0.00 to 0.50 by increments of if the SRN model would produce comparable proportions of object sub-
0.05 (resulting in 10X 200 X 11 output sequences). The SEQUENCES it ion errors with either low levels of noise (to simulate control subjects)
generated were logged, yielding a corpus of 22,000 sequences. FOW; higher Jevels of noise (to simulate ADS patients). The object substitution
analyses of specific errors were performed on the corpus as described in the, s that occurred in the corpus of action sequences produced by the
following subsections. All analyses used an automated analysis and scoringqqe| were therefore tabulated. The results are presented in Table A2,
program that applied each action in sequence to a model of the environyhich shows the absolute number of all object substitution errors produced
ment, 'tra.nsformlng the model with each. agtlon and recording errors oty different levels of noise. (Recall that each cell in the table corresponds
commission along the way. Errors of omission were then determined by, 1,000 attempts at each of the two tasks.)

comparing the final state of the environment model with the expected staté g can be seen from Table A2. the SRN model produced few object

given correct performance. substitution errors. In fact, when the standard deviation of noise was 0.10
or less (corresponding to Botvinick and Plaut’s, 2004, simulation of slips

Analysis A: Specific Types of Perseverative and Omission by control subjects), only 9 of the model's 2,831 errors involved object

Errors substitution. This is far fewer than would be expected on the basis of

Schwartz et al.’s (1998) control data (i.e., 17% of 2,831481 object

A central argument of this article is that the specific errors produced by
the SRN model are conditioned by the model’s training set. Thus, recurrert———
perseveration of sugar adding is likely because the training set includes “* Botvinick and Plaut (2004) claimed to consider the variance of noise
sequences in which adding sugar is followed by adding cream and otharanging from 0.00 to 0.50. Our studies suggest that in fact, it is the standard
sequences in which adding cream is followed by adding sugar. Similarlydeviation that ranges from 0.00 to 0.50 to yield the reported error patterns,
omission of sugaring within coffee making (but not tea making) is pre- not the variance. This is a technical point, and beyond accuracy of report-
dicted because coffee making can, on different occasions, legitimatelyng, it has no bearing on the results.
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Specific (Recurrent) Perseverative and Omission Errors Produced by the Simple Recurrent Network Model With the Standard
Deviation of Noise Varying From 0.00 to 0.50

Noise SD

Type of error 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Perseverative adding of cream 0 13 28 31 40 37 31 29 21 13 13
Perseverative adding of sugar 0 160 168 157 115 111 90 77 46 49 32
Perseverative scooping 0 0 0 1 0 3 1 1 2 4 1
Perseverative sipping 0 0 16 56 94 99 74 71 55 69 41
Perseverative stirring 0 4 7 2 15 25 15 23 13 6 14
Perseverative tea steeping 0 0 1 2 0 2 7 6 6 4 6
Tea omitted when making tea 0 0 0 3 16 31 95 134 211 301 385
Coffee omitted when making coffee 0 0 0 10 34 77 162 267 344 428 511
Sugar not added 0 191 464 760 1,014 1,188 1,339 1,421 1,537 1,591 1,655
Cream not added when making coffee 0 183 367 503 582 655 720 767 814 853 868
Drink not drunk 0 5 11 44 75 110 224 255 502 646 800
X added but not stirred in 0 4 82 232 380 545 571 635 646 650 561
Only one sip 0 0 1 29 74 124 174 156 200 341 436

substitution errors). The SRN simulation did not produce a substantiallyresult is therefore supported, although the variance in behavior supports our
better account of the data at higher levels of noise. Object substitutiomuse of 10 trained networks to gather results rather than a single trained
errors never constituted more than 2% of the model’s errors, in contrast toetwork as used by Botvinick and Plaut. Regardless of this point, the
the 9% observed by Schwartz et al. in their CHI patient group. simulations support Botvinick and Plaut’s claim that increasing noise in the
SRN model leads to an increased proportion of omission errors (which is
consistent with patient data showing increased omission errors with in-
creased severity). However, and third, the results indicate that the SRN
Omission errors are a key feature of the behavior of ADS patientsmodel is overly prone to omission errors. Just 3% of control subjects’
Schwartz et al. (1998) found they accounted for only 3% of the errors oferrors were omissions. This compares poorly with the figure of 42%—48%
their control subjects but 38% of the errors of their CHI subjects. Further—produced by the SRN model under low noise conditions (as used by
more, omission errors were found to correlate with severity, being moregotvinick and Plaut, 2004, to simulate normal slips and lapses). At higher
frequent in the behavior of more severely impaired subjects. In contrastevels of noise, the problem persisted, with the SRN model producing over

Botvinick and Plaut (2004) reported that at noise of 0.2 (equivalent to agpo, omission errors but patients typically producing less than 40% of such
mild impairment on their criteria), 77% of their model's errors were grrors.

omissions (p. 417). To investigate further the SRN model's tendency
toward omission errors, we tabulated all omission errors in the corpus OfAnaIysis D: The Scarcity of Specific Anticipation Errors
action sequences. The results are shown in Table A3.

Note first that the model produced all logically possible omission errors  Anticipation errors form a significant subset of both normal action lapses
and that although omitting sugar appears to have been the most frequeahd patient action errors. These errors consist of performing one action that
omission error, there were twice as many opportunities for that error as fois dependent on the outcome of a second action before actually performing
omission of other ingredients (because, unlike the other ingredients, sugdine second action. The dependency between the actions may be used to
could be omitted from both tea and coffee). Second, although Botvinickdistinguish this type of error from omission of the second action (M. F.
and Plaut’s (2004) result of 77% omissions at noise of 0.20 does not appe&chwartz, personal communication, May 3, 2006). As noted in the main
to have been replicated, closer inspection reveals that the rate of omissidsody of this article, a common anticipation error within tasks such as
errors varied greatly across the 10 trained networks, with some networkbeverage preparation is attempting to pour from a container without first
yielding much higher rates of omissions than others. Botvinick and Plaut'sopening the container (e.g., De Renzi & Lucchelli, 1988; Schwartz et al.,

Analysis C: The Overpreponderance of Omission Errors

Table A2
Object Substitution Errors Produced by the Simple Recurrent Network Model With the Standard Deviation of Noise Varying From
0.00 to 0.50

Noise SD

Error type/statistic 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
PouringX into the sugar bowl 0 0 7 11 19 22 17 18 26 24 21
PouringX into the cream carton 0 0 0 0 0 2 1 0 0 5 2
Scooping fromX (X not sugar bowl) 0 0 1 17 26 41 34 49 52 67 62
Steeping the teabag in the sugar bowl 0 0 0 0 0 0 0 1 0 0 2
Stirring X with the spoon X not mug) 0 0 1 9 12 24 42 35 26 37 47
Total object substitution errors 0 0 9 37 57 89 94 103 104 133 134
Total errors 0 922 1,909 3,056 4,077 4,940 5,473 6,126 6,604 7,091 7,374
% object substitution errors 0.0 0.5 1.2 14 1.8 17 17 1.6 19 1.8

(Appendix continugs
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Table A3
Omission Errors Produced by the Simple Recurrent Network Model With the Standard Deviation of Noise Varying From 0.00 to 0.50
Noise SD

Error type/statistic 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Coffee omitted while making coffee 0 0 0 10 34 77 162 267 344 428 511
Tea omitted when making tea 0 0 0 3 16 31 95 134 211 301 385
Cream omitted while making coffee 0 183 367 503 582 655 720 767 814 853 868
Sugar omitted 0 191 464 760 1,014 1,188 1,339 1,421 1,537 1,591 1,655
Drink omitted 0 5 11 44 75 110 224 355 502 646 800
Stir omitted after adding an ingredient 0 4 82 232 380 545 571 635 646 650 561
Only one sip (i.e., one sip omitted) 0 0 1 29 74 124 174 256 300 341 346
Total omission errors 0 383 925 1,581 2,175 2,730 3,285 3,835 4,354 4,810 5,126
Total errors 0 922 1,909 3,056 4,077 4,940 5,473 6,126 6,604 7,091 7,374
% omissions 415 48.5 51.7 53.3 55.3 60.0 62.6 65.9 67.8 69.5

1991), and this specific error is produced by the interactive activationBotvinick & Plaut, 2004, Table 4). We have argued, however, that this
(IAN) model. Theoretical considerations suggest, however, that productiorieature is critically dependent upon the frequency of sequences in the
of this error by the SRN model would be unlikely. The corpus of action training set and that the frequency of production of sequences is greatly
sequences was therefore analyzed for all possible anticipation errors. Threduced if they are even slightly underrepresented in the training set.
results, summed over levels of noise, are shown in Table A4. Simulation 2 was therefore designed to explore the SRN model’s ability to

As can be seen from Table A4, the SRN model is indeed prone taeproduce the sequences on which it was trained when the frequencies of
producing certain types of anticipation error. Although published studiessequence in the training set were unequal.
have reported figures only for sequence errors, of which anticipations are Two training sets with the smallest practicable degrees of bias between
one type, the overall rate of anticipations is in line with that produced byfrequencies of sequences were constructed. Training Set 1 consisted of four
patients. (Schwartz et al., 1998, reported that sequence errors made up 2@%pies of each item from Botvinick and Plaut’s (2004) original training set,
of all CHI patient errors.) However, in 22,000 trials of the SRN model, less two coffee-making sequences, both of the feRounDS — cREAM —
which produced 47,572 errors, none of those errors involved pouringsuGaR (PACK) — DRINK, one with and one without the coffee instruction
without first opening. This is in spite of the fact that opportunities for such unit set, and two tea-making sequences, both of the fexpac — suGaAr
an error were provided by the coffee packet, the cream container, and bofsowL) — DRINK, one with and one without the tea instruction unit set.
of the sugar containers. Instead, all anticipation errors were of one of thre@raining Set 2 consisted of four copies of each item from Botvinick and
specific types: sipping while partway through preparing the beveragePlaut’s original training set, less two coffee-making sequences, both of the
stirring before adding an ingredient, and pouring from an empty spoonform GROUNDS — SUGAR (BOWL) — CREAM —> DRINK, one with and one
There are no published data on the exact breakdown of anticipation erronsithout the coffee instruction unit set, and two tea-making sequences, both
for patient groups on specific tasks, but the fact that the SRN model failedf the formTEABAG — SUGAR (PACK) — DRINK, one with and one without
to produce a commonly reported anticipation error raises further concernthe tea instruction unit set. Training Set 1 had a slight bias to adding sugar
about the model’s ability to reproduce patient error patterns. first when preparing coffee and, when adding sugar second, to do so from

the bowl. It also had a slight bias toward using the sugar pack when making
Simulation 2: Effects of Sequence Frequency in the Training Setea. Training Set 2 had the opposite biases.

A total of 50 instances of the model were then trained for 5,000 epochs,
25 with Training Set 1 and 25 with Training Set 2. Training for 5,000
An impressive feature of the SRN model is its ability to reproduce, epochs with the modif_ied trainipg_sets was equivalent to traini_ng the mode|
during testing, all sequences presented to the network during testing (ségr 20,000 epochs Wlth.the orlglnal training .SEt' Th? 50 tr.alned models
' were then tested 100 times with the coffee instruction unit set and 100

times with the tea instruction unit. The sequence of actions produced by
Table A4 each model under each condition was recorded.

Anticipation Errors Produced by the Simple Recurrent Network ] )
Model When Instructed to Make Tea and Coffee (Summed OvefResults and Discussion
All Levels of Noise With 10 Trained Networks and 100 Trials at

Rationale and Method

Table A5 shows the percentages of each sequence produced by the 50

Each Level) replications of the trained model under the two experimental conditions.
The table also shows, for each condition, the relative percentage of each
- Te_a Coﬁee sequence in the models’ training history. The model generally performed
Error type/statistic making making flawlessly, producing one of the six sequences from training on each
Anticipation errors attempt at the task (_although one instance of t_he mo_d_el produce_d pmission
Sipping while partway through beverage errors when attempting to make coffee following training on Training Set
preparation 859 1,139 1). However, the frequency of production of each sequence did not reflect
Sipping before adding an ingredient 1,779 507 the sequence’s frequency within the training set. When making coffee after
Pouring from spoon before scooping 33 44 peing trained with Training Set 1, the model showed a strong bias toward
Other anticipations 0 0 adding sugar before adding cream (in the ratio of at least 6:1, whereas the
Total anticipation errors 2,671 1,690 r4ti0 of such sequences in the training set was 8:7), whereas an opposite
Total errors 19,618 27,954

% anticipation errors 13.6 6.0 (but equally str_ong) bias was shown foIIo_wmg tljalr_nng with Tramlng Set 2
At the same time, the model was unbiased in its selection of sugaring
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Table A5
Frequency of Sequences Produced by the Simple Recurrent Network Model With Unbalanced Training Sets
Training Set 1 Training Set 2
Relative % % produced Relative % % produced
Type of instruction and sequence in training in testing in training in testing
With coffee instruction
GROUNDS — SUGAR (PACK) — CREAM —> DRINK 26.7 45.0 20.7 2.1
GROUNDS — SUGAR (BOWL) — CREAM —> DRINK 26.7 41.0 26.7 1.9
GROUNDS — CREAM —> SUGAR (PACK) — DRINK 20.0 6.0 26.7 48.2
GROUNDS — CREAM —> SUGAR (BOWL) — DRINK 26.7 6.4 26.7 47.8
Error 0.0 1.6 0.0 0.0
With tea instruction
TEABAG — SUGAR (PACK) — DRINK 53.3 48.3 46.7 49.3
TEABAG — SUGAR (BOWL) — DRINK 46.7 51.7 53.3 50.7
Error 0.0 0.0 0.0 0.0

Note. Twenty-five models were trained (using different randomly initialized hidden units) using each of two training sets. In Training Set 1, there was
a slight bias when making coffee away from adding sugar from the pack after adding cream and when making tea away from adding sugar from the bowl,
whereas in Training Set 2, the biases were reversed. Each instruction condition was tested 100 times with each trained model.

subsequence across tasks, selecting equally from the packet or the bowl,Simulation 3: Failure to Generalize Interchangeable Methods
even though in training with Training Set 1, the bowl was preferred when
making coffee (in the ratio of 8:7), and the packet was preferred wherRationale and Method
making tea (again in the ratio of 8:7), whereas the opposite bias was present
in Training Set 2. We have argued that one difficulty with the selection of the training set
The strength of bias in coffee making toward adding sugar first follow- for the SRN model is that the model needs to be trained on all legitimate
ing Training Set 1 and adding it second following Training Set 2 aroseSequence orders: It cannot spontaneously transfer interchangeable methods
from the fact that the action selected at any step within the SRN model igrom one situation to another. To support this argument, Simulations 3A to
simply that whose output unit is most active. The critical step in coffee 3F involved training the replication of the SRN model for 20,000 epochs
making occurs after the grounds have been stirred into the water and wheMith a training set consisting of the full set of one-step background
the system must fixate either on the cream container or on one of the sug&Xamples, eight coffee-preparation sequences (four with and four without
containers. When the training set is balanced, both actions are activatdfe coffee instruction unit activated) and eight tea-preparation sequences
approximately equally, with any difference in activation being attributable (four with and four without the tea instruction unit activated). The differ-
to differences in initial excitation within the hidden units. However, when €nce between this and the Botvinick and Plaut (2004) simulations is that in
the training set is unbalanced, the most frequent action normally domi€ach of these simulations, one version of a task was omitted and replaced
nates. It is therefore selected on most occasions. These simulations dedyith a duplicate involving the alternative form of adding sugar. Thus, in
onstrate that the domination of the most frequent action is not directIySimU|ati0n 3A, each copy afoFFEE— SUGAR (BOWL) — CREAM —> DRINK
proportional to the frequency of occurrence in the training set. RatherWas replaced with a copy @forFEE— SUGAR (PACK) — CREAM —> DRINK
imbalances in the training set are magnified in the testing phase. MorésO this sequence was represented in the training set twice with and twice
critically, larger imbalances can result in less frequently trained sequencedithout the instruction unit), whereas in Simulation 3B, each copy of
becoming inaccessible. Thus, when training was repeated with great&fOFFEE — SUGAR (PACK) — CREAM —> DRINK was replaced with another
imbalances in the training set (altering the ratios of the above sequenc&®PY Of COFFEE — SUGAR (BOWL) — CREAM — DRINK, and so on. The
from 8:7 to 8:6), the retrained model failed on testing to generate an)guestion of interest was whether the sequence omitted in training would
instances of the lower frequency coffee-making sequence. occur in testing. Occurrence of the omitted sequence would support suc-
The lack of sensitivity in either task to the frequency of different cessful transfer of the sugaring method to a situation in which the model
sugaring methods is also problematic. As noted in the main body of thdad not been trained. To ensure representative results, each simulation was
article, in the section titled The Implementation of Choice, above, theonce again performed 10 times with different randomly initialized net-
method of sugar addition is selected not by the SRN model but by thewvorks. Each trained network was tested 100 times with the coffee instruc-
nondeterministic actiorfixate sugar In Botvinick and Plaut's (2004) tion unit set, 100 times with the tea instruction set, and 100 times with no
implementation, this action selected either the sugar packet or the sug#pstruction unit set.
bowl (with equal probability). Thus, this aspect of the model was not
sensitive to the frequency of different types of sugar adding in the trainingResults
set. Conceivably, the SRN model could be modified so that the outcome of
nondeterministic actions would be sensitive to the frequency of outcomes Table A6 shows the percentage of runs yielding each sequence for each
in the training set; however, this would not solve the problem in this caseof the six simulations. Because of space limitations, results when no
as, across tasks, the absolute frequency of each sugaring method is equaktruction unit was set are not shown. In all cases, however, they were
Sugar from the bowl is preferred when making coffee, but sugar from theparallel to the presented results.
pack is preferred when making tea. Thus, although the behavior of the SRN In Simulation 3A, 34.1% of trials with the coffee instruction unit set
model is generally sensitive to the frequency of sequences within theesulted in thesROUNDS — SUGAR (PACK) — CREAM — DRINK Sequence,
training set, this is not true when it comes to the implementation of choicewhereas none resulted in tf@RoUNDS — SUGAR (BOWL) — CREAM —
Botvinick and Plaut’s implementation of choice appears not to have beemrink sequence. However, 33.5% of trials yielded errors, and in all cases,
able to capture the kind of frequency effects explored here. those errors involved omitting theream subsequence from a trial involv-

(Appendix continugs
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Table A6
Percentage of Each Sequence Produced by the Model as a Function of the Training Set
Simulation
Type of instruction and sequence 3A 3B 3C 3D 3E 3F
With coffee instruction
GROUNDS — SUGAR (PACK) — CREAM —> DRINK 34.1 0.0 23.9 29.4 20.2 29.8
GROUNDS — SUGAR (BOWL) — CREAM —> DRINK 0.0 33.3 27.9 26.8 18.9 31.1
GROUNDS — CREAM —> SUGAR (PACK) — DRINK 15.6 17.0 22.5 21.2 31.3 194
GROUNDS — CREAM —> SUGAR (BOWL) —> DRINK 16.8 17.2 25.7 22.6 29.6 19.7
Error: GROUNDS — SUGAR (BOWL) — DRINK 33.5 0.0 0.0 0.0 0.0 0.0
Error: GROUNDS — SUGAR (PACK) — DRINK 0.0 325 0.0 0.0 0.0 0.0
Error: Other 0.0 0.0 0.0 0.0 0.0 0.0
With tea instruction
TEABAG — SUGAR (PACK) — DRINK 50.6 51.1 48.8 48.7 51.5 0.0
TEABAG — SUGAR (BOWL) — DRINK 49.4 48.9 51.2 51.3 0.0 48.1
Error: TEABAG — SUGAR (BOWL) — CREAM —> DRINK 0.0 0.0 0.0 0.0 485 0.0
Error: TEABAG — SUGAR (PACK) — CREAM —> DRINK 0.0 0.0 0.0 0.0 0.0 42.3
Error: TEABAG — SUGAR (PACK) — CREAM — SUGAR (X) — DRINK 0.0 0.0 0.0 0.0 0.0 9.6
Error: Other 0.0 0.0 0.0 0.0 0.0 0.0

Note. In Simulation 3A, each copy afoFFEE— SUGAR (BOWL) — CREAM — DRINK in the training set was replaced with a copycofFFEE— SUGAR (PACK)
— CREAM — DRINK. In Simulation 3B, each copy afoFFEE— SUGAR (PACK) — CREAM — DRINK was replaced with a copy @oFFEE— SUGAR (BOWL)
— CREAM — DRINK. In Simulation 3C, each copy @oFFEE— CREAM — SUGAR (BOWL) — DRINK was replaced with a copy @oFFEE— CREAM — SUGAR
(PAck) — DRINK. In Simulation 3D, each copy @foFFEE— CREAM — SUGAR (PACK) — DRINK was replaced with a copy @foFFEE— CREAM — SUGAR
(BowL) — DRINK. In Simulation 3E, each copy @EA — suGAR (BowL) — DRINK was replaced with a copy 0EA — SUGAR (PACK) — DRINK. In Simulation
3F, each copy ofEa — SUGAR (PACK) — DRINK was replaced with a copy GEA — SUGAR (BOWL) — DRINK.

ing the sugar bowl. The remaining coffee trials involved adding creamDiscussion
before sugar, either from the packet or the bowl. When the tea instruction
unit was set, all trials were completed successfully, with approximately This set of simulations demonstrates comprehensively that the SRN
half involving the sugar packet and the other half involving the sugar bowl.model cannot spontaneously transfer equivalent subsequences. In one
Thus, Simulation 3A demonstrates that when the SRN model was trainegense, the task should not have been difficult as, during testing, it was the
on using either sugar source when making tea but only the sugar packeénvironment that dictated whether the crucial first step of sugaring resulted
when making coffee, it was not able to transfer its knowledge of use of thdn fixating on the sugar bowl, which should result in thecar (BowL)
sugar bowl to coffee making: When the first step of the sugaring subsesubsequence, or on the sugar packet, which should lead so¢ie (PACK)
quence selected the bowl instead of the packet, the model's behavigubsequence. The model had had exposure to both subsequences and so
appeared to be captured by tea making, and it omittecciimam subse-  should have had no difficulty in responding to the cue supplied by the
quence regardless of the instruction. The opposite situation, of transfer ginvironment (i.e., the result of fixation) and performing the appropriate
use of the sugar packet from tea making to coffee making, also failed, asubsequence. Indeed, this is precisely what happened. However, the situ-
is shown by the results from Simulation 3B. Once again, the error consistedtion was complicated by the model's need to maintain task context
of omitting the crReam subsequence, and once again, this suggests thaihformation (i.e., whether it was making tea or coffee and, in both cases,
behavior had been captured by tea making. which if any ingredients had been added) during the subsequence so that it
In Simulations 3C and 3D, those coffee-preparation sequences consistould return to the appropriate point in the superordinate task. As the model
ing of suGAR after cReam appear to provide positive evidence of transfer. had no way of discriminating task context information from subtask
These simulations yielded no errors, with the omitted sequence beingontext information, it could not spontaneously preserve task context
generated by the model at frequencies similar to the other sequencégformation. In summary, these simulations show that the SRN model had
actually in the training set. However, this special case is precisely whanot learned to generalize its subtask knowledge and transfer it to another
would be expected of capture of the coffee sequence by tea making duririgsk. Rather, it had simply drifted from the intended sequence to an
the suUGAR subsequence. AsuGAR is always followed bybrink in the unintended sequence, and in the model as it stands, there is no way to
tea-making sequence and as, at the time of the capture erracrthe prevent this short of training the model on all variant sequences. In
subsequence of coffee making has already been successfully completegintrast, the explicit representation of goals within the IAN model pro-
capture of coffee making by tea making results in an apparently validvides a level of abstraction that automatically embodies the appropriate

coffee-making sequence. generalization.
This interpretation of apparently successful transfer as capture is sup-
ported by Simulations 3E and 3F. These simulations again yielded no Simulation 4: Variation of Initial Conditions

instances of successful transfer, but the situations in which transfer might

have occurred yielded sequences containing intrusion errors: addition dRationale and Method

the crReam subsequence to tea making. Téream subsequence occurred

only in training in coffee making. Furthermore, in at least some simulations This set of simulations aimed to explore the ability of the SRN model to
(Simulation 3F), the intrusion afrReam was followed on some occasions generalize its learning to different initial states of the environment. In
by addition of anothesucar (from either source) beforerink. In these Simulation 4A, the network was trained in the usual way with all coffee-
cases, the tea-making sequence therefore appears to have been capturedriaking and tea-making sequences and all one-step background examples,
one of the coffee-making sequences that occurred in training. but in testing, the initial state of the sugar bowl was set as being open
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instead of closed. In Simulation 4B, the network’s training set was alteredbccasions (6.8% for coffee and 2.2% for tea), the trained model completely
such that the sugar bowl was initially open for the tea-making sequencefgnored the state of the sugar bowl and proceeded to perform the actions of
and closed for the coffee-making sequences. Training then proceeded in thgening it even though it was already open.

usual way for 20,000 epochs. Thus, the model was exposed to equal Lack of transfer is also demonstrated in Simulation 4B (see Table A7,
numbers of sugaring subsequences involving an open sugar bowl antenter data columns). Here, the model failed to transfer use of the open
sugaring subsequences involving a closed sugar bowl, but each was sesagar bowl to the coffee-preparation task, with all attempts ending in error.
only in a specific context. The question was whether the model could applyThe reverse case—transfer of the use of the closed sugar bowl from the
the correct sugaring subsequence out of context. The model was therefooeffee task to the tea task—appears to have been successful on at least
tested by setting an instruction unit (tea or coffee) but initializing the statesome trials (with 19.6% of tea attempts proceeding correctly when the
of the sugar bowl to the opposite of that on which the network had beersugar bowl was closed), but this is misleading. The tea and coffee tasks
trained (i.e., closed for tea making and open for coffee making). Performay both end with the same sugaring/drinking subsequences. The apparent
mance on tasks involving the sugar bowl was then examined. Finallyfransfer once again reflects capture of the model's behavior by a valid
Simulation 4C was aimed at demonstrating that the SRN model could ircoffee-making sequence, rather than transfer of the sugaring subtask.
principle learn the desired behavior (i.e., dealing appropriately with the That the model was capable in principle of using the state of the sugar
sugar bowl regardless of its state or of the task) if it were trained on the fullbowl to employ appropriate actions is demonstrated by Simulation 4C (see
set of possible subsequences. Thus, the model was trained with a traininftable A7, right data columns). When trained with the full set of possible
set in which each sequence involving the sugar bowl occurred in twosequences, the model made no errors in detecting which sugaring subse-
forms: with the sugar bowl closed and with the sugar bowl open. Toquence should be applied when.

accommodate this in a balanced way, the training set was doubled so as to

also include two occurrences of each sequence involving the sugar packet. Simulation 5: Catastrophic Interference

Training still consisted of 20,000 epochs. In all three cases, 10 instances of

the model were trained, and each trained model was then tested 100 tim&ationale and Method

in each of the three instruction conditions (with the coffee instruction unit

set, the tea instruction unit set, and no instruction unit set) with the sugar The goal of Simulation 5 was to determine whether the SRN model

bow! either initially closed or initially open. would suffer from catastrophic interference if it were trained on related
tasks in succession, rather than in parallel. Botvinick and Plaut (2004)
Results and Discussion trained their implementation of the SRN model on all versions of the coffee

and tea tasks on each epoch. This is ecologically implausible. Learning of

The average number of sequences of each type involving the sugar bowveryday routine tasks is more likely to involve practice of different tasks
produced by the trained models with an instruction unit set is shown inat different times, with new tasks often being learned after old ones are
Table A7. Sequences involving the sugar pack are not shown as they areastered and without the learning of such new tasks causing significant
not relevant to the issue of transfer as considered here. For brevityimpairment in performance of previously mastered tasks.
sequences generated when no instruction unit was set are also excluded. To test whether the SRN model was susceptible to catastrophic inter-

The results of Simulation 4A (see Table A7, left data columns) demon-ference, we constructed two training sets. The first training set—Training
strate that the model could not spontaneously generalize to the task with @et 1—comprised all one-step background sequences and two instances of
open sugar bowl. This is despite the fact that during training on both theeach version of the coffee-preparation task (one with and one without the
coffee- and tea-making tasks, the model was exposed to sequences doffee instruction unit initially set). The second training set—Training Set
which the open sugar bowl was used. In training, however, these sequenc2s—comprised all one-step background sequences and four instances of
always involved first opening the sugar bowl. The model therefore couldeach version of the tea-preparation task (two with and two without the tea
not recognize that when holding an empty spoon and fixating on the opeimstruction unit initially set). In Simulation 5A, the model was trained to
sugar bowl, the appropriate action was to scoop sugar. In fact, on someriterion on Training Set 1, where criterion was defined as correctly

Table A7
Mean Percentage of Sequences Produced by the Model as a Function of the Sugar Bowl's State and the Training Set

Simulation
4A 4B 4C
Bowl Bowl Bowl Bowl Bowl Bowl
Type of instruction and sequence closed open closed open closed open
With coffee instruction
GROUNDS — SUGAR BOWL (CLOSED) — CREAM —> DRINK 23.6 0.0 26.8 0.0 43.6 0.0
GROUNDS — SUGAR BOWL (OPEN) — CREAM —> DRINK 0.0 0.0 0.0 0.0 0.0 44.2
GROUNDS — CREAM —> SUGAR BOWL (CLOSED) — DRINK 24.0 6.8 25.4 0.0 6.0 0.0
GROUNDS — CREAM —> SUGAR BOWL (OPEN) — DRINK 0.0 0.0 0.0 0.0 0.0 8.8
Other 0.0 43.6 0.0 51.0 0.0 0.0
With tea instruction
TEABAG — SUGAR BOWL (CLOSED) — DRINK 50.6 2.2 19.6 0.0 48.0 0.0
TEABAG — SUGAR BOWL (OPEN) — DRINK 0.0 0.0 9.6 49.6 0.0 49.8
Other 0.0 49.0 21.8 0.0 0.0 0.0

Note. In Simulation 4A, the training regime of Botvinick and Plaut (2004) was used. Simulation 4B used a training regime in which the sugar bowl was
initially open for tea making but was closed for coffee making. Simulation 4C used a training regime including open and closed sugar bowls in both
instruction conditions.

(Appendix continugs
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performing the coffee task on 100 out of 100 attempts. The training set waSA in Figure 5 (in the main body of the article, above) for 500 epochs
then switched, and the trained model was trained with Training Set 2 untikt a time well beyond initial task acquisition. From the graph, it is clear
criterion, which now involved correct performance of the tea task on 100that training with a second task impaired previous learning on the first
out of 100 attempts. The model was then tested on the coffee task. If iftask. The model's expertise switched between the two tasks, with
failed, it was trained to criterion on that task (Training Set 1) and thenperformance on one task falling to zero when training on the other task
tested on the tea task. If it then failed the tea task, it was trained to criteriohegan. Similar behavior was observed when tea preparation was the
on the tea task (Training Set 2) and then tested on the coffee task. The cycigst task trained (i.e., Simulation 5B), and when replications were
of switching criteria and training sets was repeated for either 20,0003y pted, it was found that although the point at which the first task
training cycles or until the model had learned to perform both taSkS'was successfully acquired varied from network to network, the basic

Simulation 5B was a replication of Simulation 5A with the tea and coffee L ;
. . - . L effect of catastrophic interference between tasks was consistently rep-
tasks reversed. That is, the model was trained first with Training Set 2, the . o . -
icated. However, relearning a task after switching required less training

with Training Set 1, and so on. In both simulations, each training epoch n h ) ttempt (oresumably b ther bstantial
was followed by a testing cycle in which the network was run on 100 O" €ach successive attemp (presumably because there was substantia

occasions with the tea instruction initially set and 100 occasions with theoverlap between the tasks). Thus, with prolonged training and switching

coffee instruction initially set. The numbers of correct tea and coffeeP€Ween tasks, networks were able to acquire both tasks.
sequences generated in each case were recorded.

Results and Discussion Received July 19, 2005

The dependent variable of interest was the number of correct trials Revision received January 5, 2006
(out of 100) for each task during training. This is shown for Simulation Accepted January 6, 2008



