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Traditional accounts of sequential behavior assume that schemas and goals play a causal role in the
control of behavior. In contrast, M. Botvinick and D. C. Plaut (2004) argued that, at least in routine
behavior, schemas and goals are epiphenomenal. The authors evaluate the Botvinick and Plaut account
by contrasting the simple recurrent network model of Botvinick and Plaut with their own more traditional
hierarchically structured interactive activation model (R. P. Cooper & T. Shallice, 2000). The authors
present a range of arguments and additional simulations that demonstrate theoretical and empirical
difficulties for both Botvinick and Plaut’s model and their theoretical position. The authors conclude that
explicit hierarchically organized and causally efficacious schema and goal representations are required to
provide an adequate account of the flexibility of sequential behavior.
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It has become a commonplace in many areas of psychology over
the past 50 years that there exist discrete representations that
correspond to qualitatively different states of the organism. The
accessing, activation, or selection in some other way of one of
these states rather than another is held to have qualitatively dif-
ferent effects on the selection of subsequent states and of subse-
quent behavior. Moreover, the selection of the current state is held
to be the result of the effecting of discrete operations or rules,
typically by analogy with a computer program.
More recently, there has been a challenge to this perspective. It

has been strongly argued that this assumed discreteness both of the
representations and of the structures that select them arises from
the familiarity of such concepts in other domains (e.g., computer
science) rather than reflecting the operation of the underlying
mechanism in the human mind. Instead, the apparent discreteness
reflects inputs or outputs rather than the states of the internal

mechanisms, which are better represented as regions or trajectories
within continuous state spaces created by connectionist networks.
The core issues in the debate, which has raged since 1985 (e.g.,

Broadbent, 1985; McClelland & Rumelhart, 1985; Pinker &
Prince, 1988; Rumelhart & McClelland, 1985; etc.), have princi-
pally concerned areas in psycholinguistics and neurolinguistics
where the existence of discrete representations (e.g., phonemes,
morphemes) and of discrete operators (syntactic rules) was made
plausible by developments in independent disciplines such as
phonology and linguistics (e.g., Chomsky, 1957, 1980; Chomsky
& Halle, 1968). In addition, the debate has concerned areas where
rule-based mappings had already been postulated on other
grounds, as in spelling-to-sound translation in reading (e.g., Colt-
heart, Curtis, Atkins, & Haller, 1993; Plaut, McClelland, Seiden-
berg, & Patterson, 1996; Wijk, 1966; see also Zorzi, Houghton, &
Butterworth, 1998).
However, despite over 15 years of research in these areas, it

would be premature to say that the structuralist view has been
convincingly rejected in any one of them. Yet there are other areas
of psychology where the assumption of discrete internal units is
mainly driven by their apparent behavioral manifestations and not
by any other well-organized discipline such as linguistics. In
particular, concepts such asschemas, scripts,and frameswith a
complex intellectual history involving neurology, philosophy of
mind, and artificial intelligence (AI) lack the independent support
provided by other empirical disciplines that concepts like pho-
nemes have. Although, in the initial development of connectionism
(McClelland & Rumelhart, 1986; Rumelhart & McClelland,
1986), these less well-anchored concepts were widely viewed as
being naturally explicable by the new approach, they often con-
tinue to be used as representing discrete units.
Consider the concept of schema. It has been involved in a

variety of areas, such as memory (Bartlett, 1932), perception
(Evans, 1967), and action (Schmidt, 1975). An early use as far as
empirical science is concerned was that of Head (1920) in his
analysis of disturbances of the somatosensory system. He used the
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concept when referring to “organised models of ourselves” that
“modify the impressions produced by incoming sensory impulses
in such a way that the final sensations of position, or of locality,
rise into consciousness charged with a relation to something that
has happened before” (Head, 1920, pp. 607–608). Bartlett (1932)
generalized the notion to apply to the units in which the memory
of all past experience is held and not merely to the positions of
parts of the body. In neither case was the concept more than very
vague. However, Bartlett’s usage contained the idea that forgetting
could lead to loss of detail in the schema while the core structure
remained intact. In the mid-1970s, Bobrow and Norman (1975)
made the idea somewhat more explicit by proposing that “each
schema is a self-contained memory structure, capable of perform-
ing operations because it contains procedural definitions of its
potential functions and operations” (p. 138). Moreover, the idea
that the structure would contain argument slots and explicit default
values was proposed by Rumelhart and Ortony (1977).
These last two ideas were then combined in the domain of action

control by Norman and Shallice (1980, 1986) in an informal
model. It was argued that the effecting of routine behavior involves
producing behavior routines, controlled by schemas, with the
constraints imposed by the specific environment being mediated
through argument selection. It was also claimed that nonroutine
behavior is controlled in a qualitatively different manner. On this
approach, the key theoretical issues for the control of routine
behavior are the organization and selection of schemas, whereas a
key theoretical issue for the control of nonroutine behavior is the
mechanism by which nonroutine behavior interfaces or interacts
with routine behavior.
Norman and Shallice’s (1980, 1986) schema-based account of

routine behavior was motivated largely by phenomenological and
neuropsychological evidence, but the mechanism they hypothe-
sized—contention scheduling—has considerable similarity to
concepts in AI approaches to planning and engineering solutions to
the control of robots (Gat, 1998; Glasspool, 2005; Maes, 1989; see
also Shallice, 1988, pp. 350–352). A common approach within
these domains is to delegate common behaviors to one system (the
routine subsystem) that at any one time selects from a library of
simple routines (the plan library). These behaviors relate to situ-
ations where the goals and context are familiar or an immediate
response is required. The routine control subsystem is supple-
mented by a deliberative subsystem—a processing-intensive plan-
ning system that is invoked when no suitable behavior is available
in the routine subsystem’s plan library.
One aspect of the concept of schema in the Norman and Shallice

(1980, 1986) account is that every manifestation of a particular
type of routine behavior depends upon the activation and selection
of one particular internal unit, its schema node. Moreover, the
hierarchical structure that is frequently manifested in routine ac-
tions is assumed to be controlled by the activation of a hierarchy
of schema nodes. In this respect, the Norman and Shallice model
merely echoes the ideas of many theorists (e.g., Fuster, 1989;
Humphreys & Forde, 1998; Miller, Galanter, & Pribram, 1960).
A second concept used in the Norman and Shallice (1980, 1986)

approach that naturally complements that of schema is that of goal
or purpose, which may be defined as a state of affairs that an agent
aims to achieve. Here, too, the concept derives from a simple
mixture of phenomenology and functional biology; there is no
separate discipline through which the subject’s goal or goals at any

particular time can be specified. Goals, even more than schemas,
have a long history within psychology (cf. Miller et al., 1960).
They have become central to the control of behavior in production-
system cognitive architectures such as Soar (Laird, Newell, &
Rosenbloom, 1987) and ACT–R (Anderson et al., 2004), where
their role is to effectively limit production rules that might be
applied in a situation to the subset of productions relevant to the
current goal. Within more mainstream cognitive psychology, goals
serve a similar function. Thus, in Duncan’s (1993) account of
attentional selection and behavioral control, they provide a means
for selecting from all possible stimulus–response relationships just
those relevant at the current point in time.
Given the preceding definition of a goal, a schema may be seen

as a means of achieving a goal or subgoal. More generally, recent
computational accounts of the contention scheduling system (Coo-
per, Schwartz, Yule, & Shallice, 2005; Cooper & Shallice, 2000;
see also Cooper, Shallice, & Farringdon, 1995) take schemas to be
goal-directed structures, with goals serving to mediate schema–
subschema relationships. Thus, schemas achieve goals and, apart
from at the lowest level of the schema hierarchy, consist of
partially ordered sets of subgoals (which may themselves be
achieved by other schemas). Again, there is a parallel with plan-
ning systems from the AI literature, where goals and methods (the
AI equivalent of schemas) may be structured in anand/or tree(see,
e.g., Charniak & McDermott, 1985), with multiple methods pos-
sible for any goal (theor component of the tree), but each method
consisting of a conjunction of subgoals (theandcomponent of the
tree). These views see goals as playing a critical role in guiding
behavior (without distinguishing between routine and nonroutine
domains).
There is, however, another way of conceiving of a concept like

schema. Within the context of early connectionism, Rumelhart,
Smolensky, McClelland, and Hinton (1986) argued,

There is no representational object which is a schema. Rather, sche-
mata emerge the moment they are needed from the interaction of large
numbers of much simpler elements all working in concert with one
another. Schemata are not explicit entities, but rather are implicit in
our knowledge and are created by the very environment that they are
trying to interpret—as it is interpreting them. . . . In our case, nothing
stored corresponds very closely to a schema. (Rumelhart et al., 1986,
pp. 20–21)

From this tradition, Botvinick and Plaut (2004; see also Botvinick
& Plaut, 2002) questioned the functional roles of both schemas and
goals and the need for assuming hierarchical structures with their
simple recurrent network (SRN) model of routine action. Specif-
ically, they claimed that their model provides a good account of a
range of empirical phenomena without recourse to either construct.
Although Botvinick and Plaut (2004) claimed that they did not
deny “the existence or psychological importance of explicit goal
representations” (p. 424), they speculated that “much of cognition
and behavior . . . may share a basic reliance on mechanisms of the
sort illustrated in the present [SRN] model” (p. 424). What makes
their claim particularly important is that the schema concept in
Norman and Shallice (1980, 1986) is a hybrid with interactive
activation aspects but also with symbolic rule-following ones. If
Botvinick and Plaut are right, then the symbolic rule-following
aspects of the models are an unnecessary postulate, and the po-
tential power of connectionist models is clear. The current article,
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however, challenges their view by investigating the limits of their
model. This involves reports, detailed in the Appendix, of new
simulations conducted with a reimplementation of Botvinick and
Plaut’s SRN model to address critical issues. The investigation
raises a series of principled difficulties—ones that are both theo-
retical and empirical in character and that challenge the elimina-
tivist view.

Two Models of Routine Action Selection

In Botvinick and Plaut’s (2004) critique of schema-based hier-
archical models of action, they took as their key example the
interactive activation model of routine action selection (henceforth
referred to as the IAN model) proposed by us and our colleagues
(Cooper & Shallice, 2000; Cooper et al., 2005; see also Cooper et
al., 1995), which in turn is based on the informally specified
contention scheduling part of the theory of Norman and Shallice
(1980, 1986). The IAN model has both activation-based and sym-
bolic aspects. The activation-based component consists of three
interactive activation networks (see Figure 1). Nodes within the
schema network represent goal-directed action schemas of varying
levels of complexity (ranging from, e.g.,prepare instant coffeeat
the highest level topick up implementat the lowest level). Nodes
within the object representation network correspond to ways of
using objects present in the immediate environment (e.g.,fork as
an implementor juice glass as a target). Nodes within the effector
network correspond to special-purpose cognitive subsystems that
can be recruited to act upon the world (e.g., motor subsystems for
each effector). All nodes have continuous valued activation levels
that vary according to standard principles of interactive activation
(McClelland, 1992) and with nodes functioning as leaky accumu-
lators (Usher & McClelland, 2001). Nodes that correspond to
schemas that are mutually exclusive (e.g., because they have
overlapping requirements for special-purpose cognitive sub-
systems) have mutually inhibitory links, whereas nodes corre-
sponding to object representations have excitatory links to sche-

mas that are routinely performed with the corresponding objects
and vice versa.
The IAN model also has symbolic aspects. Links between nodes

in the networks explicitly reflect rulelike relationships between the
elements represented by the nodes. For instance, within the schema
network, links exist between superordinate schemas and lower
level schemas that achieve the subgoals of the superordinate
schema. Also, schemas have an argument structure, with the ar-
guments being filled by the outputs of the object representation
networks. In addition, activation flow between schema nodes is
gated by preconditions and postconditions that relate to the
achievement of goals.
Normal functioning of the IAN model begins with direct exci-

tation of an intended schema. This excitation, which is assumed to
typically originate from a separate deliberative subsystem,the
supervisory system,causes the schema’s activation to rise. When it
exceeds the selection threshold (a parameter of the model), acti-
vation is passed from that schema to any schemas that may achieve
the original schema’s subgoals (subject to ordering constraints that
are stated in the form of preconditions on subgoals). Normally, one
subschema then becomes active and is selected. This process
continues until a schema that corresponds to a simple action (e.g.,
pick up) is selected. The corresponding action is then performed,
with the object to which the action is applied determined by the
most active relevant item in the object representation network. On
completion of an action, its corresponding schema is inhibited,
allowing another schema to become activated and another action to
be performed. Figure 2 illustrates the activations of schema nodes
as time progresses while performing a typical routine task, that of
preparing instant coffee. The figure shows how the activation of
nodes accumulates over time and how the activation of lower level
schema nodes occurs within the context of active higher level
schema nodes.
We and our colleagues have shown how the processes of inter-

active activation implemented within the IAN model can result in

Figure 1. Functional components of the interactive activation model. Object Reps.� object representations.

889HIERARCHICAL SCHEMAS AND GOALS IN ROUTINE BEHAVIOR



extended sequences of behavior, such as those involved in every-
day behavioral routines, for example, preparing a mug of instant
coffee (Cooper & Shallice, 2000) or preparing and packing a
child’s lunch box (Cooper et al., 2005). We have also shown that
the IAN model can mimic the effects of neurological damage that
impairs execution of routine or everyday action.
Botvinick and Plaut’s (2004) approach operates on two levels.

Verbally, for instance, they accepted that goals are useful for the
cognitive system as a whole and assumed that learning skills is a
two-stage process. However, their specific implementation, the SRN
model, lacks both of these characteristics. Indeed, an attractive feature
of their SRN model—which was developed largely in response to the
IAN model—is that it demonstrates that a recurrent connectionist

framework is capable of reproducing extended sequences of actions
comparable in complexity to those achieved by the IAN model
without explicit goal representations. Recurrent activation, the basic
sequencing mechanism of the SRN model, uses activation propagat-
ing around a set of neuronlike units. Within the SRN model (see
Figure 3), input units representing held or fixated objects are activated
by features present in the representation of the environment. On each
time cycle, activation is passed along weighted connections from
these units to a set of hidden units, which also receive recirculated
activation. Further weighted connections lead from the hidden units to
a final set of output units, which encode possible actions, such as
fixating on specific objects or picking up the fixated object. Concep-
tually, the recirculated activation of the hidden units provides a

Figure 2. Activation profiles of schema nodes within the interactive activation model during the task of
preparing instant coffee. From “Contention Scheduling and the Control of Routine Activities,” by R. P. Cooper
and T. Shallice, 2000,Cognitive Neuropsychology, 17,p. 319, Figure 5. Copyright 2000 by the Psychology
Press. Reprinted with permission. See http://www.psypress.co.uk/journals.asp.

Figure 3. Functional components of the simple recurrent network model. Adapted from “Representing Task
Context: Proposals Based on a Connectionist Model of Action,” by M. Botvinick and D. C. Plaut, 2002,
Psychological Research, 66,p. 300, Figure 1, with kind permission of Springer Science and Business Media.
Copyright 2002 by Springer-Verlag.
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running context. Input activation is incorporated into this context both
to provide an output and to generate an updated context for use with
the next input. Crucially, the weights of all the connections are
acquired from a set of input–output exemplar sequences, and the
hidden unit representations that develop from this learning process are
distributed across the units and not open to transparent unit-by-unit
interpretation. Thus, individual hidden units do not encode specific
actions or the position of an action or subtask within a task.
Within the SRN model, one action is selected on each and every

processing cycle. Thus, activation does not accumulate as in the
IAN model. Instead, the flow of activation typically results in one
output unit being highly active on each cycle while all other output
units are inactive. Figure 4 illustrates this aspect of the model’s
behavior while the model performs a variant of the coffee-making
task as described by Botvinick and Plaut (2004). On all but one
processing cycle, a single output unit is activated. In the one case
when two output units are activated (Step 11), the action corre-
sponding to the most active output unit is performed, but this
corresponds to a case when two actions are equally possible, and
different attempts at the coffee-preparation task (with context units
initialized to different random patterns) can lead to selection of
either action.
Both we (Cooper & Shallice, 2000) and Botvinick and Plaut

(2004) have used our respective models to account for the occa-
sional slips and lapses that arise in routine action under conditions

of distraction or fatigue and also for the disorganization of action
that occurs in certain classes of neurological patient. Significantly,
the SRN model contrasts with previous accounts of routine se-
quential action by doing this in the absence of any explicit repre-
sentations of action schemas or goals. It thus instantiates a novel
theory of the organization and control of routine sequential action.
For this reason, it makes an important contribution to the field.
More generally, the contrast between the IAN model and the

SRN model takes the general debate on the utility for cognitive
science of unitized internal representations and internal structures
linking them into a new critical area. Moreover, as the hierarchical
structures that link schemas of different levels on the IAN model
are not derived from any external discipline but are internal as-
sumptions of the model, this makes the a priori plausibility of
Botvinick and Plaut’s (2004) approach the greater. It therefore
enables one to examine a model of a complex domain, which we
refer to aseliminativist, in the a priori most plausible situation.
This article therefore considers the two models directly and in
particular considers whether the eliminativist aspects of the SRN
model are justified.

Theoretical Differences and the Key Metatheoretical
Choice

We see several theoretical differences between the models de-
veloped by Botvinick and Plaut (2004) and by us (Cooper &
Shallice, 2000). Most fundamentally, the underlying computa-
tional processes—of recurrent activation with distributed repre-
sentations versus interactive activation with localist representa-
tions—differ, and indeed, Botvinick and Plaut presented the
representational difference as the critical one distinguishing be-
tween the two approaches. The relation between distributed and
localist models of a processing domain can vary along an abstract
dimension with, at the one end, the former models being more
detailed implementations of the latter. In this situation, to each
internal representation within the latter type of model there corre-
sponds a clearly characterizable state of the former type. At the
other end of the continuum, the internal states are not homomor-
phic in any simply characterizable way. Botvinick and Plaut ex-
acerbated the conceptual difficulties their model faces by taking an
extreme nonreductionist position with respect to the relation be-
tween the models. This, however, makes the contrast between
models especially revealing.
We term Botvinick and Plaut’s (2004) conceptual framework

eliminativist because, at least within the domain of routine action,
Botvinick and Plaut considered three theoretical constructs of
classical action control to play no causal role. First, Botvinick and
Plaut rejected the explicit representation of action schemas. As
described above, we (Cooper & Shallice, 2000) have represented
schemas as nodes within an interactive activation network, and
those nodes play a causal role in the control and selection of
routine action. Schemas are explicit in the sense that they are
discrete and unitary. There is a one-to-one mapping between
schemas and nodes in the schema network, and nodes in the
schema network may be individually and directly activated or
inhibited by other cognitive systems (specifically, by the hypoth-
esized supervisory system during deliberate control of behavior).
Botvinick and Plaut claimed instead that schema is just a descrip-
tive term linked to the emergent regularities of the trajectories

Figure 4. Activation of the simple recurrent network model’s output units
during the 37 steps of the coffee-making task. The shading indicates the
level of activation, with white corresponding to zero and black correspond-
ing to one.
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traced through the model’s continuous state space. Second, our
model uses a hierarchical network to structure schemas and sub-
schemas, whereas Botvinick and Plaut claimed explicit hierarchi-
cal structure to be unnecessary for the control of routine behavior.
Third, goals play an essential role in our model, whereas Botvinick
and Plaut considered that much routine action is not under the
control of explicit goals. These three differences place the SRN
model and the IAN model in opposition with respect to the critical
issues that motivate this article, as discussed in the introductory
section, above.
A further difference between the models, one that is not related

to Botvinick and Plaut’s (2004) eliminativist position, relates to the
representation of objects to which actions apply. We (Cooper &
Shallice, 2000) have represented objects explicitly in a further set
of interactive activation networks, with the targets of actions
determined by the most active object representations, whereas
Botvinick and Plaut employed a deictic scheme in which actions
operate on attended objects, with attention being directed by a set
of object-specificattend actions (such asfixate cupand fixate
spoon). This approach eliminates the need for object representa-
tions to be used by the action control system.
Returning to the fundamental representational difference be-

tween the models, there has been much debate about the pros and
cons of localist and distributed representations (cf. Page, 2000, and
the commentaries following that target article). For example, lo-
calist representations have been argued to result in models with
more perspicuous functioning (because the interpretation of the
model’s state is straightforward). Although the interpretation of the
IAN model’s state is more direct than that of the SRN model’s
state, Botvinick and Plaut (2004) provided extensive analyses of
the hidden unit activations that largely address differences in ease
of interpretation. Thus, the use of distributed representations is not,
in our view, necessarily problematic. However, the many difficul-
ties that a model in the domain of action selection needs to
confront have been accentuated by Botvinick and Plaut’s related
metatheoretical choices, namely, their eliminativist interpretation
of their model and the detailed mechanisms they proposed.
The present article is structured as follows. We first consider

each of the above key theoretical issues in turn before briefly
discussing three other issues—two theoretical and one empirical—
that show the limitations of the Botvinick and Plaut (2004) ap-
proach clearly. For each issue that we consider, we also assess the
criticisms made by Botvinick and Plaut of the IAN model. The
empirical domain over which the contrasts between the two mod-
els are mainly made consists of coffee and tea making. We
(Cooper & Shallice, 2000) have implemented the IAN model in
terms of the subsequences involved in making coffee from the set
of packets and containers typically found on the breakfast tray of
a hospitalized neurological patient (this was an abstraction from
the breakfast-tray task analyzed empirically by Schwartz, Reed,
Montgomery, Palmer, & Mayer, 1991). This task involves adding
coffee grounds, sugar, and cream to a mug of hot water. A total of
12 different types of basic action (e.g.,pick up, pour, tear) struc-
tured in a three-level-deep hierarchy are used to realize a sequence
of actions. In addition, objects are involved, both to be used and to
act as distractions. Botvinick and Plaut took essentially the same
basic task in their five simulations. However, in several of the
simulations, they trained the model in addition on a second
task, tea making. Significantly, this second task has some

sequences—in particular, those concerning adding sugar—identi-
cal to subsequences of the coffee-making task.

The Role and Representation of Schemas

Within the IAN model, a schema is a complex entity. It consists
of a goal, a triggering condition (i.e., a condition that specifies the
degree to which states of the world excite the schema), an activa-
tion value, and a set of subgoals (with each subgoal having a
precondition and a postcondition).1 Schemas are explicit and play
a causal role in determining behavior: Excitation and subsequent
selection of a schema cause excitation and then selection of sub-
schemas or actions. In contrast, the SRN model’s behavior is
determined by the activation of its input and hidden/context units,
together with its training history (which shapes the connection
weights to and from the hidden/context units). These connection
weights encode a kind of sequential attractor—sequences of re-
gions within the multidimensional space of hidden unit activations
that the trained model tends to follow. Thus, it does this in the
absence of explicit task instructions, as in Botvinick and Plaut’s
(2004) Simulation 1, where the model reproduced either coffee- or
tea-preparation sequences even when no instruction unit was set,
and in the presence of noise, as in their Simulation 2, in which the
model tended to produce tea- or coffee-preparation sequences even
in the presence of low levels of noise.

On the Importance of the Training Set

There is a strong sense in which one may equate the sequential
attractors of the SRN model with schemas, although the attractors
are implicit and emergent rather than explicit and prespecified.
However, the method of learning employed by the SRN model—
back-propagation through time with minimization of cross-
entropy—means that the sequential attractors developed by the
trained model are fully determined by the training set. The com-
position of the training set is therefore critical in determining the
behavior of the model in both normal and impaired functioning.
SRNs that learn by back-propagation through time are essen-

tially statistical devices that encode the conditional probability of
an output given an input and the context established by the current
task. Given the training sets employed by Botvinick and Plaut
(2004) for the coffee-making task, the SRN model, for example,
learns that the context and input established by adding cream leads
with a probability of 1.0 to the action of adding sugar if sugar has
not already been added but with a probability of 1.0 to drinking if
it has. Crucially, it is easier for the network to learn temporal
relations that operate over shorter times, so the effects of imme-
diate prior context tend to be more pronounced or more robust than
the effects of more distant prior context. Thus, in the above
example, if the context is degraded or the task is not sufficiently
well learned, the information concerning whether or not sugar has
been added may be corrupted or inaccessible at the end of the
routine for adding cream. This may result in sugar being added
twice (once before and once after adding cream—a recurrent

1 Subgoal preconditions encode ordering constraints and subgoal option-
ality, whereas subgoal postconditions enable monitoring. Basic-level sche-
mas have no subgoals but instead interface directly with the motor system.
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perseverative error) or failure to add sugar at all (an omission
error).
This analysis demonstrates how the SRNmodel can simulate the

occurrence of two important types of error that occur both in the
lapses of normal subjects and in the errorful behavior of patients
with frontal brain damage (cf. Schwartz et al., 1991, 1998). How-
ever, it also demonstrates that the ability of the model to generate
either type of error is critically dependent on the training set. This
produces two problems: one concerning the model’s susceptibility
to specific errors and the other concerning generalization from
experience.
The first problem with the selection of the training set is that the

model is especially prone to an error consisting of the omission of
the subsequence B in the larger sequence A3 B3 C only if the
training set also contains sequences including A3 C. Thus,
Botvinick and Plaut’s (2004) training set for the coffee-making
task involves four different action sequences. Critically, it includes
sequences where theGROUNDS subtask is followed bySUGAR and
then CREAM and others where it is followed immediately by the
CREAM subtask. Without exposure to such sequences, the trained
model would not be prone to omission of theSUGAR subtask.
Similarly, the model is most prone to an error consisting of a
recurrent perseveration of the subtask B in the larger sequence A
3 B 3 C (i.e., a delayed erroneous repetition of B as in A3 B
3 C 3 B 3 C) if the training set also contains sequences
including C3 B. Again, Botvinick and Plaut’s training set in-
cludes sequences where theGROUNDSsubtask is followed bySUGAR
and thenCREAM and others where theCREAM subtask is followed
immediately by theSUGAR subtask. Without such sequences in the
training set, the model would not be prone to recurrent persevera-
tion of the SUGAR subtask. On the basis of this logic, one might
expect the SRN model to be prone to omission of theSUGAR and
CREAM subtasks when making coffee but not prone to omission of
the GROUNDS subtask, which is always the first task of coffee
preparation. Similarly, the model should not be prone to recurrent
perseveration of theGROUNDSsubtask.
To explore these predictions, we reimplemented and trained the

SRN model as described by Botvinick and Plaut (2004). Noise was
then introduced, and the specific errors produced by the model
were tabulated. When noise was low (at the levels used by Botvin-
ick & Plaut, 2004, to simulate normal slips and lapses), the
predictions were observed to hold: No omissions or perseverations
of TEA or GROUNDS subtasks occurred in 1,000 attempts at tea
making and 1,000 attempts at coffee making when the standard
deviation of noise held at 0.10, the level used by Botvinick and
Plaut to simulate action slips and lapses in normal subjects. In
contrast, theSUGAR subtask was omitted on 464 out of 2,000
occasions and repeated 168 times, whereas theCREAM subtask was
omitted on 367 out of 1,000 occasions and repeated 28 times.2 Full
details of the simulation are given in the appendix (see Simulation
1, Analysis A).
It is clear that the tendency of the SRN model to produce errors

that consist predominantly of subsequences occurring in the mod-
el’s training history is empirically unsatisfactory. For example, one
anticipation error commonly produced by patients involves at-
tempting to pour from a sealed container (e.g., De Renzi &
Lucchelli, 1988; Schwartz et al., 1991). Within the domain inves-
tigated by Botvinick and Plaut (2004), this error might be manifest
by the model attempting to pour from the coffee, sugar, or cream

packets before opening them. The task thus provides ample op-
portunity for this particular error, and Botvinick and Plaut cited
one such error produced by the model—pouring from the cream
container before it has been opened (see Botvinick & Plaut, 2004,
Table 6). However, in a sample of 47,572 errors occurring in a
corpus of 22,000 trials produced by our reimplementation of the
SRN model with varying levels of noise, there was not a single
occurrence of this form of anticipation error. (See Simulation 1,
Analysis D, in the Appendix for details.) Such errors are thus
exceedingly rare in the behavior of the SRN model. The reason is
that pouring from a sealed container is something that never
happens in the training set: The probability within the training set
of selectingpour when holding a sealed container is zero. In
contrast, actions such asput downor tear (or any of the other
actions related to opening) have nonzero probability of occurrence.
Thus, although noise could in principle lead topourbeing selected
when holding a sealed container,put downor any of the various
open actions are far more likely to be selected. Similar comments
apply to tool omission errors (e.g., attempting to use a finger to stir
the coffee), which never occur in the training set, are unlikely to
arise with substantial frequency in normal behavior, but are rela-
tively frequent in the behavior of some neurological patients (see,
e.g., Rumiati, Zanini, Vorano, & Shallice, 2001). Again, common
tool omissions, such as stirring or scooping without a spoon, were
not observed in our error corpus.
These analyses are important because several researchers (e.g.,

Henson, 1998; Houghton, 1990; Houghton & Hartley, 1995) have
suggested that recurrent networks essentially implement a chaining
approach to sequential behavior (where the current action is de-
termined by the previous action and the current input), and omis-
sion errors and recurrent perseverative errors are two error types
that would seem unlikely within such an account (Lashley, 1951).
Indeed, these and related order errors led us to express skepticism
about whether recurrent networks could account for certain kinds
of slips and errors (Cooper & Shallice, 2000)—skepticism that
Botvinick and Plaut (2004) took as a challenge. A critical empir-
ical question is then whether all order errors of normal subjects and
patients may be traced to a training history that includes different
orders of the relevant actions or subsequences. This may possibly
be true, but it remains far from having been demonstrated.
The second problem with the selection of the training set is that

the model needs to be trained on all legitimate sequence orders.
Thus, the SRN model cannot form an abstract representation of
sugaring from the four sequences of the coffee task, with two
different orderings of adding sugar and cream and two different
ways of adding sugar, and generalize from one version of the tea
task, for example, that withSUGAR (BOWL), to the other version, in
this case that withSUGAR (PACK)—see Simulation 3 in the Appen-

2 At higher levels of noise, omission and perseveration of fragments of
the TEA and GROUNDS subtasks did occur. However, in these cases, the
model’s behavior was in general far more disordered, with many different
errors of different types occurring in combination with these omission and
perseveration errors. In these cases, the action sequences produced by the
model suggest that behavior either consisted of the tail end of a trained
sequence or (at very high levels of noise) was effectively random.
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dix for details.3 Similarly, the SRN model cannot produce the
fourth coffee-preparation sequence by abstracting from the other
three. The difficulty in these cases arises from the fact that the
SRN model does not represent the sugaring subtask (or any sub-
task for that matter) as a distinct entity separate from the context
in which it occurs. Thus, if the SRN model encounters sugaring
within an unfamiliar context, it may succeed in adding sugar, but
the model has no way of ensuring that critical aspects of the prior
context are preserved during the subtask and, therefore, no way of
ensuring that, once sugar has been added, it can continue the
original higher order task in an appropriate fashion.
Similar problems of the limits of generalization arise from

variations in the task environment. If, for example, the SRN model
is trained in a task environment with the sugar bowl initially closed
when making tea but open when making coffee, it cannot succeed
in either task if the bowl is not initially in the state for which the
model was specifically trained. (See Simulation 4 in the Appendix
for details.) The SRN model therefore makes the counterintuitive
prediction that generalization of variants of a subtask (e.g., differ-
ent ways of adding sugar) across tasks that share those subtasks
(e.g., coffee making and tea making) is not possible.
Thus, the composition of the training set and particularly the

ordering of subsequences within that set are critical in ensuring
both that the model learns to produce all legitimate orders and that
the model is able to produce the right kinds of order errors.
Botvinick and Plaut (2004) accepted that the training history has a
critical influence on the SRN model’s behavior and saw this as a
strength, stating, for example, that “the specifics of the sequencing
mechanism are shaped by learning, with the result that they are
closely adapted to the details of specific task domains” (Botvinick
& Plaut, 2004, p. 420). However, they made only limited com-
ments on the origins of the training set, and these were restricted
to the way that they included single-step (i.e., nonsequential)
background examples within the training set. Such examples are
critical in producing many of the SRN model’s errors, but to fully
explore the SRN model’s predictions, it is necessary to have
independent justification for the selection of individual sequences
and of the assignment of their frequencies in the training set.
Hence, although it might appear preferable for schemas to be
acquired (a` la Botvinick & Plaut, 2004) rather than specified by
hand (àla Cooper & Shallice, 2000), in effect, Botvinick and Plaut
simply transferred the burden of schema specification from an
explicit schema hierarchy to a training set. In principle, that
training set might be empirically determined through observation
of the sequences observed by the learner, but this has yet to be
attempted. It therefore appears that Botvinick and Plaut’s approach
merely replaces one problematic aspect of the IAN model (hand
coding of action schemas) with another (hand selection of training
exemplars).

Schema Similarity

It is generally agreed that there is an element of sharing or
overlap in the mental representations of similar action sequences
(see, e.g., Botvinick & Plaut, 2002; Grafman, 1995; Schank &
Abelson, 1977). Evidence from transfer, learning, and neurological
breakdown has been cited in support of this view. Botvinick and
Plaut (2004; see also Botvinick & Plaut, 2002) argued that one
advantage of the SRN model in comparison to the IAN model is

that the acquired schema representations automatically encode
schema similarity. Evidence for this was provided, for instance, by
the similarity of the multidimensional scaling plots of theSUGAR
(PACK) subsequence within the different contexts of coffee prepa-
ration and tea preparation (cf. Botvinick & Plaut, 2004, Figure 4);
this results in a tendency of the model when lesioned to produce
capture errors (James, 1890; Norman, 1981), where behavior on
one task is captured by a related overlearned action sequence (see
Botvinick & Plaut, 2004, Simulation 2A). However, it is incorrect
to think of schema representations within the IAN model as being
disjoint and nonoverlapping. Although schema nodes may be
discrete elements of the schema network, hierarchical relations
between nodes mean that schemas may share subschemas (where
a schema’s subschemas are defined as those schemas that achieve
a subgoal of the schema). Botvinick and Plaut accepted this but
argued that this form of subschema sharing carries “less represen-
tational richness and flexibility than the idea of information shar-
ing implies” (Botvinick & Plaut, 2002, p. 308).
Two considerations led Botvinick and Plaut (2002) to this

negative assessment. First, they argued that higher level schemas
can share subschemas only if the execution of those subschemas is
“absolutely invariant with respect to context” (Botvinick & Plaut,
2002, p. 308). In fact, this is not correct. The use of preconditions
and postconditions within the IAN model overcomes this diffi-
culty: Within the IAN model, actions that are normally realized by
a schema are not expressed in behavior if those actions would
merely contribute toward the achievement of the current states of
affairs or if the schema is terminated early because its postcondi-
tions are met. Differences in context may also arise if, for example,
tea is prepared with a small teaspoonful of sugar but coffee with a
heaped teaspoonful of sugar. It is true that this form of contextual
variation has not been addressed within the IAN model, but it
could be addressed by augmenting the IAN model with manner
and quality features that are inherited by subschemas from super-
ordinate schemas. Second, they suggested that some abstract pat-
terns of behavior do not decompose simply into tasks and subtasks.
Botvinick and Plaut (2002, p. 308) gave the example offixate X,
reach for X, grasp X, fixate Y, move hand to Y, put down X,where
X andYmay be instantiated with different object descriptions for
different tasks. Again, this form of structure sharing does not
present difficulties for the IAN model. As object representations
and schema nodes inhabit separate subnetworks within the model,
it is possible for two different high-level schemas to activate a
singlemove X to Yschema with different object representations

3 Botvinick and Plaut (2004) suggested that their model is capable of
precisely this kind of generalization, citing unpublished observations in
which “systems of this sort . . . infer sequence equivalence, interchanging
equivalent sequences in a way that produces overall sequences the network
has not observed during training.” (pp. 423–424). We were unable to
replicate this effect with our implementation of the SRN model on the
coffee- and tea-making tasks. Matthew Botvinick (personal communica-
tion, October 14, 2005) has confirmed that these unpublished observations
relate to a scaled-down version of the model using a modified training
regime. The conditions under which the SRN model itself can generalize
subsequences to contexts beyond those encountered in its training history
and subsequently continue with the original task without being captured by
an example from the training history therefore remain to be identified.
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being activated (by higher level schemas) for source and target in
each case.
Capture errors are also possible in the IAN model, although their

origin differs from that in the SRN model. The IAN model in-
cludes mutual interactions between schemas and object represen-
tations, and these may lead to capture errors. Thus, if an object
satisfies the triggering conditions of two schemas, then it tends to
excite both schemas. Furthermore, if one of the schemas is highly
active, it tends to excite the representation of the object, and this in
turn tends to excite the other schema. If this excitation of the other
schema is not regulated (e.g., through sufficient lateral inhibition
in the schema network), the schema may become inappropriately
selected and capture behavior.
A related feature of the SRN model is that it automatically

encodes schema frequency, with more frequent tasks creating
stronger attractors than less frequent tasks. This results in fre-
quency effects, such as the tendency for behavior on less frequent
tasks to be captured by more frequent tasks (see Botvinick & Plaut,
2004, Simulation 2A). The automatic encoding of schema fre-
quency is not present in the implementation of the IAN model, and
this may appear to be a weakness of that approach. However, in the
verbal description of the contention scheduling theory, Norman
and Shallice (1980, 1986) suggested that different schemas may
have different selection thresholds (i.e., different activation levels
that result in the selection of the schema). Specifically, well-
learned schemas were held to have lower selection thresholds. The
evidence cited by Botvinick and Plaut (2004) in favor of their
frequency-dependent encoding is not inconsistent with this basic
theory. In addition, Botvinick and Plaut failed to show that the
results of their Simulation 1 hold when sequence frequency is
varied, as in their Simulation 2A. As discussed below in the
section titled The Implementation of Choice (see also Simulation
2 in the Appendix), our own simulations suggest that the frequency
of sequences in the training set must be finely balanced if the SRN
model is to be able to generate all sequences on which it has been
trained.

Sequential and Hierarchical Control Structures of Routine
Action

On the IAN model, actions are organized through a hierarchical
structure. Botvinick and Plaut (2004) rejected this approach. They
argued that it has problems over how the hierarchy is learned, over
how multilevel control of behavior is sequenced, and, in the
interactive activation version at least, over how it accounts for
error data.

Sequencing

Within the IAN model, sequential behavior results from the
activation, eventual selection, and then inhibition of nodes within
the schema hierarchy. An important source of schema excitation is
top-down excitation from a parent schema to its component sche-
mas. When a parent schema is selected, however, it does not excite
all of its component schemas, just those whose preconditions are
satisfied and whose postconditions are not satisfied. As the mech-
anism by which this selective excitation of component schemas is
not specified further, Botvinick and Plaut (2004) claimed that the
IAN model assumes “an important part of the functionality it is

intended to explain” (p. 398). This claim is misguided on two
counts.
First, it fails to take into account the fact that a selected schema

may excite multiple component schemas if the preconditions of
those component schemas are satisfied. Thus, in the IAN model as
applied to the coffee-preparation task, selection of theadd sugar
from bowlschema results in excitation of schema nodes for pick-
ing up an implement, dipping an implement in an open source
container, and emptying the implement into an open target con-
tainer. All three subschemas receive top-down excitation. Sequen-
tial order is imposed by bottom-up excitation in the form of
triggering conditions (comparable to affordances), whereby pick-
ing up an implement initially receives excitation from the repre-
sentation of the environment (because that is the only component
schema that may be performed given an initial state of the envi-
ronment in which an implement is not held). Therefore, although
gating of top-down excitation by precondition achievement is an
important factor in determining the sequential order of the model’s
behavior, it is not the only factor.
Second, the IAN model does not deny that gating of top-down

excitation is implemented in neural terms. Rather, it assumes that
normal and impaired behavior may be modeled without recourse to
the neural implementation of the mechanism, and the results of
Cooper and Shallice (2000) and Cooper et al. (2005) support this.
Thus, the issue is one of the level at which the theory is specified.
A further question raised by Botvinick and Plaut (2004) with

respect to sequencing concerns the time course of reflex inhibition.
Within the IAN model, units at the lowest level of the schema
hierarchy are inhibited immediately after selection, allowing other
low-level units to become active, but selected units higher in the
hierarchy are only inhibited once all of their subgoals have been
achieved. Botvinick and Plaut took issue with this, claiming of the
IAN model that “the actual mechanisms responsible for goal-
monitoring and schema inhibition . . . remain to be explained”
(Botvinick & Plaut, 2004, p. 398). Again, this is an issue of the
level at which the theory is specified, and the comments in the
preceding paragraph apply.

Learning

A key advantage of the SRN model over the IAN model,
according to Botvinick and Plaut (2004), is that the SRN model
provides an account of the acquisition of routine action, with
quasi-hierarchical structuring emerging from the model as it ac-
quires action sequences. However, the approach to skill acquisition
within the SRN model has serious failings. Thus, as discussed
below in the section titled Goals and Learning, the SRN model
adopts implausible assumptions concerning the role (or lack
thereof) of explicit subtask structure in task acquisition.
Most clearly problematic is how the SRN model deals with the

problem of catastrophic interference. First, it should be noted that
the SRN model is severely subject to this potentially grave prob-
lem for many connectionist models. To ascertain this, we trained
our replication of the SRN model first on preparing tea. Once the
model mastered this task, the training set was changed, and the
model was trained on the coffee-preparation task. Once this task
was learned, the training set was then switched back to that for the
tea task, and so on. Performance on each task was monitored after
each training epoch. The reverse situation, learning the coffee task
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first, was also explored. (See Simulation 5 in the Appendix for full
details.) Figure 5 shows the performance of the model on the two
tasks as learning progressed. Not surprisingly, switching the train-
ing set led to immediate impairment of the previously mastered
task, and the model alternated between mastery of each task as the
training set was switched. Granted, less training was required on
each subsequent switch for the model to regain its previous level
of performance, such that after many alternations, the model did
eventually acquire both tasks. However, this does not diminish the
basic problem of catastrophic interference—that acquisition of a
second task impairs performance on previously acquired tasks.
The requirement that the model be exposed to all training

sequences on every training epoch is clearly unrealistic. To cope
with this problem, Botvinick and Plaut (2004) imported a hypo-
thetical and complex learning mechanism previously postulated to
deal with the potential for catastrophic interference in learning
semantic representations (McClelland, McNaughton, & O’Reilly,
1995). Botvinick and Plaut proposed that the learning of action
sequences occurs in two stages. Thus, they adopted the McClel-
land et al. (1995) position that acquisition is initially in the hip-
pocampus, which then trains the cortex, so as to reduce the
possibility of catastrophic interference in learning multiple input–
output mappings in the cortex (see Botvinick & Plaut, 2004, pp.
401, 403). This however creates a number of problems. The
McClelland et al. model is controversial even for the retention of
semantic (i.e., nonsequential) information (see, e.g., Nadel &
Moscovitch, 1997). More critically, there is no evidence that the
hippocampus can retain and order completely accurately a very
long sequence of input-to-output mappings that would be required
to implement hippocampal training of the action sequence.
This hypothesis also fits very poorly with other neuroscientific

evidence. Learning of instrumental behaviors, an animal precursor
of motor skills, involves two systems—an inflexible, automatic
habit stimulus–response system and a flexible goal-directed action
system (Dickinson, 1985; Knowlton, Mangels, & Squire, 1996).
Thus, the process of reward devaluation affects goal-directed ac-
tion, which is employed early in learning a novel action, but does
not influence the operation of the habit-based system that controls
action later (e.g., Balleine & Dickinson, 1998). Key structures in
the implementation of automatic habit repertoires are the dorso-
lateral striatum and the premotor and motor cortices (Graybiel,
1998). Although Botvinick and Plaut (2004) did not draw the
connection, this is clearly a system that could relate to the SRN

model. Critical in the training phase is, however, the other system,
the goal-directed action system, which, by contrast, requires the
prefrontal cortex, the pre–supplementary motor area, and the dor-
somedial striatum (Yin, Knowlton, & Balleine, 2004). Thus, it is
the prefrontal cortex and the dorsomedial striatum that tend to be
involved early in learning a motor skill. For instance, Jueptner et
al. (1997) scanned subjects both while they were performing a new
motor sequence and when they had already learned it well. The set
of regions active when the task was well learned (cingulate,
supplementary motor area, premotor cortex, motor cortex, left
parietal cortex, basal ganglia, and cerebellum) was even more
active when the task was novel. In addition, however, when the
task was novel, the prefrontal cortex, particularly the right, was
also strongly active. (See also Aron, Monsell, Sahakian, & Rob-
bins, 2004, and Alexander, Stuss, Shallice, Picton, & Gillingham,
2005, for the involvement of the left prefrontal cortex in the
acquisition of task switching and serial reaction time, respectively,
and Hollerman, Tremblay, & Schultz, 2000, for relevant basal
ganglia evidence.) Moreover, the striatal region that is indirectly
connected to the hippocampus is the dorsomedial striatum, and not
the dorsolateral striatum controlling habit (Devan & White, 1999;
Poldrack, Prabakharan, Seger, & Gabrieli, 1999; see also Graybiel,
1998). As far as the habit system is concerned, one thus has a much
more distant and tenuous anatomical relation to the hippocampus
when one compares it with the links that inferior anterior temporal
structures involved in semantics have with the hippocampus,
namely, the ones required by the initial McClelland et al. (1995)
model of overcoming catastrophic interference. Indeed, it is most
plausible that any training input from the hippocampus to an
habitual action system could occur only when mediated by the
goal-directed action system, yet Botvinick and Plaut’s appeal to
hippocampal systems to overcome catastrophic interference as-
sumes that goal directedness plays no part.
The situation with respect to learning in the SRN model is

further complicated by the fact that, as Botvinick and Plaut (2004)
acknowledged, learning may occur via a variety of means and that
their implementation includes only one of these (learning by
imitation). It is far from clear how the model might be extended to
include other learning mechanisms or how such mechanisms
would impact upon the model’s behavior. Acquisition of routine
action sequences is not in fact addressed in the IAN model, and as
Botvinick and Plaut pointed out, although sequence learning has
been addressed within the interactive activation framework (e.g.,

Figure 5. Mean number of cycles required to reach successive criterion states.
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Burgess & Hitch, 1992; Grossberg, 1986; Hartley & Houghton,
1996; Henson, 1998; Houghton, 1990; Houghton, Glasspool, &
Shallice, 1994), hierarchical interactive activation models, includ-
ing those of Estes (1972), Rumelhart and Norman (1982), MacKay
(1985), and Cooper and Shallice (2000), all rely upon appropriate
hand-coded hierarchical structure. However, the basic approach on
this set of models consists of maintaining a time-varying context
representation and associating this representation at successive
points in time with successive sequence nodes within an interac-
tive activation network (i.e., a set of mutually inhibitory, seman-
tically interpretable nodes). The approach—competitive queu-
ing—can account for rapid (one-trial) learning of sequential
structure, and Humphreys and Forde (1998) have suggested that it
might be extended to the domain of routine sequential action.
Botvinick and Plaut’s (2004) only criticism of this work was that
it assumes an ability to identify sequence boundaries—a criticism
we address below. Note, however, that the supervisory processes
described below as putatively responsible for the development of
the schema hierarchy structure can be localized in the prefrontal
cortex (Shallice, 2004; Shallice & Burgess, 1996), and this is
consistent with the empirical evidence of Jueptner et al. (1997)
cited above.
A further aspect of learning within the contention scheduling

framework (beyond acquisition of hierarchy and sequence) relates
to the acquisition of schema triggering conditions. This can be
viewed as the result of Hebbian or delta-rule learning that associ-
ates representations of the environment in which a schema is
performed with the schema representation within the contention
scheduling system. Preliminary work has demonstrated that this
can account for the acquisition of triggering conditions for indi-
vidual actions (Cooper & Glasspool, 2001), and the generalization
of this approach to schemas is straightforward.

Context Sensitivity and Quasi-Hierarchical Sequences

Botvinick and Plaut (2004) claimed that for the routine system
itself, a nonhierarchical system is preferable. In claiming this, they
cited Agre (1988) and situated themselves by analogy with the AI
reactive planners of the 1980s who dispensed with intelligent
planning systems (Agre & Chapman, 1987; Firby, 1987; but see
Gat, 1998; Glasspool, 2005). Thus, they explicitly stated that
“performance of a routine should vary with the larger behavioral
context” (Botvinick & Plaut, 2004, p. 398). To illustrate this,
Botvinick and Plaut asked the reader to imagine a waiter with three
coffee-preparation routines (appropriate to three different custom-
ers) differing only in the amount of sugar (zero, one, or two
teaspoons) added in each routine. They claimed that the IAN
model, when applied to this task, could not capture the inherent
similarities between the routines but would need three separate
coffee-preparation schemas.
In our opinion, the example is not convincing. First, the idea that

one would learn that A has one sugar and B has two sugars without
using an explicit representation of one and two and a counting
routine is implausible. There are many routine acts where a spe-
cific number of operations are required: in using a recipe, in
making tea with a pot, in taking pills, and so on. For the Botvinick
and Plaut (2004) model, numbers cannot be used explicitly, either
in the skilled implementation of the task or, even more critically,
when it is being learned. Furthermore, if one uses a counting

routine, one needs to have a representation of what one is counting.
This is debarred on the Botvinick and Plaut approach as there is no
explicit representation of the sugaring subroutine—one is forced
to assume that whatever processes in the brain are used in the
initial training phase and whatever types of representation they
produce are irrelevant for the final state of the SRN. It needs to be
assumed that the system observes its own input and own output,
however produced, and learns the pairings. In contrast, we would
model the waiter scenario within the IAN model by assuming that,
although a schema may exist for one version of the coffee task,
other versions would be controlled through temporary schemas
created and maintained by higher level systems throughout the task
(cf. Shallice, 2004; Shallice & Burgess, 1996). This is facilitated
by the explicit representation of schemas at all levels within the
IAN model.
At the same time, routine behavior can indeed be highly context

sensitive. A more realistic example involves the preparation of a
beverage from different initial situations. On the IAN model, there
do not need to exist different schemas for coffee preparation for
situations in which the milk container is initially closed or initially
open or different schemas for buttering toast depending on whether
one is currently holding a butter knife (from a previous task) or
not. Rather, schemas are held to include optional elements; their
inclusion on any particular occasion is determined by the context
in which the schema is performed. The association of precondi-
tions and postconditions with subgoals within a schema within the
current version of the IAN model allows for just such optional
elements (Cooper et al., 2005).
A further example of context sensitivity was discussed by

Botvinick and Plaut (2002). Making coffee and making cocoa both
involve scooping an ingredient into the target mug. In the case of
coffee, this is a moderate size scoop of sugar, whereas, in the case
of cocoa, this is a large scoop of cocoa mix. Botvinick and Plaut
discussed how this might be accommodated within the SRN model
through the addition of an extra output unit to represent the
modifier large (which should be activated on the same step as
scoopwhen scooping cocoa, but not when scooping sugar). This
form of context sensitivity can also be addressed within the IAN
model through an appropriate augmentation, namely, through the
addition of manner features (such aslarge or quickly) that act as
modifiers of actions and that are specified at higher levels of the
schema hierarchy and inherited by schemas at lower levels.

Goals and Subgoals: Explicit or Redundant?

An important element of the concept of a schema as employed
by us (Cooper & Shallice, 2000) is that schemas are goal directed:
Action schemas are invoked to achieve goals, and successful
performance of a schema entails that the schema’s goal is
achieved. The term goal is used synonymously with purpose:
Schemas are held to be purposeful, and behavior is held to consist
of segments of purposeful action. This is far from a novel claim,
either at the level of complex tasks (cf. Miller et al., 1960) or the
level of routine activities (Schwartz et al., 1991).

Two Arguments Against Goals

Botvinick and Plaut (2004) were equivocal with respect to the
importance of goals within routine behavior. At a general level,
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they accepted that “in some circumstances human action does
involve instantiation of explicit goal representations” (Botvinick &
Plaut, 2004, p. 424). At they same time, goals play no role in the
functioning of the SRN model. They presented two arguments
against goals as constructs that necessarily play a role in structur-
ing routine behavior. First, they claimed that the concept of goal is
too rigid to account for “the extent to which goals may be context
dependent” (Botvinick & Plaut, 2004, p. 423). The only example
they gave was of how one’s goals in cleaning the house may vary
depending on whether one is tidying up or preparing for a visit
from one’s mother. It is not at all clear what the sense of context
is here; for instance, it does not relate to aspects of the immediate
environment. Instead, the example is simply characterizable as
behavior attempting to realize one of two related but distinct goals.
In any case, the reservation ignored the way that, within the IAN
model, contention scheduling operates in tandem with a supervi-
sory system whose functions include the modulation of contention
scheduling in nonroutine contexts. Second, Botvinick and Plaut
argued that there are behaviors “for which it is not straightforward
to identify discrete, explicit goals” (Botvinick & Plaut, 2004, p.
423). The example they gave was of playing a violin. Anyone who
has ever tried to play the instrument is very well aware that the
goal is to produce a particular type of attractive aesthetic sound,
and for a novice, this is very difficult to achieve. It is true that the
goal in this case is not easily made explicit. However the top-down
flow of control in contention scheduling does not require that the
higher levels of the structure have a full representation of all that
is produced by the lower level schemas. Thus, in the case of violin
playing, the higher level schemas do not need to have a represen-
tation of the individual finger, arm, and wrist movements required
to produce a specific melody.

Three Arguments for Goals

Regardless of the above objections to assuming the involvement
of goals, it is appropriate to ask what purposes are served by goals
within the IAN model and how or to what extent these purposes
are achieved within the SRN model. Goals are critical within the
IAN model for four different types of reason. First, they provide a
source of activation for the units controlling behavior. Second,
they allow one to distinguish between different roles of actions
within a sequence and hence compute and assemble specific ac-
tions that are necessary in a given situation. Third, goals enable
schemas to be treated as interchangeable. Fourth, goals facilitate
the learning process by helping to realize the chunking structure of
a longer sequence in terms of specific subroutines. The first of
these types of reason is specific to the IAN model. The remaining
three are of general significance.
Goals and enabling, crux, and tidying actions.Goals allow a

distinction to be made between critical behaviors and enabling or
tidying behaviors. This is realized in the concept of a crux action
(Schwartz et al., 1991). Within many routines, certain actions are
more important to successful completion of the routine than others.
Thus, in adding sugar to a beverage, the crux action is that in
which the sugar is actually added (either pouring the contents of
the sugar packet into the mug or emptying a spoonful of sugar into
the mug). Other actions in the sequence serve to enable successful

execution of the crux (e.g., removing the lid of the sugar bowl) or
serve a subsidiary tidying function to enable further action (e.g.,
discarding the empty sugar packet). Intuitively, the crux action
within a sequence is the one that achieves the primary goal of the
sequence. It is also the one that is most essential. Thus, if the sugar
bowl’s lid has already been removed, the action may be safely
omitted. Even the act of discarding the spoon on completion of the
sequence can be omitted if the spoon is required by the next
sequence; indeed, discarding the spoon should be omitted if the
next action would only result in picking it up again. What cannot
be omitted is the crux action: the act of actually depositing sugar
into the mug.
The concept of a goal and the related concepts of enabling, crux,

and tidying actions facilitate the efficient assembly of action
sequences into novel combinations as required even in simple
situations when, for example, one is required to butter two slices of
toast and one spontaneously assembles two instances of thebutter
toastschema by leaving out the inessential tidying-up actions of
the first instance and the preparatory actions of the second instance
and running the crux actions together. Although the original IAN
model (Cooper & Shallice, 2000) is not capable of such flexibility,
a revised model does show precisely this flexibility, largely be-
cause of the explicit goal-directed nature of schemas (cf. Cooper et
al., 2005). Within the revised model, each subgoal of a schema has
a precondition and a postcondition. When a schema is selected,
activation is passed to the nodes for schemas corresponding to
subgoals that have preconditions that are met and postconditions
that are not. At the same time, nodes for selected schemas corre-
sponding to subgoals whose postconditions are met receive inhi-
bition. Transferring butter from the butter container to the butter
knife and from the butter knife to the toast are two subgoals of the
butter toastschema, but the postcondition of the second (that a
butter knife, without butter on its blade, be held)matches the
precondition of the first. Moreover, the postcondition of the
butter toast schema generally is met once butter has been
applied to the toast, even if the knife is still held. Running two
versions of the sequence together therefore results in the first
instance ofbutter toastbeing inhibited and deselected once
butter has been transferred to toast (prior to discarding the
knife), and selection of the second instance does not activate
picking up of the knife (because it is already held). The net
result is that the transfer actions of both instances are performed
without an intervening put-down/pick-up of the knife. Note that
this behavior is achieved within the IAN model through pre-
conditions and postconditions associated with the subgoals of a
schema and without explicit marking of crux, enabling, and
tidying actions. The model therefore does not require that each
schema have precisely one crux action.
Analogous processing occurs in the more complex situation of

task interleaving, where objects that are to be used again may be
spontaneously left in an appropriate state for later use and novel
action sequences that maintain a joint purpose are constructed on
the fly (cf. Joe, Ferraro, & Schwartz, 2002). The explicit repre-
sentation of goals within the IAN model means that it is fully
compatible with all of the requirements of interleaving, and in the
semicomplex task of preparing and packing a child’s lunch box,
the model is able to either prepare all items before packing them or
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interleave the preparation and packing operations (Cooper et al.,
2005).4

Goals and the interchangeability of schemas.Within the
coffee-preparation task, adding sugar may be achieved either by
using a packet of sugar or by using a sugar bowl. It is the shared
goal (of sweetening the beverage) that allows these schemas to be
interchanged. Botvinick and Plaut (2004, p. 423) suggested that
their model can give the impression of being goal directed without
any representation of goals because it can learn to perform the two
different sugar-adding subsequences as if they were interchange-
able. Although this is true, as discussed above, the SRN model as
presented by Botvinick and Plaut can only do this if it is trained
with each and every variant of sugar addition in the context of each
and every task that employs sugar (but see footnote 3, above). It
cannot spontaneously generalize or transfer this learning to use
different sugar-addition methods in a related task (e.g., making tea)
because, in its current instantiation, the model has no way of
representing subtasks as discrete entities and no way of knowing
how to preserve context information (e.g., whether it is making tea
or coffee) across a subtask (e.g., adding sugar) unless it has
received explicit training on that variant of the task. Simulations
supporting this claim are described in Simulation 3 in the
Appendix.
Goals and learning. Botvinick and Plaut (2004, p. 397) argued

that learning presents a serious difficulty for hierarchical ap-
proaches to action. In particular, they suggested that a significant
factor limiting the extension of existing approaches to learning
within interactive activation networks (e.g., Grossberg, 1986;
Houghton, 1990) to the learning of hierarchical structure concerns
the determination of sequence boundaries. Indeed, if one consid-
ers, say, the perception of familiar speech units (Saffran, 2001),
such a criticism is appropriate. However, this relates to perception,
not production. Furthermore, if subsequences achieve subgoals
and subgoals are explicit at least initially in learning, then the
problem of determining sequence boundaries dissolves. Thus, the
idea that the child, when learning coffee making, would have
difficulty in separating out the subroutines conceptually or that the
child, when adding sugar, would not understand that sugar is sweet
and would not have the goal of making the drink sweet seems
highly implausible. Goals can therefore facilitate the learning
process by helping to realize the chunking structure that breaks
down longer sequences of perception–action pairs into the prod-
ucts of specific subroutines.
We suggest that tasks such as coffee preparation are primarily

acquired through instruction of the contention scheduling system
by the supervisory system. High-level goal-directed problem solv-
ing would initially be responsible for developing solutions to
simple subtasks such as adding sugar or milk to a beverage.
Schemas that embody these solutions develop with practice within
contention scheduling and are then available for use in more
complex tasks, such as preparing coffee, which again are con-
trolled initially through biasing of behavior by a supervisory
system but which, with practice, are also transferred to contention
scheduling. In this way, hierarchical structure is not abstracted by
unguided imitation or observation of lengthy, apparently purpose-
less action sequences. Rather, it develops as a result of top-down
problem solving and bears strong similarities to the mechanism of
learning by chunking within the Soar cognitive architecture
(Laird et al., 1987; Newell, 1990; see also Duncan, 2001).

Alternatively—or in conjunction—learning may use imitation,
and studies on learning by imitation have suggested that the
processes involved mediate action execution through explicit or
implicit goals (Wohlschla¨ger, Gattis, & Bekkering, 2003). More-
over, in a fuller model including a supervisory system, goals would
allow the system to institute monitoring and checking procedures
(see Shallice, 2004).

Doing Without Goals

The case for goals, even in the performance of routine or
everyday activities, appears strong. How then does the SRN model
achieve its impressive performance in the absence of any goal
representations? The answer is twofold. First, at the level of the
complete task, Botvinick and Plaut’s (2004) instruction units serve
to specify an intention. Although the network learns to immedi-
ately encode this intention in its context units, it is nevertheless
initialized with an intention (as, in our opinion, it should be). This
is true in both their basic simulations of tea and coffee preparation
(Botvinick & Plaut, 2004, Simulation 1, where two mutually
exclusive instruction units are employed) and the additional sim-
ulations of coffee preparation with zero, one, or two sugars
(Botvinick & Plaut, 2004, Simulation 1A, where three mutually
exclusive instruction units are employed). In addition, in all cases,
the model is trained to select thesay doneaction when the goal is
achieved.
Second, close inspection of the SRN model’s performance re-

veals that performance is not that impressive; it lacks the kind of
behavioral flexibility seen in everyday human action. Although the
model is able to learn six action sequences (including four with 37
steps) and although those sequences contain some overlap in the
form of subsequences that notionally achieve subgoals, the learned
action subsequences cannot be combined in novel ways, and as
noted above, the model breaks down if the task environment in
which it is applied is not identical to that in which it was trained
(e.g., if the lid has been left off the sugar bowl).

Linking Actions With Objects

Botvinick and Plaut (2004) employed a deictic scheme to link
actions to objects. It is implemented through separate fixate or attend
actions for each object relevant to the task. There is much evidence in
support of a deictic scheme (e.g., Hayhoe, 2000; Land, Mennie, &
Rustead, 1999). However, such a scheme is orthogonal to the issue of
the representation of schemas or the underlying computational pro-
cesses—it is fully consistent with either explicit representations of
schemas or implicit schemas and with either a recurrent or an inter-
active computational substrate (see below).What is not independent is
the detailed implementation of such a scheme. Botvinick and Plaut
avoided any internal representation of objects. The key difference is
therefore not the use of deictic reference but the explicit representation
of objects within the IAN model.

4 Notwithstanding this, intentional interleaving (as in the six-element
task introduced by Shallice & Burgess, 1991) would appear to require some
mechanism to switch away from the current task even when that task is
progressing adequately. We assume this to be a supervisory system func-
tion that operates by intentional inhibition of an ongoing schema and
excitation of an alternative schema.
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Studies of the action selection of neurologically intact individ-
uals and certain classes of neurological patient have provided
several strands of evidence that may help to differentiate the
approaches to linking actions with objects. Thus, patient studies
(e.g., De Renzi & Lucchelli, 1988; Giovannetti, Libon, Buxbaum,
& Schwartz, 2002; Humphreys & Forde, 1998; Rumiati et al.,
2001; Schwartz et al., 1991, 1998) have revealed that object
substitution errors, in which an appropriate action is performed
with an incorrect object (e.g., a fork is used in place of a knife for
spreading butter on toast), are relatively common in the actions of
many different patient groups. Mild forms of such errors also occur
in the slips and lapses of unimpaired individuals (Reason, 1979,
1984). If objects are represented implicitly only in terms of fixate
or attend actions, then such errors must arise from either the
selection of an incorrect fixate action or an error in some addi-
tional, downstream system responsible for performing fixate ac-
tions. Representing objects explicitly and incorporating a mecha-
nism for associating objects with actions (as in the Cooper and
Shallice, 2000, approach) constitute one way of effectively spec-
ifying this additional system, except that the interactions between
object representation units and schema units within the IAN model
mean that the system is not downstream from the action selection
system but is reciprocally and interactively connected with it.

The Influence of Distractor Objects

There is substantial empirical evidence for the effect of the pres-
ence of unattended or distractor objects on action selection. Studies of
reaching behavior both in normal subjects (Pratt & Abrams, 1994; see
also Tipper, Lortie, & Baylis, 1992) and in neurological patients
(Riddoch, Edwards, Humphreys, West, & Heafield, 1998) have
shown that action initiation in reaching tasks is delayed when distrac-
tors are present as compared with when they are not present. In a
related fashion, Meegan and Tipper (1998) found that normal subjects
made nonnegligible numbers of errors in a simple reaching task when
distractors were present. Furthermore, several neuropsychological
group studies with action-disordered patients, including closed head
injury patients (Schwartz et al., 1998), left-hemisphere stroke patients
(Buxbaum, Schwartz, & Montgomery, 1998), right-hemisphere
stroke patients (Schwartz et al., 1999), and dementia patients (Gio-
vannetti et al., 2002), have demonstrated that the presence of addi-
tional distractor objects in the local environment affects error profiles
when performing a range of simple activities of daily living, with all
patient groups omitting more actions when distractor objects were
present than when they were not.
The presence of distractor objects can also lead to outright

object substitution errors. These account for one of the four main
categories of reported slips of routine action by normal subjects
(Reason, 1984), and such errors made up 17% of all errors ob-
served by Schwartz et al. (1998) in the behavior of a healthy
control group completing a range of everyday tasks. Both
Schwartz et al. and Humphreys and Forde (1998) reported that
object substitution errors accounted for approximately 10% of the
errors produced by their frontal patients.
If objects are represented only in terms of relevant fixate or

attend actions and, in addition, environmental input to the system
is limited only to the representation of the objects that are attended
and held, as in the SRN model, then only those objects that are
actually attended or held can influence later action selection. The

SRN model therefore provides no account of how the presence of
distractor objects may slow action selection or lead to omission
errors. This insensitivity of the SRN model’s behavior to distractor
objects is not an implementation issue that can be addressed by
increasing the number of objects in the task environment (and
hence increasing the number of associated fixate actions that might
be produced by the model). To have any effect, such a modifica-
tion would need to be accompanied by training of the modified
model on tasks involving the new objects. However, an object can
only affect the SRN model’s behavior if the SRN first fixates the
object, and that fixate action is internally generated by associations
learned through the SRN. So, extending the model in this way does
not result in more errors when distractor objects are present than
when they are not because the distractor objects are not fixated.
The SRN model also provides no real account of object substi-

tution errors, either in slips of normal action selection or in errors
of impaired action selection. Thus, although Botvinick and Plaut
(2004) provided an example of an object substitution error pro-
duced by their model (stirring with the coffee packet), our reimple-
mentation of the SRN model revealed that such errors were ex-
ceedingly rare. Table 1 shows the number of object substitution
errors produced by the reimplementation at various levels of noise.
Each cell represents the cumulative results of 1,000 attempts at the
tea task and 1,000 attempts at the coffee task. As the table illus-
trates, object substitution errors made up less than 0.5% of all
errors when noise was 0.10 or less (the level used by Botvinick and
Plaut, 2004, to simulate normal slips of action). This rose to a
maximum of less than 2.0% at higher values of noise. (For full
details of the simulations and a breakdown of the specific object
substitution errors, see Simulation 1,Analysis B, in the Appendix.)
To understand why object substitution errors are rare in the

behavior of the SRN model following damage, consider the error
of pouring the coffee into the sugar bowl (assuming that the sugar
bowl is open). The correct target is the coffee mug, so, once the
unopened coffee packet is held, the sequence of actions should be
tear packet, fixate mug, pour.For the object substitution error to
occur, the centralfixate mugmust be replaced byfixate sugar bowl
without affecting the subsequentpour.This is unlikely to happen
because, after fixating on the sugar bowl, pouring is not likely to
be supported by either the model’s context representation or its
inputs. It is unlikely to be supported by the context representation
because that representation must have been corrupted to generate
the error in the previous fixate action. It is also unlikely to be
supported by the input because the training set does not include
any cases of pouring the coffee packet into the sugar bowl, so that
configuration of held and fixated objects should not facilitate
pouring. In fact, within the SRN model, all object substitution
errors must begin with an incorrect fixate action, but this fixate
action is likely to result in subsequent actions being captured by
the fixated object rather than being driven by the task or subtask in
which the fixate error occurred. In contrast, the explicit represen-
tation of objects in the IAN model means that all objects physically
present in the environment can influence the selection of actions
within the model. Thus, Cooper et al. (2005) demonstrated that,
when the IAN model is appropriately damaged, the addition of
distractor objects to the representation of the environment pro-
duces error profiles similar to those reported by Schwartz et al.
(1998) for action disorganization patients.
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Deictic Reference in the IAN Model

The above effects argue for the explicit representation of objects
at some level in the action selection system, yet the evidence for
fixate or attend actions remains strong. In recent work (Cooper, in
press), we have therefore incorporated deictic object selection into
the IAN model. Specifically, the array of pick-up actions (pick up
source, pick up target, pick up implement,andpick up theme) has
been replaced with an array of fixate actions (fixate source, fixate
target, fixate implement,and fixate theme) and a single pick-up
action. As in the SRN model, all arguments of actions are set
through prior fixate actions (sopick up operates on whatever is
being fixated, andpour pours whatever is held into whatever is
fixated). All task schemas have been adjusted accordingly (so all
pick up sourceactions have been replaced by a schema of the form
fixate source, pick up,and allpour actions have been replaced by
a schema of the formfixate target, pour,etc.). This approach takes
from Botvinick and Plaut (2004) the use of deictic reference but
differs because it retains the explicit representation of objects,
which we take to be essential in accounting for the distractor and
object substitution effects enumerated above.
The modified model was applied to five multiple-object tasks

commonly used to assess ideational apraxia, such as lighting a
candle and juicing an orange. The model was able to perform all
tasks without error using the same parameter settings as in other
recent work (i.e., as in Cooper et al., 2005). More critically,
Rumiati et al. (2001) described two ideational apraxic patients with
tendencies toward different types of action error. Patient DR’s
dominant error type involved misusing objects (e.g., attempting to
cut an orange with a knife by using a pushing, rather than a sawing,
motion), whereas Patient FG’s dominant error type involved using
objects correctly but in the wrong location (e.g., striking a match
on the inside of the drawer of the matchbox). Both patients
produced a number of other errors characteristic of ideational
apraxia. The modified IAN model was able to provide good
quantitative fits to the error profiles of both patients by assuming,
in one case, that the patient’s deficit affected the link strengths
from the object representation to the schema networks and, in the
other, that the deficit affected the reverse links. (See Cooper, in
press, for further details.) It is unclear how the pattern of impair-
ments and particularly the differences between patients might be
accounted for by the SRN model.

The Implementation of Choice

A key feature of the SRN model is its ability to simultaneously
encode two different methods for adding sugar—from a packet or
from a bowl—and to automatically select between the two. This is

important because, within the Cooper and Shallice (2000) ap-
proach, the two different methods would correspond to two dif-
ferent schemas with a common goal.
A simple attempt at implementing this kind of choice within the

general framework of the SRN model would be to employ two
different fixate actions:fixate sugar packetandfixate sugar bowl; the
two sugaring subsequences would then begin with different fixate
operations. However, this approach fails, at least in the sense that
when trained in this fashion, the model always adds cream before
adding sugar, whereas when sequences in which sugar is added first
appear in the training set, they are never spontaneously reproduced.
The reason for this lies in the statistical structure of the training set.
With two distinct subsequences for adding sugar, the transition prob-
abilities in the coffee-related subset of the training set are as follows:

GROUNDS3 SUGAR (PACK) 0.25

GROUNDS3 SUGAR (BOWL) 0.25

GROUNDS3 CREAM 0.50

With these transition probabilities, the context established upon
stirring in the coffee grounds strongly favors adding cream, and the
activation of the output units after stirring in the coffee grounds
reflects this, withfixate cream cartonbeing approximately 0.50
andfixate sugar packetandfixate sugar bowleach being approx-
imately 0.25. Noise in the initial values of the context units means
that these activations are only approximate, but that noise is never
sufficient to change the superiority offixate cream carton. Con-
sequently, the winner-take-all approach at the output layer of the
SRN model means that sugar is never added immediately after the
coffee grounds.
Botvinick and Plaut (2004) ignored this issue. Instead, they

employed a singlefixate sugaraction that initiates both sugar-
adding subsequences. This action results in fixation moving to
either the sugar bowl or the sugar packet with equal probability.
Because the fixated object is input to the network, this then allows
the network to proceed with whichever of the two sugaring sub-
sequences fits with the fixated object. The net effect of this
merging of the initial stages of the two sugar-adding subsequences
is that the transition probabilities to the first action of adding sugar
and adding cream after stirring in the grounds are equal. This is
critical if the model is to reproduce all training sequences, as
demonstrated in Table 4 of Botvinick and Plaut (2004).
On the positive side, the implementation of the sugaring sub-

tasks within the SRN model demonstrates that the model is able to
develop behaviors that are responsive to environmental feedback:
It is the environmental feedback that first differentiates which of
the two sugaring subsequences is being performed, and this feed-

Table 1
Object Substitution Errors as a Percentage of Total Errors Produced by the Single Recurrent Network Model With the Standard
Deviation of Noise Varying From 0.00 to 0.50

Error type/statistic

NoiseSD

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Total object substitution errors 0 0 9 37 57 89 94 103 104 133 134
Total errors 0 922 1,909 3,056 4,077 4,940 5,473 6,126 6,604 7,091 7,374
% object substitution errors 0.0 0.5 1.2 1.4 1.8 1.7 1.7 1.6 1.9 1.8
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back is sufficient to ensure that whichever subsequence is selected
by the environment is performed without error. There are, how-
ever, three serious difficulties with the approach. First, the model
imposes strong constraints on the tasks that it might acquire. In
particular, if two tasks share an initial subsequence, the SRN
model can acquire those tasks only if all options at the point of
divergence are equally common in the training set. If all options
are not equally common, then any option that is underrepresented
is produced with greatly reduced frequency, if at all. Simulation 2
in the Appendix demonstrates this difficulty. Second, and more
critically, the fixate sugaraction effectively implements a goal:
that of adding sugar. The choice of which method of adding sugar
is selected is left to the environment. Thus, the model has no way
of influencing which subsequence might be selected. Although it
appears that the model adds sugar from the packet on 50% of
occasions and from the bowl on the remaining 50% of occasions,
there is no way for the model to bias selection toward either
alternative because that selection is entirely the product of the
implementation of thefixate sugaraction, which itself is random.
Third, the model cannot adapt the probability of each sugar-adding
subsequence to reflect the probability of the subsequences in the
training set. Thus, if, during training, sugar is normally added from
the bowl when making coffee but from the pack when making tea,
this bias cannot be reflected in the trained model’s performance
(see Simulation 2 in the Appendix).
One way around the first of these difficulties may be to rein-

terpret the activation of the vector of output units as a frequency
distribution and select action probabilistically from this distribu-
tion. On this approach, actions that are rare within a context would
still have a chance of being selected. In addition, the approach
would not lead to high error rates in the absence of noise because,
as demonstrated in Figure 4, the activity of output units for correct
actions is almost always near 1.0, whereas the activity of incorrect
output action units is invariably small (typically less than 0.01).
This approach would also address the third difficulty if, in addi-
tion, the fixate sugaraction were to be replaced with separate
fixate sugar packetand fixate sugar bowlactions. The second
difficulty, however, remains.

Accounting for Error Data in Coffee-Making Tasks

Having considered general issues arising from conceptual dif-
ferences between how the SRN and IAN models work, we turn
now to the specific issue of the models’ accounts of error data. In
particular, we consider how each of the models accounts for the
range of errors produced by patients with action disorganization
syndrome (ADS; Humphreys & Forde, 1998; Schwartz et al.,

1991, 1998) and ideational apraxia (De Renzi & Lucchelli, 1988;
Rumiati et al., 2001), as well as recent empirical evidence relating
to errors in neurologically healthy adults following interruption
(Botvinick & Bylsma, 2005). This consideration raises some sub-
stantive difficulties for the SRN model, primarily because the
implicit representation of schemas and the lack of any explicit
representation of objects in that model mean that all errors are
essentially capture errors.

The SRN Model

A major criticism of the SRN model lies in its inability to fit
empirical findings. Although the model does capture several ef-
fects (e.g., the effect of relative task frequency on capture errors,
the monotonic increase in independent actions with severity of
damage, and the increase in omission errors with damage), close
inspection of its behavior reveals several deficiencies in the em-
pirical fits offered by the model.
1. The relative frequency of error types.We have already

discussed how the SRN model has great difficulty in producing
object substitution errors (see the section titled Linking Actions
With Objects, above). It is also unclear how the model might
account for specific anticipatory errors (e.g., attempting to pour
without first opening a container; see the section titledOn the
Importance of the Training Set,above) or specific tool omission
errors (e.g., using a finger instead of a utensil to stir a drink or
spread butter). Equally as critically, although the SRN model
predicts increasing rates of omission errors with severity, it tends
to produce more omission errors than either controls or patients.
Omission errors were indeed common in Schwartz et al.’s (1998)
patients, making up 38% of errors, by contrast with only 3% of the
errors of controls. However, Botvinick and Plaut (2004) reported
that at noise of 0.2 (equivalent to a mild impairment on their
criteria), 77% of their model’s errors were omissions. Our reimple-
mentation of the SRN model replicated this, although there was
considerable variability resulting from the initial randomization of
network weights. Table 2 shows the average proportion of omis-
sion errors produced by 10 instances of the SRN model at varying
levels of noise. At low levels of noise, the model produced, on
average, more than 10 times the proportion of omission errors
produced by Schwartz et al.’s healthy control subjects, whereas, at
high levels of noise, the omission rate is still at least double that
observed in patient behavior. (See Simulation 1,Analysis C, in the
Appendix for further details.)
One might argue that the differences in frequency of error types

between the behavior of the SRN model and the results of the
patient studies could be addressed through some minor modifica-

Table 2
Omission Errors as a Proportion of Total Errors Produced by the Simple Recurrent Network Model With the Standard Deviation of
Noise Varying From 0.00 to 0.50

Error type/statistic

NoiseSD

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Total omission errors 0 383 925 1,581 2,175 2,730 3,285 3,835 4,354 4,810 5,126
Total errors 0 922 1,909 3,056 4,077 4,940 5,473 6,126 6,604 7,091 7,374
% omissions 41.5 48.5 51.7 53.3 55.3 60.0 62.6 65.9 67.8 69.5
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tion of the SRN model. However, it is unclear what that modifi-
cation might be. For example, augmenting the SRN with a thresh-
olding mechanism such that an action is performed only when the
SRN’s output exceeds that threshold does not help. As is clear
from Figure 4 (especially Step 11 of the coffee-making task), when
the SRN model is run without noise, the activation of output units
tends to be all or none. A threshold of less than 0.99 would have
no effect on most selections. The only exception is when multiple
outputs are possible, where the coffee-making task requires a
threshold of at most 0.5 for normal functioning. In simulations that
we do not report in detail here, combining a threshold with noise
led to an even greater tendency toward omission errors and away
from, for example, object substitution errors.
In fact, the root cause of many of these empirical difficulties is

that all sequential action within the SRN model is guided by the
sequential attractors that the model develops from its training set.
Consequently, all errors result ultimately from the context units
corresponding to a point in one sequential attractor drifting to a
nearby point either at a different stage in the same sequential
attractor or in another sequential attractor. They are essentially a
form of capture error. Omissions or perseverations result if the
drift is to some nonconsecutive point in the same sequential
attractor. Explicit capture errors result if the drift is to another
sequential attractor, but given the structure of Botvinick and
Plaut’s (2004) training corpus, such errors are hard to positively
identify, and they may easily be misidentified as any type of error
(including omission or perseveration).5 Omissions and persevera-
tions are common in the SRN simulations because there are just six
attractors, and these attractors are so closely related that genuine
capture errors appear more like omission or perseveration errors
(e.g., coffee preparation being captured by tea preparation is equiv-
alent to coffee preparation with the omission of theCREAM sub-
task). It is likely that the addition of more distinct tasks to the
training set would result in fewer omission and perseveration
errors but more clear-cut capture errors. Although the reduction in
omission errors would be in line with empirical findings, the
corresponding increase in capture errors would not. In any case,
this analysis further demonstrates the sensitivity of the model’s
behavior to its training set.
2. The effect of the presence of distractor objects on error

profiles. In a series of group studies, Schwartz and colleagues
have demonstrated a reliable effect of the presence of distractor
objects on the error profiles of ADS patients (Buxbaum et al.,
1998; Schwartz et al., 1998, 1999). Closed head injury patients,
left-hemisphere stroke patients, and right-hemisphere stroke pa-
tients all tended to produce more omission errors when distractor
objects were present. Whether the SRN model could account for
this effect given that it contains no separate representation of
objects (see the section titledThe Influence of Distractor Objects,
above) is unclear. One possibility is that distractors could produce
impairments in fixation behavior, but this, as well as its conse-
quences for behavior, needs to be demonstrated. In contrast, noise
within the schema network of the IAN model has recently been
shown to yield the pattern of behavior observed in the various
patient groups (Cooper et al., 2005).
3. Disorders affecting the rate of action and effects of the rate

of action on error profiles. The SRN model selects one action on
every processing cycle. It is therefore difficult to see how it can
give an account of the action-related impairments of rate occurring

in disorders such as Parkinson’s disease or amphetamine psycho-
sis. Similarly, it cannot account for any effects of the rate of action
on error profiles as would be anticipated by extrapolating results
for studies of speech production (e.g., Dell, Burger, & Svec, 1997)
to the action domain (cf. Gupta & Dell, 1999; MacKay, 1985;
Vousden & Brown, 1998). Although the IAN model has not been
applied to modeling the latter effects, it has addressed empirical
phenomena in both Parkinson’s disease and amphetamine psycho-
sis (Cooper & Shallice, 2000).
4. Dissociations between individual patients and between pa-

tient groups. The SRN model attempts to account for all action
errors in essentially the same way: through corruption of the
context representation by the addition of noise. Yet, even ignoring
disorders of rate, there are distinct cognitive-level action-related
disorders. Many, although not all, commentators, for example,
have differentiated the generalized action disorganization found in
patients with prefrontal and supplementary motor area lesions (cf.
Duncan, 1986; Humphreys & Forde, 1998; Luria, 1966; Schwartz
et al., 1991) on the one hand from ideational apraxia (De Renzi &
Lucchelli, 1988; Rumiati et al., 2001) that may occur following
damage to left temporoparietal regions on the other hand. It is,
however, accepted that these deficits may have similar behavioral
consequences on semicomplex everyday tasks (Buxbaum et al.,
1998). Surprisingly, there is no clear quantitative study differen-
tiating the properties of these types of patient. However, as dis-
cussed above, Rumiati et al. (2001) described two ideational
apraxic patients with tendencies toward different types of error.
Extrapolation from qualitative differences between the patterns of
disorder exhibited by patients to qualitative differences between
loci of impairment can be somewhat hazardous (see, e.g., Plaut,
1995; Shallice, 1988; but see Bullinaria, 2003). However, with
only one source of error, it is unclear how the SRN model could
lead to such a differentiation in hypothetical patient patterns. By
contrast, as discussed in more detail earlier, Cooper (in press)
showed how one pattern of symptoms fits with an impairment of
the pathway from action schema representations to object repre-
sentations, whereas the other would reflect an impairment to the
reverse pathway.
5. Susceptibility to error following interruption.Botvinick and

Plaut (2004) demonstrated that, in the SRN model, context infor-
mation within the hidden units is more sensitive to noise within
subtasks (e.g., within adding sugar) than between subtasks (e.g.,
between adding sugar and adding cream). On the basis of this and
specific simulations, they predicted that interruptions that occur
within subtasks are likely to result in more errors at the following
subtask boundary than interruptions that occur between subtasks.
This prediction has since been confirmed by empirical work
(Botvinick & Bylsma, 2005) in which a coffee-making routine
involving adding sugar and cream was interrupted at unpredictable
points by a short subtraction task.

The IAN Model

Botvinick and Plaut (2004) made three criticisms of our account
(Cooper & Shallice, 2000) of error data: that although ADS pa-

5 See Simulation 3 in the Appendix for evidence in support of this
interpretation of the SRN model’s error behavior.
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tients produce several types of error, it was necessary to vary
different parameters in the model to simulate different error types;
that the IAN model did not naturally produce one type of error—
recurrent perseverations—without the addition of special mecha-
nisms; and that the IAN model did not reproduce the finding
reported by Schwartz et al. (1998) that more severely impaired
patients tended to produce disproportionately more omission
errors.
The use of different parameter variations in the simulation of

different error types was an expository device we (Cooper &
Shallice, 2000) used to clarify how the various error types might
arise within the IAN model. In fact, only one parameter study was
reported in detail: that involving the reduction in top-down exci-
tation within the schema network coupled with a complementary
increase in the bottom-up excitation within the network. This study
was motivated by theoretical claims that ADS is a consequence of
this form of dysfunction (Schwartz et al., 1991). The effects of
increasing noise within the IAN model—the mechanism employed
by Botvinick and Plaut (2004) to capture simultaneously the range
of ADS error types—were not reported. However, more recent
work has suggested that an imbalance in top-down and bottom-up
excitation within the schema network is more consistent with
another action selection disorder, utilization behavior (Boccardi,
Della Sala, Motto, & Spinnler, 2002; Lhermitte, 1983; Shallice,
Burgess, Schon, & Baxter, 1989), whereas increased noise within
the schema network does indeed produce the full range of error
types (Cooper et al., 2005). Furthermore, increased noise also
leads the model to reproduce the relation between omission errors
and severity reported by Schwartz et al. (1998), as well as an
additional effect—the effect of distractor objects on patients’ error
profiles—that would appear problematic for the SRN model (as
discussed in the preceding section).
The failure of the basic IAN model to exhibit recurrent persevera-

tive errors is also not of major concern. Humphreys and Forde (1998)
reported two patients with extensive frontal damage and behavior
characteristic of ADS. The patients were comparable in terms of the
severity of their action selection impairment, yet the perseverative
errors of one patient were generally of the recurrent type, whereas
those of the other patient were generally of the continuous type. Thus,
the two types of perseverative error can dissociate. Sandson and
Albert (1984) also suggested that the two types of perseveration result
from different forms of neural damage. However, Shallice, Venable,
and Rumiati (2005) argued that the relative immediacy of persevera-
tive actions across patients lies on a continuum rather than forming a
dichotomy. Thus, the empirical phenomena in this domain are not
well established. However, it is likely that recurrent perseverative
errors would be produced by the IAN model if the model’s represen-
tations of achieved subgoals were to be corrupted. Therefore, these
observations are consistent with the account offered of perseverative
errors by the IAN model, and although they do not preclude a variety
of other models, they would, as discussed above, appear to present a
problem for any model (such as the SRN model) in which a single
impairment necessarily leads to both forms of perseveration.
With regard to the specific difficulties relating to accounting for

dissociations between patients and patient groups within the SRN
model, it should be noted that within the IAN model, there are at
least two sources of content errors—over schemas and over object
representations. This allows us to suggest that different types of
patient might have qualitatively different sorts of content errors,

namely, concerning schemas and object arguments, respectively
(Cooper, in press; Cooper et al., 2005). Similarly, as discussed
above, the disorder of utilization behavior fits naturally with the
account of the control of routine action offered by the IAN model.
The IAN model has not been applied to the Botvinick and

Bylsma (2005) paradigm, and it remains to be demonstrated that
the IAN model can match the success of the SRN model in this
situation. However, contrary to Botvinick and Bylsma, the ob-
served error pattern does not seem to be counterintuitive. If the
interruption leads to insufficient information being available in the
action system to allow the action to be completed, then what
additional information is required to resume? In the within-subtask
case, it is necessary to resume the current subtask and recall which
subtasks from the overall task have been completed, as the subject
is required to vary the order of subtasks from trial to trial. Only the
second of these need be recalled in the between-subtasks case.
Botvinick and Bylsma did not score errors on resumption of the
current subtask, but errors are unlikely as it is generally possible to
infer one’s position in the subtask from the state of the task
environment. Making such an inference could, however, poten-
tially interfere with one’s recollection of completed subtasks and
hence result shortly thereafter in the kind of omission or perse-
veration errors observed by Botvinick and Bylsma.

The Place of Routine Action Systems in the Overall
Architecture: The Interface With Higher Cognition

The neuroscience evidence strongly supports the existence of
two systems in the acquisition of action sequences—a habit-
learning system and a goal-directed system. In humans, these
would correspond to the contention scheduling and the supervisory
systems. Botvinick and Plaut (2004) emphasized that their model
is intended as one of routine habitual action, but they accepted that
nonroutine action probably requires additional mechanisms. In-
deed, they appeared to accept the position of Norman and Shallice
(1980, 1986) that behavior is the product of a routine system
modulated or biased by one or more other systems when nonrou-
tine behavior is required. However, Botvinick and Plaut provided
no account of how other systems might interact with their pro-
posed routine system. This is critical because, although it may be
argued that much behavior consists of routines, those routines are
generally assembled in nonroutine ways. Thus, processes such as
error correction, inhibition of an inappropriate or undesirable be-
havior, and interleaving of behavioral routines all present a major
issue for the model: How can the output of the proposed routine
system be controlled or biased by other systems in these
situations?
Within the SRN model, this excitatory or inhibitory biasing is

problematic. Consider the case of error detection and correction.
Clearly, mechanisms exist by which one may compare intention
and effect (to use the phrasing of Luria, 1966). Without such
mechanisms, Reason’s (1979, 1984) self-report diary studies
would have yielded no data, for his participants would not have
been aware of their errors. Equally clearly, once a person detects
an error in his or her actions, he or she is also normally able to
correct that error. Thus, if, on preparing to shave, a person picks up
deodorant instead of shaving foam, the person generally detects
this before significant harm is done, puts down the deodorant,
picks up the shaving foam, and resumes the shaving routine. How
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might one give an account of this fragment of behavior if routine
action is controlled by a system such as that of Botvinick and Plaut
(2004)? Accounting for the slip itself, through corruption of the
context representation, is only a small part of the solution (al-
though we have already discussed the difficulties that the SRN
model has in producing object substitution errors). To detect the
slip once it has occurred, some mechanism is required to compare
actual behavior with expected behavior. Botvinick and Plaut pro-
vided no account of this, but the mechanism would seem to require
some representation of the expected or intended behavior. One also
requires a mechanism to plan and effect the repair. Planning might
reasonably be relegated to some other system, but effecting the
repair is problematic because it requires performing a simple but
potentially novel subsequence of actions, which the SRN model
cannot do. Finally, one needs a mechanism to resume the inter-
rupted shaving sequence from the point at which the error arose.
The SRN model provides no mechanism whereby a routine can be
entered midway through. It would seem necessary either to resume
the routine from scratch or to learn the tail ends of all routines from
each and every step within the routine just in case they might be
required for error correction.
These difficulties reflect a more general difference between

models that use localist as opposed to distributed representa-
tions—a difference Page (2000) referred to as ease of manipula-
tion. Botvinick and Plaut’s (2004) eliminativist position limits the
extent to which representations used by the routine system can be
communicated to and manipulated by the nonroutine system. The
simplest way in which the SRN model might be interfaced with
higher level control follows from the observation that the SRN
model effectively performs the actions of a schema if its hidden
units are initialized to appropriate activation levels (and the fixated
and held objects are also appropriate for the first step of the
schema). Hence, one might envisage a system that maintains
associations between higher level representations of schemas and
the hidden unit patterns that result in those schemas being per-
formed. A supervisory system could then interface with the SRN
model to yield controlled behavior (when required) by deliberately
instantiating the hidden units with the corresponding activations.
This is clearly what Botvinick and Plaut had in mind when they
suggested the addition of “a new group of units dedicated to
representing desired states of the system or environment” (Botvin-
ick & Plaut, 2004, p. 424; see also Botvinick, 2005). There is also
a sense in which the instruction units already present in the SRN
model do just this for the two basic tasks of preparing tea and
preparing coffee. However, this approach to interfacing the routine
system with a controlling system requires discrete (although not
necessarily localist) representations of schemas elsewhere. Criti-
cally, it requires a one-to-one mapping between such representa-
tions and all schemas at all levels (i.e., for both complete tasks
such as preparing coffee and subtasks such as adding sugar and
cream) and from all possible starting states of the world (i.e., from
starting states in which any object may be held or fixated). These
additions would result in the SRN model mimicking the explicit
hierarchical structuring of schemas and goals within the IAN
model. It also does not address the issues of how the controlling
system might inhibit an undesirable behavior or how the higher
level system might monitor behavior and know either when a
deliberately triggered schema has been completed or when an error
has occurred.

Now, consider how the fragment of behavior described above
might be accounted for within a system built around the IAN model.
The error might arise because some corruption in the processing of the
object representation network (modeled as noise) results in the rep-
resentation of the deodorant container winning the competition within
the source object representation network. Once the error has occurred,
however, monitoring mechanisms that check the context-specific
postconditions of a schema would detect the error. Note that these
mechanismsmake use of an explicit representation of expectations. In
this case, monitoring mechanisms would detect a mismatch between
the expected and actual states of the system and invoke appropriate
error-correction mechanisms. The shaving schema could then be
temporarily suspended while the correction is applied. Performance of
the shaving schema would then be resumed from where it was
suspended. The use of explicit goals, preconditions, and postcondi-
tions within the IAN model means that it is not necessary to store the
entire state of the systemwhile the repair is being carried out—all that
needs to be stored is the high-level goal. Reactivating schemas for this
goal on completion of the repair would not result in repetition of any
completed subschemas (because their postconditions would be met)
but would instead result in activation and, hence, selection of all
appropriate remaining subschemas. Thus, although the interface with
higher cognitive functions does not raise significant issues for the IAN
model, it raises major issues for any model of routine action that
avoids explicit representation of schemas or goals and more generally
for Botvinick and Plaut’s (2004) eliminativist position.

Conclusion

Our prime concern in this article has been to present a series of
arguments for the explicit representation of schemas and goals
within the system or systems responsible for the generation and
control of routine sequential action. In doing this, we have con-
trasted our model (Cooper & Shallice, 2000) and that of Botvinick
and Plaut (2004). To develop the argument, we have aimed to
clarify the key differences between the approach of Botvinick and
Plaut and our approach to routine sequential action, to demonstrate
that Botvinick and Plaut’s criticisms of the hierarchical interactive
activation approach are not substantive, and, most critically, to
provide a set of major problems that the recurrent network ap-
proach currently faces. We do not believe these difficulties are
necessarily insurmountable hurdles to the basic SRN approach.
However, in our view, they provide a set of daunting challenges
for Botvinick and Plaut’s eliminativist position with respect to
schemas and goals.
The great attraction of the SRN model is that it replaces hand-

coded specification of a model by gradual shaping of connection
weights with a learning algorithm. However, the end product does
not produce, when damaged, errors such as those produced by
patients. In particular, it does not produce anticipation errors or
object substitution errors at more than a minuscule rate, and it
produces inappropriate rates of omission errors. These character-
istics and others, such as its inflexibility in behavior, stem from a
very basic flaw that is a natural consequence of its architecture.
This is that it can only produce—even as errors—sequences of
actions on which it has been substantively trained. As a conse-
quence of this characteristic, for other critical aspects of its be-
havior, the training set has to be fine-tuned to produce the appro-
priate output. In other words, the negative property of being hand
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coded is merely transferred from the weights for the IAN model to
the training set for the SRN model. Most critically, the attempt to
do away with hierarchical control structures and goals fails. To
avoid postulating hierarchical control structures for schemas while
not suffering from catastrophic interference, the SRN model is
forced to adopt a learning procedure—hippocampal training of the
habit system—that is neuroscientifically and cognitively implau-
sible. Moreover, the arguments presented against goals are weak,
and the use of goals has been shown to have many advantages.
Thus, goals allow functionally equivalent schemas to be inter-
changed and noncritical preparatory and tidying actions to be
dispensed with when appropriate. In addition, studies of learning
by imitation have suggested that goals greatly facilitate learning.
We have concentrated on differences between the IAN and the

SRN models; there are also similarities between them, and
progress seems most likely to come through the development of a
hybrid system that builds upon both. To this end, it is relevant to
note that, in both models, schemas, whether explicit and hand
coded or implicit and emergent, play a key role in determining
behavior and that, in both models, action results from the interac-
tion of bottom-up inputs, schemas available to the system that are
triggered by those inputs, and current activity in the system.
Finally, both models are consistent with a dual-systems approach
to the control of action—with one system for routine action and a
second for nonroutine action and with the second operating by
modulating or biasing the first. It can be argued that the conceptual
interface, the bridge law, between the symbolic domain and the
parallel distributed one is that between the attractor basin and the
symbol in Newell’s (1990) sense. In addition, Cooper (2003) has
suggested that recurrent networks and interactive activation net-
works may be reconciled through the mapping of nodes within the
interactive activation network to discrete point attractors (as op-
posed to sequential attractors) within the recurrent network. We
therefore see the prime error of the Botvinick and Plaut (2004)
framework to be the eliminativist position they have taken on
implementation. If one rejects that perspective, then, we believe,
one can be optimistic about the development of a model that
functions at one level according to the principles of Botvinick and
Plaut and at another according to our (Cooper & Shallice, 2000)
principles.
There are clearly numerous ways in which the SRN model

might be modified to address specific issues that we have raised.
For example, in the section titled The Implementation of Choice,
above, we have suggested that output unit activations might be
interpreted as representing the frequencies of each action at each
step. As discussed above, this has some advantages, but it does not
address the issue of how intentional control might bias the system
toward one or another method of, for example, adding sugar.
Alternatively or in conjunction, one might attempt to train a
recurrent network to settle to a point attractor state before selection
of an action, with each point attractor corresponding to a different
action. This approach would have the advantage of being able to
make contact with data on the rate or timing of action. One might
also explore how intentional control could be used to bias such a
network toward or away from specific attractors. It is, however,
not obvious how to produce a detailed implementation of such a
scheme. A third possibility would be to augment the basic SRN
with a bank of goal units that feed (together with the units repre-
senting the fixated and held objects) into the hidden layer. In such

a model, the network would need to be trained with, in addition to
its environmental inputs and motor outputs, a representation of its
current hierarchy of goals and subgoals. When taken in conjunc-
tion with the point attractor approach, such nodes may be seen as
providing a kind of activation gradient across such attractors,
implementing Lashley’s (1951) insight that multiple responses
may be simultaneously activated, with competitive processes en-
suring that only one is selected at any time. A fourth possibility is
that one might attempt to develop an SRN model that uses a
learning algorithm that does not presuppose a training set.
Working along the last of these lines, Ruh, Cooper, and Mare-

schal (2005) have demonstrated how an SRN embedded within an
actor–critic architecture using reinforcement leaning (Sutton &
Barto, 1998) can learn goal-directed multistep sequences. Rein-
forcement learning has two substantial advantages over standard
back-propagation through time as described by Williams and
Zipser (1995) and used by Botvinick and Plaut (2004) to train the
SRN model.6 First, reinforcement learning does not assume a
training set. The network generates initially random sequences of
actions, and learning occurs through positive or negative feedback
reinforcing desirable behaviors and extinguishing undesirable
ones. Of course, it is necessary to specify which behaviors are
desirable and undesirable. However, a second advantage of rein-
forcement learning is that by giving positive feedback when a goal
is achieved and using temporal difference learning (Sutton &
Barto, 1998), action becomes goal directed. The network does not
learn explicit sequences; rather, it learns to select actions that move
it from whatever state it happens to be in toward a goal state. With
sufficient exposure to possible input states, this gives the network
an inbuilt sensitivity to the initial state of the world and an
automatic error-recovery mechanism: Whatever the initial state of
the world, the network selects actions that move it toward its goal,
and if an error occurs (momentarily causing the network to move
away from its goal), the network automatically resumes moving
toward its goal on the next processing step. This approach is a
significant departure from Botvinick and Plaut’s SRN model, and
it currently has significant limitations. The implementation of Ruh
et al. can learn to achieve only one goal at a time, for example. At
the same time, that implementation has no representation of its
goal. It is likely that the extension to multiple goals requires such
a representation and the integration of this representation with the
reinforcement-learning mechanism.
None of these suggestions address the issue of the relation

between object representations and the action selection sys-
tem(s)—another aspect of the SRN model with which we have
taken issue. Nevertheless, they demonstrate that the objections
raised in this article are not objections to SRNs per se. As argued
above, they are objections to Botvinick and Plaut’s (2004) elimi-
nativist metatheoretical position. Most critically, this article has
attempted to demonstrate that even in a domain as loose as the
organization of everyday routine action, one cannot simply dis-
pense with units or discrete states representing action subroutines
and goals.

6 Both reinforcement learning as discussed here and standard back-
propagation through time involve propagation of an error signal back
through the network. The difference lies in the origin of the error signal and
the information contained within it.
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Appendix

Simulation Studies

Simulation 1: Error Rates as a Function of Noise

Rationale and Method

Botvinick and Plaut (2004) argued that their simple recurrent network
(SRN) model provides an account of action errors in both normal and
impaired populations. In support of this, they cited several findings con-
cerning error rates and types (e.g., the omission-rate effect: that assuming
varying severity, the proportion of omission errors rises as the overall error
rate rises) and demonstrated that their model reproduces these findings.
However, we have argued that specific errors (e.g., specific forms of
perseverative errors) occur rarely, if at all, because of the structure of the
training set. In addition, as noted in the main body of the article, the
quantitative results reported by Botvinick and Plaut raise some concerns. In
Simulation 1, therefore, we sought to conduct a more thorough analysis of
the SRN model’s specific errors following the addition of noise to context
units.
The model as described by Botvinick and Plaut (2004) was reimple-

mented from scratch in the C programming language. The reimplementa-
tion was kept as close to the published description as possible, using the
same network architecture, the same featural representations for input and
output, the same learning algorithm and parameters, and the same target
sequences. To the best of our knowledge, the only difference between the
original and our reimplementation concerns the one-step background ex-
amples included in the training set: Botvinick and Plaut included 267
examples, whereas we found and included 339. Our own simulation studies
found, however, that inclusion or exclusion of the background sequences
had little observable effect on the trained simulation’s behavior. To verify
the correctness of the reimplementation, we reproduced several of Botvin-
ick and Plaut’s key results, including their Tables 4 and 6 and their Figures
4, 7, 8, and 15.
Botvinick and Plaut (2004) simulated errors by training their model on

the full set of sequences for 20,000 epochs and then introducing noise into
the context units while testing. The reimplementation was therefore trained
on all sequences and background examples for 20,000 epochs. To guard
against chance effects associated with specific trained networks, we re-
peated this procedure with different random weight initializations to give
10 trained models. Each trained model was then run 100 times with the tea
instruction set and 100 times with the coffee instruction set, with the
standard deviation of noiseA1 ranging from 0.00 to 0.50 by increments of
0.05 (resulting in 10� 200 � 11 output sequences). The sequences
generated were logged, yielding a corpus of 22,000 sequences. Four
analyses of specific errors were performed on the corpus as described in the
following subsections. All analyses used an automated analysis and scoring
program that applied each action in sequence to a model of the environ-
ment, transforming the model with each action and recording errors of
commission along the way. Errors of omission were then determined by
comparing the final state of the environment model with the expected state
given correct performance.

Analysis A: Specific Types of Perseverative and Omission
Errors

A central argument of this article is that the specific errors produced by
the SRN model are conditioned by the model’s training set. Thus, recurrent
perseveration of sugar adding is likely because the training set includes
sequences in which adding sugar is followed by adding cream and other
sequences in which adding cream is followed by adding sugar. Similarly,
omission of sugaring within coffee making (but not tea making) is pre-
dicted because coffee making can, on different occasions, legitimately

involve the subsequences of adding coffee grounds and then adding cream
and of adding cream and then drinking. To demonstrate the model’s
propensity for specific perseverative and omission errors, we therefore
tabulated the perseverative and omission errors in the action corpus de-
scribed above. The results are shown in Table A1, where each cell indicates
the frequency of the error in 1,000 trials with the tea instruction set and
1,000 trials with the coffee instruction set.
As can be seen from Table A1, when noise was low (standard deviation

of 0.05), the error pattern was as predicted: Omissions consisted almost
entirely of omission of milk or sugar, whereas the most common types of
recurrent perseveration involved repeated attempts at sugaring and adding
cream. Perseverative adding of cream was noticeably less frequent than
perseverative adding of sugar. This may be attributed to the two idiosyn-
crasies of the task set-up: Sugar is used in both tasks, whereas cream is
used only in coffee making, and there is only one source of cream but two
sources of sugar. Once cream has been added, the cream carton is open and,
hence, not in the state from which adding cream has been learned, whereas
sugar can be added successfully once from the packet and once from the
bowl.
As noise increased, the predicted error pattern broke down. Persevera-

tive errors became more rare, whereas omissions became more frequent,
and omission of the first subtask—adding coffee grounds or steeping the
tea—occurred. This is because, as Botvinick and Plaut (2004) noted, at
such levels of noise, the model’s behavior includes within-subtask errors.
If such an error occurs within the initial subtask and prevents the crux
action of that subtask from being correctly performed, then the scoring
program would count an omission error. (This is consistent with the scoring
procedures used in patient studies.) Nevertheless, omission of the initial
subtask was still far less common than omission of the sugaring or
creaming subtasks.

Analysis B: The Relative Scarcity of Object Substitution Errors

Object substitution errors, where an incorrect object is used in a task-
appropriate way, make up a significant proportion of errors in the behavior
of both control subjects and action disorganization syndrome (ADS) pa-
tients. Thus, object substitution errors made up 17% of all errors produced
by Schwartz et al.’s (1998) control subjects and 9% of all errors produced
by their closed head injury (CHI) patients. Analysis B sought to determine
if the SRN model would produce comparable proportions of object sub-
stitution errors with either low levels of noise (to simulate control subjects)
or higher levels of noise (to simulate ADS patients). The object substitution
errors that occurred in the corpus of action sequences produced by the
model were therefore tabulated. The results are presented in Table A2,
which shows the absolute number of all object substitution errors produced
at different levels of noise. (Recall that each cell in the table corresponds
to 1,000 attempts at each of the two tasks.)
As can be seen from Table A2, the SRN model produced few object

substitution errors. In fact, when the standard deviation of noise was 0.10
or less (corresponding to Botvinick and Plaut’s, 2004, simulation of slips
by control subjects), only 9 of the model’s 2,831 errors involved object
substitution. This is far fewer than would be expected on the basis of
Schwartz et al.’s (1998) control data (i.e., 17% of 2,831� 481 object

A1 Botvinick and Plaut (2004) claimed to consider the variance of noise
ranging from 0.00 to 0.50. Our studies suggest that in fact, it is the standard
deviation that ranges from 0.00 to 0.50 to yield the reported error patterns,
not the variance. This is a technical point, and beyond accuracy of report-
ing, it has no bearing on the results.
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substitution errors). The SRN simulation did not produce a substantially
better account of the data at higher levels of noise. Object substitution
errors never constituted more than 2% of the model’s errors, in contrast to
the 9% observed by Schwartz et al. in their CHI patient group.

Analysis C: The Overpreponderance of Omission Errors

Omission errors are a key feature of the behavior of ADS patients.
Schwartz et al. (1998) found they accounted for only 3% of the errors of
their control subjects but 38% of the errors of their CHI subjects. Further-
more, omission errors were found to correlate with severity, being more
frequent in the behavior of more severely impaired subjects. In contrast,
Botvinick and Plaut (2004) reported that at noise of 0.2 (equivalent to a
mild impairment on their criteria), 77% of their model’s errors were
omissions (p. 417). To investigate further the SRN model’s tendency
toward omission errors, we tabulated all omission errors in the corpus of
action sequences. The results are shown in Table A3.
Note first that the model produced all logically possible omission errors

and that although omitting sugar appears to have been the most frequent
omission error, there were twice as many opportunities for that error as for
omission of other ingredients (because, unlike the other ingredients, sugar
could be omitted from both tea and coffee). Second, although Botvinick
and Plaut’s (2004) result of 77% omissions at noise of 0.20 does not appear
to have been replicated, closer inspection reveals that the rate of omission
errors varied greatly across the 10 trained networks, with some networks
yielding much higher rates of omissions than others. Botvinick and Plaut’s

result is therefore supported, although the variance in behavior supports our
use of 10 trained networks to gather results rather than a single trained
network as used by Botvinick and Plaut. Regardless of this point, the
simulations support Botvinick and Plaut’s claim that increasing noise in the
SRN model leads to an increased proportion of omission errors (which is
consistent with patient data showing increased omission errors with in-
creased severity). However, and third, the results indicate that the SRN
model is overly prone to omission errors. Just 3% of control subjects’
errors were omissions. This compares poorly with the figure of 42%–48%
produced by the SRN model under low noise conditions (as used by
Botvinick and Plaut, 2004, to simulate normal slips and lapses). At higher
levels of noise, the problem persisted, with the SRN model producing over
60% omission errors but patients typically producing less than 40% of such
errors.

Analysis D: The Scarcity of Specific Anticipation Errors

Anticipation errors form a significant subset of both normal action lapses
and patient action errors. These errors consist of performing one action that
is dependent on the outcome of a second action before actually performing
the second action. The dependency between the actions may be used to
distinguish this type of error from omission of the second action (M. F.
Schwartz, personal communication, May 3, 2006). As noted in the main
body of this article, a common anticipation error within tasks such as
beverage preparation is attempting to pour from a container without first
opening the container (e.g., De Renzi & Lucchelli, 1988; Schwartz et al.,

Table A1
Specific (Recurrent) Perseverative and Omission Errors Produced by the Simple Recurrent Network Model With the Standard
Deviation of Noise Varying From 0.00 to 0.50

Type of error

NoiseSD

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Perseverative adding of cream 0 13 28 31 40 37 31 29 21 13 13
Perseverative adding of sugar 0 160 168 157 115 111 90 77 46 49 32
Perseverative scooping 0 0 0 1 0 3 1 1 2 4 1
Perseverative sipping 0 0 16 56 94 99 74 71 55 69 41
Perseverative stirring 0 4 7 2 15 25 15 23 13 6 14
Perseverative tea steeping 0 0 1 2 0 2 7 6 6 4 6
Tea omitted when making tea 0 0 0 3 16 31 95 134 211 301 385
Coffee omitted when making coffee 0 0 0 10 34 77 162 267 344 428 511
Sugar not added 0 191 464 760 1,014 1,188 1,339 1,421 1,537 1,591 1,655
Cream not added when making coffee 0 183 367 503 582 655 720 767 814 853 868
Drink not drunk 0 5 11 44 75 110 224 255 502 646 800
X added but not stirred in 0 4 82 232 380 545 571 635 646 650 561
Only one sip 0 0 1 29 74 124 174 156 200 341 436

Table A2
Object Substitution Errors Produced by the Simple Recurrent Network Model With the Standard Deviation of Noise Varying From
0.00 to 0.50

Error type/statistic

NoiseSD

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

PouringX into the sugar bowl 0 0 7 11 19 22 17 18 26 24 21
PouringX into the cream carton 0 0 0 0 0 2 1 0 0 5 2
Scooping fromX (X not sugar bowl) 0 0 1 17 26 41 34 49 52 67 62
Steeping the teabag in the sugar bowl 0 0 0 0 0 0 0 1 0 0 2
Stirring X with the spoon (X not mug) 0 0 1 9 12 24 42 35 26 37 47
Total object substitution errors 0 0 9 37 57 89 94 103 104 133 134
Total errors 0 922 1,909 3,056 4,077 4,940 5,473 6,126 6,604 7,091 7,374
% object substitution errors 0.0 0.5 1.2 1.4 1.8 1.7 1.7 1.6 1.9 1.8
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1991), and this specific error is produced by the interactive activation
(IAN) model. Theoretical considerations suggest, however, that production
of this error by the SRN model would be unlikely. The corpus of action
sequences was therefore analyzed for all possible anticipation errors. The
results, summed over levels of noise, are shown in Table A4.
As can be seen from Table A4, the SRN model is indeed prone to

producing certain types of anticipation error. Although published studies
have reported figures only for sequence errors, of which anticipations are
one type, the overall rate of anticipations is in line with that produced by
patients. (Schwartz et al., 1998, reported that sequence errors made up 20%
of all CHI patient errors.) However, in 22,000 trials of the SRN model,
which produced 47,572 errors, none of those errors involved pouring
without first opening. This is in spite of the fact that opportunities for such
an error were provided by the coffee packet, the cream container, and both
of the sugar containers. Instead, all anticipation errors were of one of three
specific types: sipping while partway through preparing the beverage,
stirring before adding an ingredient, and pouring from an empty spoon.
There are no published data on the exact breakdown of anticipation errors
for patient groups on specific tasks, but the fact that the SRN model failed
to produce a commonly reported anticipation error raises further concerns
about the model’s ability to reproduce patient error patterns.

Simulation 2: Effects of Sequence Frequency in the Training Set

Rationale and Method

An impressive feature of the SRN model is its ability to reproduce,
during testing, all sequences presented to the network during testing (see

Botvinick & Plaut, 2004, Table 4). We have argued, however, that this
feature is critically dependent upon the frequency of sequences in the
training set and that the frequency of production of sequences is greatly
reduced if they are even slightly underrepresented in the training set.
Simulation 2 was therefore designed to explore the SRN model’s ability to
reproduce the sequences on which it was trained when the frequencies of
sequence in the training set were unequal.
Two training sets with the smallest practicable degrees of bias between

frequencies of sequences were constructed. Training Set 1 consisted of four
copies of each item from Botvinick and Plaut’s (2004) original training set,
less two coffee-making sequences, both of the formGROUNDS3 CREAM3
SUGAR (PACK) 3 DRINK, one with and one without the coffee instruction
unit set, and two tea-making sequences, both of the formTEABAG3 SUGAR

(BOWL) 3 DRINK, one with and one without the tea instruction unit set.
Training Set 2 consisted of four copies of each item from Botvinick and
Plaut’s original training set, less two coffee-making sequences, both of the
form GROUNDS3 SUGAR (BOWL) 3 CREAM 3 DRINK, one with and one
without the coffee instruction unit set, and two tea-making sequences, both
of the formTEABAG 3 SUGAR (PACK) 3 DRINK, one with and one without
the tea instruction unit set. Training Set 1 had a slight bias to adding sugar
first when preparing coffee and, when adding sugar second, to do so from
the bowl. It also had a slight bias toward using the sugar pack when making
tea. Training Set 2 had the opposite biases.
A total of 50 instances of the model were then trained for 5,000 epochs,

25 with Training Set 1 and 25 with Training Set 2. Training for 5,000
epochs with the modified training sets was equivalent to training the model
for 20,000 epochs with the original training set. The 50 trained models
were then tested 100 times with the coffee instruction unit set and 100
times with the tea instruction unit. The sequence of actions produced by
each model under each condition was recorded.

Results and Discussion

Table A5 shows the percentages of each sequence produced by the 50
replications of the trained model under the two experimental conditions.
The table also shows, for each condition, the relative percentage of each
sequence in the models’ training history. The model generally performed
flawlessly, producing one of the six sequences from training on each
attempt at the task (although one instance of the model produced omission
errors when attempting to make coffee following training on Training Set
1). However, the frequency of production of each sequence did not reflect
the sequence’s frequency within the training set. When making coffee after
being trained with Training Set 1, the model showed a strong bias toward
adding sugar before adding cream (in the ratio of at least 6:1, whereas the
ratio of such sequences in the training set was 8:7), whereas an opposite
(but equally strong) bias was shown following training with Training Set 2.
At the same time, the model was unbiased in its selection of sugaring

Table A3
Omission Errors Produced by the Simple Recurrent Network Model With the Standard Deviation of Noise Varying From 0.00 to 0.50

Error type/statistic

NoiseSD

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Coffee omitted while making coffee 0 0 0 10 34 77 162 267 344 428 511
Tea omitted when making tea 0 0 0 3 16 31 95 134 211 301 385
Cream omitted while making coffee 0 183 367 503 582 655 720 767 814 853 868
Sugar omitted 0 191 464 760 1,014 1,188 1,339 1,421 1,537 1,591 1,655
Drink omitted 0 5 11 44 75 110 224 355 502 646 800
Stir omitted after adding an ingredient 0 4 82 232 380 545 571 635 646 650 561
Only one sip (i.e., one sip omitted) 0 0 1 29 74 124 174 256 300 341 346
Total omission errors 0 383 925 1,581 2,175 2,730 3,285 3,835 4,354 4,810 5,126
Total errors 0 922 1,909 3,056 4,077 4,940 5,473 6,126 6,604 7,091 7,374
% omissions 41.5 48.5 51.7 53.3 55.3 60.0 62.6 65.9 67.8 69.5

Table A4
Anticipation Errors Produced by the Simple Recurrent Network
Model When Instructed to Make Tea and Coffee (Summed Over
All Levels of Noise With 10 Trained Networks and 100 Trials at
Each Level)

Error type/statistic
Tea

making
Coffee
making

Anticipation errors
Sipping while partway through beverage

preparation 859 1,139
Sipping before adding an ingredient 1,779 507
Pouring from spoon before scooping 33 44
Other anticipations 0 0
Total anticipation errors 2,671 1,690

Total errors 19,618 27,954
% anticipation errors 13.6 6.0
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subsequence across tasks, selecting equally from the packet or the bowl,
even though in training with Training Set 1, the bowl was preferred when
making coffee (in the ratio of 8:7), and the packet was preferred when
making tea (again in the ratio of 8:7), whereas the opposite bias was present
in Training Set 2.
The strength of bias in coffee making toward adding sugar first follow-

ing Training Set 1 and adding it second following Training Set 2 arose
from the fact that the action selected at any step within the SRN model is
simply that whose output unit is most active. The critical step in coffee
making occurs after the grounds have been stirred into the water and when
the system must fixate either on the cream container or on one of the sugar
containers. When the training set is balanced, both actions are activated
approximately equally, with any difference in activation being attributable
to differences in initial excitation within the hidden units. However, when
the training set is unbalanced, the most frequent action normally domi-
nates. It is therefore selected on most occasions. These simulations dem-
onstrate that the domination of the most frequent action is not directly
proportional to the frequency of occurrence in the training set. Rather,
imbalances in the training set are magnified in the testing phase. More
critically, larger imbalances can result in less frequently trained sequences
becoming inaccessible. Thus, when training was repeated with greater
imbalances in the training set (altering the ratios of the above sequences
from 8:7 to 8:6), the retrained model failed on testing to generate any
instances of the lower frequency coffee-making sequence.
The lack of sensitivity in either task to the frequency of different

sugaring methods is also problematic. As noted in the main body of the
article, in the section titled The Implementation of Choice, above, the
method of sugar addition is selected not by the SRN model but by the
nondeterministic actionfixate sugar. In Botvinick and Plaut’s (2004)
implementation, this action selected either the sugar packet or the sugar
bowl (with equal probability). Thus, this aspect of the model was not
sensitive to the frequency of different types of sugar adding in the training
set. Conceivably, the SRN model could be modified so that the outcome of
nondeterministic actions would be sensitive to the frequency of outcomes
in the training set; however, this would not solve the problem in this case
as, across tasks, the absolute frequency of each sugaring method is equal:
Sugar from the bowl is preferred when making coffee, but sugar from the
pack is preferred when making tea. Thus, although the behavior of the SRN
model is generally sensitive to the frequency of sequences within the
training set, this is not true when it comes to the implementation of choice.
Botvinick and Plaut’s implementation of choice appears not to have been
able to capture the kind of frequency effects explored here.

Simulation 3: Failure to Generalize Interchangeable Methods

Rationale and Method

We have argued that one difficulty with the selection of the training set
for the SRN model is that the model needs to be trained on all legitimate
sequence orders: It cannot spontaneously transfer interchangeable methods
from one situation to another. To support this argument, Simulations 3A to
3F involved training the replication of the SRN model for 20,000 epochs
with a training set consisting of the full set of one-step background
examples, eight coffee-preparation sequences (four with and four without
the coffee instruction unit activated) and eight tea-preparation sequences
(four with and four without the tea instruction unit activated). The differ-
ence between this and the Botvinick and Plaut (2004) simulations is that in
each of these simulations, one version of a task was omitted and replaced
with a duplicate involving the alternative form of adding sugar. Thus, in
Simulation 3A, each copy ofCOFFEE3 SUGAR (BOWL)3 CREAM3 DRINK

was replaced with a copy ofCOFFEE3 SUGAR (PACK) 3 CREAM3 DRINK

(so this sequence was represented in the training set twice with and twice
without the instruction unit), whereas in Simulation 3B, each copy of
COFFEE3 SUGAR (PACK) 3 CREAM 3 DRINK was replaced with another
copy of COFFEE3 SUGAR (BOWL) 3 CREAM 3 DRINK, and so on. The
question of interest was whether the sequence omitted in training would
occur in testing. Occurrence of the omitted sequence would support suc-
cessful transfer of the sugaring method to a situation in which the model
had not been trained. To ensure representative results, each simulation was
once again performed 10 times with different randomly initialized net-
works. Each trained network was tested 100 times with the coffee instruc-
tion unit set, 100 times with the tea instruction set, and 100 times with no
instruction unit set.

Results

Table A6 shows the percentage of runs yielding each sequence for each
of the six simulations. Because of space limitations, results when no
instruction unit was set are not shown. In all cases, however, they were
parallel to the presented results.
In Simulation 3A, 34.1% of trials with the coffee instruction unit set

resulted in theGROUNDS3 SUGAR (PACK) 3 CREAM 3 DRINK sequence,
whereas none resulted in theGROUNDS3 SUGAR (BOWL) 3 CREAM 3
DRINK sequence. However, 33.5% of trials yielded errors, and in all cases,
those errors involved omitting theCREAM subsequence from a trial involv-

Table A5
Frequency of Sequences Produced by the Simple Recurrent Network Model With Unbalanced Training Sets

Type of instruction and sequence

Training Set 1 Training Set 2

Relative %
in training

% produced
in testing

Relative %
in training

% produced
in testing

With coffee instruction
GROUNDS3 SUGAR (PACK) 3 CREAM3 DRINK 26.7 45.0 20.7 2.1
GROUNDS3 SUGAR (BOWL) 3 CREAM3 DRINK 26.7 41.0 26.7 1.9
GROUNDS3 CREAM3 SUGAR (PACK) 3 DRINK 20.0 6.0 26.7 48.2
GROUNDS3 CREAM3 SUGAR (BOWL) 3 DRINK 26.7 6.4 26.7 47.8
Error 0.0 1.6 0.0 0.0

With tea instruction
TEABAG 3 SUGAR (PACK) 3 DRINK 53.3 48.3 46.7 49.3
TEABAG 3 SUGAR (BOWL) 3 DRINK 46.7 51.7 53.3 50.7
Error 0.0 0.0 0.0 0.0

Note. Twenty-five models were trained (using different randomly initialized hidden units) using each of two training sets. In Training Set 1, there was
a slight bias when making coffee away from adding sugar from the pack after adding cream and when making tea away from adding sugar from the bowl,
whereas in Training Set 2, the biases were reversed. Each instruction condition was tested 100 times with each trained model.
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ing the sugar bowl. The remaining coffee trials involved adding cream
before sugar, either from the packet or the bowl. When the tea instruction
unit was set, all trials were completed successfully, with approximately
half involving the sugar packet and the other half involving the sugar bowl.
Thus, Simulation 3A demonstrates that when the SRN model was trained
on using either sugar source when making tea but only the sugar packet
when making coffee, it was not able to transfer its knowledge of use of the
sugar bowl to coffee making: When the first step of the sugaring subse-
quence selected the bowl instead of the packet, the model’s behavior
appeared to be captured by tea making, and it omitted theCREAM subse-
quence regardless of the instruction. The opposite situation, of transfer of
use of the sugar packet from tea making to coffee making, also failed, as
is shown by the results from Simulation 3B. Once again, the error consisted
of omitting the CREAM subsequence, and once again, this suggests that
behavior had been captured by tea making.
In Simulations 3C and 3D, those coffee-preparation sequences consist-

ing of SUGAR after CREAM appear to provide positive evidence of transfer.
These simulations yielded no errors, with the omitted sequence being
generated by the model at frequencies similar to the other sequences
actually in the training set. However, this special case is precisely what
would be expected of capture of the coffee sequence by tea making during
the SUGAR subsequence. AsSUGAR is always followed byDRINK in the
tea-making sequence and as, at the time of the capture error, theCREAM

subsequence of coffee making has already been successfully completed,
capture of coffee making by tea making results in an apparently valid
coffee-making sequence.
This interpretation of apparently successful transfer as capture is sup-

ported by Simulations 3E and 3F. These simulations again yielded no
instances of successful transfer, but the situations in which transfer might
have occurred yielded sequences containing intrusion errors: addition of
the CREAM subsequence to tea making. TheCREAM subsequence occurred
only in training in coffee making. Furthermore, in at least some simulations
(Simulation 3F), the intrusion ofCREAM was followed on some occasions
by addition of anotherSUGAR (from either source) beforeDRINK. In these
cases, the tea-making sequence therefore appears to have been captured by
one of the coffee-making sequences that occurred in training.

Discussion

This set of simulations demonstrates comprehensively that the SRN
model cannot spontaneously transfer equivalent subsequences. In one
sense, the task should not have been difficult as, during testing, it was the
environment that dictated whether the crucial first step of sugaring resulted
in fixating on the sugar bowl, which should result in theSUGAR (BOWL)
subsequence, or on the sugar packet, which should lead to theSUGAR(PACK)
subsequence. The model had had exposure to both subsequences and so
should have had no difficulty in responding to the cue supplied by the
environment (i.e., the result of fixation) and performing the appropriate
subsequence. Indeed, this is precisely what happened. However, the situ-
ation was complicated by the model’s need to maintain task context
information (i.e., whether it was making tea or coffee and, in both cases,
which if any ingredients had been added) during the subsequence so that it
could return to the appropriate point in the superordinate task. As the model
had no way of discriminating task context information from subtask
context information, it could not spontaneously preserve task context
information. In summary, these simulations show that the SRN model had
not learned to generalize its subtask knowledge and transfer it to another
task. Rather, it had simply drifted from the intended sequence to an
unintended sequence, and in the model as it stands, there is no way to
prevent this short of training the model on all variant sequences. In
contrast, the explicit representation of goals within the IAN model pro-
vides a level of abstraction that automatically embodies the appropriate
generalization.

Simulation 4: Variation of Initial Conditions

Rationale and Method

This set of simulations aimed to explore the ability of the SRN model to
generalize its learning to different initial states of the environment. In
Simulation 4A, the network was trained in the usual way with all coffee-
making and tea-making sequences and all one-step background examples,
but in testing, the initial state of the sugar bowl was set as being open

Table A6
Percentage of Each Sequence Produced by the Model as a Function of the Training Set

Type of instruction and sequence

Simulation

3A 3B 3C 3D 3E 3F

With coffee instruction
GROUNDS3 SUGAR (PACK) 3 CREAM3 DRINK 34.1 0.0 23.9 29.4 20.2 29.8
GROUNDS3 SUGAR (BOWL) 3 CREAM3 DRINK 0.0 33.3 27.9 26.8 18.9 31.1
GROUNDS3 CREAM3 SUGAR (PACK) 3 DRINK 15.6 17.0 22.5 21.2 31.3 19.4
GROUNDS3 CREAM3 SUGAR (BOWL) 3 DRINK 16.8 17.2 25.7 22.6 29.6 19.7
Error: GROUNDS3 SUGAR (BOWL) 3 DRINK 33.5 0.0 0.0 0.0 0.0 0.0
Error: GROUNDS3 SUGAR (PACK) 3 DRINK 0.0 32.5 0.0 0.0 0.0 0.0
Error: Other 0.0 0.0 0.0 0.0 0.0 0.0

With tea instruction
TEABAG 3 SUGAR (PACK) 3 DRINK 50.6 51.1 48.8 48.7 51.5 0.0
TEABAG 3 SUGAR (BOWL) 3 DRINK 49.4 48.9 51.2 51.3 0.0 48.1
Error: TEABAG 3 SUGAR (BOWL) 3 CREAM3 DRINK 0.0 0.0 0.0 0.0 48.5 0.0
Error: TEABAG 3 SUGAR (PACK) 3 CREAM3 DRINK 0.0 0.0 0.0 0.0 0.0 42.3
Error: TEABAG 3 SUGAR (PACK) 3 CREAM3 SUGAR (X) 3 DRINK 0.0 0.0 0.0 0.0 0.0 9.6
Error: Other 0.0 0.0 0.0 0.0 0.0 0.0

Note. In Simulation 3A, each copy ofCOFFEE3 SUGAR(BOWL)3 CREAM3 DRINK in the training set was replaced with a copy ofCOFFEE3 SUGAR(PACK)
3 CREAM3 DRINK. In Simulation 3B, each copy ofCOFFEE3 SUGAR (PACK) 3 CREAM3 DRINK was replaced with a copy ofCOFFEE3 SUGAR (BOWL)
3 CREAM3 DRINK. In Simulation 3C, each copy ofCOFFEE3 CREAM3 SUGAR (BOWL)3 DRINK was replaced with a copy ofCOFFEE3 CREAM3 SUGAR

(PACK) 3 DRINK. In Simulation 3D, each copy ofCOFFEE3 CREAM3 SUGAR (PACK) 3 DRINK was replaced with a copy ofCOFFEE3 CREAM3 SUGAR

(BOWL)3 DRINK. In Simulation 3E, each copy ofTEA3 SUGAR(BOWL)3 DRINK was replaced with a copy ofTEA3 SUGAR(PACK)3 DRINK. In Simulation
3F, each copy ofTEA 3 SUGAR (PACK) 3 DRINK was replaced with a copy ofTEA 3 SUGAR (BOWL) 3 DRINK.
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instead of closed. In Simulation 4B, the network’s training set was altered
such that the sugar bowl was initially open for the tea-making sequences
and closed for the coffee-making sequences. Training then proceeded in the
usual way for 20,000 epochs. Thus, the model was exposed to equal
numbers of sugaring subsequences involving an open sugar bowl and
sugaring subsequences involving a closed sugar bowl, but each was seen
only in a specific context. The question was whether the model could apply
the correct sugaring subsequence out of context. The model was therefore
tested by setting an instruction unit (tea or coffee) but initializing the state
of the sugar bowl to the opposite of that on which the network had been
trained (i.e., closed for tea making and open for coffee making). Perfor-
mance on tasks involving the sugar bowl was then examined. Finally,
Simulation 4C was aimed at demonstrating that the SRN model could in
principle learn the desired behavior (i.e., dealing appropriately with the
sugar bowl regardless of its state or of the task) if it were trained on the full
set of possible subsequences. Thus, the model was trained with a training
set in which each sequence involving the sugar bowl occurred in two
forms: with the sugar bowl closed and with the sugar bowl open. To
accommodate this in a balanced way, the training set was doubled so as to
also include two occurrences of each sequence involving the sugar packet.
Training still consisted of 20,000 epochs. In all three cases, 10 instances of
the model were trained, and each trained model was then tested 100 times
in each of the three instruction conditions (with the coffee instruction unit
set, the tea instruction unit set, and no instruction unit set) with the sugar
bowl either initially closed or initially open.

Results and Discussion

The average number of sequences of each type involving the sugar bowl
produced by the trained models with an instruction unit set is shown in
Table A7. Sequences involving the sugar pack are not shown as they are
not relevant to the issue of transfer as considered here. For brevity,
sequences generated when no instruction unit was set are also excluded.
The results of Simulation 4A (see Table A7, left data columns) demon-

strate that the model could not spontaneously generalize to the task with an
open sugar bowl. This is despite the fact that during training on both the
coffee- and tea-making tasks, the model was exposed to sequences in
which the open sugar bowl was used. In training, however, these sequences
always involved first opening the sugar bowl. The model therefore could
not recognize that when holding an empty spoon and fixating on the open
sugar bowl, the appropriate action was to scoop sugar. In fact, on some

occasions (6.8% for coffee and 2.2% for tea), the trained model completely
ignored the state of the sugar bowl and proceeded to perform the actions of
opening it even though it was already open.
Lack of transfer is also demonstrated in Simulation 4B (see Table A7,

center data columns). Here, the model failed to transfer use of the open
sugar bowl to the coffee-preparation task, with all attempts ending in error.
The reverse case—transfer of the use of the closed sugar bowl from the
coffee task to the tea task—appears to have been successful on at least
some trials (with 19.6% of tea attempts proceeding correctly when the
sugar bowl was closed), but this is misleading. The tea and coffee tasks
may both end with the same sugaring/drinking subsequences. The apparent
transfer once again reflects capture of the model’s behavior by a valid
coffee-making sequence, rather than transfer of the sugaring subtask.
That the model was capable in principle of using the state of the sugar

bowl to employ appropriate actions is demonstrated by Simulation 4C (see
Table A7, right data columns). When trained with the full set of possible
sequences, the model made no errors in detecting which sugaring subse-
quence should be applied when.

Simulation 5: Catastrophic Interference

Rationale and Method

The goal of Simulation 5 was to determine whether the SRN model
would suffer from catastrophic interference if it were trained on related
tasks in succession, rather than in parallel. Botvinick and Plaut (2004)
trained their implementation of the SRNmodel on all versions of the coffee
and tea tasks on each epoch. This is ecologically implausible. Learning of
everyday routine tasks is more likely to involve practice of different tasks
at different times, with new tasks often being learned after old ones are
mastered and without the learning of such new tasks causing significant
impairment in performance of previously mastered tasks.
To test whether the SRN model was susceptible to catastrophic inter-

ference, we constructed two training sets. The first training set—Training
Set 1—comprised all one-step background sequences and two instances of
each version of the coffee-preparation task (one with and one without the
coffee instruction unit initially set). The second training set—Training Set
2—comprised all one-step background sequences and four instances of
each version of the tea-preparation task (two with and two without the tea
instruction unit initially set). In Simulation 5A, the model was trained to
criterion on Training Set 1, where criterion was defined as correctly

Table A7
Mean Percentage of Sequences Produced by the Model as a Function of the Sugar Bowl’s State and the Training Set

Type of instruction and sequence

Simulation

4A 4B 4C

Bowl
closed

Bowl
open

Bowl
closed

Bowl
open

Bowl
closed

Bowl
open

With coffee instruction
GROUNDS3 SUGAR BOWL (CLOSED) 3 CREAM3 DRINK 23.6 0.0 26.8 0.0 43.6 0.0
GROUNDS3 SUGAR BOWL (OPEN) 3 CREAM3 DRINK 0.0 0.0 0.0 0.0 0.0 44.2
GROUNDS3 CREAM3 SUGAR BOWL (CLOSED) 3 DRINK 24.0 6.8 25.4 0.0 6.0 0.0
GROUNDS3 CREAM3 SUGAR BOWL (OPEN) 3 DRINK 0.0 0.0 0.0 0.0 0.0 8.8
Other 0.0 43.6 0.0 51.0 0.0 0.0

With tea instruction
TEABAG 3 SUGAR BOWL (CLOSED) 3 DRINK 50.6 2.2 19.6 0.0 48.0 0.0
TEABAG 3 SUGAR BOWL (OPEN) 3 DRINK 0.0 0.0 9.6 49.6 0.0 49.8
Other 0.0 49.0 21.8 0.0 0.0 0.0

Note. In Simulation 4A, the training regime of Botvinick and Plaut (2004) was used. Simulation 4B used a training regime in which the sugar bowl was
initially open for tea making but was closed for coffee making. Simulation 4C used a training regime including open and closed sugar bowls in both
instruction conditions.
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performing the coffee task on 100 out of 100 attempts. The training set was
then switched, and the trained model was trained with Training Set 2 until
criterion, which now involved correct performance of the tea task on 100
out of 100 attempts. The model was then tested on the coffee task. If it
failed, it was trained to criterion on that task (Training Set 1) and then
tested on the tea task. If it then failed the tea task, it was trained to criterion
on the tea task (Training Set 2) and then tested on the coffee task. The cycle
of switching criteria and training sets was repeated for either 20,000
training cycles or until the model had learned to perform both tasks.
Simulation 5B was a replication of Simulation 5A with the tea and coffee
tasks reversed. That is, the model was trained first with Training Set 2, then
with Training Set 1, and so on. In both simulations, each training epoch
was followed by a testing cycle in which the network was run on 100
occasions with the tea instruction initially set and 100 occasions with the
coffee instruction initially set. The numbers of correct tea and coffee
sequences generated in each case were recorded.

Results and Discussion

The dependent variable of interest was the number of correct trials
(out of 100) for each task during training. This is shown for Simulation

5A in Figure 5 (in the main body of the article, above) for 500 epochs
at a time well beyond initial task acquisition. From the graph, it is clear
that training with a second task impaired previous learning on the first
task. The model’s expertise switched between the two tasks, with
performance on one task falling to zero when training on the other task
began. Similar behavior was observed when tea preparation was the
first task trained (i.e., Simulation 5B), and when replications were
attempted, it was found that although the point at which the first task
was successfully acquired varied from network to network, the basic
effect of catastrophic interference between tasks was consistently rep-
licated. However, relearning a task after switching required less training
on each successive attempt (presumably because there was substantial
overlap between the tasks). Thus, with prolonged training and switching
between tasks, networks were able to acquire both tasks.

Received July 19, 2005
Revision received January 5, 2006

Accepted January 6, 2006�

916 COOPER AND SHALLICE


