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Abstract Representations of task context play a crucial
role in shaping human behavior. While the nature of
these representations remains poorly understood, exist-
ing theories share a number of basic assumptions. One
of these is that task representations are discrete, inde-
pendent, and non-overlapping. We present here an al-
ternative view, according to which task representations
are instead viewed as graded, distributed patterns oc-
cupying a shared, continuous representational space. In
recent work, we have implemented this view in a com-
putational model of routine sequential action. In the
present article, we focus specifically on this model’s
implications for understanding task representation,
considering the implications of the account for two in-
fluential concepts: (1) cognitive underspecification, the
idea that task representations may be imprecise or va-
gue, especially in contexts where errors occur, and (2)
information-sharing, the idea that closely related oper-
ations rely on common sets of internal representations.

Introduction

It seems reasonable to view human action as typically
reflecting two primary influences: a pattern of input
from the environment, and an internal representation of
the behavioral context. The flexibility of human behav-
ior is such that the first of these influences, perceptual

input, is almost never sufficient fully to determine action
selection. Whether the case involves an experimental
participant in front of the computer screen, or a person
at home looking through the silverware drawer, action
selection requires that perceptual inputs be combined
with information about the task at hand.

How is task context represented internally? Certainly,
important progress toward answering this question has
been made through experimental work focusing on
task-switching, dual-task performance, and related
phenomena. However, the assumptions made about task
representations in such work tend to remain somewhat
implicit, manifesting only in the use of terms such as
‘‘activation’’, ‘‘priming’’, or ‘‘decay’’. For explicit pro-
posals concerning the nature of task representations, one
must turn to the computational modeling literature.
Interestingly, despite the diversity of views expressed in
this literature, most accounts seem to share some basic
assumptions about task representations, assumptions
that also appear to inform discussions of empirical
studies.

In this article, we consider one of the most pervasive
assumptions about task representations, and present a
theoretical alternative. As explained in the next section,
the majority of available models portray task represen-
tations as discrete, independent entities bearing
little structural relation to one another. In recent
work, we have put forth a model of action that
portrays task representations in quite a different way.
Here, task representations are viewed as occupying a
common representational space, sharing graded simi-
larity relations along multiple dimensions. This view
turns out to have far-reaching implications for under-
standing behavior in complex domains, casting a new
light on some familiar theoretical constructs.

The traditional approach

Some traditional assumptions about task representation
can be illustrated using the computational model of
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sequential action recently proposed by Cooper and
Shallice (2000). This model, which addresses the every-
day task of coffee-making, takes the form of a hierar-
chical tree structure made up of ‘‘schema nodes.’’ At the
base of the hierarchy, each node represents a compara-
tively simple action (e.g. pouring or stirring). As one
rises through the hierarchy, nodes relate to larger and
larger segments of the overall task. There is a subtask
level, where units represent subroutines such as adding
cream or sugar, and, at the top of the hierarchy, a task
level where a single schema unit is used to represent the
overall task of coffee-making.

The ‘‘coffee-making’’ unit at the summit of the
Cooper and Shallice (2000) model is emblematic of one
pervasive assumption running through many models of
task representation. The assumption is that task repre-
sentations are discrete, non-overlapping, and independent.
In order to make this point clear, imagine that the
Cooper and Shallice (2000) model were to be expanded
so as to address not only coffee-making but also the
related task of tea-making. This would involve adding a
new ‘‘tea-making’’ unit to the model at the task level,
completely independent of the coffee-making unit.

Of course, the fact that tasks are represented inde-
pendently does not mean that their representations are
functionally independent. Thus, for instance, the coffee-
and tea-making units in the foregoing example might
share connections that place them in competition. In
addition, the tea unit might send activation to some of
the same subtask units as the coffee-making unit. Later
in this article, we will consider the implications of these
functional connections between task representations.
However, since the central points we wish to make
pertain to the properties of individual task representa-
tions, we will, initially, focus on such representations as
the unit of analysis.

A view of task representations as discrete, indepen-
dent, non-overlapping entities is shared by many com-
putational models of human action sequencing. With a
few notable exceptions, such models tend to fall into one
of two traditions. The first of these involves the use of
hierarchies of localist units, as seen in the Cooper and
Shallice (2000) model and earlier in models proposed by
Miller, Galanter & Pribram (1960), Estes (1972), Mackay
(1987), Rumelhart & Norman (1982), and Houghton
(1990), among others. The second tradition involves the
use of production system architectures (e.g. Anderson &
Lebiere, 1998). Here, task representation relies crucially
on goal representations, which (inACT-Rand some other
schemes) are managed by a ‘‘stack’’ mechanism. Like the
task representations in hierarchical models, and like the
productions they trigger, these goals are represented in a
discrete, independent, non-overlapping fashion.

An alternative account

In the present article, we wish to propose an alternative
view of task representations. Here, rather than standing

independently of one another, task representations
overlap structurally, sharing graded, multidimensional
similarity relations. By this view, one can think of task
representations as occupying a shared representational
space, with representations for interrelated tasks lying
close to one another, in much the way representations of
objects or concepts are sometimes thought of as occu-
pying a semantic space.

We have recently implemented this view in a com-
putational model of action. As discussed in a separate
report (Botvinick & Plaut, 2002), this model has been
applied to a variety of empirical data pertaining to the
performance of routine sequential tasks. Botvinick &
Plaut compare the model to traditional accounts of se-
quential behavior, pointing to several important ad-
vantages. We will briefly summarize some of the relevant
points below. However, the more focal objective of the
present article is to consider the implications of the
model for concepts of task representation.

Some of the model’s key implications in this regard
can be brought out most clearly by considering how it
relates to some preexisting theoretical proposals con-
cerning task representation. In what follows, we focus
specifically on two such proposals. The first, coming out
of work on action slips (e.g. Reason, 1990), is the idea
that task representations can be imprecise or under-
specified. The second idea, from work on complex nat-
uralistic behavior by Schank and others (Schank, 1982;
Schank & Abelson, 1977), is that individual task repre-
sentations may be ‘‘shared’’ by multiple, structurally
interrelated activities. Taken as claims about the nature
of individual task representations, these ideas appear
difficult to square with accounts in which tasks are
represented in an independent and non-overlapping
fashion. In contrast, underspecification and informa-
tion-sharing arise as inherent properties of task repre-
sentation in the model to which we now turn.

A model of routine sequential action

The model of routine sequential action we have put
forth in recent work builds on earlier research using
recurrent connectionist networks. The details of our
simulations are described by Botvinick & Plaut (2002).
Here we provide an overview, concentrating on elements
most relevant to the issue of task representation.

Model architecture and task domain

The structure of the model is shown in Fig. 1. Like all
connectionist models, it comprises simple processing
units, each with a scalar activation value. These excite or
inhibit one another through adjustable, weighted con-
nections. In the current model, units are organized into
three groups. A group of input units serves to represent
the perceptual features of objects in the environment.
These units connect to an internal or ‘‘hidden’’ group,
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which itself connects to an output group whose units
represent simple actions (e.g. ‘‘pick-up,’’ ‘‘pour’’, or
‘‘locate-spoon’’). In order to capture the fact that actions
affect perceptual inputs, the model communicates with a
simulated environment, which updates inputs to the
network contingent on selected actions.

A crucial feature of the model is that there are re-
ciprocal connections between each pair of units in its
internal layer. The presence of these ‘‘recurrent’’ con-
nections means that activation can flow over circuits
within the network, allowing information to be pre-
served and transformed over multiple steps of process-
ing. It also has important implications for the role of the
model’s internal units. Given their overall pattern of
connectivity, these units play two roles. First, they serve
as an intermediate stage in the stimulus-response map-
ping performed on each processing step. Second, be-
cause they carry all of the information that will be
conducted over the network’s recurrent connections,
and thus all of the information that will be carried over
to the next time-step, they are responsible for carrying
the model’s representation of temporal context. Much of
the ensuing discussion will focus on the model’s internal
units as they fulfill the second of these two roles.

A number of studies have demonstrated the ability of
recurrent networks to address aspects of human behav-
ior in the domains of language (e.g. Elman, 1990) and
implicit learning (e.g. Cleeremans, 1993). Our simula-
tions investigated whether similar computational prin-
ciples could be used to account for human behavior in
everyday, goal-oriented tasks involving the manipula-
tion of objects. In order to facilitate comparison with the
recent hierarchical model of Cooper & Shallice (2000),
the task modeled was that of making a cup of instant
coffee. Our implementation of the task is shown sche-
matically in Fig. 2 (top). It comprises four subtasks,
each containing between five and 11 actions: (1) adding
coffee-grounds, (2) adding cream, (3) adding sugar (by
one of two methods), and (4) drinking. For reasons that
will become clear in later discussion, the training corpus
also contained a second task, tea-making. The model
was trained to perform these tasks using a version of the
back-propagation learning algorithm (Williams &

Zipser, 1995). Training was analogous to observing and
attempting to predict the sequence of actions of a skilled
individual repeatedly carrying out specific versions of
each task. Testing involved successively presenting the
trained model with perceptual input and using its gen-
erated action to modify the environment (and, hence, the
model’s subsequent perceptual input).

Overview of simulation results

Simulations were designed to address behavioral data
from three domains: (1) normal, error-free performance
in hierarchically structured tasks, (2) everyday ‘‘slips of
action,’’ and (3) action disorganization syndrome
(ADS), a variety of apraxia involving impairment in the
performance of everyday tasks. In our simulations of
normal performance, we asked simply whether the
model could learn to perform the target tasks. Some
action researchers have expressed doubt concerning the
ability of recurrent networks to deal with tasks that are
hierarchically structured, that is, tasks made up of sub-
tasks and actions that also appear as part of other tasks
(see, e.g. Houghton & Hartley, 1995). Consistent with
earlier studies applying recurrent networks in hierar-
chical domains, the model proved quite capable of
learning the target sequences, and producing them au-
tonomously following training.

Our simulations of action slips and ADS were based
on the assumption that both stem from disruptions to
representations of temporal or task context. In our
model, as noted above, such context information is
carried by the hidden units. With this in mind, context

Fig. 1 Schematic representation of the model reported by Botvi-
nick & Plaut (2002). Arrows denote connections running from each
unit in the sending group to each unit in the receiving group. In the
actual implementation, the input layer contained 44 units, the
hidden layer 50, and the output layer 20

Fig. 2 Schematic representation of the tasks included in the
training set. Each arrow corresponds to a multi-step sequence
(range 5–11 steps)
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information was degraded by randomly perturbing the
activation values in the hidden layer on each cycle of
processing. When this was done mildly, the model pro-
duced errors resembling human slips of action. In line
with empirical observations concerning slips (Norman,
1981; Reason, 1990), the model made errors at decision
points, behavioral ‘‘forks in the road’’ where the actions
just completed bear associations with multiple lines of
subsequent behavior. Also like typical human slips, the
model’s errors took the form of subtask sequences per-
formed correctly but in the wrong context. The model’s
errors fell into the same categories as human slips:
omissions, repetitions, and lapses from one task into
another. With increasingly severe disruption to the
model’s context representations, the model’s behavior
became gradually more fragmented, coming to resemble
the performance of ADS patients as characterized in
recent empirical studies (e.g. Humphreys & Forde, 1999;
Schwartz et al., 1998).

Botvinick & Plaut (2002) point to a number of ap-
parent advantages of the model over traditional ac-
counts of routine sequential action. Some of these
pertain to the model’s ability to capture particular be-
havioral phenomena. Specifically, the model produced at
least one type of error (recurrent perseveration) not
observed in the simulations of Cooper and Shallice
(2000); it reproduced a correlation between error rate
and the distribution of error types reported by Schwartz
et al. (1998), another effect not captured by Cooper and
Shallice (2000); and, again unlike that earlier study, the
Botvinick & Plaut (2002) model displayed a smooth
variation in behavioral fragmentation with damage, a
feature of ADS. Botvinick & Plaut (2002) also discuss
several other advantages of the model over traditional
accounts, including its reliance on learning instead of
extensive ‘‘hand wiring,’’ its avoidance of the inflexible,
ad hoc sequencing mechanisms typically incorporated
into traditional models, and its relative strength in
dealing with context-sensitive behavior. However, rather
than reiterating this critique, our goal here is to examine
the model’s account of task representation. We turn now
to this issue.

Graded, distributed representations of task context

Whether the model is used to simulate normal perfor-
mance or errors, its behavior is linked directly to the
patterns of activation over the units in its internal layer.
As noted above, these units play two roles. Because they
lie between input and output layers, they are responsible
for facilitating the stimulus-response mapping being
performed on each time-step. Second, because, via their
recurrent connections, the internal units transmit infor-
mation from one time-step to the next, they also must
serve to represent the current behavioral context. In this
sense, the patterns of activation arising in the model’s
internal layer play the role that is played, in traditional
models, by task and subtask nodes; on each time-step,

the information carried in this layer is integrated with
information about external inputs in order to determine
the context-appropriate action.

Note that every unit in the hidden layer participates
in each context representation. Unlike hierarchical
models of action, which use single units to represent
entire task contexts, the present model employs distrib-
uted representations (see Hinton, McClelland, & Ru-
melhart, 1986); information is represented by an entire
population of processing units, within which each unit
participates in representing a variety of contexts.

In order to understand the implications of the mod-
el’s way of representing context, it is useful to adopt a
spatial metaphor. The model’s internal layer contains 50
units, each of which carries an activation between zero
and one. If these activations are thought of as spatial
coordinates, then each pattern of activation (context
representation) can be thought of as specifying a point in
a 50-dimensional representational space. As the model
steps through an action sequence, the successive patterns
in its internal layer can be thought of as tracing out a
trajectory in this space. Although it is impossible to vi-
sualize such trajectories in their original 50 dimensions,
one can gain a sense of them using the technique of
multi-dimensional scaling (MDS). This allows trajecto-
ries in high-dimensional space to be represented in two
dimensions, while preserving as much information about
the original pattern as possible (see Kruskal & Wish,
1978). Perhaps the most important aspect of the results
yielded by MDS is that they carry information about the
similarities among the model’s internal representations.
Such information is conveyed through the proximities of
points within the resulting diagram. To a first approxi-
mation, points located near to one another correspond
to patterns of activation that are similar to one another,
while points located distant from one another corre-
spond to more dissimilar patterns of activation.

An example of the model’s internal representations,
visualized with MDS, is shown in Fig. 3. The plot shows
two trajectories, both representing the sequence of in-
ternal states produced by the model as it stepped
through the eleven actions of the sugar-adding subtask
(the solid line shows the patterns produced when per-
forming the subtask in the context of coffee-making, the
dashed line when performing it during tea-making).
Together, these trajectories provide a particularly clear
illustration of the importance of graded similarity rela-
tions in the model’s representation of task context. The
first thing to note is that the two trajectories are similar
in shape. This indicates that the series of internal rep-
resentations the model uses when adding sugar to coffee
are similar to those it uses when adding sugar to tea, an
arrangement that makes sense since sugar-adding in-
volves the same sequence of actions regardless of the
overall task context. Note, however, the two trajectories
are not precisely identical. The minor differences be-
tween the two reflect the difference in overall task con-
text; the model’s internal representations on each step
differ slightly according to whether it is coffee- or
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tea-making that is being performed. As earlier studies of
recurrent networks (e.g. Servan-Schreiber, Cleeremans,
& McClelland, 1991) have expressed it, the network
‘‘shades’’ its internal representations to reflect differ-
ences in context.

This first example illustrates a key point: Because the
model’s internal representations occupy a continuous,
multidimensional representational space, they can si-
multaneously capture both the similarities and the dif-
ferences among behavioral contexts. In the next two
sections, we examine the implications of this point for
understanding the representation of task context, using
the notions of underspecification and information-
sharing as points of departure.

Underspecification

An interesting idea that has surfaced periodically in
work on action slips is that such errors might result
when task representations are in some sense degraded or
vague. The notion that task representations might vary
in their preciseness was suggested early on by Norman &
Bobrow (1979). Soon after, Norman (1981) linked the
idea to error-commission, writing that ‘‘Some slips of
selection occur ... when the description of the desired act
is insufficient’’ (p. 7). This notion has been emphasized
and developed further in the work of Reason (e.g.
Reason, 1990, 1992), who coined for it the term ‘‘un-
derspecification.’’

The idea of underspecification has an appealing in-
tuitiveness. However, discussions of it have always re-
mained rather impressionistic. This is perhaps because
the idea that task representations can vary in their

preciseness lies at odds with other pervasive assumptions
about task representations. As we have seen, traditional
models of action typically portray task representations
as discrete, unitary entities. In what sense can a ‘‘schema
node’’ like the ones posited by Cooper and Shallice
(2000) become vague? To be sure, models employing
such task representations can assume ambiguous states
where more than one schema node is active (a point
whose implications we will consider in a later section).
However, this amounts to something different from
underspecification, which suggests that vagueness (or
precision) is a property of individual representations,
considered in their own right.

Underspecification, in this sense, becomes easier to
envision if task representations are thought of as points
in a shared and continuous representational space.
Under this view, one can think of the space of task
representations as populated by certain prototype rep-
resentations, points in the space corresponding to
familiar task contexts. A novel situation or a disturbance
in the system’s functioning may then give rise to a rep-
resentation occupying a location midway among several
of these reference representations, rendering the repre-
sentation ambiguous. In the next section, we detail this
account and its implications for understanding action
slips by considering a specific error committed by the
recurrent network model.

Simulating an action slip

In our simulations, slips of action were elicited by de-
grading the model’s internal representations, adding
random noise to each unit’s activation. This led to a
variety of error types, and an overall pattern of behavior
resembling human slips as characterized by Reason
(1990) and others. The full range of findings is described
in Botvinick & Plaut (2002). In order to focus discussion
on representational issues, we will focus here on one
particular error committed by the model: adding cream
to tea.

As shown in Fig. 2, our implementation of the tea task
overlapped with the coffee task in that both involved
sugar-adding and drinking subtasks. An important dif-
ference was that coffee-making included a cream-adding
subtask, whereas tea-making did not. This arrangement
was useful when it came to asking whether the model’s
errors included lapses from one task into another, a form
of error often observed in human behavior. If the model
began by steeping tea and adding sugar, but then executed
the cream-adding sequence, this could be clearly inter-
preted as a lapse from tea-making into coffee-making.
This error did in fact occur regularly when the model’s
internal representations were degraded.

The cream-into-tea error, like any lapse error, has the
issue of task representation at its base. The error can be
understood as involving a confusion between two task
contexts. At the point the error occurs, the model is at
the point in the tea task labeled with a T in Fig. 2.

Fig. 3 Multidimensional scaling analysis of internal representa-
tions from the model. Each point corresponds to a 50-dimensional
pattern of activation across the network’s hidden units. Both traces
are based on patterns arising during performance of the sugar-
packet subtask. The solid trajectory shows patterns arising when
the sequence was performed as part of coffee-making, the dashed
trace when it was performed as part of tea-making
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However, the model behaves instead as if at the point
labeled with a C. How does this confusion occur? In
approaching this question, it is useful to consider how
the model avoids the cream-into-tea error in normal
operation. Here, of course, it relies on its internal rep-
resentation of task context. Through learning, the model
arrives at specific patterns of activation to represent the
contexts labeled in Fig. 2. In fact, these patterns,
referred to from here on as the tea and coffee contexts,
are represented in Fig. 3; they correspond to the final
points in the two trajectories, the internal representa-
tions arising as the model completes the sugar-adding
subtask.

Figure 4 shows schematically how the model comes
to mistake the tea context for the coffee context. The two
reference patterns are represented, once again, as points
in a shared representational space. The crooked arrow
illustrates the effect of degrading the model’s internal
representation of context. Perturbing the activation
values in the model’s hidden layer corresponds to ran-
domly displacing the model’s context representation in
representational space. In some instances, this random
displacement may carry the model’s context represen-
tation toward the point ordinarily used to represent the
coffee context. If the distorted representation falls near
enough to this reference point, the model will behave as
if it is performing the coffee task rather than the tea task,
thus committing the cream-into-tea error.

Figure 5 shows relevant data from the simulations
themselves. Each bar in this plot indicates the distance
between the model’s distorted internal representation
and one reference pattern. The light gray bars show the
distance between the distorted pattern and the tea-con-
text reference, the darker bars the distance between the
same pattern and the coffee reference. The left half of
the diagram shows data from trials where, despite the
presence of noise, the model did not commit the cream-
into-tea error. Here, although the model’s internal rep-
resentations have been displaced from the position used
to indicate the tea context, they remain closer to this

reference point than to the coffee-context representation.
On trials where the cream-into-tea error did occur, the
situation is reversed (Fig. 5, right). Here, noise has
carried the model’s internal representations farther away
from the tea-making reference, into the vicinity of the
coffee-making representation. In effect, representational
degradation causes the model to ‘‘forget’’ that it is
making tea, causing it to lapse out of this task and into
another.

The cream-into-tea error illustrates how, by the pre-
sent account, slips of action stem from representational
underspecification. When internal representations of
task context are distorted, they can come to occupy a
point in representational space intermediate between
points the system has assigned to familiar task contexts.
The behavior resulting from these ambiguous represen-
tations then depends on their proximity or resemblance
to the latter reference-like points.

Underspecification and frequency-biasing

In his discussions of underspecification and action slips,
Reason (1979, 1992) emphasized that, when task repre-
sentations are underspecified, behavior tends to default
to high-frequency responses. For example, when
degraded task representations lead to a lapse from one
task into another, this tends to involve a shift from a less
frequently performed task into a more frequent one.

In our simulations, we asked whether this frequency
effect would also appear in the behavior of the model.
This involved varying the relative frequencies with which

Fig. 4 Adding noise to the model’s internal representations has the
effect of displacing them within representational space. In some
instances, the resulting distortion can lead the internal representa-
tions to resemble patterns the model uses to represent other task
contexts

Fig. 5 Simulation data, showing distances of degraded internal
representations from reference representations. All data were
collected on the final step of sugar-adding. Reference patterns
were drawn from simulations of the tea and coffee tasks, run
without noise. Distorted representations are from simulations of
the tea task, using gaussian noise with variance 0.1 (for detailed
methods, see Botvinick & Plaut, 2002). Bars show the average
distance of distorted representations from the tea (pale gray) and
coffee (dark gray) reference patterns. Data are based on a sample of
ten correct and ten error trials. Error bars show standard error
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the model was exposed to the coffee and tea tasks during
training, and evaluating whether this affected the fre-
quency of the cream-into-tea error. The model did in
fact reproduce the empirical phenomenon; lapses from
tea-making into coffee-making (the cream-into-tea er-
ror) were more frequent when, during training, the
coffee task had been presented relatively frequently
(detailed results are presented by Botvinick & Plaut,
2002).

The factors underlying the frequency effect, as it
emerges in the model, derive directly from the model’s
use of a shared, continuous space for task representa-
tion. Consider once again the schematic in Fig. 4. Note
that, in order for the cream-into-tea error to occur, it is
not necessary for the distorted context representation to
precisely overlap what we have been calling the coffee
pattern. Instead, distortion need merely bring the mod-
el’s context representation into the coffee pattern’s vi-
cinity. This is because, as the model assigns specific
points to particular task contexts, the regions sur-
rounding these locations develop similar associations.
Thus, in the space the model uses to represent task
context, the coffee and tea contexts correspond not only
to specific points, but also to entire regions. In order to
cause the cream-into-tea error, distortion need only
displace the model’s context representation across the
boundary between the two relevant regions. The idea is
illustrated schematically in Fig. 4, using a dotted line to
represent the boundary.

The effect of task frequency emerges because the
relative frequency of different tasks during training in-
fluences the way that learning ‘‘carves up’’ the space
used for context representations. Larger portions of the
space are apportioned for more frequent tasks. This, in
turn, influences where the boundaries between regions
fall. Consider Fig. 4 once again. If tea-making were
presented more often during training than coffee-mak-
ing, this would have the effect of expanding the region
dedicated to the tea task and shrinking the region ded-
icated to coffee-making. In the schematic, this would be
reflected in a shift of the dotted line to the right.
Training more frequently on coffee-making would have
the opposite effect, leading to a leftward shift of the
boundary. This shifting of boundaries is the link be-
tween task frequency and error rates. As coffee-making
becomes more frequent and the boundary between the
coffee and tea regions shifts leftward, it becomes easier
for noise to displace the model’s context representation
‘‘over the line’’ into the coffee region, causing the cream-
into-tea error. To state the point more generally: The
less frequently a task is performed, the smaller a region it
occupies in the space used for task representations, with
the result that distortions can more easily displace the
model’s context representations out of this region into
one used to represent a different context, resulting in an
error.

Actual data from the model, illustrating the effect of
frequency on task representations, are shown in Fig. 6.
The plots illustrate the effect of gradually distorting the

model’s internal representations, moving through rep-
resentational space from what we have been calling the
tea context to the coffee context (one can picture this
as the traversal of an imaginary line running between
the two solid points in Fig. 4). The traces in each plot
show the effect of this gradual distortion on the acti-
vation values of two output units: (1) the unit repre-
senting the action that would be correct in the tea
context (put-down), and (2) the unit representing the
action that would be correct in the coffee context
(locate-cream, also the first step in the cream-into-tea
error). As the model’s context representation is grad-
ually distorted, the activation of put-down gradually
falls and that of locate-cream rises. The point at which
the two traces cross can be thought of as corre-
sponding to the dotted line in Fig. 4, the boundary
across which noise must transport the model’s context
representation in order to produce an error. As Fig. 4
shows, task frequency affects the location of this cross-
over point. When tea-making is more frequent during
training (Fig. 6, top), the point falls toward the right,
indicating that a greater share of representational space
has been apportioned to the tea task. When tea-mak-
ing is relatively infrequent (bottom), the cross-over
point shifts to the left, making it easier for represen-
tational distortion to cause a lapse from tea-making
into coffee-making.

Fig. 6 Simulation data, showing the effect of gradually distorting
the model’s context representation away from the tea pattern and
toward the coffee pattern, on the step just following the completion
of sugar-adding (i.e. the step where the cream-into-tea error, if
committed, begins). The x-axis indicates the proportion of the
distance between the two reference representations has been
traversed. The dashed trace shows the activation of the put-down
action unit (the correct action on this step), the solid trace the
activation of locate-carton (the first action in the cream-into-tea
error.) Top: result of presenting tea-making five times as often
coffee-making during training. Bottom: result of presenting coffee-
making five times as often as tea-making. For details of simulation
and analysis, see Botvinick & Plaut (2000)
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Information-sharing

So far, we have considered the implications of graded,
distributed task representation for the notion of repre-
sentational underspecification. We now turn to a second
pivotal idea, drawn from existing theories of action. This
is the idea that there is information-sharing among the
representations underlying interrelated tasks. The con-
cept has been discussed at length by Schank & Abelson
(1977; see also Schank, 1982). They suggest that closely
related activities rely on common underlying mental
representations. One example they provide concerns the
activity of eating in a restaurant. As they point out, an
individual may be acquainted with a variety of different
types of restaurant: fancy restaurants, coffee shops, fast-
food restaurants, cafeterias, etc. By their account, how-
ever, behavior in all of these settings would be guided by a
single, general representation of the restaurant context
(for related accounts, see Grafman, 1995; Minsky, 1975;
Rumelhart, 1980). This general representation can, by the
Schank & Abelson (1977) account, be fine-tuned to spe-
cific restaurant settings, allowing the representation’s
basic elements to be ‘‘re-used’’ as the system implements
closely interrelated procedures.

The idea of information-sharing is difficult to square
with models that portray task representations as dis-
crete, non-overlapping entities. It is true that, within
such models, multiple task units may send connections
to a given subtask unit, allowing for a limited, piecewise
variety of information-sharing (an issue to be discussed
further below). However, the notion of information-
sharing as introduced by Schank & Abelson (1977) and
others since involves a broader claim, which is that in-
dividual representations of task context can be param-
eterized or tuned in order to implement different tasks,
or different versions of the same task. Theories that have
attempted to implement information-sharing in this
sense, including the theory presented by Schank &
Abelson (1977), have tended to rely on elaborate, ad hoc
constructs, sometimes rivaling in complexity the phe-
nomena they purport to explain. In contrast, if task
representations are viewed as graded, distributed pat-
terns, information-sharing arises as a natural conse-
quence. In order to unpack this point, the following
sections examine the role of information-sharing in our
model of coffee-making.

Information-sharing using graded
context representations

A preliminary indication of the role of information-
sharing in the model was provided in Fig. 3. As
discussed earlier, this diagram represents the context
representations arising during a single subtask (sugar-
adding) as performed in different contexts (coffee- versus
tea-making). The differences between the two trajecto-
ries indicate that the patterns are ‘‘shaded’’ in order to

indicate which task is being performed. Despite these
differences, though, the two trajectories remain very
similar to one another. It is this similarity that indicates
the presence of information-sharing; it indicates that the
system has ‘‘re-used’’ patterns to represent interrelated
operations. Note that the system’s use of a continuous
representational space allows it to re-use patterns with-
out precisely duplicating them. Because its task repre-
sentations can be similar without being identical, they
can respond to the overlap between tasks while also
responding to the differences between them.

Of course, in their discussion of information-sharing,
Schank & Abelson (1977) were concerned not with the
performance of a single subtask in different contexts, but
with the performance of different (though related) task
sequences. To illustrate how the model behaves in such a
case, we reimplemented the model reported by Botvinick
& Plaut (2002) but added a new task, cocoa-making. In
our implementation, as in the real world, making cocoa
shares a great deal with another action sequence, adding
sugar to coffee from a sugar bowl. Both tasks involve the
same basic sequence of actions: A spoon is used to scoop
up powder from a container, pour that powder into a
liquid-filled cup, and then stir the liquid. Of course, at
other levels, the two tasks are not identical. They differ
in terms of the appearance of the objects involved, for
example the difference in color between sugar and co-
coa-mix. Training the model simultaneously on these
tasks thus faced the model with two distinct but inter-
related procedures, providing an opportunity for infor-
mation-sharing of the kind described by Schank &
Abelson (1977).

Figure 7 shows the context representations the
trained model used in performing cocoa- and sugar-
adding, as visualized with MDS. Once again, as in
Fig. 3, there is an obvious resemblance between the two
trajectories. Here again, the model uses similar patterns
to represent similar tasks, implementing a form of in-
formation-sharing. However, again as in the previous
example, the re-use of patterns is only approximate, al-
lowing the differences between the cocoa and sugar
procedures to be acknowledged as well as their similar-
ities. The model’s use of a similarity-based representa-
tional scheme allows it to implement a form of
information-sharing that is responsive to both the sim-
ilarities and differences between tasks.

Making inferences about action

Schank (1982) argued that one role of task representa-
tions might be to support inferences about action in
partially novel situations. For example, he suggested
that the representations developed through one’s expe-
riences eating at McDonald’s would provide a basis for
knowing how to act when visiting a Burger King for the
first time (see Schank, 1982, p. 24). It is worth noting
that the mechanisms implemented in the model we have
been discussing support this kind of generalization. For
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example, when trained on coffee- and tea-making (but
not cocoa-making), and then presented with inputs
representing a container filled with cocoa mix, the net-
work inferred the proper response sequence, locating
and picking up the spoon, scooping powder from the
container, and pouring it into the cup. This behavior can
be attributed only to the model’s previous training on
sugar-adding. In fact, when MDS is used to visualize the
internal representations arising during the inferred co-
coa-adding sequence, they resemble the representations
associated with sugar-adding (some relevant quantita-
tive data will be presented below).

In this example, the model’s inferences about action
turn out to be correct; cocoa-adding can be performed
using the same actions as sugar-adding. However, as
discussed in the next section, the situation becomes
considerably more interesting when the network’s in-
ferences turn out to be incorrect, and the network is
expected to learn from its mistakes.

Learning

Some of the richest implications of graded, distributed
task representations emerge in the context of learning.
This is especially true when the task to be learned shares
structure with a task that is already familiar. In this
section we examine the processes at work in the model
when faced with this situation.

Learning through violated expectations

In his work on task representation, Schank (1982) pro-
posed that knowledge structures for action develop in
direct response to the violation of expectations. The
suggestion is closely tied to Schank’s (1982) points
concerning inference-making. In short, in novel situa-
tions, the processing system makes guesses about ap-
propriate actions by applying knowledge relating to
similar contexts, and learning occurs when these pre-
dictions are violated.

Like other key assertions made by Schank (1982), this
one turns out to describe well the functioning of the

connectionist model we have been discussing. In order to
illustrate, we again presented a model that was already
trained on coffee- and tea-making with the new task of
making cocoa. This time, however, there was a new
twist. Before, the target actions in cocoa-adding had
precisely matched those involved in using the sugar
bowl, allowing the network to infer the correct actions
for cocoa-making even without specific training. In this
follow-up simulation, the target actions in the cocoa task
were slightly changed. In the previous version, the action
of spooning out some cocoa mix had been represented
with a single target output unit (the same scoop unit
included in the sugar-bowl sequence). Now, on the same
step, the target action involved activating two output
units, the same scoop unit, but now also a ‘‘modifier’’
unit labeled big. Together, these units were meant to
indicate that spooning out cocoa mix should involve
taking a bigger scoop than the one used when spooning
out sugar for coffee or tea.

When faced with this new version of cocoa-making,
the model’s responses were at first incorrect. As in the
previous simulation, the network ‘‘guessed’’ that it
should use precisely the same actions in adding cocoa
that it had learned for adding sugar, failing to activate
the big unit along with the scoop unit. However, with
continued training, the network soon began producing
the correct ‘‘big scoop’’ when executing the cocoa task.
The learning process, as in Schank’s (1982) theory, is
driven by the violation of predictions. In the model
learning occurs through the gradual adjustment of
connection weights. These, in turn, are driven by an
error computation; actual outputs are compared with
desired outputs, and weight adjustments are made in
order to reduce the difference between the two (see
Rumelhart, Durbin, Golden, & Chauvin, 1996). Thus, in
the present example, the learning process that ultimately
allows the network to perform the cocoa task correctly is
driven almost entirely by events occurring on one step of
processing, the step where the model predicts the scoop
action and this ‘‘expectation’’ is contradicted.

With these points about learning as context, we now
return to the issue of task representation. The foregoing
discussion raises the question: How do the model’s
task representations change through learning?

Fig. 7 Internal representations
arising during performance of
sugar-adding (left) and cocoa-
adding (right) subroutines, vi-
sualized using multidimensional
scaling
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More specifically, how does the system arrive at ap-
propriate representations for new tasks? As discussed in
the next section, it is here that the implications of a
graded, distributed representational scheme become
most apparent.

Learning as a remodeling of task representations

It is informative to consider how the cocoa task we have
just introduced might be implemented in a model using
discrete, non-overlapping task representations. One way
of accommodating the new task would be to assign to it
a previously uncommitted, and unconnected, task unit
(for a relevant account, see Houghton, 1990). However,
this would not acknowledge the close resemblance be-
tween the cocoa-adding task and the previously acquired
sugar-adding task. Adding a new task unit fails to cap-
italize on existing knowledge in the way that Schank
(1982), for example, described. The only evident alter-
native, given the assumptions of traditional models, is to
use the already existing sugar-adding representation to
also cover the cocoa task. But, given this approach, how
is the difference between sugar-adding and cocoa-adding
(the size of the scoop) to be represented?

The dilemma described here arises as a direct conse-
quence of the assumption that task representations are
discrete and independent. In any system relying on such
representations a categorical decision must be made, in
coping with any pair of tasks, as to whether those tasks
will be subserved by a single task representation or two
independent task representations. A corollary of this is
that, during learning, the system must decide whether or
not a new task merits the creation of a new task repre-
sentation, and if so at what stage of learning this act of
creation should occur.

A system using graded, distributed task representa-
tions does not face these decisions, or the conflicts they
can create. Since there is information-sharing between
task representations, the system can capture the dis-
tinctions between tasks while still capitalizing on struc-
tural overlap. Furthermore, during learning, the system
need not create new task representations ‘‘from
scratch.’’ Since task representations occupy a continu-
ous representational space, new representations can
differentiate gradually from established ones.

This latter point is worth illustrating through an ex-
ample, and for this we return to the second cocoa-making
simulation.Here, themodel faces a situationwhere itmust
learn to represent a task that is similar but not identical to
a task it has already acquired. How does the model arrive
at a set of representations for the new task? Rather than
creating totally new representations in order to handle the
cocoa task, the network gradually ‘‘remodels’’ the repre-
sentations it has already established for sugar-adding. An
indication of this process is provided by Fig. 8. The x-axis
of this diagram indexes the steps in the sugar and cocoa
sequences. The y-axis indicates distance within represen-
tational space. Each trace in Fig. 8 shows the distance

between two series of internal representations: (1) the se-
ries associated with sugar-adding and (2) the series asso-
ciated with cocoa-adding. The solid line shows the
situation before the network has been trained on cocoa-
adding. The cocoa-making representations here are the
ones arising as the network ‘‘infers’’ which actions to
perform, failing to activate the big unit along with the
scoop unit on step six. (The non-zero distance values re-
flect the fact that the network is using slightly different
representations for the cocoa task than the sugar task,
even though producing precisely the same actions.) The
dashed line indicates the situation after the network has
learned to perform cocoa-making using abig scoop.There
is increased distance between the sugar and cocoa traces,
indicating that the sets of representations used by the
model for the two tasks have migrated away from one
another in representational space. This distancing is most
pronounced on step six of the sequence, the scoop step on
which the two sequences differ.

Instead of needing to create a completely new set of
representations for the new task, the model can gradually
shape new representations, using established representa-
tions as raw material. Because this shaping process takes
place within a continuous representational space, there is
no need for the system to choose when it will ‘‘create’’ a
new task representation. New representations emerge bit
by bit, through a gradual process of differentiation.

General discussion

Our goal in this article has been to detail an alternative
view of the representation of task context. Several

Fig. 8 Reshaping of context representations through learning. The
x-axis indexes the steps in the sugar- and cocoa-adding sequences.
Each trace shows the Cartesian distance, on each step, between the
internal representations arising during sugar- and cocoa-adding.
Solid trace: before training on cocoa task (at this stage, the model
fails to activate the big unit along with the scoop unit on step six.
Dashed trace: after training
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currently influential theories portray task representa-
tions as discrete, independent, and non-overlapping
entities. In contrast, we have suggested that such rep-
resentations might instead be thought of as graded,
distributed patterns occupying a shared, continuous
representational space. In other studies (Botvinick &
Plaut, 2002), we have shown how this view can be used
to account for specific empirical data pertaining to
human behavior, both normal and impaired. Here, our
goal has instead been to examine the account’s fit with
some previous proposals concerning the nature of task
representations. Specifically, we have focused on two
fertile ideas from the literature: representational un-
derspecification and information-sharing. The account
of task representation we have presented affords a new
perspective on these two ideas, showing in particular
how they can both be derived from more basic as-
sumptions about the representation of procedural
knowledge.

Graded task representations: a double-edged sword

A key aspect of the present account is that it portrays
task representations as responding to the similarities
among different task contexts. This point is basic to our
account of representational underspecification and ac-
tion slips, since it makes the system vulnerable to con-
fusions between interrelated contexts. It also provides
the basis for our model’s account of information-shar-
ing, allowing task representations to acknowledge the
overlap between interrelated operations.

In fact, by the present account, underspecification
and information-sharing turn out to be two sides of a
single coin. The same factors that make the processing
system vulnerable to error also give it its representa-
tional power and ability to generalize. At this level, the
account we have presented answers the intuition, voiced
intermittently in earlier writing on action (e.g. James,
1890; Norman, 1981; Reason, 1990), that action errors
are somehow tied to the encoding of similarities in task
context.

Traditional accounts: some further considerations

Throughout the preceding discussion, we have con-
trasted the approach taken in our own work with a
traditional framework, within which task contexts are
represented independently. One basis for this compari-
son has been to consider the fit of each account with the
constructs of information-sharing and representational
underspecification. As we have emphasized, both of
these constructs, according to their original conception,
deal with the intrinsic properties of individual task
representations. It is on this level that the ideas of un-
derspecification and information-sharing resonate most
strongly with the account we have presented. In con-
trast, it seems difficult to map the two ideas onto the

simple, monadic representations of task context em-
ployed in traditional models.

Of course, the fact that information-sharing and un-
derspecification do not arise, in traditional models, at
the level of individual task representations does not
mean that such models do not engage these issues at all.
Indeed, we have already noted ways in which one might
argue for the presence of both factors: One can see a
version of information-sharing in the fact that multiple
task nodes can link to a single subtask node, and one can
see underspecification in system states where multiple
task nodes are simultaneously active. Earlier, we set
these points aside on the grounds that they related to
interactions among task representations rather than to
intrinsic properties of such representations. However, as
we shall now discuss, even if one pans back from the
issue of representation, the versions of information-
sharing and underspecification implemented in tradi-
tional models still suffer from significant limitations.

Consider first the point that, in traditional models,
lower-level nodes may receive connections from more
than one higher-level node. Certainly, there is a re-use of
representations here. However, upon close scrutiny the
arrangement appears to carry less representational
richness and flexibility than the idea of information-
sharing implies. Perhaps the most important problem
with the arrangement is that it limits information-shar-
ing to situations where there is, across two contexts, a
precise match between clearly bounded segments of be-
havior. To put it another way, higher-level representa-
tions may share information only when the sequences
they share are absolutely invariant with respect to con-
text. Thus, coffee- and tea-making may use the same
sugar-adding node only if sugar-adding is executed in
precisely the same way in the two tasks. Hierarchical,
node-based models face difficulty when an operation
must be performed differently depending on the larger
behavioral context, as, for example, if one preferred to
add more sugar to coffee than to tea.

Note, secondly, that the tractability of the node-
sharing approach depends on the assumption that tasks
are structured at a few discrete levels, usually thought of
as the levels of task, subtask and action. A close look at
the pattern of shared structure among naturalistic be-
haviors suggests that the situation is often more complex
than this. For example, many activities involve the fol-
lowing sequence: (1) look toward an object, (2) reach for
it, (3) grasp it, (4) look to another location, (5) move the
hand to that location, and (5) put the object down. Since
this subpattern occupies neither the level of individual
actions nor that of complete subtasks, it raises an awk-
ward question for a hierarchical, node-based approach:
When does such a subpattern qualify for its own schema
node? Furthermore, once a commitment to discrete
levels of structure is abandoned, how is it determined
which schema nodes should compete with one another?
Typically, nodes within hierarchical models compete
only with other nodes occupying the same level.
Any attempt to acknowledge graded, intermediate levels
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of structure would thus lead to implementational
difficulties.

Related issues pertain to the implementation of in-
formation-sharing found in production-system models.
Many such models (e.g. Anderson & Lebiere, 1998) in-
clude an argument-binding or ‘‘slot-filling’’ mechanism
that allows productions to be applied to a number of
analogous situations. This certainly allows for some
degree of information sharing, and a form that (unlike
what is found in node-based models) derives from the
properties of individual task representations. However,
as in the preceding case, difficulties arise when the goal is
to apply the approach to structurally rich naturalistic
task domains. The basic problem is that, despite the
flexibility slots confer, there is still the need to decide, for
any two operations, whether they should rely on a single
slot-equipped production or instead on two independent
productions. For illustration, imagine that a production
system is to be used to model the simple task of making
a peanut-butter and jelly sandwich. Given that spreading
peanut-butter and spreading jelly involve very similar
actions, it seems reasonable to posit a single ‘‘ingredient-
spreading’’ production, with a slot used to specify the
topping. However, difficult questions arise if a wider
range of tasks is to be added to the model’s repertoire.
For example, should the same ingredient-spreading
production be applied to the task of spreading sauer-
kraut on a hot dog? What about spreading icing on a
cake, or wax on car? The formalism requires categorical
decisions to be made about task-relatedness, when tasks
may in fact share graded, multidimensional similarity
relations. No such black-and-white decisions are neces-
sary in a system using graded, distributed task repre-
sentations.

Let us turn now to the issue of representational un-
derspecification. While traditional, node-based repre-
sentations of task context are not themselves subject to
underspecification, one might argue that underspecifi-
cation can arise in models based on such representations
when there is simultaneous activation of multiple task
nodes. Indeed, if one changes the unit of analysis from
the individual task unit to the entire population of such
units, one might well speak of task contexts being rep-
resented by the pattern of activity across that popula-
tion, and this pattern could in turn be understood as a
point in a continuous, multi-dimensional representa-
tional space. Under this reinterpretation, underspecifi-
cation in traditional models may appear to involve just
the same factors as it does in the model we have pre-
sented: a representation of context that lies intermediate
between points used to represent familiar tasks. How-
ever, the two accounts are not, in fact, identical. The
primary difference stems from the fact that, in a node-
based model, the point in representational space corre-
sponding to each familiar task lies at precisely the same
distance from every other such point. In contrast, in the
recurrent connectionist model we have described, rep-
resentations for interrelated tasks lie closer to one an-
other than they do to those for less similar tasks.

This point has implications for the impact of under-
specification on behavior. Specifically, it means that er-
rors based on underspecification will tend to involve a
lapse from one task into one that is closely related to the
first. In order to make the point more directly, let us
return to the domain of food preparation, and consider
a behavioral repertoire including coffee-making, tea-
making, and a less closely related task such as sandwich-
making. In the framework we have put forth, the context
representations for the two beverage-making tasks
would be more similar to one another than either one
would be to the representations involved in sandwich-
making. As a direct consequence, degradation to context
representations during performance of coffee-making
would be more likely to result in a lapse into tea-making
than into sandwich-making. In a node-based account, in
contrast, there would be no more similarity between the
task representations for coffee- and tea-making than
between either of these and sandwich-making. Thus, if
noise were added to the system’s task nodes during
coffee-making, there is nothing about the way that tasks
are represented that would bias the system toward
lapsing into tea-making rather than sandwich-making.
Of course, patterns of similarity between environmental
inputs may go some distance toward creating a bias of
this sort. However, such ‘‘stimulus capture’’ will go only
so far in explaining available empirical data; existing
error corpora provide many examples of slips where a
similarity between tasks, rather than a similarity be-
tween environmental triggers, appears critical. To take
just one example, consider the case of the office worker
reported by Reason (1990), who answered the telephone
by shouting ‘‘Come in!’’ Admittedly, it is impossible to
rule out a role for stimulus capture in this case (perhaps
the individual was looking at the door when answering
the telephone). However, it seems likely that the simi-
larity between the task of answering the door and that of
answering the telephone, a similarity presumably re-
flected in the mental representations subserving each,
also contributed to the slip.

The present discussion has been aimed at highlighting
some limitations on the ability of a traditional, node-
based account to fully engage the issues of information-
sharing and underspecification. However, it is important
to emphasize that these are not the only problems that
arise in the effort to build models of action based on
independent, non-overlapping task representations.
Several other more basic issues were discussed in the
introduction, and have received a more detailed treat-
ment elsewhere (Botvinick & Plaut 2002).

Limitations of the present account

One important difference between the account of task
representation we have put forth and most previous
accounts is the central role it accords to learning. Tra-
ditional models rely on task representations that are
stipulated by the modeler, based on a priori assumptions
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about task structure. In contrast, representations of
context in the present account emerge based on experi-
ence, leading to sequencing mechanisms that are tuned
to the fine structure of the task domain and that are
sensitive to patterns of similarity among different ac-
tivities. However, while the model’s account of learning
is one of its strengths, it also carries liabilities. Gradient-
descent learning algorithms of the kind employed in our
simulations, despite their power, depend on interleaved
training in order to prevent so-called catastrophic in-
terference (see McCloskey & Cohen, 1989). While pro-
posals have been made concerning how this problem
may be overcome within the nervous system (McClel-
land, McNaughton, & O’Reilly, 1995), the issue con-
tinues to be debated in the literature (see, e.g. Page,
2000).

While it seems reasonable to assume that much
learning about sequential tasks is acquired gradually and
implicitly, it is also undeniable that humans are able to
assemble representations for novel tasks quite rapidly,
for example based on verbal instructions. This may seem
to provide a challenge for the gradualist account of
learning implemented in our model. However, in this
case, the problem may be more apparent than actual. As
St John (1992) has shown, the same kind of processing
mechanisms involved in our model can also be used to
rapidly encode and parse linguistic input (see also
McClelland, St. John, & Taraban, 1989). In this work,
the task posed to the model was to respond to queries
about presented sentences (e.g. identifying role-fillers).
However, the model could, in principle, have been asked
to produce sequential outputs like those produced by the
model in our simulations.

The work we have presented deals with knowledge
that is essentially procedural; the task representations we
have discussed serve only to guide performance on-line.
However, there appear to be other ways in which
knowledge about tasks can be accessed and applied. For
example, planning in unfamiliar or problematic domains
may call for a manipulation of task representations quite
unlike that involved in stepping through a familiar task.
Interestingly, the most successful models in this domain
to date have employed independent, non-overlapping
task (or goal) representations (e.g. Anderson & Lebiere,
1998; Laird, Newell, & Rosenbloom, 1987). Whether
this approach is necessary or optimal presents an inter-
esting question for future research.

A note on the behavioral domain

Discussions of task set, including many of the articles in
this special issue, focus on simple laboratory tasks,
typically unfamiliar to the experimental participant. We
have focused here on a different behavioral domain, that
of everyday routine sequential behavior. Needless to say,
both areas of behavior are worth understanding on their
own terms. However, it is worth noting that certain key
issues pertaining to task representation are brought out

more strongly when considering naturalistic action.
Central among these is the role of similarity. Routine
sequential behavior throws this issue into relief because
it provides a domain rich in overlap and shared struc-
ture.

There is an analogy here to the domain of semantic
knowledge. Experiments concerned with this topic tend
to employ stimuli drawn from everyday life, tapping into
the graded and multidimensional similarity relations
that structure our knowledge of everyday objects. It is
interesting to note that there is, in fact, an historical and
conceptual link between contemporary theories of se-
mantic memory and contemporary theories of action,
evident in the hierarchical tree structures frequently in-
voked in both domains. Given this link, it is perhaps not
surprising that recent work in semantics has suggested a
reformulation very closely related to what we have
suggested here for task representation (see McClelland
& Rogers, 1997).

Of course, as we have just noted, it is an open ques-
tion to what extent the points we have made in the
context of routine sequential action might apply to non-
routine tasks, and this comment extends to the kinds of
task typically used in laboratory studies of task set. Even
in the domain of routine action, further empirical work
will be necessary if a strong case is to be made for the
account we have presented here. Still, it already seems
clear that, in seeking to understand task set, it may be
helpful to consider a wider range of theoretical possi-
bilities than those currently prevalent in work on action.
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