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Cooperative and Competitive Interactions Facilitate Stereo
Computations in Macaque Primary Visual Cortex
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Inferring depth from binocular disparities is a difficult problem for the visual system because local features in the left- and right-eye
images must be matched correctly to solve this “stereo correspondence problem.” Cortical architecture and computational studies
suggest that lateral interactions among neurons could help resolve local uncertainty about disparity encoded in individual neurons by
incorporating contextual constraints. We found that correlated activity among pairs of neurons in primary visual cortex depended both
on disparity-tuning relationships and the stimuli displayed within the receptive fields of the neurons. Nearby pairs of neurons with
distinct disparity tuning exhibited a decrease in spike correlation at competing disparities soon after response onset. Distant neuronal
pairs of similar disparity tuning exhibited an increase in spike correlation at mutually preferred disparities. The observed correlated
activity and response dynamics suggests that local competitive and distant cooperative interactions improve disparity tuning of individ-
ual neurons over time. Such interactions could represent a neural substrate for the principal constraints underlying cooperative stereo
algorithms.

Introduction
A fundamental problem of visual inference is that a local piece of
incoming visual information is often ambiguous and subject to
multiple interpretations. Computational and neurophysiological
studies have proposed that contextually constrained interactions
among neurons with a variety of receptive field locations and
stimulus preferences can facilitate the visual inference process
(Marr, 1982; Eckhorn et al., 1988; Gray et al., 1989; Kapadia et al.,
1995; Ringach et al., 1997; Ben-Shahar et al., 2003). Interactions
among neurons can reduce uncertainty caused by noisy, incom-
plete, and ambiguous incoming visual signals. Often, uncertainty
arises even with perfect visual signals because of multiple poten-
tial interpretations of the incoming information.

Local ambiguity is a severe problem when making three-
dimensional interpretations of the visual scene. For example, de-
riving depth information from binocular disparity requires
matching features in the left- and right-eye images that corre-
spond to the same point in space. Several models have been pro-
posed to solve this correspondence problem (for review, see Tsai
and Victor, 2003). Each model offers solutions to stereopsis
problems with specific conditions of computing disparity. Thus

far, most neurophysiological research has focused on predictions
made by the localized disparity energy model (Ohzawa et al.,
1990; DeAngelis et al., 1991; Cumming and DeAngelis, 2001;
Prince et al., 2002; Parker, 2007). Only one recent study has ex-
amined interactions among disparity-tuned neurons and tested
predictions made by more complex computational models of
stereo matching (Menz and Freeman, 2003). In that study, Menz
and Freeman described a coarse-to-fine spatial scale constraint
for local feedforward processing. Here, we examine the spatial
organization and constraints for lateral interactions among
disparity-tuned neurons. We specifically test predictions made
by the subset of models that incorporate one or both of the con-
straints (Sperling, 1970; Dev, 1975; Nelson, 1975; Marr and Pog-
gio, 1976; Pollard et al., 1985; Prazdny, 1985) used in cooperative
stereo algorithms (Marr and Poggio, 1976). Cooperative models
of stereo computations are highly adept at solving the correspon-
dence problem for random dot stereograms (RDSs) (Marr and
Poggio, 1976). Additionally, cooperative computations of dispar-
ity could have much wider implications by explaining several
psychophysical phenomena that suggest that disparity informa-
tion is propagated spatially (Julesz and Chang, 1976; Marr and
Poggio, 1979; Collett, 1985; Mitchison and McKee, 1985; Ram-
achandran and Cavanaugh, 1985; Westheimer, 1986; Stevenson
et al., 1991).

We found evidence for both suppressive and facilitative inter-
actions among disparity-tuned neurons. Pairs of neurons with
distinct disparity tuning and coexistent receptive fields had re-
duced spike correlation soon after stimulus onset. At longer de-
lays and greater distance between receptive fields, pairs of
neurons had increased spike correlation that was stronger when
disparity tuning was more similar. The temporal evolution of
disparity tuning was also suggestive of disparity-dependent com-
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petitive and cooperative interactions. Although not conclusive,
these observations are consistent with the predictions made by
the constraints of cooperative models of stereo computations.

Materials and Methods
Physiological preparation. A detailed description of the physiological
preparation for the monkeys used in these experiments can be found in a
previous study (Smith et al., 2007). All procedures were approved by the
Institutional Animal Care and Use Committee of Carnegie Mellon Uni-
versity and are in accordance with the National Institutes of Health Guide
for the Care and Use of Laboratory Animals. In brief, a cranial recording
chamber overlying the operculum of V1 and sclera eye coil were im-
planted in two rhesus monkeys (Macaca mulatta) under full sterile con-
ditions while monkeys were anesthetized by inhalation (1.5%
isoflurane).

Recording. Transdural recordings were made in the chamber with 60
mm tungsten-in-epoxy and tungsten-in-glass microelectrodes (FHC) in
the two awake, behaving monkeys. Two to eight microelectrodes were
introduced into V1 using custom-made manually driven delron micro-
drives (A-Z Machining Service). Microdrives were designed to each hold
and drive up to four electrodes simultaneously. We attached microdrives
to a grid that was inserted into the recording chamber. Electrode config-

urations were always within a 2 � 4 hole region
of the grid with a minimum and maximum
potential interelectrode distance of 0.5 and 3.2
mm, respectively (Fig. 1 A). Grid spacing was 1
mm, but for some experiments, electrodes
were inserted at an angle with respect to other
electrodes to allow for even tighter spacing
(spacing within cortex was undetermined, but
was constrained to 500 �m based on electrode
dimensions). Each electrode was permanently
attached to the microdrive with cyanoacrylate.
Multielectrode microdrives prevented us from
advancing all electrodes independently. How-
ever, we could advance each microdrive inde-
pendently. All electrodes were inserted at a
similar depth with respect to the grid in which
microdrives were attached. However, record-
ings were potentially in different V1 layers
based on the variability in transdural insertion,
as well as the curvature of the cortex.

Connections between electrodes and a
Tucker-Davis 16-channel headstage were made
with independently shielded micro-coaxial
wire (World Precision Instruments). These sig-
nals were digitally sampled at 24.4 kHz with a
Tucker-Davis 16-channel Medusa preampli-
fier and bandpass filtered between 2.2 Hz and
7.5 kHz. Digital signals were then processed
with a Tucker-Davis RX5 Pentusa base station
and Open Explorer software. Each channel was
digitally filtered between 300 Hz and 7 kHz and
action potentials (22 samples) were triggered
by a manually set threshold. Time-window
threshold sorting was used for basic on-line re-
ceptive field characterization (Fig. 1 A, B).

All subsequent analyses were performed on
off-line sorted data using principal component
analysis (PCA) (Shoham et al., 2003). We used
PCA spike sorting to remove any potential ar-
tifact and noise, as well as to isolate the most
robust single-unit or multiunit waveform.
Multiple waveforms were analyzed on the same
electrode only if waveform SDs were com-
pletely nonoverlapping for at least one of the 22
samples (Fig. 1C,D). Seventeen of the 63 pairs
described in the article were recorded on the
same electrode. We found the best compro-

mised depth for each microdrive, which produced signal-to-noise ratio
values (� � 2.9 � 0.1) that were mostly comparable with typical single-
unit recordings in more stable paralyzed and anesthetized preparations
(Kelly et al., 2007).

Stimulation. Stimuli were presented to the monkeys on a 21 inch Sony
Trinitron cathode ray tube with a 120 Hz refresh rate and mean lumi-
nance of 39 cd/m 2. For basic receptive field characterization, we used two
forms of stimulation. First, a white or black bar was manually drifted
across the receptive field while the monkey fixated to approximately
determine the receptive field center. Then, a white or black bar was
automatically drifted across the receptive field at eight different direc-
tions (45° increments) at 2°/s for more accurate receptive field plotting,
as well as to quantify orientation tuning and direction selectivity. For
stereoscopic stimuli, left- and right-eye images were presented in alter-
nating frames using liquid crystal shutter goggles (Stereographics). Dy-
namic RDSs (DRDSs) were presented for 1 s in a 3.5° aperture with 25%
dot density (half-black, half-white; 0.094° size) and random dot patterns
were updated at a rate of 12 Hz (Fig. 1 B). Thirty different DRDS movies
(360 random dot patterns) were presented twice for a total of 60 trials for
each of 11 disparities (�0.94, �0.658, �0.282, �0.188, �0.094, 0°). For
three recording sessions (n � 8 neurons), we presented only seven dis-
parities (�0.94, �0.658, �0.282, 0°). Stimulus onset was registered with
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Figure 1. A, B, An example recording session. In this session, we used three dual electrode microdrives in a 2 � 3 configuration
(one electrode failed to record neural activity and was disconnected). A, Position of the six-electrode array with respect to the
macaque brain and the grid where microdrives were attached within the recording chamber (dashed lines are approximate
retinotopic coordinates and solid black line overlaying the grid is approximate location of the lunate sulcus based on several
previous recording sessions within this chamber). The bottom plots show filtered neural activity for all channels and samples of
triggered and on-line sorted action potentials. B, Receptive field locations (minimum response field) with respect to fixation (red)
and DRDS stimulation. C, D, Examples of multiple waveforms (dotted lines are SDs) recorded on the same electrode. C, We typically
encountered multiple units that were easily distinguishable (these are waveforms for the competitive example pair of neurons
described in the main text). D, The most waveform overlap that was allowed to consider multiple waveforms on the same electrode
for cross-correlation analysis.
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submillisecond precision by recording a digital pulse after a frame reset
immediately preceding the start of DRDS presentation.

Cross-correlation analysis. We used standard cross-correlation meth-
ods to measure the dynamics of interactions (Aertsen et al., 1989). First,
the probability of joint spike occurrences between two neurons was cal-
culated in 1 ms bins at all possible lag times, all possible times from
stimulus onset, and for all disparities presented by averaging counts over
60 trials. Second, the chance probability of joint spike occurrences was
determined by taking the outer product of the peristimulus time histo-
grams (PSTHs). This was the expected joint spike occurrences based on
the instantaneous average firing probabilities, if the two neurons were
independent. The cross-covariance histogram is the difference between
joint spike occurrences and chance joint spike occurrences as follows:

Cxy�t1, t2� � �x�t1�, y�t2�� � �x�t1���y�t2�� . (1)

The cross-covariance histogram was then normalized by the square root
of the product of the two auto-covariance histograms for each neuron to
produce a histogram of Pearson’s correlation coefficients as follows:

Dxy�t1, t2� �
Cxy�t1, t2�

�Cxx�t1, t1� Cyy�t2, t2�
. (2)

We next extracted all correlation measurements from this normalized
cross-covariance histogram (also referred to as the normalized joint
poststimulus time histogram).

We first derived the traditional cross-correlation histogram (CCH) by
averaging along the principal diagonal. We calculated this CCH with as
many spikes as possible because more spikes provide a more reliable
estimate of the following: (1) whether or not two neurons interact (cor-
related spiking responses) at any of the disparities presented and if they
interact, (2) the temporal window of that interaction. CCHs were
smoothed with a window that was based on the width of the central peak
(median, 15 ms; maximum, 40 ms). Next, we calculated the SD of the
CCH within a window far from the central peak (�175–375 ms lag time)
for each disparity presented. We set a threshold for interacting pairs to be
3 SDs above zero. The CCH had to pass this threshold within �10 ms of
zero lag time for any disparity presented to be included in subsequent
analysis. We then also assessed confidence in the CCH peak by exam-
ining variance across trials by bootstrapping CCH estimates (Efron
and Tibshirani, 1993; Ventura et al., 2005b).

Next, we integrated the area under the central peak in the CCH (half-
height, full-width) (Das and Gilbert, 1999; Menz and Freeman, 2003).
Correlation cannot be estimated at zero lag time for two neurons re-
corded on the same electrode (waveforms overlap within the same sig-
nal), which creates a large artifact negative peak. This artifact for pairs of
neurons recorded on the same electrode was excluded in central peak
integration. The integration provided us with the most robust estimate of
correlation maximizing the number of spikes included so that we could
examine the correlation changes with respect to disparity and time. This
represents the total correlation or percentage of spikes from one neuron
that co-occurred with spikes in the other neuron within the window of
time observed from the CCH independent of changes in firing rate. Pos-
itive or negative correlation does not imply one neuron is driving or
suppressing another neuron. Positive or negative correlation only sug-
gests that the neuronal pair is connected in some manner that causes the
second neuron to spike or not spike whenever the first neuron spikes. To
determine whether disparity influenced correlation, we repeated this
half-height full-width integration for all disparities. We then used this
same half-height full-width integration across time to estimate correla-
tion in 100 ms windows for every 1 ms.

Correlation in trial-to-trial variability can lead to CCH structure with
the same temporal precision as the response structure (Brody, 1999).
Because the temporal window of neural interaction (CCH peak widths
ranged from 3 to 83 ms) that we observed overlapped with the temporal
structure of our stimulus (12 Hz), which in turn led to some 12 Hz
response modulation, this is an important consideration for our corre-
lation interpretations. Therefore, we carefully tested and provided some
correction for the effects of trial-to-trial variability with our correlation
estimates. First, we incorporated a correction factor into Equation 2 to

account for trial-to-trial changes in the average firing rate (based on the
entire stimulus duration). The correction has been mentioned and rou-
tinely used in previous studies (Brody, 1999; Gerstein and Kirkland,
2001), but has not been explicitly described until recently (Ventura et al.,
2005a). In short, the outer product terms are corrected based on the
average firing rate for each neuron for each trial. The PSTH profiles
(determined with all trials) are assumed to be stationary so this correc-
tion only scales each PSTH for changes in average firing from trial-to-
trial as follows:

�x�t1���y�t2��corrected �
1

N �
n�1

N �x�n�

��x

�x�t1��
�y�n�

�� y

�y�t2�� , (3)

where n is trial number, N is total trials, �(n) is average firing rate for trial
n, and �� is average firing rate for all trials. This does not correct for all
potential sources of variability and is usually referred to as an excitability
correction (Brody, 1999; Gerstein and Kirkland, 2001; Ventura et al.,
2005a).

Second, we bootstrapped our estimates with respect to trials (Efron
and Tibshirani, 1993; Ventura et al., 2005b). For any correlation mea-
surement we reported in the main text, we calculated a raw estimate and
then a distribution of 200 estimates using a random selection of 60 trials
(allowing repeats). We then subtracted the raw estimate from the mean
of this distribution to estimate bias caused by undersampling, which was
last subtracted from the raw estimate (final debiased estimate). The 2.5th
and 97.5th percentile estimates in the bootstrap distribution were used in
the same manner to estimate 95% confidence intervals. We found no
noticeable difference in calculations when using larger numbers of boot-
strapped estimates.

Finally, we checked for the influence of trial-to-trial stimulus variabil-
ity. Because we displayed 30 different DRDSs two times, this allowed us
to measure correlation using a simpler cross-correlation measurement in
which only a single trial was used to estimate chance joint occurrences—
the shift predictor corrected CCH (Bair et al., 2001; Kohn and Smith,
2005). Although this technique is noisier and there is also a subtle differ-
ence in normalization, we can still compare CCHs using the shift predic-
tor and the normalized cross-covariance histogram because they are
nearly equivalent measurements (Aertsen et al., 1989; Bair et al., 2001).
With shift predictor estimation of chance joint occurrences, we remove
variability caused by the stimulus by shifting (or sometimes called shuf-
fling) trials for each neuron to opposite trials for the exact same DRDS.

Figure 2 A illustrates that we found negligible differences in the region
of the CCH in which we focus all of our analyses (near zero lag time)
when we included excitability and bootstrap correction to cross-
covariance measurements. The excitability correction did not remove the
peak, but only shifted the entire CCH to a lower value. The reason for
little change in the peak is that the 12 Hz modulation in the stimulus leads
to only a moderate 12 Hz response modulation. Equation 3 (excitability
correction) only rescales the probability of chance correlation as follows:

Dchance�t1, t2� �
�x�t1���y�t2��

�Cxx�t1, t1� Cyy�t2, t2�
. (4)

Because the chance correlation (Fig. 2C, red) is flat compared with the
beyond chance correlation (Fig. 2C, blue), it only shifts the estimated
CCH. Although we indeed can see a 12 Hz response modulation in the
chance correlation with closer inspection (Fig. 2 D), on average, the 12 Hz
chance correlation structure is 100 times smaller than the beyond chance
central peak correlation structure. Overall, we did notice some 12 Hz
oscillation in CCHs, but it was always much smaller than the CCH central
peak and only added a small amount of noise to our measurements. As an
additional test, we used DRDSs with different modulation rates during
some recording sessions. Figure 2 E shows the results for a pair of neurons
tested with DRDSs at different modulation rates. CCH peak width did
not change whether DRDSs were modulated at 12 or 7 Hz. If the CCH
peak did arise from trial-to-trial nonstationarity factors, the peak width
should have increased from 12 to 7 Hz. Finally, there was also little
difference between our cross-covariance estimates and shift-predictor
estimates (Fig. 2 B), suggesting stimulus variability was also negligible in

15782 • J. Neurosci., December 16, 2009 • 29(50):15780 –15795 Samonds et al. • Cooperative Stereo Computations in Macaque V1



correlation measurements. Overall, our analysis suggests that trial-to-
trial variability and any associated correction were unlikely to have been
major factors in our conclusions.

Eye movement analysis. Eye movement could have influenced our re-
sults and interpretations in two ways. First, binocular stimulation could
trigger vergence eye movements that would change the binocular dispar-
ity during stimulation. Second, changes in fixation across trials and
within trials lead to variability in the relationship of our stimulus and the
receptive field of the neuron.

Because we did not record movement for both eyes, we did not measure
vergence directly. However, the variation of monocular eye movements
within a trial (��0.1°) (see supplemental Fig. 1, available at www.jneurosci.
org as supplemental material), the size of the disparities tested (�0.094°),
and the assumption of some symmetry during vergence suggests that we
could still indirectly measure some vergence. Our biggest concern with
this analysis was whether or not there was symmetry between left- and
right-eye movements during vergence. One reason eye movements
would be asymmetric is if the monkeys were trained to avoid vergence
based on feedback from data from a single eye. Instead of avoiding ver-
gence, the monkey could develop a strategy of using asymmetric vergence
to maintain the position of the single eye within the fixation window. We
avoided this scenario because our fixation window was large enough
(�0.5°) that vergence movements were allowed even for our largest dis-
parities tested (0.94°). We should note that the monkeys fixated with
much greater accuracy than the fixation window allowed (supplemental
Fig. 1, available at www.jneurosci.org as supplemental material).

To verify that we could observe vergence based on data from one
eye, we measured eye movements (digitally sampled at 976 Hz) dur-
ing a task in which the monkeys had to fixate on a point that was
rendered binocularly at the same depths as the DRDSs used during
recordings (supplemental Fig. 1 A, available at www.jneurosci.org as
supplemental material). The data obtained from this task revealed
clear and significant disparity-dependent horizontal eye movements
for both monkeys (n � 60 trials; p � 0.0001; one-way ANOVA) that
were consistent with vergence movements. The relationship between eye
movement and disparity was highly significant when we used mean po-
sition, variance of position, or correlation of position with time. For near
disparities, the left eye moved horizontally outward (left or uncrossed)
(supplemental Fig. 1C,D, available at www.jneurosci.org as supplemental
material). For far disparities, the left eye moved horizontally inward
(right or crossed) (supplemental Fig. 1G,H, available at www.jneurosci.

org as supplemental material). This movement
was clearly observed even for the smallest dis-
parities tested during recording (0.094°). And
finally, the results in supplemental Figure 1
(available at www.jneurosci.org as supplemen-
tal material) support the assumption of sym-
metry because the mean position of the left eye
changed with equal, but opposite, magnitude
for near and far disparities (and the magnitude
was equal to one-half the disparity presented).
To clearly summarize the disparity-dependent
vergence movements, we plotted the correla-
tion of horizontal eye positions with time for
each disparity tested to show the transition
from divergence to convergence (supplemen-
tal Fig. 1 K, L, available at www.jneurosci.org as
supplemental material).

Once we established that we could observe
evidence of vergence based on position data
from one eye for even the smallest disparities
used during recordings, we tested whether or
not there was evidence of vergence during
DRDS stimulation (supplemental Fig. 1 B,
available at www.jneurosci.org as supplemen-
tal material). When the DRDSs were 4° away
from the fixation point, we did not find signif-
icant disparity-dependent horizontal eye
movements for both monkeys (n � 120 trials;
p 	 0.05; one-way ANOVA) when we used

mean position, variance of position, or correlation of position with time
(supplemental Fig. 1, available at www.jneurosci.org as supplemental
material, compare the right half with the left half). Across the multiple
recording sessions that generated the data for this study, we observed
similar nonsignificant results. This was because we made sure that we
only recorded from neurons with receptive fields sufficiently far enough
from fixation (� � 4.0 � 0.1°) so that the stimulus would not induce
vergence (supplemental Fig. 2, available at www.jneurosci.org as supple-
mental material). We also tested for vergence outside of recording ses-
sions for DRDSs that were presented right on top of (or behind) the
fixation point, which was displayed at 0° disparity. For only one monkey,
we found a weak, but significant disparity-dependent effect that indicated
the DRDSs were able to encourage vergence errors for only the smallest
disparities presented and only when presented right at fixation (n � 120
trials; p�0.0001; one-way ANOVA). This was not a problem during record-
ings because DRDSs were positioned sufficiently far enough away from the
fixation point (supplemental Fig. 2, available at www.jneurosci.org as sup-
plemental material).

Our eye movement analysis may have still failed to measure more
subtle vergence errors during stimulation because the range of horizontal
positions is equal to the smallest disparities tested. These errors could
have lead to changes in the neuronal responses in two ways. First, corre-
lation between spike trains could increase and decrease over time in a
disparity-dependent manner. If this were the case, we would expect our
results to show systematic disparity-dependent changes in spike correla-
tion regardless of the preferred disparity of the neuron. The vergence
errors would be independent of the behavior of the neuron and only
occur for near and/or far disparities and not for zero disparity DRDS. We
did not observe such systematic behavior. Disparity dependence of spike
correlation depended explicitly on the preferred disparities of the neu-
rons and we observed similar evidence of cooperative and competitive
interactions for all possible combinations of preferred disparities for
neuronal pairs. Second, correlation between spike trains could increase
at stimulus disparities where the slopes of the two turning curves had the
same sign and decrease where the slopes had the opposite sign. We com-
pared the average spike correlation for neuronal pairs for these two con-
ditions and found no significant difference ( p � 0.96) (supplemental
Fig. 3, available at www.jneurosci.org as supplemental material).

Finally, disparity tuning of individual neurons could change over time.
If vergence errors were occurring, disparity tuning would become weaker
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over time because some or all stimuli would be
viewed as 0° disparity as vergence occurred.
However, we found the opposite effect: dispar-
ity tuning improved over time for neurons
with near, far, or zero preferred disparity.

Results
Cooperative algorithms for solving the
correspondence problem tend to rely on
one or both of the following constraints.
The first constraint is termed uniqueness:
each location in an image can only be as-
signed a single disparity solution. This
would suggest local competition: a sup-
pressive interaction among neurons that
encode different disparities at the same
spatial location. The second constraint is
termed continuity: depth changes gradu-
ally along an object because of the cohe-
siveness of matter, so a disparity solution
at one location is more likely to be correct
if the solution for an adjacent location is
similar. This would suggest cooperation: a
facilitative interaction among neurons that detect the same dis-
parity at different but neighboring locations. Each neuron would
in effect reinforce the disparity estimates of its neighbors.

We hypothesized that interactions among a population of vi-
sual cortical neurons tuned for a variety of disparities and spatial
locations would satisfy the dual constraints of uniqueness and
continuity and implement a general depth inference computa-
tion. We predicted that two neurons representing the same re-
gion (Fig. 3A) of the visual field and preferring distinct disparities
(Fig. 3B) would interact competitively. This would lead to nega-
tive correlation among spike trains (spike correlation) and a de-
crease in firing rate over time when nonpreferred disparities are
presented. We predicted that two neurons representing neigh-
boring regions of the visual field (Fig. 3D) and favoring similar
disparities (Fig. 3E) would interact cooperatively. This would
lead to positive spike correlation and an increase in firing rate
over time when disparities preferred by both neurons are pre-
sented relative to when all other disparities are presented.

Spike correlation between disparity-tuned neurons
We first examined whether the data matched our computational
predictions with respect to spike correlation. To test these predic-
tions across a population of neuronal pairs, we recorded from
two to eight microelectrodes inserted in primary visual cortex of
two awake, behaving macaques (see Materials and Methods).
Since some electrodes recorded the activity of multiple neurons
that had discriminable spike waveforms, this technique allowed
us to examine responses of up to 10 neurons simultaneously. We
recorded from a total of 342 pairs representing combinations of
154 neurons. From this population, 103 neurons (67%) had sig-
nificant disparity tuning (one-way ANOVA, p � 0.01) and 154
pairs (45%) were composed of two neurons that both had signif-
icant disparity tuning. This sample of neuronal pairs provided us
with sufficient diversity in both receptive field relationships and
preferred disparities to test our predictions.

We presented 1 s DRDSs to monkeys trained to fixate during
stimulation. DRDSs were updated with a new set of dot positions
at 12 Hz and rendered at 11 different horizontal disparities. We
quantified spike correlation between pairs of neurons by cross-
correlating spike trains over 60 trials at each of the 11 disparities

presented (see Materials and Methods). The CCH over the entire
stimulus duration provided us with a function of spike correla-
tion versus the delay between spikes (lag time) for the two neu-
rons. This calculation tells us the probability (beyond chance) of
a spike occurring in one neuron whenever a spike occurs in the
other neuron at different lag times. We used this CCH to deter-
mine whether or not neuronal pairs were interacting for any
disparity presented and, if they were, over what window of time.
Of 154 pairs of neurons with significant disparity tuning, 63
(41%) had a correlation peak or valley greater than a threshold
determined by standard criteria for at least one disparity pre-
sented (see Materials and Methods). For each of these 63 pairs of
neurons, we integrated the spike correlation under the half-
height width of the central CCH peak to examine interactions for
these pairs of neurons as a function of disparity-tuning similarity,
disparity presented, and time from stimulus onset.

Figure 3C shows that the example pair of neurons predicted to
interact competitively had positive spike correlation (averaged
over all disparities presented) that decreased soon after response
onset resulting in negative spike correlation during stimulation.
This negative spike correlation supports our prediction of com-
petition between these neurons. Figure 3F shows that the exam-
ple pair of neurons predicted to interact cooperatively had zero
spike correlation (again, averaged over all disparities presented)
that increased soon after response onset resulting in bursts of
positive spike correlation during stimulation. This positive spike
correlation supports our prediction of cooperation between these
neurons.

To summarize how average spike correlation varied with dis-
tance and similarity in disparity tuning for each neuronal pair, we
measured the distance between receptive field centers, the
disparity-tuning similarity (correlation between tuning curves:
rdisp), and the average spike correlation over the entire stimulus
period (excluding the initial 50 ms before response onset).

In Figure 4, the distance between receptive fields is plotted
versus disparity-tuning similarity for neuronal pairs that had sig-
nificant average spike correlation. As the distance between recep-
tive fields increased to 	1.0° (with this separation, V1 receptive
fields have little or no overlap), we only observed spike correla-
tion for neuronal pairs with similar disparity tuning (rdisp 	 0).

Fi
rin

g 
R

at
e 

(s
ps

) Neuron 1
B

E
Neuron 1

Neuron 2
0

10

20

30

-1.0 1.00.0
Horizontal Disparity (°)

0

80

120

-1.0 1.0

40

0.0

Neuron 2

-0.10

0.00

0.10

0.20

0 500 1000

Time (ms)

Sp
ik

e 
C

or
re

la
tio

n

Fi
rin

g 
R

at
e 

(s
ps

)

F
-0.10

0.00

0.10

0.20

0 500 1000

Sp
ik

e 
C

or
re

la
tio

n

-0.10

0.00

0.10

0.20

0 500 1000

Sp
ik

e 
C

or
re

la
tio

n

C

1°

A
ΔRF Distance = 0.06°

D

1°

ΔRF Distance = 1.05°

Figure 3. Evidence of competitive and cooperative interaction. A, Neurons with overlapping receptive fields that were pre-
sented random dot stereograms (only the image for one eye is shown). The white squares and bars are preferred orientation and
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trial-to-trial SE (n � 60).
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This generated significant positive correlation between receptive
field distance and disparity-tuning similarity (n � 63 pairs,
r � 0.32, p � 0.01; all statistical tests on spike correlation mea-
surements were conducted on Fisher r-to-Z transformations).
Additionally, the probability of finding significant average spike
correlation in general was significantly greater for neuronal pairs
with similar disparity preferences ( p � 0.05; Wilcoxon’s rank
sum test for disparity-tuning similarity of n � 63 interacting vs
n � 91 non-interacting pairs). Overall, these observations suggest
that interactions were more likely to occur among neurons with
similar disparity-tuning.

Next, we examined the relationship between the magnitude of
spike correlation and disparity-tuning similarity. However, be-
fore we could examine this relationship, we first had to consider
two previously documented properties of spike correlation. Spike
correlation can depend on features of the stimuli presented
(Kohn and Smith, 2005; Samonds and Bonds, 2005) and spike
correlation can vary during stimulus presentation (Samonds and
Bonds, 2005; Zhou et al., 2008).

Spike correlation varies with disparity presented
The dependence of spike correlation on stimulus features such as
orientation can arise in part from a dependence of spike correla-
tion on firing rate caused by either the spiking threshold (de la
Rocha et al., 2007) or refractory period (Ito and Tsuji, 2000).
These studies were looking at very simple models of neuronal
connectivity such as a single common input between two neu-
rons. Spike correlation between two neurons in V1 can also be
influenced by multiple potential circuits between the neurons
that are more complex. First, when two neurons have some over-
lap between their receptive fields, we expect them to receive com-
mon excitatory input from previous layers of V1 or the lateral
geniculate nucleus. Second, neuronal pairs can interact directly
or indirectly through excitatory or inhibitory horizontal connec-
tions. And last, they might receive common inhibitory or excita-
tory feedback inputs from subsequent layers of V1 or extrastriate
areas. From these circuits, only a direct or indirect inhibitory
connection will lead to negative spike correlation between two
neurons. All the other sources of interaction result in positive
spike correlation (Moore et al., 1970). Most of our neuronal pairs
were likely interacting through a combination of all these poten-
tial circuits, which lead to a prevalence of observing positive spike
correlation. Because each of these potential circuits was likely
engaged in different ways by different stimuli, it was expected that
spike correlation might conditionally change with stimuli. We

examined several characteristics of our spike correlation mea-
surements to clarify how firing rate and complex circuitry af-
fected the dependence of spike correlation on the disparity
presented.

First, Figure 5, A and B, summarizes the variation in the tem-
poral characteristics of spike correlation to demonstrate that the
underlying circuitry that generates the spike correlation was
complex. Figure 5, C and D, then shows examples of how changes
in the disparity presented can lead to changes in spike correlation.

Spike correlation between neurons with receptive distances of
�0.5° featured temporally precise spike correlation: strong (Fig.
5A, left), narrow (Fig. 5B, left), and symmetric (Fig. 5C, second
row) CCH peaks. These CCHs closely matched the predictions
from a model of a common excitatory input (Moore et al., 1970).
When these types of neuronal pairs were presented a disparity
that was able to drive both neurons equally well (Fig. 5C, top row,
gray arrow), a strong narrow CCH peak was observed (Fig. 5C,
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second row, gray CCH). When a disparity
was presented that drove one neuron well,
but led to a weak response from the other
neuron (Fig. 5C, top row, black arrow),
this CCH peak could be reduced in mag-
nitude to a level at which it could not be
observed above the CCH noise (Fig. 5C,
third row, black CCH).

Spike correlation between neurons
with receptive distances of 	1.0° featured
temporally diffuse spike correlation: weak
(Fig. 5A, right) and broad (Fig. 5B, right)
CCH peaks (Fig. 5D, second row). These
CCHs closely matched predictions from
models of a common inhibitory input or
more complex polysynaptic excitatory
circuits (Moore et al., 1970). The size of
these CCH peaks also depended on the
disparity presented. The strongest peaks
(Fig. 5D, second row, gray CCH) occurred
when a disparity was presented that was
able to drive both neurons equally well
(Fig. 5D, top row, gray arrow). When a
disparity was presented that caused a
weaker response for one or both neurons
(Fig. 5D, top row, black arrow), the CCH
peak was usually reduced (Fig. 5D, bot-
tom row, black CCH).

This disparity dependence of spike
correlation for the two example pairs of
neurons presented in Figure 5 could be
explained by firing rate changes that ac-
company changes in the disparity pre-
sented or different circuits being
engaged by different disparities presented.
We discovered two behaviors of disparity-
dependent spike correlation that suggest
the latter explanation plays some role
because spike correlation varied inde-
pendently of firing rate.

First, for pairs of neurons with very
different disparity-tuning (Fig. 5C), we observed the minimum
spike correlation at the preferred disparity of one or both of the
neurons. These preferred disparities do not typically coincide
with low values of N1*N2 (the product of the normalized firing
rates) and therefore cannot be explained by a dependence of spike
correlation on firing rate (de la Rocha et al., 2007). For neurons
with rdisp � 0, we computed the average spike correlation at the
preferred disparities for each neuron (Fig. 6A; maximum of N1

and N2) and compared that to the average spike correlation com-
puted at all other disparities (Fig. 6, left column). We found that
the spike correlation was significantly lower at the preferred dis-
parities (n � 17 pairs; p � 0.01) (Fig. 6E) (all statistical tests were
paired t tests unless otherwise noted), but N1*N2 was not signif-
icantly different between the preferred and nonpreferred dispar-
ities ( p � 0.13) (Fig. 6C). One possible interpretation of this
result is that a direct inhibitory connection generating the
strongest negative spike correlation at the preferred disparities
canceled out the baseline positive spike correlation generated
by the common excitatory input.

Second, we observed that spike correlation remained constant
or even increased when disparities were presented that led to

continually weaker responses in both neurons (lower N1*N2),
presumably because of common suppression. To summarize this
behavior for the population of neuronal pairs, we measured spike
correlation for each disparity that was presented. Spike correla-
tion of pairs of neurons depended significantly on the disparity in
presented stimuli for 55 of 63 pairs (one-way ANOVA, p � 0.05).
For each pair of neurons, the responses were sorted by the dis-
parity presented that caused the greatest product of the normal-
ized firing rates (Fig. 6, right column). Figure 6B displays the
population average of N1*N2 sorted from the maximum to the
minimum. Figure 6D displays the corresponding spike correla-
tion measurements. The falloff of the spike correlation slows as
N1*N2 continues to decrease at a near-constant rate. The spike
correlation then increases for the minimum N1*N2. This obser-
vation contradicts a simple direct relationship between firing rate
and spike correlation because spike correlation could increase for
both increasing and decreasing firing rate depending on which
disparity was presented. Alternatively, common excitatory cir-
cuits could have been engaged when common preferred dispari-
ties were presented and common inhibitory circuits when
common least preferred disparities were presented. Both circuits
would generate positive spike correlation.
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Spike correlation varies over time
Spike correlation can also vary over the period of stimulation
(Samonds and Bonds, 2005; Zhou et al., 2008). This is also likely
attributable to the diversity of the potential circuits contributing
to spike correlation between neuronal pairs. Each of the potential
circuits described in the previous section can have different tem-
poral dynamics (Angelucci and Bullier, 2003).

In Figure 7A, we plotted the population average of spike cor-
relation over time (averaged in 100 ms windows). For reference,
the population average of the firing rate versus time is plotted in
Figure 7B (also averaged in 100 ms windows). At response onset,
spike correlation increases at a high rate, is followed by a sharp

drop, and then spike correlation slowly increases over the re-
mainder of the stimulation period. The dynamics of the spike
correlation are noticeably very distinct from the dynamics of the
firing rate.

We have demonstrated that spike correlation depends on the
disparity presented (Figs. 5, 6) and varies over time during stim-
ulation (Fig. 7). The relationship between spike correlation and
the disparity presented also varied over time. We show how the
same data that was presented in Figure 6 evolved over time in
Figure 8. The decrease in spike correlation (Fig. 8C, compare
thick gray to thin black line) at the maximum of N1 and N2 (Fig.
8A, thick gray line) occurred immediately at the response onset.
The increase in spike correlation (Fig. 8D, compare thick gray to
thin black line) at the minimum N1*N2 (Fig. 8B, thick gray line)
was also immediate and strongest during the initial onset burst.
The increase in spike correlation (Fig. 8D, compare thick black to
thin black line) at the maximum N1*N2 (Fig. 8B, thick black line)
was strongest in the delayed response after the initial onset burst
of both spike correlation and firing rate. The slopes of the spike
correlation versus time for the maximum N1*N2 were signifi-
cantly greater than the slopes of the mean spike correlation versus
time for all other N1*N2 (n � 63 pairs; p � 0.02), as well as the
spike correlation versus time at the minimum N1*N2 (n � 63
pairs; p � 0.05). These results suggest that the spike correlation

changes indicative of suppressive circuits
(thick gray) were immediate and there-
fore local, whereas the spike correlation
indicative of facilitative circuits (thick
black) were more delayed and therefore
distant.

Spike correlation depends on disparity-
tuning similarity
Once we characterized how spike correla-
tion depended on the disparity presented
and varied over the period of stimulation,
we examined the relationship between
the magnitude of spike correlation and
disparity-tuning similarity. We summarize
the interdependence between disparity-
tuning similarity, disparity presented, and
time from response onset in Figure 9. Each
of three pairs of scatter plots (right column)
were generated from data at a particular dis-
parity presented that was computed from
the tuning curves (left column). For each
pair, scatter plots on the left column are
based on the early portion of the response
(50–300 ms), whereas plots on the right col-
umn include the late portion of the response
(300–1000 ms).

The first pair of scatter plots (Fig. 9A, right) shows the data
when a preferred disparity for one neuron was presented: the
maximum of N1 and N2 or the strongest response from one neu-
ron and a weaker response from the other neuron (Fig. 9A, left).
We observed the minimum spike correlation for neuronal pairs
with very different disparity tuning and negative spike correla-
tion most often when this disparity was presented, which both are
consistent with one neuron suppressing the other neuron. Over-
all, the net spike correlation was positive, but still weaker than
when other disparities were presented (Fig. 9, compare B, C). The
spike correlation likely remains positive from a prevalence of
common excitatory and inhibitory inputs between V1 neurons
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strongly influencing spike correlation
measurements in general. For this dispar-
ity, the spike correlation for neuronal
pairs with very similar disparity tuning re-
mained strong because the maximum of
N1 and N2 was very close to the maximum
of N1*N2 (Fig. 9, compare A, C). Because
pairs of neurons with low rdisp had their
minimum spike correlation at this dispar-
ity and pairs of neurons with high rdisp had
or nearly had their maximum spike corre-
lation at this disparity, we observed a sig-
nificant dependence between spike
correlation and disparity-tuning similar-
ity (n � 63 pairs; r � 0.29 and r � 0.51;
p � 0.02 and p � 0.001).

The second pair of scatter plots shows
the data when the common least preferred
disparity was presented: minimum of
N1*N2 or a weak response from both neu-
rons (Fig. 9B). Throughout the response,
spike correlation was relatively strong and
depended on disparity-tuning similarity
(n � 63 pairs; r � 0.33 and 0.32; p � 0.01).
Pairs of neurons with similar disparity
tuning that receive strong common sup-
pression from a neuron tuned to their
common least preferred disparity would
result in observing stronger positive spike
correlation for these pairs relative to other
neuronal pairs. The unobserved neuron
providing the common suppression
would be effectively competing with each
neuron by suppressing the responses of
the two neurons when driven by its pre-
ferred disparity.

The final set of scatter plots shows the data when the mutually
preferred disparity was presented: maximum of N1*N2 or a
strong response from both neurons (Fig. 9C). There was a
strong dependence of spike correlation on disparity-tuning
similarity especially in the later portion of the response (n �
63 pairs; r � 0.50; p � 0.001).

Disparity tuning of firing rate sharpens over time
In the previous sections, we characterized spike correlation be-
tween neuronal pairs tuned for horizontal disparity and com-
pared the behavior of the neurons against the computational
predictions of cooperative stereo matching algorithms. In this
section, we examine whether or not the firing rate behavior was
also consistent with our predictions. To reiterate, we predicted
that (1) responses to nonpreferred disparities would be relatively
suppressed over time because of competitive interactions and (2)
responses to preferred disparities would be relatively enhanced
over time because of cooperative interactions. Both behaviors
lead to an overall prediction of improved or sharpened disparity
tuning over time.

In Figure 10, we present examples of disparity-tuning curves
of several neurons and show how the tuning evolves over time.
The left column shows the average firing rate over time when
different disparities were presented. The responses for several
disparities diverge over the stimulation period. Some neurons
have very broad tuning (Fig. 10A) early in the response, whereas
some neurons had no apparent disparity tuning during the initial

response (Fig. 10G). The center column shows the disparity tun-
ing at different time intervals. These intervals were chosen on a
log scale because there were more dramatic changes to disparity
tuning early in the response. When investigating these examples,
we noticed two clear features. First, the responses to the least
preferred disparities were increasingly suppressed over time, re-
sulting in enhanced valleys (Fig. 10H) and suppressed secondary
peaks (Fig. 10E). Second, the region around the preferred dispar-
ity became narrower (Fig. 10B,K). In general, the disparity-
tuning curves sharpened over time.

To summarize this behavior for our population of neurons,
we quantified the tuning for disparity continuously and in the
same four time intervals we used in Figure 10. Although the
Gabor fits used in the center column of Figure 10 illustrate the
evolution of disparity tuning very effectively, they do not work
well for summarizing the behavior for our population for two
main reasons. First, the six-parameter Gabor model does not
provide a straightforward single value that represents the two
features of disparity-tuning sharpening that we mentioned
above. Second, for neurons with weaker responses or poorer dis-
parity tuning, a Gabor model fit was not very stable across time.
So to simplify our analysis, we ranked disparities for each neuron
based on total spike counts starting with the disparity that elicited
the best response to the one that elicited the worst response.
Then, we calculated the best linear fit for the data and used the
slope as a metric of selectivity for disparity. Because some neu-
rons had a faster falloff in response strength with respect to dis-
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parity, we also calculated the slope in log scale for disparity
(logarithmic fit) or log scales for both disparity and firing rate
(power fit). The fit was chosen based on which fit resulted in the
maximum R 2 (i.e., whichever fit best explained the variance). For
54 of 60 neurons, R 2 was 	0.75 and the median R 2 was 0.90 (see
fits for our examples in the right column in Fig. 10). These fits
were not chosen to characterize tuning differences among neu-
rons or disparity tuning in general, but to simply and robustly
characterize changes in disparity selectivity of individual neurons
over time.

The population average of the example data in the left column
and right column of Figure 10 is plotted in Figure 11, A and B,
respectively. Figure 11C shows the population average of our
slope estimates over time and illustrates how disparity selectivity
increases over time. A scatter plot of slopes based on the same
time intervals (initial interval vs delayed intervals) used in the
center column of Figure 10 reveals that disparity selectivity con-
sistently increases over time (Fig. 11D) (all three sets of points fall
below the diagonal; n � 60 neurons; p � 0.002). Different clusters
arise along the diagonal axis in Figure 11D because of the differ-
ent fits (linear, log, power) and demonstrate that the improve-
ments in disparity selectivity occur for neurons with a wide range
of disparity tuning (broad-to-narrow). Because the firing rates
were normalized by the peak firing rate in each time epoch, the
increasing slope means that the ratio of the response for the pre-
ferred disparity versus nonpreferred disparities was increasing

over time. Therefore, sharpened tuning
was not a simple consequence of multipli-
cative changes in response strength.

The results in Figure 11 provide a pop-
ulation summary that captures features
such as enhanced valleys (Fig. 10H) and
suppressed secondary peaks (Fig. 10E)
over time that we observed in the re-
sponses of individual neurons. We also
examined these two features directly from
the population perspective. For 52 of the
60 neurons, there was a secondary peak
response away from the preferred dispar-
ity (Fig. 12A, dark gray asterisk). In Figure
12B, we plotted the population average of
the maximum firing rate (preferred dis-
parity or peak; black), the minimum firing
rate (valley; light gray), and the firing rate
of secondary peaks (dark gray) versus
time. In Figure 12, C and D, the popula-
tion average of the ratios comparing the
peak against the valley (black) and the sec-
ondary peak (gray) are plotted versus
time. For Figure 12C, we used the differ-
ence divided by the sum, which is invari-
ant to multiplicative changes in response
strength. For Figure 12D, we used the dif-
ference divided by the SD of the tuning
curve, which is invariant to multiplicative
and additive changes in response strength.
We did a logarithmic regression fit on
both ratios versus time (from 100 to 1000
ms) for each neuron. As we mentioned
when describing Figure 10, we analyzed all
sharpening results with respect to time on
a log scale because there were more dra-
matic changes to disparity tuning early in

the response. There was a significant positive slope for all four
measurements (n � 52 neurons; p � 0.001) supporting that the
peak-to-valley was enhanced and the secondary peak was sup-
pressed relative to the primary peak over time, which both cannot
be explained by additive changes in the mean firing rate, multi-
plicative changes in the mean firing rate, or any combination
thereof.

Last, we also wanted to assess whether or not the geometry or
shape of the tuning curve changed over time (Fig. 10B,K, nar-
rowed peaks). Although the Gabor model does capture the nar-
rowing peak of the disparity-tuning curve with the frequency
parameter, we found that it failed to capture other features of
disparity-tuning sharpening that we observed. For example,
when looking at the disparity-tuning curves computed from data
over the entire response duration (Fig. 13A–D), we found that
Gabor models were consistently unable to account for peaks be-
ing narrower than the valleys in the data (black) because the
Gabor function is composed of a single sinusoid (gray). In Figure
13E, we replotted the data from Figure 10K to more clearly show
that the peak narrows and the valley broadens over time (com-
pare black to gray data points). Fortunately, sharpening can also
be measured directly from the data without fitting each tuning
curve to a model. If a tuning curve is sharp, we expect it to have a
small number of disparities that yield a very high firing rate, and
a large number of disparities that result in a low firing rate. This
concept is the same as the statistical measurement of skew. Skew-
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ness is the third standardized moment of a
distribution and is defined by the
following:

�1 �
�3

�3 �

1

N �
d�1

N

� f�d� � f��3

��1

N �
d�1

N

� f�d� � f��2� 3
,

(5)

where �3 is the third moment about the
mean, f(d) is the tuning curve (esti-
mated from N disparities), and f� and �
denote the mean and SD of the firing rate
across that tuning curve. As skewness
increases, the number of disparities with
proportionately high firing rates de-
creases, corresponding to an increase in
the sharpness of the tuning curve. Skew-
ness is invariant with respect to the
mean and variance of the tuning curve.
Therefore, changes in skewness cannot
be attributed to changes in the baseline
firing rate or the amplitude of the tun-
ing curve over time.

Skewness was estimated for all the ex-
ample tuning curves shown in Figure 13
to illustrate that skewness was larger
(sharper tuning) for the data versus the
Gabor fits and to provide an example of
skewness increasing over time. Because skewness achieves its in-
variance to affine changes of the tuning curve by dividing by the
cube of the difference (Eq. 5), we were only able to effectively use
it for robust disparity-tuning curves. Noisier tuning curves can
lead to spurious very large positive and negative skewness esti-
mates. We measured skewness versus time for the 24 neurons that
had disparity discrimination indices (Prince et al., 2002) 	0.4.
For these 24 neurons, we did a logarithmic regression fit on skew-
ness versus time (for 100 –1000 ms) for each neuron and there
was a significant positive slope supporting that skewness in-
creased over time ( p � 0.01) (Fig. 13F).

Although all of the above measurements were normalized for
mean firing rate, the mean firing rates for the different cells did
evolve over time (see examples in Fig. 10). An increase in mean
firing rate over time coupled with an expansive output nonlin-
earity that is part of the disparity energy model (e.g., squaring the
response) (Ohzawa et al., 1990) could potentially produce sharp-
ened disparity tuning over time. However, these individual ex-
amples of mean firing rate over time (Fig. 10) reveal that there
was diversity in the temporal profiles. Even though we observed
consistent and significant increasing ratios (Fig. 12) and skewness
(Fig. 13), we observed no consistent population trend for mean
firing rate in this same time interval (n � 52 neurons, p � 0.07,
and n � 24 neurons, p � 0.38, respectively). The mean slope
versus time for the population of mean firing rates (n � 52 neu-
rons) was negative and significantly less than the mean slopes
versus time for all four ratios ( p � 0.05). When we examined the
time intervals more closely, we found significant examples in
which the skewness and mean firing rate were not correlated over
time. For example, in Figure 10, there were significant increases
in skewness ( p � 0.05; bootstrapped with respect to trials) be-
tween time intervals not only when the mean firing rate increased

(Fig. 10 J) ( p � 0.001), but also when it decreased (Fig. 10D; p �
0.05) or did not significantly change (Fig. 10A) ( p � 0.78). Even
in the case in which skewness increased while mean firing rate
increased (Figs. 10 J, 13E), the change in shape of the tuning curve
over this period could not be explained by an expansive output
nonlinearity such as squaring the output. Although it is possible
that the sharpened disparity tuning of some neurons resulted
from an increase in mean firing rate coupled with an expansive
output nonlinearity, the sharpened tuning of other neurons was
likely caused by other nonlinear behavior such as network
interactions.

Spike correlation depends on orientation-tuning similarity
Several anatomical studies have revealed that horizontal or lateral
synaptic connections among V1 neurons are constrained to pairs
with similar orientation tuning (Gilbert and Weisel, 1989;
Malach et al., 1993; Bosking et al., 1997; Lund et al., 2003). There-
fore, similar to the relationship between spike correlation and
disparity-tuning similarity that we observed, spike correlation
increases for pairs of neurons with more similar orientation tun-
ing (Samonds et al., 2006; Smith and Kohn, 2008). Examining the
relationship between spike correlation and orientation-tuning
similarity can provide additional support that the measurement
of spike correlation reflects the underlying neuronal circuitry. In
addition, by comparing the spike correlation relationships based
on disparity-tuning similarity to orientation-tuning similarity,
we could determine to what extent our spike correlation mea-
surements could be explained by the previous anatomical and
neurophysiological studies. The similarity of the dynamics of dis-
parity tuning constrained spike correlation and the sharpening of
disparity tuning based on firing rate suggests that the behaviors
are linked. This link would imply that the spike correlation–
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disparity-tuning relationships that we have described could not
be explained by orientation-tuning similarity constrained con-
nectivity. However, examining the two relationships directly
would more clearly distinguish our spike correlation results from
those based on orientation tuning.

We examined the relationship between spike correlation and
orientation-tuning similarity (Fig. 14) for our data in the same
manner as when using disparity-tuning similarity as the metric
(compare Fig. 9). For disparities that result in spike correlation
that we are interpreting as suppressive (preferred disparity for
one neuron; nonpreferred for the other neuron), there is no sig-
nificant dependence on orientation-tuning similarity (Fig. 14A).
For disparities that result in increased spike correlation for neu-
ronal pairs with minimum or maximum N1*N2, the spike corre-
lation also did not depend on orientation-tuning similarity early
in the response (Fig. 14B,C, center column). However, later in
the response, we did find that spike correlation was stronger for
neuronal pairs with more similar orientation tuning (Fig. 14B,C,
right column). Differences between results for the early and late
portion of the response occurred even if a portion of the late

response equal to the early response was analyzed. Last, the prob-
ability of finding significant spike correlation was significantly
greater for neuronal pairs with similar orientation preferences
( p � 0.05; Wilcoxon’s rank sum test for tuning properties of
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n � 63 interacting vs n � 91 non-
interacting pairs). Overall, the results are
consistent with previous research by
showing that stronger spike correlation
occurs between pairs of neurons with
more similar orientation tuning.

Our result of increased spike correlation
for more similar disparity tuning (Fig. 9),
however, cannot be explained by the
orientation-tuning-based results (Fig. 14)
because there was no significant relation-
ship between disparity- and orientation-
tuning similarity (r � 0.03; p � 0.80). So,
although our spike correlation measure-
ments do capture previously documented
organization with respect to orientation
tuning in V1, the data also reveal a new di-
mension of organization based on disparity
tuning that might be involved in sharpening
disparity tuning over time.

Discussion
We observed several trends in the charac-
teristics of spike correlation and the tem-
poral dynamics of the responses for
disparity-tuned neurons in V1 that are
consistent with a cooperative computa-
tional strategy for stereo matching (Sper-
ling, 1970; Dev, 1975; Nelson, 1975; Marr
and Poggio, 1976; Pollard et al., 1985;
Prazdny, 1985). The observations can be
grouped with respect to evidence of sup-
pressive or facilitative interactions among
disparity-tuned neurons.

Evidence of suppressive interactions
First, spike correlation was negative or decreased relative to base-
line immediately after response onset when neuronal pairs of
distinct disparity tuning were presented a “competitive disparity”
(i.e., disparity that results in the maximum response in one neu-
ron and a weaker response in the other neuron) (Figs. 3C, 8C).
This reduced spike correlation was observed as disparity tuning
became more distinct. We also observed a trend of increased
spike correlation for neurons with more similar disparity tun-
ing when common least preferred disparities were presented
to neuronal pairs (Fig. 9B). This increased positive spike corre-
lation could be caused by stronger common suppression. Both
neurons that we were observing could be receiving a suppressive
input from a neuron that we did not record from that is tuned to
a competing disparity. Last, we observed that firing rates to
nonpreferred disparities were reduced relative to the re-
sponses to other disparities over the course of the response
(Figs. 10 –13), which is also consistent with suppression from
neurons with competing preferred disparities. These three
pieces of evidence are consistent with suppressive interac-
tions, and because we observed the evidence soon after re-
sponse onset (Figs. 3C, 8C), they are consistent with local
interactions.

Evidence of facilitative interactions
First, spike correlation was positive and increased after response
onset when neuronal pairs were presented stimuli with mutually
preferred disparities, suggesting that there was facilitation among

these pairs (Figs. 3F, 8D). This facilitation was specific or stronger
for neuronal pairs with similar disparity tuning (Fig. 9C) and was
present even over longer distances in which receptive fields do
not overlap (Fig. 4). Second, we observed sharpening of disparity
tuning, suggesting that the response of the preferred disparity was
enhanced relative to the responses to nonpreferred disparities
over time (Figs. 10 –13). These two results could be a conse-
quence of positive reinforcement among neurons tuned for sim-
ilar disparities. Because the spike correlation increased at long
delays and was observed for neuronal pairs with nonoverlapping
receptive fields, this suggests that the reinforcement was being
propagated over distances large enough to include neurons that
have neighboring and distinct receptive fields.

Relationship to previous V1 studies
We observed that spike correlation depended on the disparity
presented and varied over the stimulation period. Numerous
studies in V1 have revealed dynamic behavior using similar
(Singer, 1999; Kohn and Smith, 2005) or identical (Samonds and
Bonds, 2005; Zhou et al., 2008) spike correlation measures as in
the present study. Some of this behavior could be attributed to
firing-rate dependence of spike correlation as a result of the spik-
ing threshold (de la Rocha et al., 2007) and refractory period (Ito
and Tsuji, 2000), but other observed changes in spike correlation
occur even when firing rates remain constant (Singer, 1999). Our
results also reveal changes in spike correlation that were indepen-
dent of firing rate changes. First, spike correlation increased for
both firing rate increases and decreases (Figs. 6, 8). Second, the
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temporal dynamics of spike correlation and firing rate were dis-
tinct (Figs. 7, 8).

Computational studies have proposed hypotheses about how
this feature-dependent spike correlation might have conse-
quences in encoding information among V1 networks (Singer,
1999; Samonds et al., 2004, 2006; Montani et al., 2007; Shea-
Brown et al., 2008). The present analysis was to attempt to clarify
the potential underlying circuits that generate spike correlation
and how they might influence disparity tuning. When making
spike correlation measurements, we cannot interpret the results
without considering the stimulus-dependent aspects of these
measurements.

Positive spike correlation has been observed for a variety of
neuronal pairs in V1, but most noticeable for neurons with sim-
ilar orientation tuning (Ts’o et al., 1986; Singer, 1999; Samonds et
al., 2006; Smith and Kohn, 2008). Direct inhibitory connections
and suppressive interactions within V1 tend to be local (Lund et
al., 2003) and sometimes specific and sometimes nonspecific
with respect to orientation tuning (Bosking et al., 1997; Das and
Gilbert, 1999; Shapley et al., 2003). Excitatory interactions intrin-
sic to V1 can extend over greater distances and are restricted to
occur among neurons with similar orientation tuning (Ts’o et al.,
1986; Gilbert and Weisel, 1989; Malach et al., 1993; Bosking et al.,
1997; Singer, 1999; Lund et al., 2003). Extrastriate feedback also
extends over greater distances but is not specific with respect to
orientation tuning (Stettler et al., 2002). If we assume that early
spike correlation reflects local inhibitory circuits and late spike
correlation reflects distant intrinsic excitatory circuits, we reach
similar conclusions as these studies about the behavior of spike
correlation when considering disparity-tuning relationships and
reveal a new dimension to V1 circuitry.

We also found similarities to previous V1 studies that exam-
ined the temporal dynamics of neuronal activity. Experimental
and analytical differences limit a direct comparison to the study
by Shapley et al. (2003), which found that orientation tuning
sharpened over time, but our observation that disparity tuning
sharpened over time might be related to similar mechanisms.
With respect to our spike correlation measurements, Smith and
Kohn (2008) and Zhou et al. (2008) found similar transient and
slowly increasing spike count correlation, spike correlation,
and spike coherence. In the study by Shapley et al. (2003), the
underlying circuitry was inferred based on models that could
generate the dynamics of orientation tuning that they observed
experimentally. In the studies by Smith and Kohn (2008) and
Zhou et al. (2008), spike count correlation, spike correlation, and
spike coherence were not examined in the context of orientation-
tuning sharpening. In the present study, we provide a more com-
plete view of the relationship between the dynamics of tuning and
spike correlation. The similarity of these two independent cir-
cuits that might be involved in improving orientation and dispar-
ity tuning may be part of a more general inference process in V1.
Computational and psychophysical studies suggest that compu-
tations of horizontal disparity could be facilitated by computa-
tions of orientation (van Ee and Anderson, 2001; Ben-Shahar et
al., 2003).

Limitations of interpretations
We provided evidence of neuronal interactions based on spike
correlation measurements and evidence of sharpening of dispar-
ity tuning over time. We proposed that the two events are linked,
but sharpened disparity tuning coinciding with an increase in
mean firing rate could potentially be explained by the expansive
output nonlinearity in the disparity energy model (Ohzawa et al.,

1990) and does not necessarily imply neuronal interactions.
However, we observed sharpening of disparity-tuning curves in
neurons when their mean firing rates decreased or did not
change. This observation suggests that the expansive output non-
linearity cannot fully explain all the sharpening effects.

Nonetheless, the evidence of the proposed link between spike
correlation and tuning sharpening is suggestive rather than direct
evidence. This is because disparity tuning is a consequence of
several thousand inputs to a single neuron and each spike corre-
lation measurement is between only two neurons that are con-
nected directly or most likely indirectly. The dynamics of spike
correlation measurements will depend highly on the spacing be-
tween the two recording electrodes, whereas the dynamics of
disparity tuning will not. However, we produced a neuronal net-
work model constrained by the spike correlation data to examine
the dynamics of the disparity tuning in the model and compare it
to the data from recorded neurons (Samonds et al., 2007, 2008).
Interestingly, this model could account for the deviation of ob-
served disparity-tuning curves from predictions of the local dis-
parity energy model (Fig. 13) (Cumming and Parker, 1997;
Prince et al., 2002; Cumming and Thomas, 2007; Samonds et al.,
2007). By examining spike correlation characteristics, single-
neuron disparity-tuning dynamics, and neuronal network model
behavior simultaneously, we strengthen our argument versus if
we examined each aspect independently.

Our suggestion that the observed interactions among neurons
are attributable to cooperative stereo computations is not neces-
sarily incompatible with proposed models based on direct feed-
forward mechanisms (Ohzawa et al., 1990; Fleet et al., 1996; Qian
and Zhu, 1997; Tsai and Victor, 2003; Chen and Qian, 2004). The
neuronal interactions can combine with and complement local
feedforward disparity-tuning computations (Ohzawa et al., 1990;
DeAngelis et al., 1991; Cumming and DeAngelis, 2001; Prince et
al., 2002; Parker, 2007) to reduce their uncertainty. Cooperative
computations can coexist with local feedforward interactions
(Menz and Freeman, 2003) as suggested in some models (Marr
and Poggio, 1979). Finally, our data are not conclusive with
respect to cooperative stereo computations and are also con-
sistent with alternative computational approaches that predict
neuronal interactions among disparity-tuned neurons (Lehky
and Sejnowski, 1990; Stevenson et al., 1992; Read and Cum-
ming, 2007). Additional experiments will be necessary to elu-
cidate the computational significance of the general neuronal
interactions that we observed.

Conclusions
Stereopsis is an example of the general problem of visual infer-
ence under uncertainty. When viewing an image through a small
aperture (equivalent to a V1 receptive field), we cannot deter-
mine whether the local image is part of an object, its direction of
movement, or its depth. The solution to this problem necessarily
involves integrating information from multiple receptive fields
across space. Simply pooling information over space by averaging
sacrifices the resolution of individual neurons. Global constraints
combined with local competition can more efficiently and effec-
tively integrate visual information over space. This strategy is
ubiquitous to visual inference and early visual computations in
general (Marr, 1982). In this article, we provided evidence sug-
gesting that such integration could play an important computa-
tional role in solving the stereo correspondence problem.
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