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Abstract

Contrast gain control is an important mechanism underlying the visual system’s adaptation

to contrast of luminance in varying visual environments. Our previous work showed that the

threshold and saturation determine the preferred contrast sensitivity as well as the maximum

information coding capacity of the neuronal model. In this report, we investigated the design

principles underlying adaptation behavior in contrast gain control by an adaptive

linear–nonlinear model. We found that an adaptive rescaling mechanism predicted by

information transmission maximization can explain a variety of observed contrast gain control

phenomena in neurophysiological experiments, including the divisive input–output relations,

and the inverse power-law relation between response gain and input contrast. Our results

suggest that contrast gain control in visual systems might be designed for information

maximization.
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1. Introduction

The visual systems exhibit great flexibility in adapting their input–output functions
to the variance or the contrast [6,9,10,12] of light signal in the visual environment.
The amplitude gain of the transfer function of visual neurons was found to decrease
with input variance [9], and even displays an inverse power-law relation [12] (see Fig.
2). In addition, the contrast response function in visual cortical neurons was found
to shift along the log contrast axis to adaptively match the prevailing input signals
[6]. These contrast adaptation phenomena have been widely observed in the retina
[9], striate [6], and extrastriate visual cortex [5] of mammals, and fly H1 neurons [1,3]
suggesting the existence of an contrast gain control mechanism. However, the
biophysical factors and computational rules governing its operation remain elusive.
How to understand these phenomena? Why do visual neurons behave in this way?
We have shown that classical neuronal model with nonlinearities of threshold and

saturation can display an apparent adaptation in the recovered transfer function to
the variance of the input signal [13,14]. However, we found that the mutual
information in those system, as well as the kernel gain, exhibit a bell-shape as a
function of the input variance [6]. There is only one optimal variance that can induce
the maximal information transmission of the system. That means nonlinear
dynamics due to static nonlinearity alone cannot maintain a neuron’s information
transmission rate at the highest level with the variation in signal variance. Here, we
explored theoretically a possible extra adaptation mechanism that might restore
information maximization for any input variance in neurons. We introduce an
additional gain rescaling to the static model, while keeping all other parameters
(thresholds, saturation levels, membrane time constants) constant. We found it
sufficient to produce information maximization that is consistent with some
neurophysiological findings [1,3].
2. Model and results

We use the similar standard linear–nonlinear (LN) cascade model as in Ref. [14]
except that we introduce an additional scaling factor bðsÞ: See Fig. 1. b scales the
Fig. 1. The adaptive LN model consists of a linear filter hðtÞ followed by a nonlinearity gð:Þ: The amplitude
of the linear filter hðtÞ is controlled by b; which acts as an adaptive mechanism. xðtÞ is the convolution of

the input signal sðtÞ and the filter hðtÞ: The nonlinearity gð:Þ operates on xðtÞ to generate the output yðtÞ:
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amplitude of the linear kernel according to the variance of the input signal as an
adaptive mechanism. Linear kernel is given by hðtÞ ¼ bðsÞA sinðpt=taÞ expð�t=tbÞ

with A ¼ 1; ta ¼ 80ms and tb ¼ 100ms: The output of linear kernel xðtÞ is given by
xðtÞ ¼

Rþ1

0 hðtÞsðt � tÞdt: The nonlinearity gð:Þ is specified by

gðxÞ ¼

0 if xoy;

x � y if ypxoZ;

Z� y if xXZ;

8><
>: (1)

where y is the threshold and Z is the saturation level. Without loss of generality, we
use a Gaussian white noise stimulus sðtÞ with zero mean and SD s as the input signal.
Its probability density function (PDF) is given by

pðsÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2ps2

p e�s2=2s2 :

The linear response xðtÞ also has a Gaussian distribution with PDF

pðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2ps2x

p e� x2=2s2x ;

where sx is given by

s2x ¼ hx2ðtÞi ¼ s2
Z þ1

0

h2ðtÞdt;

where h
 
 
i denotes time average. b is determined computationally by maximizing
the mutual information between sðtÞ and yðtÞ with respect to b; for signals of a given
s: This is the adaptive LN model.
We have shown the amplitude gain of the recovered linear kernel of the static

model is a function of the input signal variance s2 [3]. The ratio a between the
amplitude gain of the recovered linear kernel h0

ðtÞ and the original linear kernel hðtÞ

is given by

a ¼

R Z
y xðx � yÞpðxÞdx þ ðZ� yÞ

Rþ1

Z xpðxÞdx

s2
Rþ1

0 h2ðtÞdt
: (2)

That is, for an input signal with Gaussian white distribution, we have h0
ðtÞ ¼ a:hðtÞ;

where gain factor a quantifies how the performance of linear function hðtÞ is affected
by the static nonlinearity (threshold y; saturation Z) and stimulus standard deviation
s: Mutual information [8] quantifies the ability of a system or a communication
channel to convey information and is given by

Im ¼ HðyÞ � Hðy j sÞ

¼ �
X

y

PðyÞ log2 PðyÞ þ
X
s;y

PðsÞPðy j sÞ log2 Pðy j sÞ; ð3Þ

where HðyÞ is the total entropy of the response, Hðy j sÞ is noise entropy, accounting
for the variability in the response that is not due to variations in the stimulus, but
comes from other noise sources. For simplicity, we consider the noiseless case, where
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Hðy j sÞ ¼ 0: In this case, the mutual information is simply equal to the output
entropy Im ¼ HðyÞ:
We are interested in computing the entropy of the output y. The distribution

function of y (also refereed to as the cumulative density function) is

DðyÞ ¼ P½Ypy� ¼

0 if yo0;R yþy
�1

pðxÞdx if 0pyoZ� y;

1 if yXZ� y:

8><
>: (4)

In order to compute the entropy of y, we approximate y by a discrete random
variable ŷ; which we define by P½ŷ ¼ iDy� ¼ P½y 2 ½ði� 1ÞDy; iDy��; where Dy is the
quantization resolution of y, and i is an integer from 0 to dðZ� yÞ=ðDyÞe: Note that
P½y 2 ða; b�� can be computed analytically as DðbÞ � DðaÞ: The mutual information,
which is equal to entropy for the noiseless case, is then computed as in Eq. (3). It can
be shown that changes in Dy affect the entropy of ŷ only by an additive constant [2].
Since we are only interested in comparing the values of mutual information Im as we
change s; y; and Z; our choice of Dy does not affect our results. Here, we set Dy ¼ 1:
What is the effect of different amplitude of b on the information transmission?

Fig. 2a shows that there is a non-monotonous relation between b and Im for each
given s: There exists an optimal value of b; named bopt where information Im is
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Fig. 2. (a) For an adaptive LN model with threshold y ¼ 0 and saturation Z ¼ 50;mutual information I as

a function of rescaling factor b for signals of different s’s. (b) The mutual information I as a function of s
for the adaptive LN model and the static LN model. (c) Mutual information I as a function of s for
various model parameters with b chosen to maximize I for each s: (d) Optimal b as a function of s for four
given values of threshold in a log–log plot exhibits an inverse power law.
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Fig. 3. (a) Gain g as a function of s for four given values of threshold with b optimized for information
transmission. (b) Monocular gain in two cat simple cells as a function of stimulus contrast (from 2:5% to

50%) in the log–log axes; for comparison, a line with slope of �1 is plotted in dashed line. Adapted from

Fig. 5. of Ref. [12].
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maximized. Let’s now assume that the biological goal of an adaptive neuron is to
maximize information transmission. That is, for any input s; the neuron will adjust
its linear function amplitude to get bopt: Fig. 2b shows that the information
transmission Imax for such an adaptive LN model is maintained at the highest level
for any given variance. Note that for the static LN model with b ¼ 1; Im varies with
s; with only one global maximum Imax at a particular s (see Fig. 2b). The signal with
nonoptimal value cannot be efficiently processed by the system with high
transmission rate. However, the adaptive model can ensure that signal with any
distribution s can always be processed with highest information transmission rate.
The highest value of information transmission is constrained only by the threshold
and the saturation of the model itself [8,9]. The lower (or higher) is the threshold
(saturation), the higher the maximum information rate can be reached (Fig. 2c). The
adaptation factor bopt decreases monotonously with an increase in s: Interestingly, in
the log-log plot, bopt and s displays a inverse power law relationship, the fitting slope
is �1 (Fig. 2d).
The response gain g; i.e., the amplitude of the recovered kernel, now equal to a � b

(see Eq. (2)), also displays a scale invariant power-law relationship with a scale �1
with s (Fig. 3a). Note that without gain rescaling, i.e., b ¼ 1 is fixed, the gain g varies
with s; displaying a bell-like tuning curve, which emerges simply from static-
nonlinearity. Gain rescaling is crucial for maintaining mutual information constant
with variation in s: This power law finding matches the experimental observation (see
Fig. 3b) very well, thus implying that the contrast gain adaptation observed in
experiments may reflect an underlying efficient encoding process. Fig. 3b is adapted
from Fig. 5a in Ref. [12], which shows that response gain of cat simple cell varying
with the contrast of monocular input also in power-law relationship in the log-contrast
plot. A contrast gain slope of �1 indicates that the gain control system is 100%
effective, whereas a slope of 0 indicates that the system is completely ineffective. The
cells in Fig. 3b showed a slope around�0:75 suggesting the neurons might be trying to
re-scale gain adaptively in order maximize information transmission.
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3. Discussion

The power-law relationship observed experimentally and the theoretical findings
of this paper suggests that there might exist an intrinsic adaptation mechanism in
single neurons or network to maximize the information encoding. Such an
adaptation, which is independent of static nonlinearity, involves mainly changing
of the amplitude of the linear transfer function. Biophysically, a single neuron itself
is a circuit, whose transfer function is controlled by the ionic conductances and
capacitances. Recent experiments showed that the activation of Naþ-activated and
Ca2þ-activated Kþ currents inside single cells [4,7] or the adjustment of voltage-
dependent conductance might play an important role in contrast adaptation [11].
These mechanisms might serve to control the gain of the linear kernel part of the LN
cascade.
In summary, the contrast adaptation phenomena observed in neurophysiological

experiments can potentially be factored into a component due simply to the static
nonlinearities of the neurons [6,9] and another component due to an adaptive
rescaling of the gain in the linear transfer function in the LN cascade for the purpose
of information maximization.
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