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ABSTRACT their boundaries and require good initial estimates to yield 

We present a novel statistical and variational approach to 
image segmentation baaed on a new algorithm named region 
competition. This algorithm is derived by minimizing a gen- 
eralized Bayes/MDL(Minimum Description Length) crite- 
rion using the variational principle. We show that existing 
techniques in early vision such as, snake/balloon models, 
region growing, and Bayes/MDL are addressing different 
aspects of the same problem and they can be unified within 
a common statistical framework which combines their ad- 
vantages. We analyze how to optimize the precision of 
the resulting boundary location by studying the statistical 
properties of the region competition algorithm and discuss 
what are good initial conditions for the algorithm. Our 
method is generalized to color and texture segmentation 
and is demonstrated on grey level images, color images and 
texture images. 

1. INTRODUCTION 

Image segmentation is a critical problem of early vision and 
hence is one of the most intensively studied areas. In the 
past two decades researchers have developed several alter- 
native approaches. These approaches can be roughly clas- 
sified into four classes: (i) Local filtering approaches such 
as the Canny edge detector [2], (ii) Snake [8] and Balloon 
methods[4], (iii) Region growing and merging techniques[l2] 
[15], and (iv) Global optimization approaches based on en- 
ergy functions [14] or Bayesian [6] [I] and MDL criteria [lo] 
[7]. A common property of these approaches is that they all 
make hypotheses about the image, teat features and make 
decisions by applying thresholds explicitly or implicitly. A 
major difference between the four approaches lies in the 
domains on which the hypotheses, tests, and decisions are 
based. All these approaches all have certain drawbacks. 
The filtering approach only makes use of local informa- 
tion and cannot guarantee continuous closed edge contours. 
Snake/balloon models make use only of information along 
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correct convergence. An advantage of region growing is 
that it does make use of the image statistics inside regions, 
however it often generates irregular boundaries and small 
holes. In addition, all these three methods lack a global 
criterion for segmenting the entire image. By contrast, en- 
ergy/Bayes/MDL have global criteria but it is often very 
difficult to find their minima. 

We have developed a common statistical framework for 
image segmentation. Our algorithm, which we call region 
wmpetition,is derived by minimizing ageneralized Bayes/MDL 
criterion using the variational principle, and it combines 
the most attractive features of snake/balloon model and 
region growing. Thus we show that three of the standard 
approaches - (i) snakes and balloons, (ii) region growing 
by using statistical tests such as Fisher’s test, (iii) Energy, 
Bayesian and MDL methods - are addressing different as- 
pects of the same problem and can be unified within this 
framework. Our work is close in spirit to recent work by (31 
and [Ill. 

We analyze the precision of the resulting boundaries 
by studying the statistical behavior of the region competi- 
tion algorithm. Then we discusses the criteria for defining 
“good” initial conditions, and demonstrate an interesting 
domino effect. 

Our approach is applied both for obtaining global seg- 
mentation of images and for finding individual regions and 
is illustrated on two grey level images. We then gener- 
alized our approach to deal with color, by using a novel 
color model which helps detect specularities, and to tex- 
ture. Results are demonstrated for both color and texture 
segment ation. 

This paper is organized as follows. Section (2) sets the 
scene by briefly describing Snakes and Balloons, Region 
Growing and EnergylBayeslMDL. In section (3) we intro- 
duce our approach for grey level images and describe the 
implementation results. In section (4), we analyze the pre- 
cision of the boundary location and discuss how to choose 
the windows and initial conditions. Section (5) extends our 
approach to color images, thereby allowing us to filter out 
intensity gradients, and gives results for these cases. In sec- 
tion (6), we apply our method to texture images. Finally 
section (7) discusses Limitations and possible extensions. 
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2. SNAKES, REGION GROWING AND 
ENERGY/BAYES/MDL 

This section will briefly review the properties of snakes, 
region growing and Energy/Bayes/MDL. 

2.1. Snakes and Balloons 

A snake [8] is an active contour defined by r(s) = ( ~ ( s ) ,  y(s)), 
where s is the arc length of the contour’. Here we as- 
sume that r(s) is the closed boundary of a region R (i.e. 
qS) = a ~ ) .  

A typical energy for a snake is: 

which we minimize by steepest descent: 

where rss = (?(s), g(s)), etc. 
The balloon models[4] are motivated by the desire to 

drive the snake automatically to a good initial position. 
They introduce an additional force term vii(,) to Equa- 
tion (2) which pushes the contour out (or in) along its nor- 
mal ii(,) = ( i ,  -i). 

This additional force term can be derived from an addi- 
tional energy term Ead&‘(s)] = -U ssR dA. So the energy 
for the balloon is: 

E[r( 1 - Irs12+p pss12)-x 1131. ~ 1 1 p s - U  d~ JL 
(3) 

,) - f  
Thus the balloon tries to maximize its area while smooth- 

ing its bounding contour and maximizing the intensity gra- 
dient along the contour. 

2.2. Region Growing and Merging 

Region merging works by building up complicated regions 
by combining smaller regions based on a statistical similar- 
ity test. A popular choice is Fisher’s test. For example, 
suppose there are two adjacent regions RI and Rz, where 
721,122, f i l ,  f i 2 ,  B:, B.2” are the sizes, sample means and sam- 
ple variances of R I ,  R2 respectively. Then in order to decide 
whether or not to merge them, we can look a t  the squared 
Fisher distance: 

where n = nl + 122 and dz is the sample variance of the 
mixture region. If this statistic is below a certain threshold 
then the regions are merged. 

Region growing can be considered as a special case of 
region merging, where RI is the growing region, while R2 
is a single pixel a t  the boundary of R I ,  i.e. nz = 1 and 
nl is very large (say n1 > 100). In this case we can treat 

‘The contour can also be represented parametrically, for ex- 
ample by B-splines or Fourier coefficients, but we will not con- 
sider such variants in this paper. 

p = Pl,u2 = B f ,  and pz = (the intensity a t  point 
(2, y)), and approximate the squared Fisher distance by: 

A variant of region growing [la] is to fit the intensity 
within each region to a parameterized model, such as a 
plane or a quadratic form. Then tests like Equation (4) 
can be applied to the residuals of the boundary pixels after 
fitting. 

Although region growing algorithms are very intuitive 
they can rarely be proven to converge to the minimum of 
some global cost function, and the resulting regions may 
have noisy boundaries. Another drawback results from the 
Fisher’s test, see Equation (4), which cannot distinguish be- 
tween two distributions with the same means but different 
variances. This problem will be discussed in a later section. 

(I-# 

2.3. Energy, Bayes and MDL 

Both Bayes and MDL specify ways for segmenting an en- 
tire image using an energy function criteria. These two 
approaches are motivated by different considerations but 
it is straightforward to transfer an MDL criterion into a 
Bayesian one and vice versa[lO]. 

Bayesian estimation is a common approach to image 
segmentation [6]. The observed image is modeled as being 
a degraded version of an ideal image which is assumed to be 
piecewise smooth. For example, the energy function used 
in Mumford and Shah [14], and in Blake and Zisserman [l] 
(i.e. the weak membrane model) is: 

(5) 
where I is the input image, f is the output image, and r 
labels the discontinuities. It is easy to see that when X I-+ 00 

this reduces to a cartoon model: 

where f, is constant within each region R; and u2 = 1 is 
constant over the entire image. 

A typical MDL criterion occurs in Equation (7).  It dif- 
fers from Equation (6) by letting the d s  be unknown vari- 
ables which are assumed to be constant within each region. 

It is usually very difficult to minimize the energy func- 
tions resulting from Bayes/MDL models. Algorithms such 
as simulated annealing [6], graduated non-convexity [l] and 
deterministic annealing [5] are perhaps the most successful. 

3. REGION COMPETITION FOR GREY 
LEVEL IMAGES 

3.1. From MDL to A Unified F’ramework 

The goal of image segmentation is to partition the im- 
age into subregions with homogeneous properties (intensity, 
color or texture), such regions will typically correspond to 
objects or object parts in the scene. Before describing the 
algorithm, we first need a definition of homogeneity. 
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In this section a region is considered to be homogeneous 
if its intensity values are consistent with having been gen- 
erated by one of a family of pre-specified probability dis- 
tributions P(I : a), where a are the parameters of the dis- 
tribution. We assume that the probability models may be 
different in different regions. In later sections, we will de- 
scribe how the probability distributions P ( 1 :  a) can be gen- 
eralized to multi-band features extracted from the images, 
and to the residues after fitting certain parameterized mod- 
els in which case a may includes the parameters specifying 
those physical models. Now suppose that the entire image 
domain R has been initially segmented into M piecewise 
"homogeneous" underlying regions { R i } ,  i = 1,2,  ..., M, i.e. 
R = uZ,R, ,  R,  n RJ = 0, if i # j .  Let aRi be the bound- 
ary of region R, where we define the direction of aRi to be 
counter-clockwise, i.e. when we travel along the boundary, 
R; is on the left hand side. Let I? = U&I', be the edges or 
segmentation boundaries of the entire image with ri = aRi. 

Our MDL criterion corresponds to a global energy func- 
tional which is the continuum limit of Leclerc's [lo] for an 
appropriate choice of the family of probability distributions. 
This gives: 

M 

(7) 
where the first term within the braces is the length of the 
boundary curve aR, for region R,. Without prior knowl- 
edge about the shape of the region, we simply assume that 
the code length is proportional to the curve length where 
,u is the code length for unit arc length. Since all edge seg- 
ments are shared by two adjacent regions, we divide the 
first term by a factor of 2. The second term is the sum of 
the cost for coding the intensity of every pixel (z, 9 )  inside 
region Ri according to a distribution P(Z(z,y) : ai) in the 
sense of optimal coding theory. X is the code length needed 
to describe the distribution and coding system for region 
Ri, we simply assume X is the same for all regions. 

Because the energy E in equation (7) depends on two 
groups of variables -the segmentation r and the parameters 
ai 's, we propose a greedy algorithm which minimizes the 
energy functional by iterating two stages. 

In the first stage, we fix I?, in other words, we fix R; and 
solve for the ai, i = 1,2,  ..., M to minimize the description 
cost for each region. This corresponds to setting: 

in the discrete case: 

In other words, the a, 's are estimated by maximizing the 
conditional probabilities. For many distributions this can 
be done analytically. For example, the a f ' s  are simply the 
sample mean and sample variance over pixels inside R; if 
P(Z : a;) is a Gaussian distribution. 

In the second stage, we fix the {a i } ,  thus P(I : a) 
becomes the conditional probability distribution P(Z I a) 

and then do steepest descent with respect to I?. For any 
point v' = (z, y) on the edge r: 

dv' _ - _  - 6E[I', {ai}]  
d t  6v' (9) 

where the right hand side is (minus) the functional deriva- 
tive of the energy E. 

Taking the functional derivative by applying the vari- 
ational principle [16], yields the motion equation for point 
v': 

where Q(J) = {k I v' lies on rk}, i.e. the summation is 
done over all regions R k  such that v' is on r c .  n q ~ )  is the 
curvature of r k  at point v' and I&(J) is the unit normal to 
I'k at point v'. By the direction of each I'k defined at  the 
beginning of this section, 6 k  will point out of Rk . 

k P 

Figure 1: The forces acting on the contour: a .  the smooth- 
ing forces, b, the statistics force at  an boundarypoint. c, 
the statistics forces at  a junction point. 

The right side of equation (10) has a simple intuitive 
interpretation. I t  represents two kinds of "forces" acting 
at  point v' on the contour, both pointing along the normal. 
The first term, the smoothing force, is strongest at  points of 
high curvature. Figure (1.a) shows the smoothing force at 
points along the region boundary. This force is independent 
of the direction of the curve and it tries to make the curve 
as straight as possible. The second term is the statistics 
force, f ' =  logP(I I @)A. Since logP 5 0, the statistics 
forces always compresses the region. The better the point u' 
satisfies the homogeneity requirement, the larger P(I I a), 
and hence the weaker the statistics force. 

For example, as shown in Figure (l.b), v' is a point on 
the common boundary of region R, and R J .  S' ince curves 
I?, and rJ have inverse normal vectors at v", ii, = -6, and 
&,GI = K$, The motion equation for v' is: 

I t  is easy to see that the smoothing term by itself is 
the Euclidean geometric heat pow equation used for curve 
smoothing and evolution, and it is equal to the following 
heat diffusion equation. 

where s is the arc length of the curve r. Detailed discus- 
sion about the properties of this equation is found in [13]. 
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Besides the smoothing term, the motion of v' is determined 
by the likelihood ratio test. If P(I(g)Ia,) > P(I(3)IaJ),  i.e. 
the intensity at v' fits better to the distribution of region R, 
than to that of region R3, then the boundary will move in 
the direction of 5,. Similarly for points which are shared by 
several region boundaries, Figure (1.c) show the statistics 
forces at a junction point. Intuitively, adjacent regions com- 
pete for ownership of pixels along their boundaries, subject 
to the smoothness constraint, and motion of the edges are 
mainly determined by the probability distributions of each 
region and the properties of the edge. This is why we call 
our algorithm region competition. 

Now we find it easy to unify region growing, the balloon 
model and MDL in a common statistics framework. 

Firstly, the region growing algorithm can be considered 
to be a degenerate case of region competition where we treat 
the growing region as RI, with P ( I  : a l )  chosen according 
to our desired homogeneity criterion, and the background 
region as Ro (so that R1 U Ro = R )  which has uniform 
probability distribution PO. Then the motion equation for 
each point v' along the boundary is: 

where ii is the normal of the region contour. This directly 
corresponds to region growing where people test the proba- 
bility P(I(a) lal) ,  and compare it with the absolute thresh- 
old PO. Fisher's test and the x2 test [12] correspond to 
particular choices of P ( I ( q l a ~ ) .  

Secondly, the underlying statistical assumption for the 
balloon model is even simpler, it treats both the current 
region RI and the background Ro as uniform distributions 
P I ,  PO with U = logP1 - logPo. According to the balloon 
model, taking the derivatives of equation (3) ,  we have the 
motion equation for v' on the boundary: 

-. 
- d r ( 3 )  - - -arss+pr,,, ,+(iog~l-iog~o)ii~,~+x~ 191. arl 

dt  
(14) 

In this equation, the smoothing force is only slightly differ- 
ent from that in Equation (11)' observe that ti = rs3 . 15 
(i.e. the curvature is the projection of rSc along the nor- 
mal). In equation (14), the threshold for deciding where 
to stop moving the contour is provided by the local edge 
measurement-the last term. Since the balloon model does 
not use the statistics inside the regions it often fails to seg- 
ment images into homogeneous regions. 

In summary, we can compare the region growing, bal- 
loon models and Bayes/MDL (as well as the filter approaches) 
in a common three-stage statistics framework: hypothe- 
ses, tests, and decisions. The differences between these 
approaches can be easily found by studying what kind of 
hypotheses they have made for the input images, how they 
test these hypotheses, and how they make the decision. The 
MDL criterion, which we adopt, assumes that images con- 
sist of regions with smooth boundaries and homogeneous 
properties defined by a family of probability distributions. 
For each region it tests the statistics P ( I  : a) which can be 
specified by any test such as Fisher's test, the x2 test etc. I t  
decides the position of the boundary by the likelihood ratio 

-, 

instead of choosing a threshold. Moreover, region compe- 
tition provides a global criterion for segmenting the entire 
image, and it is faster than the annealing approaches. 

3.2. Generalizing the MDL Cri te r ion  for Region 
Competition 

To proceed further we need to specify a family of proba- 
bility distributions P(I  : a). In this paper we will con- 
sider Gaussian distributions. Thus we set cr = ( p ,  a), and . .  

However, an analysis of the motion Equations (10,l l)  
reveals some underlying disadvantages for the greedy algo- 
rithm that we proposed. 

First, the statistics force at each boundary point (z, y) 
will depend on P ( I ( z , y ) l ~ , a ) ,  in other words on the prob- 
ability that I(,,,) on the boundary can be generated by a 
Gaussian distribution N ( p ,  m2). This force seems plausible 
but since only a single sample is taken from this distribu- 
tion there is a reasonable chance that I(.,,) will lie on one 
of the tails of the distribution. The statistics force therefore 
may be overly sensitive to fluctuations in the image. 

Second, in the extreme case where two distributions 
have the same mean but different variances, the classifi- 
cation error will be intolerable. One such image is shown in 
Figure (2.a). In such cases, we need to measure the second 
order statistics (variance) near each boundary point (2, y) 
in order to tell whether the point (z,y) should be classi- 
fied as belonging to one distribution or to the other. As 
we mentioned earlier, this cannot be done by Fisher's test. 
Furthermore, if the distribution &'(I/@) is more sophisti- 
cated than the Gaussian distribution then more complex 
statistics must be computed in the neighborhood of (2, y). 

At this point we should make it clear that the problems 
of misclassification are not the fault of the original energy 
functional (equation (7)). In fact, we can prove even in 
cases where intensities in two adjacent regions have same 
mean but different variances, the global minimum of equa- 
tion (7) still gives the correct segmentation. The problems 
of misclassification are due to the greediness of the algo- 
rithm, and the difficulty of finding the global minimum of 
equation (7). 

Our method for dealing with these problems is to use 
a window of m pixels around each boundary point (z,y). 
We call these pixels the neighbor set of (z,y) denoted by 
W(=,,) .  The effect of this is to replace P(I(z ,y )  : a) by the 
joint probability: n(u,v)EW(,,y) P(I(u,v) : a). divided by the 
size of window m. 

Correspondingly, the energy function becomes: 

log P(I(",u) : a,)dudvdzdy tpQ) -U. t SJ,,.,.) 
The window W solves our problems. First we observe 

that the larger m is, then the bigger the chance that it is 
representative of the distribution, and the smaller the risk 
of misclassification. Second with such samples, we can do 
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(16) 
l l R t ” w ( ~ # Y ) l l  such that where r = ug,aR,, and x ~ ( ~ , ~ )  = m 

M x ~ ( = , ~ )  = 1 for all (z, y). In other words, each pixel 
(2, y) in the image is coded by a mixture distribution. De- 
tailed discussion is given in [16]. 

In the rest of this section, we will explore equation (15) 
by assuming Gaussian distributions. 

Suppose we have window samples 
with each I(,,.) - N ( p , u 2 ) ,  and f(t,y) and Stz,y) are the 
sample mean, and sample variance for 

Again by applying the variational principle[l6], we can 
rewrite the statistics force generated by a single region R, 
at (z, y) in the direction of ii, as the following: 

I (U, U) E W(z,y)}, 

From equation (17), we observe: 1 The second term tests 
the mean. Since N N ( p , u  /m) ,  (i.e. the variances 
have been divided by m),  the misclassification risk is greatly 
reduced. (ii). The third term tests the variance. With the 
addition of this “variance” force, we can detect two regions 
with the same means but different variances. Equation (17) 
will be generalized to higher dimension in the next section 
(see Equation (20)). 

Now we can derive the motion equation for point v’ at 
the boundary ri n r3 by plugging equation (17) into the 
motion equation (1 1). 

6‘) 

1 u2 
- - P q J ) & ( q  - -{log + dv’ 

d t  
- -  

U ]  

3.3. Simulations on Grey Level Images 

In this subsection, we illustrate the region competition a.- 
gorithm on two grey level images. 

As shown in figure (2.a), image 1 is a 100 x 100 image 
partitioned into two regions by a S-shaped curve. The inten- 
sities in these two regions are generated randomly from two 

Figure 2: Two typical grey level Images 

Gaussian distributions with identical means: N(128, lo2)  
and N(128, 3S2). Suppose the image is initially segmented 
by a slanted straight line, see Figure (3.a). Then the motion 
of the regions at iteration steps t = 0,20,30,50 are shown in 
Figure (3.a.b.c.d) respectively. Finally Figure (3.e) shows 
how the boundary moves if we drop the last term in Equa- 
tion (18). Thus if we do not test the variance then the edge 
just moves to the low-right corner and disappears. This 
results in an incorrect segmentation with the image being 
perceived as a single region. In this image, W is a circular 
window which contains 32 pixels. 

d (t=50) e (without F-test) 

Figure 3: Region competition runs on image 1 

As shown in figure (2.b), image 2 is a 150 x 150 image 
consists of 4 regions whose intensities are generated ran- 
domly from 4 Gaussian distributions: N(50, 102),N(80, lo’), 
N(110,112), and N(150, 152). The segmentation is started 
by putting nine seed regions (each has 80 pixels) on a grid, 
with four seeds inside the four “true” regions, four seeds 
straddling the boundaries, and one seed lying on the inter- 
section point of the four regions. As we will define in the 
next section, the first four seeds are called good seeds, while 
the later five are bad seeds. The background (shown by 
the shadow) is treated as a single region which has uniform 
probability distribution PO. In fact PO provides the forces 
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a ( t=O)  

d (t=65) 

b (t=30) c (t=42) 

e (t=120) f (t=150) 

Figure 4: The competition of good and bad seed regions. 

causing the seed regions to grow. 
The motion of regions at iteration steps t = 0,30,42, 

65,120, 150 are shown in Figures (4.a.b.c.d.e.f) respectively. 
At t = 30 we observe that the good seeds grow faster than 
the bad seeds. Where these regions meet edges are formed, 
see Figure (4.b). Then the four good seeds keep compress- 
ing the bad seeds and taking over the background, see Fig- 
ure (4.c.d.). In this competition process, some regions may 
be squeezed out by their neighbors. Finally the competition 
converges at t = 120 in Figure (4.f), where all the bad seed 
regions are driven into one of the four real regions. Then we 
merge the pairs of adjacent regions which cause the energy 
function to decrease the most, and restart region compe- 
tition. After 30 more iteratives, the algorithm converges 
at 1 = 150, see Figure (4.g). A detailed description of the 
algorithm is given in [16]. 

4. ANALYZING REGION COMPETITION 

This section briefly analyzes the performance of the region 
competition algorithm by discussing the following two as- 
pects. More analysis is given in 1161. 

I. The precision of the segmentation, and the 
choice of window. In section (3.2), we argue that a win- 
dow of size m # 1 is necessary for robust segmentation. 
Analytic results can be found if we consider the statistics 
force f(z,y) as a random variable depending on both the 
location (z,y) and the size(and shape) of the window W .  
The boundary between regions is located at (z,  y) where 
f (z ,yj  = 0 and the probability distribution of this boundary 
can be studied. There exists an uncertainty interval 0 for 
each boundary point and when the window size m is too 
small or too big U will be intolerablly large. Thus an opti- 
mal m can be chosen. For example, in cases where the two 
adjacent regions are generated by Gaussians N ( p 1 ,  m 2 )  and 
N ( p 2 , m 2 ) ,  then the optimal window size is defined to be 

where is a confidence constant. We see m =  
we should set m = 1 only if IIpl - p2 11 >> 6. This explains 
why conventional region growing (which uses m = 1) works 

4a22 
( P l - P Z P  ’ 

on images with high contrast (or SNR) regions. 
11. The Initial conditions. Like all greedy algo- 

rithms, the performance of region competition will depend 
on the initial condition-more precisely, on the choice of the 
seeds. Because we assume the image consists of M homo- 
geneous regions, and each region is generated by one of the 
pre-specified probability distributions, each initial seed is a 
hypothesis about the location of a certain probability distri- 
bution family (or a model). Therefore, we define a seed to 
be “good”, if 

1. it is completely inside a ‘true’ region, and 
2. it selects the correct probability family (or model). 
Failing to satisfy either of these two conditions causes a 

seed (or a hypothesis) to be ‘bad’. Thus to test whether a 
seed is good or not is to test how good the sample charac- 
teristics (in most case, the empirical distribution function) 
inside the seed fit a probability model. In statistics, there 
are many standard methods for testing the goodness of fit, 
such as the moment test, Chi-square test, and Kolmogorov 
test. 

Empirically we observe that a sufficient condition for an 
optimal segmentation is that at the beginning each “true” 
region includes at least one good seed. But this is not a 
necessary condition. Below we demonstrate an interesting 
domino effect of transferring bad seeds into good ones. 

a ( t = O )  b (t=20) c (t=50) 

d (t=84) e (t=l26) f (t=150) 

Figure 5: The Domino eflect of seeds transformation 

In figure (5), we show several steps of region competition 
running on the image shown in figure (2b). Four seeds are 
bad, straddling the boundaries, while seed 5 which lies in 
the upper-left region is good. In the first stage, all bad 
seeds grow across the boundaries(see t=20). After they 
contact each other, seed 5 drives seed 1 and seed 2 out of the 
upper-left region (see t=50). By time t = 84 seeds 1 and 2 
are completely driven out of the upper-left region and both 
become good seeds while seed 3 and 4 remain bad seeds. 
Now seeds 1 and 2 drive seeds 3 and 4 into the lower-right 
region, at t = 126, where they become good seeds and are 
finally merged into a single region at t=150. Such domino 
effects will continue when more regions are involved, and we 
think this is a key difference between the region competition 
algorithm with conventional region growing approaches. 
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5. MULTIVARIATE MODELS: COLOR 

a (red band) b (blue band) 

d (t=20) e (t=100) 

c (t=O) 

f (t=130) 

Figure 6 :  Segmentation of a color image with highlight re- 
gions 

The previous sections have described segmentation tech- 
niques where regions are considered to have homogeneous 
intensity properties. For many applications image segmen- 
tation should be based on the albedo, because it corre- 
sponds to properties of the material independent of the 
lighting conditions or the geometric configuration of the 
material. For example, if we are looking at a person, the 
skin or each patch of his(her) clothes will have constant 
albedo properties but the intensity of the skin or clothes 
may change dramatically due to the changes of the geome- 
try. 

In color images, the probability family for each homo- 
geneous region Ri can be modelled by: 

where ( R ,  G,B)(z,y) is the input color, ( r , g , b )  is the (as- 
sumed) spatially constant body color within each region, 
(rs, gs, b , )  is the (assumed) spatially constant color of the 
light source, is the illumination, is the specular 
component, and (er, e,, eb)(z,y) are the residues (or noise). 

Therefore the homogeneous probability model is defined 
as P ( ( R ,  G, B)(z,y) : (Gal  E:), (rl, S a ,  h ) ) ,  where (Z,, Cl) are 

Figure 7: Segmentation of a texture image 

the parameters of the Gaussian distribution of the residues. 
As before the region competition algorithm iterates the fol- 
lowing two stages. 

In the first stage, we fix the boundary I?, and compute 
the best fitting of color ( r : , g : , b : )  for each region R, by 
least square regression. Then the fitting residues lie on a 2D 
plane pa,  whose normal is ( r : , g : , b : ) ,  for each (z,y) E R,. 
We calculate and C, as the sample mean and sample co- 
variance of the residues on the p, plane in [16], we show that 
the color ( r : , g : , b : )  computed by the least square method 
and the sample mean p and sample variance C maximize 
the probability P ( ( R ,  G, B)(z,y) : (Z,, E,), ( r l ,  g l ,  b , ) )  and 
thus minimize the energy functional. 

The second stage is to move the boundary r by mini- 
mizing the MDL criterion. 

For a pixel p = (U, v )  on the boundary of region R, 
we first calculate the projection of (R ,  G, B)(u,u) onto the 
( r : , g : ,  b : )  vector, and then we calculate the fitting residue 
xu,.) in the p, plane. 

As for the grey level case, we sample a window contain- 
ing m pixels and obtain a set of measurements ( X I  - ..., Y,). 
We define the window mean and co-variance by: ? and S 
respectively. Thus the statistics force generated by a single 
R, at (z, y) is f, . ii,, with: 

+ 

.+ -. 

1 
2 f i  = - -[log (2A)  +log I I CI 1 + (P- i;, ) c;' (3- i;, ) +tr (C,l S ) ]  

(20 )  
Observe that Equations (20) generalizes equation (17) 

to higher dimensions. As for the grey level case we can 
identify the terms on the right hand side of Equation (20) as 
the standard generalizations of the T and F tests to  higher 
dimensions. 
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Figures (6a,b) show the red and blue bands of a 261 x 
116 color image. Observe the noise, shading in the cloth 
and the highlights on several parts of the skin. 

The algorithm was implemented as for the grey level 
case. Figure (6c) shows the initial seeds at iteration step 
t = 0. Figures (6d,e,f) shows the sequence at steps t = 
20,100,135 respectively. The competition between the seed 
regions converged at t = 100 as shown in Figure (6g) where 
the small shadow regions are the image spaces which are 
not occupied by the 20 seeds. In such regions we need to 
introduce additional seeds which can compete with the ini- 
tial ones. We observe that the eyes and mouth are included 
in the face region because they are too small (about 10 25 
pixels) and thus are treated as outlier noise. 

Observe in Figure (se) that the algorithm detects the 
highlights correctly. These highlight regions are: (1) on 
the neck and shoulder, (2) on the left arm, (3) on the left 
leg, (4) on the breast. Such highlight regions are detected 
because the distributions of the fitting residues in the 2D 
plane for these regions corresponds to ellipses with bigger 
aspect ratios than those for the non-highlight regions. Fig- 
ure (6f) shows the final segmentation after spreading addi- 
tional seeds and merging. We claim that the color model 
used in this paper has advantages over the existing methods, 
such as [9] in terms of both color description and highlight 
detection, detailed analysis is given in [16]. 

6. TEXTURE SEGMENTATION 

We can directly adapt our algorithm to perform texture 
segmentation. As an example, figure (7.a) shows a 172 x 247 
texture image. At each pixel (z ,y)  we measure the vector 
d = V(G, * I )  which captures the local orientation of the 
texture elements (or textons). Then we find that 2 inside 
each region -such as grass, cheetah and bull are respectively 
subject to 2D Gaussian distribution N(&,Et) ,  while the 
pi’s are all close to zero and the covariance E, is the major 
discriminator. Detailed analysis is given in [16]. 

Figure (7b) is the final result after merging. Observe 
that the belly of the cheetah, which is highly shadowed, is 
merged with the grass under the body. This is due to the 
similarity of their covariance matrices. This example has 
only used two texture filtering bands. In general we would 
prefer to use a larger number of filters geared to detecting 
different texture patterns. Moreover, with a larger number 
of filters it would be possible to perform a normalization 
between texture bands, as we did for the color bands, and 
reduce the effect of gradients caused by shadows and geo- 
metric effects. 

7. CONCLUSION 

In this paper, we assume that the image consists of M ho- 
mogeneous regions, each of which is generated by one of K 
probability models. Therefore, the precondition for the re- 
gion competition algorithm to work is that it should know 
a priori all the propability models underlying the input im- 
ages. In other words, if K models are not sufficient for an 
input image, there is no reason to expect satisfactory seg- 
mentation. Such limit is true for all image segmentation 
algorithms. 

We are currently extending this work by integrating 
grey level, color and texture cues. We are using this algo- 
rithm as a front end for our object recognition systems[l7]. 

-The authors apologize for not discussing many 
highly related papers due to space limitations. More 
references are given in [16]. 
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