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The firing patterns of SNr neurons can be split into three categories: 
regular, irregular, and burst firing. A prominent method by which investigators 
conduct this classification is through the visual inspection of a spike train’s 
interspike interval histogram (ISIH) and its associated autocorrelogram. 

Introduction

• Statistical analyses were conducted on in-vivo neural spike train data 
collected from mice with varying levels of dopamine depletion. These 
recordings were pre-processed and sorted through Plexon Offline Sorter. 

• Features of each firing class were consistent throughout all the conditions.
• Time-domain and nonlinear analyses were only carried out on the first 3000 

ISIs of  data segments that contained at least 3000 ISIs. 
• Outliers were found through the use of  the interquartile range rule and 

replaced if additional ISIs were available. 

Methods

In an effort to capture the presence of peaks in the autocorrelograms, for a 
given spike train, we fit a double exponential curve from the initial crest of its 
autocorrelogram to its first minimum value found after the initial peak. The 
double exponential curve was chosen as it differentiated the three firing patterns 
best. 

Double	Exponential	Fit

• Pearson’s moment coefficient of skewness measures asymmetry of a 
probability distribution of a real-valued random variable about its mean.

• A value close to zero indicates symmetry while a value greater than or equal 
to one indicates positive skewness.

Pearson’s	moment	coefficient	of	skewness

Conclusion

With these three features, we determined threshold parameters that 
successfully recreated the clusters formed by visual ISIH/Autocorrelogram
classification of these data points. Burst neurons had FFs(Fano Factors) greater 
than 0.9. Irregular neurons had skewness values greater than 0.5, FFs above 0.6, 
and dEFs(doubExpFit) below 0. Lastly, regular neurons had FFs below 0.6, 
skewness values below 1, and dEFs above 0. 
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Fig. 1: Regular Firing Neuron (First Row): Symmetric ISIH distribution and Autocorrelogram with 
1+ peak. Irregular firing neuron (Second Row): Asymmetric ISIH distribution and Autocorrelogram
with an initial trough that rises to steady state. Burst firing neuron (Third Row): Positively skewed 
ISIH along with initial peak followed by a decay to steady state in Autocorrelogram. 

However, one can imagine that this technique is a painstakingly slow 
process that is also vulnerable to an examiner’s biases. Furthermore, these 
obvious features are not always present in the ISIHs and autocorrelograms of all 
neural spike trains. The findings in this project suggest an alternative approach 
that uses three quantitative measures (Fano Factor, Pearson’s moment 
coefficient of skewness, and Double exponential fit) to expedite and provide 
consistent and accurate classifications. 

• A nonlinear statistical value that measures self-similarity of a data stream. 
• The Fano factor for a Poisson process is 1. 
• Bursting activity contains spike patterns that are more irregular than Poisson 

processes, burst neurons should have Fano factors > 1. 

Fano Factor

• Each data series was split into non-overlapping time windows (50ms). The 
FF was then calculated by the ratio of the variance of spike counts in each 
window divided by the mean of the spike counts in each window. 

Eq. 2: Equation for calculating the moment coefficient of skewness where E is 
the expectation operator, µ is the mean, σ is the standard deviation and µ3 is 
the third central moment. 

Eq. 1: Equation for calculating the Fano Factor where , µw is the mean 
and σw is the standard deviation of the windows
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Fig. 3: Asymmetric distribution 
with skewness greater than zero 
but less than 1.

Fig. 2: Nearly symmetric distribution 
with a skewness close to zero.
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Fig. 4: A positively skewed 
distribution with skewness greater 
than 1. 

Fig. 5: The double exponential fit of 
the regularly firing neuron has a 
very steep line-like curve. 

Fig. 6: The double exponential fit of 
the irregularly firing neuron has a 
very flat line-like curve. 

Fig. 7: The double 
exponential fit of the burst 
firing neuron has a curve 
that displays a decay to 
steady state.

• To quantify this difference, the average of the instantaneous slopes at a 100 
points in the double exponential fit was calculated. 

Eq. 3: Equation for calculating double exponential fit value where A, B, C, 
and D are the coefficients of the double exponential equation returned by the 
fit function.
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Future	Directions
The accuracy and consistency of this classification paradigm can be 

improved through the addition of additional parameters such as Approximate 
Entropy, Hurst Exponent, StatAv, etc., yielding a high-dimensional parameter 
space. Dimensionality reduction and clustering algorithms could then be used to 
better classify these neuron subtypes. The effects of movement modulation on 
neural spike train variability can also be examined. 


