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Background
• What role does color play in face perception? Studies

have typically used small numbers of face images collected
under controlled conditions; here we use large numbers of
face images from the “wild”.

• Issue 1 Competing goals of UV radiation protection and
previtamin D3 production produce post-pubertal sexual
dimorphism in skin coloration across races[2].

• Issue 2 Human performance data demonstrates an impair-
ment to face sex classification accuracy when stimuli are
presented in greyscale when shape information is degraded[4]

• Deep Convolutional Neural Networks (DCNN) can predict
neural responses to visual stimuli[3]

• Exp 1 Will a DCNN reveal an interaction between color sexual
dimorphism and race for real-world face images?

• Exp 2 Will a DCNN display similar impairment in a sex clas-
sification task when shape/color information is degraded?

Degraded Shape Manipulation

Progressive Levels of Gaussian Blur

Sexual Dimorphism
• Skin reflectance data suggests male faces are more red and

female faces are more green

• R:G ratio calculated by summing all red and green pixel values
for each image, with center crop of (100x100) used to focus
in on face rather than background

• Mean R:G ratio for males: 1.374767, for females: 1.346971
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Methods

• From VGGFace2[1] Dataset: 600,000 images: 540,000 train,
60,000 test, balanced on sex, random across race

• ResNet18 CNN Architecture modified for binary classification
for sex, images re-sized to (224x224) and normalized

• Greyscale filtering and Gaussian blur used to degrade
color/shape information at test time

• R:G ratios calculated across each image in dataset, rated from
highest (High R, Low G) to lowest (Low R, High G)

• Examine learned color biases with respect to sex in output FC
layer using images with only red or green content intact

Conclusions & Next Steps
• Conclusion Issue 1 Distribution of“wild” faces are consistent

with prior findings that males are redder than females

• Conclusion Issue 1 The DCNN does not appear to learn this
difference; possibly because of the diagnosticity of shape infor-
mation and the high variability of color due to lighting

• Conclusion Issue 2 Results (albeit low N = 2) suggest a
disproportionate impairment in humans for sex classification
in the absence of clear shape information

• Results across the DCNN and humans are similar in pattern,
but not magnitude due to ceiling performance in the DCNN
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