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SUMMARY

Theories like predictive coding propose that lower-
order brain areas compare their inputs to predic-
tions derived from higher-order representations
and signal their deviation as a prediction error.
Here, we investigate whether the macaque face-
processing system, a three-level hierarchy in the
ventral stream, employs such a coding strategy.
We show that after statistical learning of specific
face sequences, the lower-level face area ML com-
putes the deviation of actual from predicted stimuli.
But these signals do not reflect the tuning charac-
teristic of ML. Rather, they exhibit identity speci-
ficity and view invariance, the tuning properties of
higher-level face areas AL and AM. Thus, learning
appears to endow lower-level areas with the capa-
bility to test predictions at a higher level of abstrac-
tion than what is afforded by the feedforward
sweep. These results provide evidence for compu-
tational architectures like predictive coding and
suggest a new quality of functional organization of
information-processing hierarchies beyond pure
feedforward schemes.

INTRODUCTION

Cortical computations using spikes are expensive (Lennie,

2003). This suggests that the brain should employ an efficient

coding strategy. One way to optimize information processing is

to predict incoming stimuli based on past experience (Hawkins

and Blakeslee, 2004). For example, a mechanism causing an

expected stimulus to elicit a weaker response than the same

stimulus when unexpected would reduce redundant information,

and thusmetabolic cost. How could this be implemented? Theo-

retical models, such as predictive coding (PC) (Friston, 2009;

Huang and Rao, 2011; Rao and Ballard, 1999), often assume

that expectations are formed by higher-level brain areas and

are fed back to earlier ones (Figure 1A). When incoming sensory

information and prediction mismatch, a prediction error (PE) is
generated. Signaling the mismatch is considered more efficient

than transmitting the entire bottom-up signal.

Importantly, PEs should be highly informative about the nature

of the prediction signal, which is otherwise hard to measure: PC

theory implies that PEs, although generated and measured in a

lower-level area, reflect the tuning properties of cells that

generate the prediction, i.e., of higher-level areas. This would

constitute a major departure from the strict modularity of archi-

tectures relying solely on feedforward processing (Parkhi et al.,

2015; Serre et al., 2007; Yamins and DiCarlo, 2016), where

each stage performs a discreet operation on its inputs without

external contributions.

An information-processing hierarchy especially well suited to

put PC theory to the test is the macaque face-processing sys-

tem. This system, residing in object-selective inferotemporal

(IT) cortex, is a network of tightly interconnected face-selective

areas (Grimaldi et al., 2016; Moeller et al., 2008; Tsao et al.,

2006), each with a unique functional specialization (Freiwald

and Tsao, 2010), implementing a three-level processing hierar-

chy (Figure 1B). Unique within IT cortex, the system’s relevant

stimulus class is known (faces) and also within-class selectivity

for variations along two dimensions, head orientation and iden-

tity: cells in area ML are strongly tuned to head orientation

(‘‘view specificity’’), profile-selective cells in AL respond to left

and right profiles equally (‘‘mirror-symmetric tuning’’), and cells

in AM are only weakly tuned to head orientation (‘‘view invari-

ance’’). While tuning to head orientation decreases from ML via

AL to AM, selectivity for facial identity across head orientations

increases (Freiwald and Tsao, 2010). Because representations

at the three processing stages differ not only quantitatively, but

qualitatively, the face-processing system offers a unique oppor-

tunity to test PC theory: if the system utilizes predictions, if

predictions are sufficiently detailed to differentiate between indi-

vidual faces, and if prediction signals are fed back through the

hierarchy, PEs in ML should not reflect local tuning properties,

but those of AL and AM, the areas with the strongest feedback

connections to ML (Grimaldi et al., 2016; Moeller et al., 2008).

PEs in ML would then be more selective for identity than head

orientation and possibly even reflect the mirror symmetry of AL.

Here, we investigate whether the face-processing system

utilizes predictions, whether these predictions possess the gran-

ularity to differentiate between physically similar face stimuli, and

whether PEs reflect properties of higher-level representations.
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Figure 1. Background, Conditions, and Hypotheses

(A) Predictive coding proposes that higher processing stages send predictions to lower stages where they are compared with actual inputs. Any mismatch

between prediction and input is signaled as a prediction error (PE).

(B) Subsequent stages in the face-patch system extract increasingly abstract information about facial identity by discarding information about head orientation.

Neurons in face patch ML are view tuned, profile-selective AL neurons respond equally to left and right profile views, and AM represents identity largely inde-

pendently of view. All stages are directly and reciprocally connected through feedback and feedforward connections.

(C) During the test phase of the paradigm, we presented trained pairs (black, 60% of all trials) and, critically, pairs with recombined head orientations and/or

identities of the training partners such that predictors differed from the original pairing in view (blue), identity (red), or identity+view (green). Importantly, the second

stimulus, the successor, remained identical across conditions. This allowed for a cleanmeasurement of PEs as the response difference between unexpected and

expected (but physically identical) successors.

(D) Depending on the source of the prediction signal, different patterns of PEs are expected. Image-specific PEs (left) should be maximal for deviations in head

orientation, because changes in head orientation cause the largest pixelwise differences between images. In contrast (right), if learning generalizes across views

to generate identity-specific predictions, PEs should be maximal for unexpected identities.
Good predictions are based on experience. To create those ex-

periences, we employed an unsupervised statistical learning

paradigm (see STARMethods; Turk-Browne, 2012): for 4 weeks,

we exposed monkeys to nine pairs of sequentially presented

faces (Figure S1) to create specific associations such that, after

learning, the appearance of the first stimulus (the predictor) fore-
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cast the appearance of a specific second one (the successor)

(Meyer and Olson, 2011).

To determine the presence and properties of PEs, in the sub-

sequent testing phase, we presented the trained face pairs as

well as pairs that violated the learned associations along the

two major tuning dimensions known to be encoded differentially



along the three stages of the face-processing system: head

orientation and identity (Freiwald and Tsao, 2010). To elicit PEs

in these dimensions, we created violation conditions by recom-

bining predictors and successors into new pairs such that a suc-

cessor could appear unexpectedly (in 40% of trials) after a pre-

dictor that differed from the successor’s original training

partner in identity, view, or both. We then contrasted responses

of ML neurons to unexpected and expected but physically iden-

tical successor stimuli across the trained and three violation con-

ditions (Figure 1C; STARMethods). By manipulating only predic-

tor stimuli while keeping successors physically identical (Meyer

and Olson, 2011), we could isolate contextual effects of predic-

tions from responses to successors (mitigating the confounding

effects of stimulus selectivity that can arise when instead manip-

ulating the successor). Comparing responses in the different

violation conditions allowed us to test whether PEs in view-tuned

ML reflect the properties of higher-level representations, identity

specificity and view invariance (Figure 1D), as PC theory

predicts.

RESULTS

We localized face patch ML with whole-brain fMRI in two rhesus

monkeys (Figure 2A) and then targeted ML with electrophysio-

logical recordings. For each neuron, we first assessed face

selectivity and responsivity to the trained stimuli (see STAR

Methods). Of 198 face-selective neurons, 80 were responsive

to the trained stimuli (42 monkey M, 38 monkey Y). We then

compared responses to the successor stimulus preceded by

the trained face predictor with responses to the same stimulus

but preceded by a different predictor diverging from the original

predictor in view, identity, or identity+view. Amajority of ML neu-

rons emitted PEs, i.e., significantly stronger activity in the viola-

tion than in the trained conditions (Figure 2B): in 64% of respon-

sive cells (24/42 inmonkeyM, 27/38 inmonkey Y), PEs of varying

size were elicited in response to violated expectations on the

level of identity, view, or their combinations (Figures 2C and

2D). Effects were similar across animals (Figure S2), and the

number of modulated cells was significant in both (all pNPC <

0.004); hence, we report combined results. The pattern of firing

rate reductions for expected relative to unexpected successors

was not merely due to neural adaptation, because correlations

between peak firing rates to consecutive predictor and succes-

sor stimuli were generally positive, not negative, as one would

expect for adaptation, and did not differ between conditions

(across neurons: c2 = 0.57, p = 0.7; across trials per neuron:

c2 = 1.95, p = 0.58). Thus, the face-processing system can learn

to actively generate predictions based on associations, even for

the physically very similar stimuli in our training set (Figure S1),

and about two-thirds of ML neurons compare these predictions

against actual inputs, resulting in PEs.

What is the content of these predictive signals? ML could test

predictions in different ways: as a general deviance detector,

where PEs would signify contextual novelty for any unexpected

stimulus, irrespective of the neurons’ intrinsic sensitivity to the

predicted face, or as an expectation-specific deviance detector,

where PEs would be carried by neurons most informative about

the predicted stimulus, a theoretical concept known as ‘‘preci-
sion’’ (Friston, 2009). To differentiate between these possibilities,

we compared PEs for preferred and non-preferred successor

stimuli across cells (Figures 3A and 3B). PEs were only elicited

for preferred stimuli, resulting in a highly significant interaction

between stimulus preference and predictability (Figure 3B; early:

p = 0.0032, late: p = 0.0078). This shows that PEs reflect the pre-

cision-weighted testing of specific predictions about upcoming

stimuli and thus that the face-processing system learns to

generate predictions with sufficient granularity to distinguish

variation within category, i.e., among similar face stimuli.

We then went on to test just how specific these predictions

are: they could be based on associations on the level of head

orientation, resulting in image-specific PEs (Figure 1D), as earlier

research in anterior IT might suggest (Meyer and Olson, 2011).

Alternatively, predictions could be identity specific, discarding

deviations in head orientation that do not affect identity informa-

tion—similar to tuning in AM (Freiwald and Tsao, 2010). To

address this question, we separately investigated three kinds

of prediction violations: identity, view, and identity+view. Each

of these conditions elicited significant PEs with a mean latency

of �130 ms (Figures 3C–3G), averaging at 17% signal increase

over the trained condition. A central claim of many PC models

is that PEs signaled by a low-level area are successively sup-

pressed by high-level feedback reconciling themwith the predic-

tion (Friston, 2009;Moreno-Bote andDrugowitsch, 2015;Murray

et al., 2004). Thus, the influence of higher-order representations

should increase with time. To test this prediction, we determined

the time courses of PEs. All three violation conditions resulted in

a significant PE during the early, transient response (Figure 3F).

However, during the late, sustained phase of the response,

view violation PEs first diminished and then completely vanished

(time 3 condition, p = 0.0002), while PEs to identity violations

and to identity+view violations remained significant and even

slightly increased in strength (Figure 3G). This pattern of late re-

sponses is consistent with a source of the prediction signal that

is identity, but not view, specific. These are the properties of rep-

resentations in AL and AM. However, this signature might also

arise locally, if ML neurons lost their tuning over time. But this

was not the case: ML tuning to head orientation in the absence

of predictions was strong and stable during stimulation, all the

while head orientation information in the PE declined steadily

and then disappeared (Figures 3H and 3I). Thus, invariance prop-

erties of higher-level representations emerge in ML PEs in time if

faces appear in a highly predictable context.

An additional signature of the source of predictions are corre-

lations between PEs and tuning: if the source of predictions is

local, PEs are expected to depend on local tuning, but not

when the source is a remote one. We found such correlations

in the early, but not the late, response phase: early PEs were

larger for more narrowly tuned cells (53–107 ms after peak

response; Figure S3A), and early view violation PEs were larger

for more narrowly view-tuned cells (63–188 ms after peak

response; Figure S3B), while no such correlation existed for

identity tuning and PEs for identity violations (Figure S3C). These

correlations of local tuning and PEs suggest an early phase of

PEs inML that provides detailed information about the prediction

violation and exhibits similar properties as local ML tuning (Frei-

wald and Tsao, 2010). None of the correlations between PEs and
Neuron 96, 89–97, September 27, 2017 91



Figure 2. Single-Cell Prediction Errors

(A) fMRI-identified face patchML on coronal slices and a surface template. Color coding represents significance of the contrast (faces versus objects and bodies),

masked to highlight ML. Green lines indicate recording trajectories.

(B) Example single-cell prediction error (PE) and distribution of statistical effect sizes (average 50–500 ms) for neurons that showed PEs like the example cell (n =

27). The circle marks the example unit in the distribution of effect sizes.

(C) Percentage of responsive neurons showing statistically significant PEs (n = 51) to violations of identity, view, or combinations thereof.

(legend continued on next page)
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ML tuning properties found in the early phase remained signifi-

cant in the late phase (Figure S3). This indicates a time-

dependent reduction of the impact of local tuning on PEs which

parallels the emergence of view invariance and identity speci-

ficity of PEs in ML (Figures 3C and 3E).

Taken together, these results show that late PEs in ML do not

reflect image-specific predictions. Late PEs, rather, are more

identity than view specific, the reverse of the pattern of ML

tuning. The gradual loss of sensitivity to view violations suggests

that higher, view-invariant representations successively sup-

press PEs for view violations in ML, while PEs for identity are

not diminished, thus preserving information about unexpected

identities for further processing.

Identity selectivity and view tolerance of PEs in ML are proper-

ties shared with tuning in higher-level face areas AL and AM

(Freiwald and Tsao, 2010). If area AL, the next higher-level

processing stage directly and reciprocally connected to ML

(Grimaldi et al., 2016; Moeller et al., 2008), was—partly or

entirely—the source of predictions in ML, this suggests yet

another functional signature for ML PEs (Figure 3J). AL is special

among face patches in exhibiting mirror-symmetry confusion in

profile-selective cells (Freiwald and Tsao, 2010); profile-selective

neurons in AL, but not in ML (Figure 3K) and much less in AM,

respond equally to mirror-symmetric profiles of the same

face, but not to front views. Thus, predictions generated in AL

should carry this mirror-symmetry signature as well. When we

compared PEs in ML as a function of head orientation, we found

that mirror-symmetric view violations elicited lower PEs in ML

during the late phase of the response than non-mirror-symmetric

view violations (Figure 3L). The timing of this effect overlaps with

the peak of mirror-symmetric identity tuning in AL (Freiwald and

Tsao, 2010). This suggests that during the late, sustained phase

of PEs, higher-order representations specifically resembling

those typically found in AL are involved in suppressing PEs about

faces.

The effects of predictability that we observed occurred at the

outset of the face processing hierarchy, but do they have an

effect on face perception? If the neural effects described so far

indeed transpired into behavior, they would predict a pattern of

performance that differentiates identity- from view-based pre-

dictions. We tested behavior in humans, utilizing a slightly modi-

fied behavioral paradigm designed to tap into perceptual effects

of implicit predictions (Figure 4A). 13 participants underwent

training with the same stimuli as the monkeys, reduced to a

single session of 20 min. Since predictability and feedback are

thought to impact perception of signals embedded in high noise

(Hupé et al., 1998; Summerfield and de Lange, 2014), we then

tested how predictions affect detection of degraded faces. On

each trial of this face priming paradigm, the predictor face served

as a prime and the successor was degraded by phase scram-

bling. Unbeknownst to the subjects, we recombined successors

and predictors to manipulate predictions on the level of identity,

view, and view+identity on a subset of trials. Subjects detected
(D) Example PEs to identity (red, left), identity+view (green, middle), and view (blue

the period in which significance was assessed. p values reflect the result of a non

effect in this time period. Firing rates are normalized to the min/max response in

see Figure S2.
faces in trained conditions faster (median difference in reaction

time 327 ms, Figure 4B; Figure S4A) and more accurately

(median difference in d0 0.13, Figure 4C; Figure S4B) than in un-

trained conditions, showing that learned predictability improves

face detection. Accuracy was lowered in identity violation condi-

tions (p = 0.03) but not in the view violation condition (p = 0.39;

Figure 4C; Figure S4B). Thus, behavioral face prediction auto-

matically generalizes across views, but not identity, paralleling

PEs in ML (Figure 3G).

DISCUSSION

Our results provide direct evidence for learning in the adult ma-

caque face-patch network, a system that supports a perceptual

capacity with strong genetic determinants (Wilmer et al., 2010).

The system, pre-wired after years of face processing, was

capable of acquiring selectivity for arbitrary, artificial face pair

sequences after a mere 30 days of passive exposure for a few

hours per day in monkeys, and behavioral learning effects

were already present after only 20 min of learning in humans.

The face-processing system thus exhibits a remarkable potential

to acquire entirely new environmental statistics. Even more so,

stimuli were not associated as mere pictures, as earlier research

in anterior IT might have suggested (Meyer and Olson, 2011), but

were interpreted, automatically, as exemplars of specific facial

identities. Nothing in the training regime had pre-empted this

outcome, which supports, in a rather unexpected way, the

conjecture that the face patch hierarchy’s computational goal

is the automatic extraction of view-invariant facial identity (Frei-

wald and Tsao, 2010).

The effects reported here also provide direct evidence for

central tenets of PC theory: we can show that a lower-level

area tests predictions about upcoming stimuli and that the re-

sulting PEs are generated by many neurons, not just a few,

which implement, through precision weighting, a computation-

ally and metabolically efficient coding regime. Predictions

prompted response modulations of �17%, similar to contextual

(Poort et al., 2016) and attentional (Treue and Martı́nez Trujillo,

1999) modulations in early and mid-level visual areas. Given the

brief training, the arbitrariness of the associations, and the

physical similarity of the stimuli, these likely are but a weak

reflection of the full effect of predictions on information pro-

cessing within this network. Our results, however, also

constrain PC models in new ways: PEs undergo (at least) two

phases, a hitherto undescribed early phase characterized by

local tuning and hence possibly generated by locally computed

predictions, and a later phase in which PEs resemble higher-

level representations, as PC suggests. The finding that, during

this later phase, higher-level properties emerge in PEs of an

earlier area highlights an oft-overlooked consequence of the

PC framework, the endowment of early processing stages

with the capability to signal PEs that prescind from physical

detail.
, right) violations. Solid gray lines indicate stimulus onsets, and dotted lines are

-parametric combination (NPC) test against the null hypothesis that there is no

the trained condition. Shading around response average indicates ±SEM. Also

Neuron 96, 89–97, September 27, 2017 93



Figure 3. Properties of Prediction Errors

(A) Average responses to trained (gray) and

violation (purple; identity, identity+view) conditions

for preferred (solid lines) and non-preferred (dotted

lines) successor stimuli across cells. Shading

marks significant PEs (violations > trained), and the

dotted horizontal line marks a significant condition

(trained, violation) 3 preference interaction (cor-

rected for multiple comparisons).

(B) PEs as percent signal change from the trained

condition for preferred (dark purple) versus non-

preferred (light purple) stimuli during the early,

transient response (120–210 ms) and the late,

sustained response (300–440 ms).

(C–E) PEs to identity (C; red), identity+view (D;

green), and view (E; blue). Shading marks when

violation conditions differ from the trained condi-

tion (corrected for multiple comparisons).

(F and G) PEs as percent signal change from the

trained condition during the early (120–210 ms)

and late (300–440 ms) response. View PEs were

only significant (shading) during the former, not

the latter, period (time 3 condition, p = 0.0002).

(F) Head orientation tuning of predictor stimuli.

Predictor stimuli, which were not predictable,

displayed a sustained difference for preferred

and mirror-symmetric head orientations (cor-

rected for multiple comparisons), exhibiting

typical ML tuning. (G) While for stimuli lacking a

predictive context (predictors) the difference be-

tween head orientations (black) was stable

across time, view PEs for stimuli within a pre-

dictive context (successors, blue) decreased with

time, resulting in view invariance (difference in

slopes p < 0.0001).

(H) Schematic of hypothetical prediction formation

between ML and AL. In ML and AL, learning links

the two images in a pair. In ML, this link is view

specific because ML neurons are view selective. In

AL, the link is mirror symmetric because AL neu-

rons exhibit mirror symmetry. Predictions from AL

reduce PEs to the successor face in ML through

feedback. Because AL pools ML inputs for left and

right profiles, trained faces and mirror-symmetric

view violations (dark blue) both predict successor

faces, although the latter association was not

explicitly trained. Non-mirror-symmetric view vio-

lations (light blue) are not pooled by the same AL

neurons and do not reduce PEs.

(I) Responses of profile-preferring ML cells to

stimuli lacking predictive context (predictors)

are sharply view tuned, not mirror symmetric

(300–440 ms).

(J) Mirror-symmetric (dark blue) view violations

elicit smaller PEs than non-mirror-symmetric (light

blue) view violations in the late phase of the

response to the successor (300–440 ms). Error

bars in (B), (F), (G), (K), and (L) indicate SEM,

corrected for between-cell variability. Firing rates

in (A), (C)–(E), (H), (K), and (L) are normalized to the min/max response in the (preferred) trained condition/to the preferred head orientation. Dotted vertical lines in

(A), (C)–(E), and (H) bound the window for multiple comparison correction. Slopes in (I) were obtained through a linear least-squares fit. Also see Figure S3.
PC proposes that this transfer of properties results from

recurrent processes in which higher areas pass predictions to

lower areas. Our results suggest that high-level face represen-

tations impact information processing in a lower-level face
94 Neuron 96, 89–97, September 27, 2017
area. This offers stimulus prediction as a functional role for

the face-processing system’s abundant feedback projections

(Grimaldi et al., 2016; Moeller et al., 2008), which had so far re-

mained enigmatic (DiCarlo et al., 2012; Freiwald and Tsao,



Figure 4. Behavioral Learning Effects on Face Detection

(A) Human subjects were trained with the same face pairs as the monkeys for 20 min. Subsequently, we tested for learning and generalization in a face priming

task. We presented trained pairs (black), view (blue), identity (red), and identity+view (green) violations. The predictor image served as the prime. Subjects

decided whether the successor was a face embedded in noise or only noise.

(B) Median reaction times. The left shows median reaction times per condition, and the right shows median differences between conditions on which statistics

were performed.

(C) Median accuracy (measured by d0) and differences between conditions. (B and C) Omnibus tests simultaneously compare all conditions; p values for planned

comparisons are given in gray boxes. Error bars indicate bootstrapped 95% confidence intervals. Also see Figure S4.
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2010; Meyers et al., 2015). The gradual development of view-

invariant PEs in ML indicates that beyond bidirectional conduc-

tion delays, time-consuming, possibly iterative computations

need to be carried out before PEs are suppressed and higher

and lower areas converge on an internally consistent account

of the environment. This likely includes the full emergence

of view-invariant tuning in AL/AM, which peaks at around

300 ms (Freiwald and Tsao, 2010). Finally, the functional preci-

sion of effects (differentiating individual faces) implies that feed-

back connections, similar to feedforward projections, are wired

with high specificity even within the confines of a face area only

a few millimeters in diameter. Thus, our results suggest a new

quality of functional organization of information-processing

hierarchies in IT cortex beyond currently predominant feedfor-

ward schemes, whereby top-down predictions alter online in-

formation processing.

Disregarding head orientation information in predictions

comes at the expense of losing information about physical

image properties in PEs. This computational strategy may

bolster the extraction of identity information by emphasizing

processing at a higher level of abstraction across the face-

processing hierarchy. However, PC theory also affords updat-

ing predictions if the discrepancy between predictions and

actual inputs is too large (Friston, 2009). This keeps internal

models from which predictions are derived in check. The

concurrent emergence of view invariance and decreasing

impact of local tuning properties on the PE we found

speak for an increasing role of abstract, higher-order represen-

tations in suppressing PEs. This does not rule out that if viola-

tions had diverged more strongly from the trained pairs, e.g.,

along a dimension such as species, new predictions could

have been learned. The impact of such PEs on higher-order

representations in AL/AM is an interesting target for future

studies.

Taken together, we show how incidental learning of statistical

regularities interacts with the organizational principles of

cortical hierarchies to allow the brain to optimize processing

resources and to generalize from image-specific predictions

to abstract rules (Aslin and Newport, 2012), revealing deeper

‘‘knowledge’’ than the mere association of two specific images

already at early stages of processing. This exemplifies the pro-

found penetration of perception by experience and suggests a

new information-processing quality for object-recognition

hierarchies.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Ferumuxytol (Feraheme) AMAG Pharmaceuticals NDC: 59338-775-0

Deposited Data

Electrophysiological and psychophysical data This paper http://dx.doi.org/10.6084/m9.figshare.

5126326

Software and Algorithms

eulerAPE Micallef and Rodgers, 2014 http://www.eulerdiagrams.org/eulerAPE/

Freesurfer Fischl, 2012 RRID: SCR_001847

(MATLAB) Permutation Analysis of Linear

Models (PALM) toolbox

Winkler et al., 2016 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM/

(MATLAB) Planner toolbox Ohayon and Tsao, 2012 http://tsaolab.caltech.edu/?q=Planner

(R) rmdzero function Wilcox, 2012 https://dornsife.usc.edu/labs/rwilcox/

software/

(MATLAB) Spectrum, Histogram, and Intensity

Normalization and Equalization (SHINE) toolbox

Willenbockel et al., 2010 http://www.mapageweb.umontreal.ca/

gosselif/SHINE/

(MATLAB) wave_clus toolbox Quiroga et al., 2004 http://www2.le.ac.uk/centres/csn/

research-2/spike-sorting/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Caspar M. Schwiedrzik

(c.schwiedrzik@eni-g.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Monkey Subjects
All animal procedures met the National Institutes of Health Guide for Care and Use of Laboratory Animals, and were approved by the

local Institutional Animal Care and Use Committees of The Rockefeller University (protocol number 12585-H) and Weill-Cornell

Medical College (protocol number 2010-0029), where magnetic resonance imaging (MRI) was performed. Data were acquired in

2 male, pair-housed adult macaque monkeys (Macaca mulatta, 9 (monkey M) and 8.7 (monkey Y) kg, age 6 (monkey M) and 5

(monkey Y) years).

Human Subjects
All human procedures were approved by the Institutional Review Board of The Rockefeller University (protocol number WFR-0741).

Data were acquired in 22 subjects (10 female, 1 left handed, mean age 33.4 years) after they gave written informed consent. No

sample size estimate was performed, but sample size was selected based on previous studies. All subjects reported normal or

corrected-to-normal vision and no history of neurological and/or psychiatric disease.

METHOD DETAILS

Monkey Experiments
Surgery

Implantation of MR-compatible headposts (Ultem; General Electric Plastics), recording chambers (Crist Instruments), ceramic

screws (Rogue Research), and acrylic cement (Grip Cement, Caulk; Dentsply International, and Palacos, Heraeus Kulzer GmbH)

followed standard anesthetic, aseptic, and postoperative treatment protocols (Moeller et al., 2008).

Magnetic Resonance Imaging

MRI data were acquired on a 3T scanner (Siemens TIM Trio). Functional data were acquired with an AC88 gradient insert (Siemens)

and a custom 8-channel phased-array receive surface coil with a horizontally oriented single loop transmit coil (L. Wald, MGH/HST
e1 Neuron 96, 89–97.e1–e5, September 27, 2017
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Martinos Center for Biomedical Imaging) while themonkeys were in sphinx position. Before scanning, the contrast agent ferumoxytol

(Feraheme, AMAG Pharmaceuticals; 8-10 mg of Fe per kg body weight) was injected into the femoral vein to increase the signal-to-

noise ratio (SNR). To localize face areas, we acquired 16 (monkey Y) and 17 (monkey M) runs of functional (T2*-weighted)

gradient-echo echoplanar imaging (EPI). Each run consisted of 196 volumes of 54 horizontally oriented slices (field of view [FOV]

96 mm, voxel size 1 3 1 3 1 mm, repetition time [TR] = 2 s, echo time [TE] = 16 ms, echo spacing [ESP] = 0.63 ms, bandwidth

[BW] = 1860 Hz/Px, flip angle [FA] = 80 degrees, no gap) acquired in interleaved order with phase partial Fourier 7/8, and two times

generalized autocalibrating partially parallel acquisitions (GRAPPA) acceleration, covering the whole brain. Additionally, we obtained

field maps which allowed subsequent EPI undistortion. Anatomical images were obtained in a separate session using a T1-weighted

magnetization-prepared rapid gradient echo (MPRAGE) sequence (FOV 128 mm, voxel size 0.5 3 0.5 3 0.5 mm, TR = 2.53 s,

TE = 3.07 ms, ESP = 7.3 ms, BW = 190 Hz/Px, FA = 7 degrees, 240 slices) and a custom 1-channel receive coil (L. Wald, MGH/HST

Martinos Center for Biomedical Imaging) while the monkeys were anesthetized (isoflurane 1.5%–2%) and positioned in an MR-com-

patible stereotactic frame (Kopf Instruments). Blood vessels were visualized using the contrast agent Gadolinium (0.2mL per kg body

weight).

To localize the face patch ML, we used a standard face localizer (Fisher and Freiwald, 2015). In short, subjects fixated on a white

dot at the center of the screen while we presented images of human and/or monkey faces, human and/or monkey body parts and/or

headless bodies, manmade objects, and fruits, intermixed with baseline periods in which only the fixation dot was shown in a block

design (FOB from here on). Each block lasted 24-30 s. Fluid reward was delivered after variable periods of time (2–4 s) during which

the subject maintained fixation within 2 degrees of the fixation dot. Only runs in which the subjects reached at least 90% fixation

stability were used for analyses. Visual stimulation and reward were controlled using in house software (Visiko, M. Borisov). Stimuli

were projected on a back-projection screen using a video projector (NEC NP3250, refresh rate 60Hz, resolution 1024 3 768 pixel)

with a custom lens. Eye position was measured at 120 Hz using a commercial eye monitoring system (ISCAN).

Stimuli and Training

For the main experiments, we generated 36 3-dimensional human faces with a neutral expression and no hair in FaceGen (v3.5.3,

Singular Inversions). For each face, we extracted five head orientations (0, 30, 60, 300, 330 degrees), resulting in a total of 180 images.

Images were converted to black and white and luminance normalized using SHINE (Willenbockel et al., 2010). For training, we

selected 18 unique images (6 per head orientation 0, 60, 300 degrees) from the full set, each showing a different face. These

were joined into 9 pairs (Figure S1). Pairs were arranged such that one identity-view combination would uniquely predict one other

identity-view combination, while assuring that head orientation was fully balanced across pairs (e.g., 3 different identities at 0 degrees

head orientation were paired with 3 different identities at 0, 60 and 300 degrees head orientation, respectively).

In the training phase, each monkey then received extensive exposure (30 days in monkey M, 32 days in monkey Y) to the 9 pairs of

face images in order to establish associations between stimuli, and, separately, to the full set of 180 faces (18 paired faces + 162

unpaired faces) to familiarize them with the stimuli later used to determine tuning for head orientation and identity.

For the face pair training, each trial started with a fixation period (500 – 2000 ms), followed by the first image in a pair (500 ms),

followed by the second image in a pair (500 ms) with no ISI. Images (5 dva) were presented foveally on a gamma-corrected

CRT monitor (NEC Multisync FE2111SB, refresh rate 100 Hz, resolution 1280 3 1024 pixel, viewing distance 57 cm) in a darkened

booth. The sequence of pairs was arranged such that transition probabilities within pairs (i.e., between stimuli) were 100%, while

transition probabilities between pairs (i.e., between trials) were at minimum and balanced across pairs. This was done to assure

that monkeys only learned associations between the stimuli within pairs. Monkeys were rewarded with a drop of juice and/or water

if they continuously fixated on a white, centrally presented fixation dot within a 3 3 3 dva window for 2-4 s. Thus, there was no

systematic relationship between the occurrence of a pair on the screen and reward. In separate runs, monkeys were also exposed

to the full set of 180 faces (18 paired faces + 162 unpaired faces), presented in random order and distinguished from pair training runs

by stimulus timing (200 ms on, 200 ms off) and by using a blue fixation dot. These additional training runs mimicked the tuning

measurements during later recordings. Eye position was monitored at 120 Hz using an ISCAN system. Visual stimulation and reward

were controlled using in house software (Visiko, M. Borisov).

Electrophysiology

Chamber locations, grid angles, and electrode trajectories were planed based on functional and contrast-enhanced anatomical

MRIs using Planner (Ohayon and Tsao, 2012). ML was targeted in the left hemisphere of monkey Y and the right hemisphere of

monkey M. For recordings, tungsten electrodes (500k-3M Ohm, FHC) were back loaded into metal guide tubes, which also served

as the reference. Guide tube length was set to reach the top of the dura. The electrode was slowly advanced using an oil hydraulic

micromanipulator (Narishige Scientific Instrument). Neural signals were amplified and recorded at 30k Hz (Blackrock Microsystems).

Spikes were detected online based on their waveform and later sorted offline using wave_clus (v2.5) (Quiroga et al., 2004).

On each recording day, the electrode was initially advanced based onMRI-planning until the border of face patchMLwas reached.

We then recorded from each single unit encountered along the electrode trajectory within ML. After a unit had been isolated, we ran

four experiments, described in detail below. First, we mapped the size and location of the excitatory receptive field region by moving

face stimuli on the screen. Second, after optimizing stimulus size and position, we determined category selectivity, using the

FOB stimulus set (faces, objects and bodies) from the fMRI face localizer. Third, we assessed responsivity to the full face stimulus

set; the latter experiment also served to determine identity and view tuning of the cell (IVT form here on). Fourth, we ran the main

experiment in whichwe presented the trained pairs as well as untrained pairs of faces. The order of experiments was not randomized,
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and the experimenter was not blinded to the experimental conditions. After completing all four experiments, we advanced the elec-

trode until the next cell was reached. During all experiments, monkeys were required to fixate within a 33 3 dva fixation window and

were given drops of juice and/or water as reward for fixation performance every 2 to 4 s.

Experimental Conditions

We adapted a paradigm by Meyer and Olson (2011) that is specifically aimed at eliciting PEs. A key feature of this paradigm is that

responses to physically identical stimuli (successors) can bemeasured in different predictive contexts. Thus, the effect of predictions

can be directly extractedwithout the need for assumptions about neural tuning properties, as is often necessary in other experimental

designs on Predictive Coding. Specifically, during the main experiment, we presented the trained pairs, as well as pairs in which the

expected sequence of stimuli within a pair was violated. To create the violation conditions, we systematically recombined the trained

facial identities and head orientations of the first images in the trained pairs (the predictors) with the second images in the trained pairs

(the successors) to generate novel pairs. This allowed us to test the influence of correct (trained) versus incorrect (violation) expec-

tations on the processing of the second stimulus in the pair (the successor). We thenmeasured PEs following their standard definition

used in the literature as the difference between expected and unexpected successors. Crucially, by only manipulating the predictor

and keeping the second stimulus identical across conditions, we could isolate contextual effects of expectations onto the successor,

which could otherwise be masked by differences in the cells’ responsivity to different successor stimuli. In the view violation

conditions, we kept the identity of the first stimulus the same as in the trained condition, but changed the head orientation to one

of the other two head orientations (e.g., if identity A was trained with 60 degrees, we now presented the same identity A with

0 and 300 degrees head orientation; Figure 1C; Figure S1). Hence, if predictions were based on associations that were formed on

the level of head orientation, we would expect PEs in response to the successor in this condition. In the identity violation condition,

we recombined the successor with predictors from other pairs that had the same head orientation as the trained predictor (e.g., if

identity A had been trained at 60 degree head orientation, we now presented trained identities D and G at the same 60 degree

head orientation as predictors, inducing a wrong expectation about the successor; Figures 1C; Figure S1). If predictions relied on

associations on the level of identity, disregarding view, we would expect PEs in the ‘identity’ but not the ‘view violation’ condition,

since the former preserves head orientation but not identity, while the latter preserves identity but not head orientation. In the

identity+view violation condition, we recombined the successor with predictors from other pairs that had both a different identity

and a different head orientation than the originally trained first image (e.g., if identity A had been trained at 60 degree head orientation,

we now presented trained identities E/F/H/I at 0 and 300 degrees head orientation, again resulting in wrong expectations about the

successor; Figure 1C; Figure S1). This condition allowed us to assess the relationship between the factors head orientation and

identity in generating PEs.

Because size and position of the stimuli during testing were tailored to each cell’s receptive field, while training occurred at a fixed

size and location, any learning effect can be considered size- and position-invariant. To maintain the training effects, the trained/

untrained ratio was maintained at 1.5 during testing. Monkeys completed minimally 270 trials per recorded unit, with an inter-trial-

interval (ITI) ranging between 0.5 and 2 s. The order of conditions was randomized.

Identity/View Tuning Measurements (IVT)

To determine responsivity to the stimulus set and to assess identity and view tuning independently of the experimental conditions,

we conducted a separate identity/view tuning measurement for each recorded cell (IVT). To this end, we presented the full set of all

180 trained and untrained faces in random order and rapid succession (200 ms on, 200 ms off) for minimally 1260 trials (total). As

during initial training, the tuning measurements were distinguishable from the main experimental conditions both in stimulus timing

and through an explicit cue, the color of the fixation dot (main experiment: white, tuning measurement: blue).

Human Experiments
Stimuli, Training, and Tasks

Stimuli were displayed on an LCDmonitor (Samsung 2233RZ;Wang and Nikoli�c, 2011), resolution 16803 1050 pixel) at a refresh rate

of 120 Hz. Subjects viewed the screen from a distance of 58 cm. The experiments were conducted in a darkened room. Constant

head position was assured by the use of a chinrest with forehead support. Stimulus delivery and response collection were controlled

using Presentation (v16.4, Neurobehavioral Systems).

Face stimuli were the same as in the monkey experiments. Additionally, we created noisy versions of the stimuli by parametrically

combining each image with a phase-scrambled version of itself (1%–100% noise). During all experiments, stimuli were presented

centrally at 10 3 10 dva, and subjects were instructed to fixate on a foveally presented fixation dot.

To individually determine the noise level at which subjects could detect faces (versus noise) at 75% accuracy, we first conducted a

threshold measurement using the weighted up-down staircase method (Kaernbach, 1991). To this end, we presented on each trial

one of 6 different faces (0, 60 and 300 degrees view angle) that were not part of the training set embedded into noise, or a noise-only

image. The subject’s task was to determine on each trial whether a face was present or not by means of a button press on a standard

keyboard. The starting noise level was 80%. Whenever the subject responded correctly, the noise level was increased by 9 percent;

whenever the subject responded incorrectly, the noise level was decreased by 3 percent. Stimulus duration was 50 ms and the ITI

varied randomly between 500 and 1000 ms. Each subject completed 72 trials (50% faces, 50% noise only). The average threshold

across subjects was 74.9% noise.
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Next, subjects passively viewed the same training pairs as the monkeys over 6 blocks of 72 trials (a total of 432 trials). All stimulus

parameters were the same as during the monkey training. As during monkey training, the transitional probabilities within a pair were

fixed at 100% and were kept balanced and at minimum between pairs. The total duration of the training phase was approxi-

mately 20 min.

After the training phase, we conducted a priming experiment to assess whether learning face pairs affected face detection perfor-

mance. As in themonkey experiments, we presented trained pairs and pairs in which we had recombined predictors with successors

such that the predictors in the new pairs differed from the originally trained predictors in view, identity, or identity+view. Predictors

were presented for 500 ms and acted as a prime. Right after the predictor, we showed the successor for 50 ms, embedded into the

noise level previously determined to yield 75% accuracy in face detection, or a noise-only image, as target. The subject’s task was

again to determine whether a face was present in the second image, or not. To maintain the training effects, the trained/untrained

ratio of the pairs was fixed at 1.667. Subjects completed 4 blocks of 144 trials (total 576 trials). The ITI varied randomly between

0.5 and 1.5 s. The order of conditions was randomized.

QUANTIFICATION AND STATISTICAL ANALYSIS

Monkey Experiments
Magnetic Resonance Imaging

MRI data were analyzed in Freesurfer (v5.1, http://surfer.nmr.mgh.harvard.edu/) (Fischl, 2012) and MATLAB (R2011b, The

Mathworks). The first 5 volumes of each functional run were excluded to prevent T1 saturation effects. Preprocessing included slice

scan time correction, motion correction, and geometric distortion correction by means of a field map. Outliers in the time courses

were detected semi-automatically based on a threshold of median absolute deviation (MAD) = 3.5 in the mean whole-brain time

course and later excluded from analyses. We identified face patch ML following established procedures (Moeller et al., 2008):

For each animal, we calculated a General Linear Model (GLM) with the stimulation conditions as predictors as well as six

orthogonalized nuisance regressors accounting for motion artifacts. As in previous studies, ML was identified based on anatomical

location and relative position (Moeller et al., 2008; Schwiedrzik et al., 2015) in unsmoothed, uncorrected significancemaps (monkey Y

p < 10�67, monkey M p < 10�119) resulting from the contrasts [faces versus objects and bodies]. MRI data from both monkeys were

also used in a previous study (Schwiedrzik et al., 2015).

Electrophysiology

We recorded from a total of 198 neurons (106monkey M, 92monkey Y). The number of neurons was chosen to match or exceed that

in similar studies. Spike density functions (SDF) were obtained by convolving spike trains with a Gaussian kernel (s = 17 ms) and

decimated to 1 kHz. Unless otherwise noted, only trials on which themonkey continuously fixated from 100ms before stimulus onset

until the end of the images sequence and on which second stimuli were shown to which a cell was responsive entered the main

analyses. Each trial was baseline corrected by subtracting the average prestimulus baseline (tuning measurement 50 ms, main

experiment 100 ms) from every time point. To determine whether a cell was responsive to a given stimulus, we tested for each

cell whether there was a significant positive response to the stimulus (p < 0.05) within the first 150 ms post stimulus onset across

trials, by means of a Wilcoxon signed rank test on the tuning measurement data. Using an independent dataset assured that

the assessment of responsivity was independent of the experimental factors in the main experiment. Using this criterion, a total of

80 neurons (42 monkey M, 38 monkey Y) were found to be responsive to the experimental stimuli and entered the main analyses.

Data from themain experiment was analyzed with the General Linear Model (GLM), using a permutation framework (Freedman and

Lane, 1983;Winkler et al., 2014) to assess significance in PALM (v0.94) (Winkler et al., 2016).We carried out two sets of analyses: first,

we determined whether a cell’s response to the successor stimuli was significantly modulated by manipulations of view and/or

identity of the predictor stimuli, i.e., whether there was a contextual modulation, by entering the trial-by-trial data from each cell

into a GLM with the orthogonal factors view (violation, trained) and identity (violation, trained). Second, we tested specifically for

the presence of prediction errors (PEs), i.e., larger responses to unpredicted than predicted successor stimuli in individual cells

by assessing simple effects in the GLM, i.e., by contrasting [view violation versus trained], [identity violation versus trained],

[identity+view violation versus trained], and [view, identity, identity+view violations versus trained]. All analyses were carried out

on each time point between 50 and 500 ms after the onset of the second stimulus. To determine whether a cell showed a significant

effect, we used nonparametric combination (NPC) (Pesarin, 2001) with Tippett’s combining function (Tippett, 1931): NPC is amethod

to perform joint inference on multiple data, in this case time points, with only minimal assumptions. We first tested each contrast at

each time point separately, using permutations performed synchronously across time points. Synchronized permutations have the

benefit that they account for any dependence among the partial tests. The test statistics t for each partial permutation test was then

transformed into a pseudo p-value, and all pseudo p-values were combined using Tippett’s combining function. This combining

function uses the minimum pseudo p-value across tests as its test statistic and assesses the null hypothesis that the null hypotheses

for all partial tests are true, and the alternative hypothesis that any is false, resulting in a single hypothesis test per cell. Because it can

be formulated as the maximum statistic across tests, it can be used to control the familywise error rate (FWER) across time. To

assess whether the number of cells showing significant PEs was itself significant, we again used NPC, combining the cell-wise

NPC p-values. The Venn diagram in Figure 2C showing the resulting percentages of responsive neurons with statistically significant

PEs was drawn using ellipses in eulerAPE to achieve accurate area-proportionality (Micallef and Rodgers, 2014).
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Population level analyses were carried out using the permutation GLM after averaging trials per cell and condition. To correct for

multiple comparisons in these time-resolved analyses, we used threshold-free cluster enhancement (TFCE) (Smith and Nichols,

2009), a cluster-basedmethod to control the family-wise error ratewhichmitigates the arbitrary setting of a cluster-forming threshold.

TFCE was applied separately to the first and the second stimuli in a pair to avoid the detrimental effects of nonstationarities on

cluster-based inference (Salimi-Khorshidi et al., 2011), but this did not change the overall pattern of results. PE latencies were deter-

mined as the first time point at which the contrast [violation versus trained] reached statistical significance after correction for multiple

comparisons. Percent signal change in the violation conditions was calculated relative to the trained condition. Mean percent signal

change across conditions was obtained by averaging all significant time points, corrected for multiple comparisons, across the three

violation conditions. The time-resolved analyses were complemented by averaging the time courses in an early (120-210 ms post

stimulus onset) time window, capturing the transient response, and a late (300-440 ms post stimulus onset) time window capturing

part of the sustained response in which the time point to time point rate of change had stabilized, and conducting permutation tests

on these averages. Together, the single cell and population analyses allowed us to assess whether face patch ML was sensitive to

prediction violations, which factors elicited PEs, and which time course PEs had.

In addition, we assessed the relationship between the cells’ tuning properties and PEs. To this end, we computed each cell’s view

and identity tuning in the 200ms following its onset latency (i.e., the first ofmore than 20 samples > 1 SD above baseline within the first

300ms post stimulus) using the skewness of the distribution of average responses across views and identities, respectively, from the

independent tuning measurement as a measure of tuning sharpness (Samonds et al., 2014). Higher skewness indicates sharper

tuning. Additionally, we computed each cell’s (lifetime) sparseness (Rolls and Tovee, 1995) as
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�PN
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�
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where N equals the number of stimuli, with responses Ri not baseline subtracted (Freiwald and Tsao, 2010). Lower sparseness

indicates that the cell responds to fewer images in the stimulus set. We then calculated the Spearman rank correlation between

tuning/sparseness and the effect size of prediction errors, measured as the statistical effect size Cohen’s D from the GLM, in sliding

windows (window size 100 ms, step size 1 ms), followed by TFCE to control for multiple comparisons in time.

The role of stimulus-specific adaptation was assessed by correlating the average firing rates within a 50 ms time window centered

on the grand average peak response to the first and second stimulus, respectively. Stimulus-specific adaptation would result in a

negative correlation between these peak firing rates, and differences in these correlations between conditions would speak for a

differential role of adaptation. Correlation analyses were computed on the single cell level (across trials) and on the population level

(across neurons). Fisher-transformed Spearman correlation coefficients across trials were compared using a nonparametric

Friedman ANOVA, and across neurons using a c2 test for dependent correlations (Raghunathan, 2003).

Human Experiments
Individual face detection thresholds were determined by averaging all but the first two reversals from the threshold experiments.

Data from 9 subjects had to be excluded from analyses because they failed to follow task instructions (final n = 13, 5 female,

1 left handed, mean age 33.6 year). For the analysis of the main experiment, trials with reaction times shorter than 100 ms as well

as trials on which reaction times exceeded a threshold of 3x the MAD were excluded from further analyses. We then calculated

d’ with the loglinear correction to avoid infinite z-scores (Hautus, 1995) as a bias-free measure of face detection accuracy, as well

as the average reaction time for hits. For statistical analyses, we used a percentile bootstrap procedure comparing median

differences between all conditions (function rmdzero in R, v3.2.3) (Wilcox, 2012), followed by planned comparisons. The same

results were obtained with Bayesian statistics (Figure S4), using the substitution posterior for the median (Lancaster and Jae

Jun, 2010).

DATA AND SOFTWARE AVAILABILITY

Data have been deposited in the Figshare repository (https://www.figshare.com) under accession number http://www.dx.doi.org/10.

6084/m9.figshare.5126326.
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