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SUMMARY

Midbrain dopamine neurons are thought to signal
predictions about future rewards based on the
memory of past rewarding experience. Little is
known about the source of their reward memory
and the factors that control its timescale. Here we
recorded from dopamine neurons, as well as one of
their sources of input, the lateral habenula, while
animals predicted upcoming rewards based on the
past reward history. We found that lateral habenula
and dopamine neurons accessed two distinct reward
memories: a short-timescale memory expressed at
the start of the task and a near-optimal long-time-
scale memory expressed when a future reward
outcome was revealed. The short- and long-time-
scale memories were expressed in different forms
of reward-oriented eye movements. Our data show
that the habenula-dopamine pathway contains
multiple timescales of memory and provide evidence
for their role in motivated behavior.
INTRODUCTION

In order to make optimal decisions between options, the brain

must predict each option’s value based on the memory of the

consequences it produced in the past. This process is thought

to be crucially dependent on midbrain dopamine neurons

(Wise, 2004). Dopamine neurons are activated by new informa-

tion about the properties of upcoming rewards, firing a burst of

spikes if the reward value is better than expected and pausing

their activity if the reward value is worse than expected. In this

manner, their activity resembles a ‘‘reward prediction error’’

indicating the difference between predicted and actual rewards

(Schultz et al., 1997). These signals are translated into dopamine

release in downstream brain structures, which controls motiva-

tion to seek rewards (Wyvell and Berridge, 2000) and enables

synaptic plasticity to learn the reward value of behavioral actions

and outcomes (Reynolds et al., 2001; Wise, 2004). Thus, the

proper function of the dopamine system depends on its ability

to make accurate predictions about future rewards.
How are dopamine neuron reward predictions constructed

from past experience? It is known that during the early stages

of learning dopamine predictions emerge in parallel with

behavioral measures of reward expectation (Schultz et al.,

1993; Hollerman and Schultz, 1998; Takikawa et al., 2004; Day

et al., 2007; Pan et al., 2008). In addition, during expert perfor-

mance at behavioral tasks, dopamine neuron activity is

influenced by the memory of recently received rewards (Satoh

et al., 2003; Nakahara et al., 2004; Bayer and Glimcher, 2005).

Yet several vital questions remain unanswered. First, what

neural sourcesof input contribute to thedopamine neuron reward

memory? Dopamine neurons receive reward-related input from

many brain structures, including the amygdala (Lee et al.,

2005), pedunculopontine tegmental nucleus (Pan and Hyland,

2005; Okada et al., 2009), and lateral habenula (Matsumoto and

Hikosaka, 2007). The lateral habenula is a strong candidate for

this role, because its neurons carry negative reward signals

opposite to those indopamine neuronsand lateral habenula stim-

ulation inhibits dopamine neurons at short latencies (Christoph

et al., 1986; Ji and Shepard, 2007; Matsumoto and Hikosaka,

2007). However, it is unknown whether these input structures

adjust their neural signals based on past rewarding experience

in a manner resembling that of dopamine neurons.

Second, what determines the neural timescale of memory—

the persistence of past outcomes in affecting future predictions?

There is evidence that dopamine neurons are influenced by past

reward outcomes in different ways at different stages of learning

(Nakahara et al., 2004; Bayer and Glimcher, 2005; Pan et al.,

2008). Theories of optimal prediction propose that the neural

timescale of memory should be calibrated to match the reward

statistics of the environment, based on the true predictive

relationship between past and future rewards (Doya, 2002;

Behrens et al., 2007) which may require a mixture of multiple

memory timescales (Smith et al., 2006; Kording et al., 2007;

Fusi et al., 2007;Wark et al., 2009). However, it remains unknown

what timescales of memory are available to lateral habenula and

dopamine neurons, whether they are selected in an adaptive

manner sensitive to task demands, and how the selection

process unfolds over time.

To investigate these questions, we analyzed the activity of

lateral habenula and dopamine neurons recorded while monkeys

performed a task in which the reward value of each trial was

systematically related to the past reward history. This design

made it possible to make a direct comparison between neural,
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Figure 1. Behavioral Task

(A) Task diagram. The animal was required to fixate a spot of

light, then follow the spot with a saccade when it stepped to

the left or right side of the screen. In each block of 24 trials,

saccades to one target direction were rewarded, while

saccades to the other direction were unrewarded.

(B) The task used a pseudorandom reward schedule in which

the reward probability could be predicted with high accuracy

as a weighted linear combination of past outcomes plus

a constant factor.

(C) The optimal weights (black dots) for each past reward

outcome. The optimal weights were similar when constrained

to take the form of an exponential decay (gray line).

(D) Plot of true reward probability against predicted reward

probability using the optimal exponentially decaying linear

weights. Each dot represents 1 of the 50 possible six-trial

reward histories in the pseudorandom schedule. The pre-

dicted reward probability was highly correlated with the true

reward probability. (See also Figure S1.)
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behavioral, and task-optimal reward memories. We found that

lateral habenulaanddopamineneuronshadsimilar rewardmemo-

ries in their phasic responses to task events, consistent with the

hypothesis that the lateral habenula transmits reward memory

signals to dopamine neurons. In addition, we found that lateral ha-

benula and dopamine neurons did not use a single timescale of

memory at all times during the task. Instead, they switched

between two distinct memories: a suboptimal short timescale of

memory expressed in response to the start of a new trial, and

a nearer to optimal long timescale of memory expressed at the

moment the trial’s outcome was revealed. The short- and long-

timescale memories were also found in specific forms of reward-

oriented behavior. Our data provide evidence that the habenula-

dopamine pathway can rapidly change between timescales of

reward memory in a behaviorally relevant manner.

RESULTS

Behavioral Task and Optimal Timescale of Memory
We trained two monkeys to perform a reward-biased saccade

task (Matsumoto and Hikosaka, 2007) (Figure 1A). Each trial

began with the presentation of a fixation point at the center of

a screen, where the animal was required to hold its gaze. After

a 1.2 s delay, the fixation point disappeared and the animal

was required to saccade to a visual target that appeared on

the left or right side of the screen. Saccades to one target loca-
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tion were rewarded with a drop of juice. Saccades

to the other target location were unrewarded but

still had to be performed correctly, or else the trial

was repeated. Thus, the target both instructed the

location of the saccade and signaled the presence

or absence of reward. The rewarded and unre-

warded locations were switched after each block

of 24 trials. Animals closely tracked the reward

values of the targets, saccading to rewarded

targets at short latencies and unrewarded targets

at long latencies (Matsumoto and Hikosaka, 2007)

(Figure 2B, ‘‘Target RT bias’’).
In this task rewarded and unrewarded trials occurred equally

often, but the reward probability was not fixed at 50%; the

reward probability varied from trial to trial depending on the

history of previous outcomes. We used a pseudorandom reward

schedule in which blocks were divided into four-trial subblocks,

each containing a randomized sequence of two rewarded target

trials and two unrewarded target trials. The result was that the

reward sequence wasmore predictable than would be expected

by chance: the reward probability on each trial was inversely

related to the number of rewards that had been received in the

recent past (Nakahara et al., 2004) (Supplemental Experimental

Procedures). Specifically, the reward probability could be well

approximated as a weighted linear combination of the previous

six reward outcomes plus a constant factor (Figures 1B–1D).

The optimal linear weights were largest for the most recent

reward outcomes, and the weights had a negative sign reflecting

the inverted relationship between past and future rewards

(Figure 1C). Applying these linear weights to the true sequence

of rewards in the task produced a highly accurate prediction of

each trial’s reward probability (R2 = 0.90, Figure 1D).

The optimal linear prediction rule in this task resembles classic

theories of reinforcement learning (Rescorla and Wagner, 1972;

Sutton and Barto, 1981) in which past outcomes have a linear

effect on future reward predictions (Sutton and Barto, 1998; Na-

kahara et al., 2004; Bayer and Glimcher, 2005). But there is

a crucial difference. In classic theories, if a stimulus is followed



Figure 2. Behavioral Memory for a Single Previous Outcome

(A) Trace of horizontal eye position during two example rewarded trials, when

the past trial was rewarded (Past R, red) or unrewarded (Past U, blue). Gray

bars indicate the fixation point and saccade target. Left: eye position aligned

at the time of fixation point onset. Right: eye position aligned at target onset.

Inset: eye position aligned at target onset, showing a small bias in eye position

toward the location of the rewarded target.

(B) Measures of behavioral performance, separately for trials when the past

trial was rewarded (red) or unrewarded (blue). Target RT bias is themean differ-

ence in reaction time between saccades to the unrewarded target versus

rewarded target. Bars are 80% bootstrap confidence intervals. Asterisks indi-

cate statistical significance. **p < 10�4 in combined data, p < 0.05 inmonkey L;

***p < 10�4 in combined data, p < 0.05 inmonkey L, p < 0.05 inmonkey E; boot-

strap test. The memory for past outcomes influenced behavioral performance

at all times during the trial. (See also Figure S2.)
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by reward, then this increases the estimated value of that stim-

ulus in the future. Whereas in our task, if a trial is followed by

reward, then this should reduce the estimated value of task trials

in the future (for a formal model, see Figure S1). In this sense, our

task may resemble a foraging situation in which collecting

rewards at a foraging site reduces the number of rewards that

are available at that site on future visits. We therefore set out

to test whether animals and neurons could predict rewards in

this ‘‘inverted’’ task environment.

Behavioral Memory for a Single Past Reward Outcome
We first analyzed the effect of a single previous reward

outcome on animal behavior. The true reward probability given

a single past outcome was 37% after rewarded trials and

63% after unrewarded trials. Consistent with previous studies

(Nakahara et al., 2004; Takikawa et al., 2002), we found that

animals used this feature of the task to predict future rewards,

indicated by their improved task performance on trials when

the reward probability was high (Figure 2B, ‘‘Correct fixation

rate’’). In order to obtain a finer measure of how the animals’

reward memory evolved over the course of each trial, we exam-

ined the time course of their eye movements. Past outcomes

influenced eye movements in anticipation of each task event

and in reaction to each task event (Figures 2A and S2). In antic-

ipation of the fixation point, animals often positioned their eyes

at the center of the screen in order to initiate the trial more
quickly. When the reward probability was higher, they antici-

pated the trial more often (Figure 2B, ‘‘Anticipatory fixation

rate’’). One animal was less perfect in anticipation and often

had to react to the fixation point by shifting its gaze. When

the reward probability was higher, its reactions to the fixation

point were faster (Figure 2B, ‘‘Fixation RT’’). Then, as animals

anticipated the upcoming saccade targets, their eyes drifted

minutely toward the rewarded target location. This drift was

stronger when the previous trial was rewarded (Figure 2B,

‘‘Anticipatory reward bias’’). Finally, when the saccade target

arrived, animals reacted more quickly to the rewarded target

than the unrewarded target, and when the reward probability

was higher this reward-oriented saccade bias was stronger

(Figure 2B, ‘‘Target RT bias’’). Thus, the animal’s memory for

past outcomes could be measured at the start of the trial

when the fixation point appeared as well as the end of the trial

when the saccade target appeared, in both anticipatory and

reactive eye movements.

Neural Memory for a Single Past Reward Outcome
To examine the neural basis of the single-trial memory, we next

analyzed the activity of 65 neurons recorded from the lateral

habenula and 64 reward-responsive presumed dopamine

neurons recorded from the substantia nigra pars compacta

(Matsumoto and Hikosaka, 2007) (Experimental Procedures).

Figure 3A shows the population average activity of lateral

habenula neurons. These neurons carried strong negative

reward signals (Matsumoto and Hikosaka, 2007). They were

phasically inhibited by the cue signaling the start of a new trial

(‘‘fixation point’’) and the cue signaling reward (‘‘rewarded

target’’) but were excited by the cue signaling reward omission

(‘‘unrewarded target’’). Figure 3B shows the population average

activity of dopamine neurons. Their response pattern was

a mirror-reversal of that seen in lateral habenula neurons

(Matsumoto and Hikosaka, 2007): they were excited by trial-start

and reward cues and inhibited by reward-omission cues.

Thus, both populations of neurons carried strong signals

predicting reward outcomes in the future; how might they be

influenced by the memory of outcomes received in the past?

Current computational theories of dopamine activity make

a strong prediction. These theories interpret dopamine neuron

activations as ‘‘reward prediction errors’’ signaling changes

in a situation’s expected value (Montague et al., 1996; Schultz

et al., 1997; Montague et al., 2004). This theoretical account is

schematically illustrated in Figure 3C and explained in detail

below (see Figure S1 for a formal model and Figure S3 for single

neuron examples).

During the long and variable duration of the intertrial interval,

the animal’s reward expectation was presumably low because

the animal did not know when the next trial would begin.

When the fixation point appeared it signaled a new chance to

get rewards, whichwould cause the animal’s reward expectation

to rise, a positive prediction error. This inhibited lateral habenula

neurons and excited dopamine neurons (Figure 3, fixation

point). The prediction error was more positive when the trial’s

reward probability was higher (Satoh et al., 2003) (Figure 3C),

and accordingly habenula neurons were more inhibited and

dopamine neurons were more excited.
Neuron 67, 499–510, August 12, 2010 ª2010 Elsevier Inc. 501



Figure 3. Neural Memory for a Single Previous

Outcome

(A) Population average firing rate of lateral habenula neurons

(LHb) when the past trial was rewarded (red) or unrewarded

(blue). Firing rates were smoothed with a Gaussian kernel

(s = 15 ms). Colored bars on the bottom of each plot indicate

times when the past trial outcome had a significant effect on

neural activity (p < 0.01, paired Wilcoxon signed-rank test).

(B) Same as (A), for dopamine neurons (DA). Lateral habenula

and dopamine neurons had opposite mean response

directions and opposite past-outcome effects during all three

task events.

(C) Schematic illustration of theoretical reward predictions at

each time during the trial (see text for full description). When

the reward prediction increased (upward arrows, positive

prediction errors), lateral habenula neurons were inhibited

and dopamine neurons were excited; when the reward predic-

tion decreased (downward arrows, negative prediction errors),

lateral habenula neurons were excited and dopamine neurons

were inhibited. (See also Figure S3.)
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If the fixation point was followed by the rewarded target, the

reward expectation would rise further up to 100%, a second

positive prediction error. This again inhibited lateral habenula

neurons and excited dopamine neurons. In this case, however,

the prediction error was less positive when the trial’s reward

probability was higher, because the high initial expectation

only needed to be increased by a small amount to reach its

maximal level (Figure 3C). Indeed, when the reward probability

was higher, habenula neurons were less inhibited, and dopamine

neurons were less excited (Figure 3, rewarded target).

Finally, if the fixation point was followed by the unrewarded

target the reward expectation would fall to 0%, a negative

prediction error. This excited lateral habenula neurons and

inhibited dopamine neurons. The prediction error was more

negative when the trial’s reward probability was higher, because

the high initial expectation had to fall farther to reach its minimal

level (Figure 3C). Indeed, when the reward probability was

higher, habenula neurons were more excited and dopamine

neurons were more inhibited (Figure 3, unrewarded target). The

reward probability effect was rather weak for dopamine neurons,

presumably because their firing rate on unrewarded trials was

close to zero and had little room to be modulated by reward

expectation (Bayer and Glimcher, 2005) (Figure 3B).

In summary, lateral habenula and dopamine neurons had

opposite phasic past-outcome effects to match their opposite

direction of phasic responses, consistent with the hypothesis

that the lateral habenula transmits reward memory signals to

dopamine neurons.
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We next asked how far the neural memories

extended into the past, and whether they remained

consistent over the course of the trial. In particular,

the theoretical ‘‘reward prediction error’’ model in

Figure 3C implies that all neural responses during

the trial should have the same timescale of

memory, because the responses should be based

on the same neural prediction about the trial’s
reward value (Figure S1). To test this, we fit the firing rates of

each neural population as a linear combination of past reward

outcomes (Bayer and Glimcher, 2005). To reduce the number

of fitted parameters, we used a model in which all neurons in

a population shared the same timescale of memory but each

neuron could carry the memory signal to a greater or lesser

degree (for example, due to differences in response gain).

Thus, the single-trial neural firing rates were fit by the equation:

raten;t =mn + anðb1rt�1 + b2rt�2 + b3rt�3 +.+ b6rt�6Þ+Nð0;snÞ;

where raten,t is the firing rate of neuron n on trial t, mn is the

neuron’s mean firing rate, an is the neuron’s ‘‘memory ampli-

tude’’ (strength of memory effects), bk is the population’s

‘‘memory weight’’ for the outcome received k trials ago, rt-k is

the reward outcome k trials ago (+0.5 if rewarded, �0.5 if unre-

warded), and sn is the neuron’s spiking noise (standard deviation

of the firing rate).

In this model, the relative influence of each past outcome was

controlled by the memory weight vector b, a parameter shared

among all neurons, while themagnitude and direction of memory

effectswere controlled by thememory amplitudes an, whichwere

specific to each neuron. Using this model, we estimated the

average effect of each past outcome on the firing rate. For each

past outcome k, the effect was equal to the memory weight bk
multiplied by the population average of the memory amplitudes

an, yielding the change in firing rate caused by the outcome

received k trials ago (‘‘Past Rewarded – Past Unrewarded,’’



Figure 4. Multiple Timescales of Memory

(A and B) Memory effects in lateral habenula neurons (A) and

dopamine neurons (B). Each panel shows the population

average past-outcome effects—the difference in firing rate

depending on whether a past outcome was rewarded or

unrewarded (‘‘Past R – Past U’’), derived from the parameters

of the fittedmodel described in themain text. Colored lines are

the firing rate differences for specific past outcomes (black,

red, orange, yellow = one, two, three, four trials-ago

outcomes). The analysis was performed in a 151 ms sliding

window advanced in 20 ms steps. Dark gray bars at the

bottom of the plot indicate times when the population average

memory amplitude was significantly different from zero, using

the version of thememorymodel in which theweights followed

an exponential decay (p < 0.01, Wilcoxon signed-rank test).

Light gray bars below the axes are the time windows used

for the analysis in Figure 5. Both lateral habenula and

dopamine neurons had one-trial memories in response to

the fixation point, but multiple-trial memories in response to

the targets. (See also Figure S4.)
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Figure 4). We then calculated the past-outcome effect at each

time point during the trial by fitting the model in a sliding window

advanced over the entire neural response (Figure 4).

Neurons had strikingly different timescales of memory at

different times during the trial (Figures 4A and 4B). In response

to the onset of the fixation point, both lateral habenula and dopa-

mine neurons had a short timescale of memory, primarily

influenced by only a single previous reward outcome. However,

in response to the targets their memory suddenly improved,

taking on a long timescale of memory with a strong influence

of at least three previous outcomes. Analysis of single-neuron

activity showed that both short and long timescales of memory

were present in the same population of neurons (Figure S4).

To make a quantitative comparison between the neural

memories, we constrained the population memory weights b to

take the form of an exponential decay, so that thememory length

could be described by a single parameter, the decay rate D

(Figures 5A and 5B, solid lines). The decay rateD takes on values

between 0 and 1 and represents the fraction of each past

outcome’s influence that fades away after each trial, analogous

to the learning rate parameter a used in temporal-difference

algorithms for reinforcement learning (Bayer and Glimcher,

2005; Sutton and Barto, 1998). Note that this parameter does

not distinguish whether neural memories decayed as a function

of elapsed time or of elapsed task trials. The resulting exponen-

tially decaying memory weights were close to the original fit in

which the weights were allowed to vary independently (Figures

5A and 5B, compare solid lines to filled circles; see Table S1

for all fitted decay rates).

For habenula neurons, the memory decay rate was signifi-

cantly higher for the response to the fixation point than for the

responses to the rewarded target (bootstrap test, p < 10�4)

and the unrewarded target (p = 0.03). For dopamine neurons,

the decay rate was higher for the fixation point than for the

rewarded target (p = 0.006); a similar trend was evident for the

unrewarded target, but did not reach significance (p = 0.33)

possibly due to the lower firing rates and smaller absolute

memory effects on those trials. The decay rates for the rewarded

and unrewarded targets were not significantly different from
each other in either population (habenula p = 0.12, dopamine

p = 0.39), so for further analysis the data from both targets

were pooled by fitting them with a single decay rate

(Experimental Procedures).

We next compared the memory timescales found in neural

activity with the memory timescale of the task-optimal reward

prediction rule (gray curve, Figure 1C). All neural responses

had significantly higher decay rates than the optimal predictor,

indicating that they all had a shorter-than-optimal timescale of

memory (all p < 0.05; see also Figure 7). The optimal timescale

was approached most closely by the long-timescale neural

responses to the target, suggesting that the neural responses

to the target were most closely matched to the reward statistics

of the task.

To understand the functional significance of the neural

timescales of memory, we compared them to the behavioral

timescales of memory seen in anticipatory eye movements and

saccadic reaction times (Figures 5C and 5D). These were fitted

using the same procedure that was used for neural activity,

producing a comparable set of memory weights (Experimental

Procedures). This analysis produced two main results. First,

anticipatory eye movements had a long timescale of memory at

all times during the trial, both in anticipation of the fixation point

andof the target (Figure 5C). Both typesof anticipatory eyemove-

ments had a longer timescale of memory than the neural

response to the fixation point (anticipation of fixation point versus

neural response to fixationpoint: habenula p=0.025, dopaminep

= 0.037; anticipation of target versus neural response to fixation

point: habenula p < 10�4, dopamine p = 0.002). Thus, at the

moment when the fixation point appeared neural activity was

only influenced by a single past outcome even though behavioral

anticipation was influenced by multiple past outcomes. This

shows that neurons were not bound to follow the timescale of

memory present in behavior. Consistent with this finding,

a control analysis showed that neural memory effects were not

simply caused by neural coding of behavioral output (Figure S5).

This raised the question of whether the neural timescale of

memory could be linked to any motivational process that drove

animal behavior. A second analysis, focused on reaction times,
Neuron 67, 499–510, August 12, 2010 ª2010 Elsevier Inc. 503



Figure 5. Quantifying Neural and Behavioral Timescales of Memory

This figure shows the fitted influence of past outcomes on the activity of lateral

habenula and dopamine neurons (A and B) and on behavioral anticipatory eye

movements (C) and saccadic reaction times (D).

(A) Fittedmemory weights (bweights) for the lateral habenula neural population

during responses to the rewarded target, unrewarded target, and fixation point

(red, blue, and black). The memory weights are normalized so that b1 = 1

(Experimental Procedures). Solid dots are memory weights from a fit in which

all weights were allowed to vary independently (like those shown in Figure 4).

Colored lines are a fit in which the weights were constrained to follow an expo-

nential decay (Experimental Procedures). This analysis was done on neural

activity within the time windows indicated by the gray bars below the axes in

Figure 4. Asterisks indicate that the fitted memory decay rate is significantly

different from 1.0 (bootstrap test, p < 0.05).

(B) Same as (A), but for dopamine neurons. Both lateral habenula and dopa-

mine neurons had long-timescale memories in response to the targets, but

short-timescale memories in response to the fixation point.

(C) Fittedmemory weights for anticipatory behavior, separately for anticipatory

fixation (black) and anticipatory bias toward the rewarded target (purple).

(D) Fittedmemory weights for saccadic reaction times, separately for reactions

to the fixation point (black) and targets (purple). (See also Figure S5.)
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provided a possible candidate. In parallel with the pattern seen in

neural activity, behavioral reaction times to the fixation point had

a short timescale of memory, whereas reaction times to the

targets had a longer timescale of memory (Figure 5D,

p = 0.017). When compared to neural activity, the behavioral

timescale for the fixation point was shorter than the neural time-

scale for the targets (habenula p < 10�4, dopamine p = 0.035),

and likewise, the behavioral timescale for the targets was longer

than the neural timescale for the fixation point (habenula

p = 0.010, dopamine p = 0.028). A caveat is that the measured

timescales for reaction times were primarily dependent on one

animal that had a larger amount of data (Figure S7). Taken

together, these data suggest that lateral habenula and dopamine

neurons do not share a common reward memory with the neural

process that drives proactive, anticipatory eye movements but

may share a common memory with the neural process that

drives reactive, saccadic eye movements.
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Timescales of Memory in Tonic Neural Activity
Our results so far suggested that the neural memory ‘‘built up’’

over time, starting each trial with a short timescale but finishing

with a long timescale. If this was the case, then neural activity

during the intermediate portion of each trial should have an inter-

mediate timescale. To test this hypothesis, we checked for

memory effects in tonic neural activity during the pretarget

period and intertrial interval.

We found that the majority of lateral habenula neurons carried

reward-related signals in their tonic activity (Figures 6A and 6C).

In the example shown in Figure 6A, the neuron was phasically

excited by the unrewarded target but then switched to be toni-

cally excited after rewarded outcomes, a signal that continued

during the intertrial interval and carried into the next trial (this

neuron also had a second phasic excitation on unrewarded trials

at the time of reward omission, a response found in a fraction of

habenula neurons [Matsumoto and Hikosaka, 2007; Hong and

Hikosaka, 2008] which also had a memory effect [Figure S6]).

The example habenula neuron had the most typical pattern of

tonic memory effects, with tonic excitation after past rewards.

However, the opposite pattern of modulation was also common.

We measured each neuron’s tonic memory effects using the

area under the receiver operating characteristic (ROC) (Green

and Swets, 1966). The ROC area was above 0.5 if the neuron

had a higher firing rate after rewarded trials, and below 0.5 if

the neuron had a higher firing rate after unrewarded trials. The

tonic memory effects were strong but idiosyncratic (Figure 6C)

and occurred in the same neurons as phasic memory effects

(Figure S6). Consistent with our hypothesis, habenula tonic

activity had an intermediate timescale of memory (Figure 6D),

shorter than the response to the targets (intertrial interval,

p < 10�4; pretarget period, p = < 10�4) but tending to be longer

than the response to the fixation point (intertrial interval,

p = 0.06; pretarget period, p = 0.009).

Dopamine neurons could also be tonically excited or inhibited

after past rewards (Figures 6B and 6E). Their past-reward effects

were generally modest in size (Figure 6E) but reached signifi-

cance in a much greater proportion of neurons than expected

by chance (binomial test, intertrial interval p < 10�12, pretarget

period p = 0.009). Themodest size and variable direction of these

effects may explain why they have not been reported before to

our knowledge. During the intertrial interval these tonic effects

appeared to have a short timescale of memory, similar to the

dopamine neuron response to the fixation point and shorter

than in the response to the targets (Figure 6F), although the latter

difference did not reach significance (p = 0.14). During the pretar-

get period their tonic effects were too weak for the timescale of

memory to be estimated accurately (Table S1).

Time-Varying Changes in the Timescale of Memory
Taken as a whole, the timescales of neural memory during the

task followed a V-shaped pattern (Figure 7). This was clearest

in lateral habenula neurons where tonic activity was common

and the ebb and flow of memory effects could be tracked during

all task periods. The timescale started as a one-trial memory in

response to the fixation point, lengthened during the pretarget

period, reached a climax in response to the target, and then

faded back to a one-trial memory again during the intertrial



Figure 6. Timescales of Memory in Tonic

Neural Activity

This figure shows the effect of a single past

outcome on tonic neural activity during the inter-

trial interval and pretarget period, for two example

neurons (A and B) and quantified for all lateral

habenula and dopamine neurons (C and E). Also

shown is the fitted influence of multiple past

outcomes on tonic activity (D and F).

(A) Activity of an example lateral habenula neuron

on rewarded (red) and unrewarded (blue) trials.

The activity is shown for the response to the target

(Past-trial target), and then is followed into the next

trial. Tonic activity was analyzed during the inter-

trial interval (ITI, yellow 700 ms window before

fixation point onset) and the pretarget period

(Pre-target, yellow 700 ms window before target

onset). Numbers indicate the neuron’s ROC area

for discriminating the past reward outcome.

Colors indicate significance (p < 0.05, Wilcoxon

rank-sum test).

(B) Same as (A), for a dopamine neuron.

(C) Histogram of lateral habenula neuron ROC

areas for the intertrial interval and pretarget period.

Numbers indicate the percentage of neurons with

significantly higher activity on past-rewarded trials

(red) or past-unrewarded trials (blue).

(D) Timescale of neural memory for the intertrial

interval (black) and pretarget period (gray).

Conventions as in Figure 5.

(E and F) same as (C and D), for dopamine

neurons. Memory effects during the pretarget

period were not strong enough to estimate the

timescale of memory. (See also Figure S6.)
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interval. The same V-shaped pattern was present in both animals

(Figure S7). When considered over the course of multiple trials,

this pattern implies that neural activity repeatedly changed

between two different memory timescales, switching back and

forth between them every few seconds.
DISCUSSION

We found that lateral habenula and dopamine neurons had

mirror-reversed phasic memory effects, consistent with the

hypothesis that the lateral habenula contributes to dopamine

neuron reward memories. Unexpectedly, however, lateral habe-

nula and dopamine neurons were not bound to a single reward

memory but instead accessed at least two distinct memories

for past rewards, a short-timescale memory expressed at the

start of each trial, and a long-timescale memory expressed as

the trial’s reward outcome was revealed.
Neuron 67, 499–510
Functional Implications of Reward
Memories
It is known that lateral habenula and

dopamine neuron responses to rewarding

cues and outcomes are modulated by

predictions built on the basis of past

experience. The neural algorithm which
computes these predictions has been a topic of intense investiga-

tion (Schultz et al., 1997; Pan et al., 2005, 2008;Morris et al., 2006;

Roesch et al., 2007). Conventional theories of the dopamine

system suggest that reward predictions resemble an exponen-

tially weighted average of past reward outcomes, a pattern that

was seen in a previous study (Bayer and Glimcher, 2005). On

the other hand, there is evidence that neural reward predictions

can also be influenced by additional factors such as the number

of trials since the most recent reward delivery (Satoh et al.,

2003; Nakahara et al., 2004). Our task made it possible to assess

the functional significance of these neural reward memories, by

measuring the degree to which they are adapted to the reward

statisticsof theenvironment (via comparisonwith the task-optimal

reward memory) and the degree to which they are linked to

reward-related behavior (via comparison with the reward memo-

ries expressed in anticipatory and saccadic eye movements).

We found that the neural response to the reward-indicating

target was based on a reward prediction resembling an
, August 12, 2010 ª2010 Elsevier Inc. 505



Figure 7. Time-Varying Changes in the

Timescale of Memory

This figure quantifies the timescale of memory

found in neural activity and behavior, separately

for each lateral habenula and dopamine neuron

response (LHb, DA) and for behavioral anticipatory

eye movements and reaction times. Each data

point for neural activity represents the fitted decay

rate D for one of the curves shown in Figures 5A

and 5B or 6D and 6F. The decay rates for

behavioral anticipatory eye movements and

reaction times are from Figures 5C and 5D. Far

right: optimal timescale of memory (from

Figure 1C). Asterisks indicate significant differ-

ences in the fitted decay rates (p < 0.05, bootstrap

test; Experimental Procedures). Nonsignificant

differences are shown as written p values. Error

bars are 80% bootstrap confidence intervals.

(See also Figure S7 and Table S1.)
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exponentially weighted average of past outcomes, similar to the

prediction rule derived from classic theories. This confirms

previous findings in dopamine neurons and shows that lateral

habenula neurons also signal reward predictions built by inte-

grating multiple past outcomes. However, the neural reward

predictions were related to past outcomes in a negativemanner.

This is opposite to the relationship predicted by classic theories

and measured in a previous study (Bayer and Glimcher, 2005)

but is similar to the rule derived for the optimal reward predictor

in our task. This shows that lateral habenula and dopamine

neurons integrate multiple past outcomes in a flexible manner

that is tuned to the reward statistics of the task at hand.

In addition, the neural response to the target had a longer time-

scale of memory than the neural response to the fixation point.

Indeed, the neural response to the target matched the longest

timescales of memory seen in animal behavior and approached

(although did not achieve) the timescale of the task-optimal

prediction rule. The long timescale of memory of the target

response may be a result of the target’s importance for reward

prediction. The target indicated the upcoming reward outcome

with high accuracy, whereas the fixation point did not provide

any new information about future outcomes. In other words,

neurons accessed their most optimized timescale of memory

at the moment when animals viewed the most informative cue

for predicting future rewards. Thus, our data demonstrate

a possible mechanism by which lateral habenula and dopamine

neurons could respond to reward information with improved

accuracy by shifting to a task-appropriate timescale of memory.

Along with our own data, this mechanism may account for

a puzzling observation from previous studies: that dopamine

neurons encode a task trial’s expected value inaccurately at

the onset of the trial, but later encode its value with improved

accurately when responding to new information about the trial’s

reward outcome (Satoh et al., 2003; Bayer and Glimcher, 2005).

Given the role of dopamine in reinforcement learning (Wise,

2004), this mechanism would improve the accuracy of dopami-

nergic reinforcement signals at the moment when they are

most needed for effective learning.

In contrast to the target response, the fixation point response

had a suboptimal one-trial memory. The fixation point response
506 Neuron 67, 499–510, August 12, 2010 ª2010 Elsevier Inc.
did not approach the longest timescales of memory present in

behavior and neural activity, and its short-timescale memory

could not be predicted by current computational models of

reward prediction errors (Figure S1). Instead, there was evidence

that the fixation point response resembled the timescale of

memory seen in saccadic reaction times at the moment the

fixation point appeared. This suggests that the fixation point

response may be more closely related to reward-oriented

behavioral reactions than to predicted reward value. This would

be sensible in our task because the fixation point caused animals

to make an orienting response to initiate the trial but did not

provide new information about its reward value. This is also

consistent with evidence that dopamine responses in certain

conditions are more closely related to orienting responses and

behavioral reactions than to the expected amount of primary

rewards (Ljungberg et al., 1992; Satoh et al., 2003; Matsumoto

and Hikosaka, 2009a; Bromberg-Martin and Hikosaka, 2009).

Notably, the nigrostriatal dopamine pathway is known to be

crucial for learned orienting responses to an upcoming task trial,

in a manner distinct from learned approach to reward outcomes

(Han et al., 1997; Lee et al., 2005).

This distinction between the fixation point and target

responses is further supported by a recent study (Bromberg-

Martin et al., 2010). In that study, we found that lateral habenula

and dopamine responses to a ‘‘trial start’’ cue (similar to the

fixation point) were enhanced on trials when the cue triggered

short-latency orienting reactions. In addition, these responses

reflected motivational variables in a different manner than

conventional neural responses to reward value cues. When the

behavioral task was changed by replacing reward outcomes

with aversive stimuli, many neurons adapted by changing their

responses to reward value cues in a manner consistent with

reduced reward expectation. However, animals continued to

orient to the trial start cue and neurons continued to respond

to the trial start cue with equal strength (Bromberg-Martin

et al., 2010). Our present data complement these results by

showing quantitatively that the responses to the trial start cue

and reward value cues do not reflect the same expectation about

the trial’s reward value, and that the response to the trial start cue

may be linked to the neural process that motivates orienting
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reactions by adapting to past outcomes with a similar timescale

of memory.

Neural Mechanisms Underlying RewardMemory Signals
We found that lateral habenula neurons carried phasic reward

memory signals that resembled a mirror-reversed version of

the memory signals in dopamine neurons. This lateral habenula

activity is likely to contribute to dopamine neuron reward

memories, since lateral habenula responses to the fixation point

and unrewarded target occur at shorter latencies than in dopa-

mine neurons (Matsumoto and Hikosaka, 2007; Bromberg-

Martin et al., 2010), and it is known that spikes in lateral habenula

neurons induced by electrical stimulation cause dopamine

neurons to be potently inhibited at short latencies (Christoph

et al., 1986). However, it is also possible that reward memory

signals arrive in dopamine neurons through a more complex

pathway. For instance, it is possible that lateral habenula and

dopamine reward memories originate from a common source,

or that lateral habenula signals to dopamine neurons are

modified by downstream circuitry such as inhibitory neurons in

the ventral tegmental area (Ji and Shepard, 2007) and rostrome-

dial tegmental nucleus (Jhou et al., 2009). A comprehensive test

of these alternatives would require recording dopamine neuron

activity while manipulating lateral habenula spike transmission

through lesions or inactivation.

What is the source of the short- and long-timescale memo-

ries? One possibility is that reward memories are transmitted

along a sequential pathway, from upstream brain areas/ lateral

habenula / dopamine neurons. Memory functions have been

traditionally associated with prefrontal cortical areas where

past reward outcomes are known to have a persistent influence

on neural activity (Barraclough et al., 2004; Seo and Lee, 2007;

Simmons and Richmond, 2008), and reward outcomes also

have persistent effects in subcortical areas, including the stria-

tum (Yamada et al., 2007). A good candidate for conveying these

signals to the lateral habenula is the globus pallidus, which is

known to provide the habenula with short-latency reward signals

(Hong and Hikosaka, 2008). Thus, one candidate pathway for

transmitting reward memory signals is prefrontal cortex/ stria-

tum/ globus pallidus/ lateral habenula. Another candidate is

a direct projection frommedial prefrontal cortex/ lateral habe-

nula, suggested by anatomical studies in rats (Greatrex and

Phillipson, 1982; Thierry et al., 1983). Finally, it is also possible

that lateral habenula and dopamine neurons receive reward

memory signals from a common source of input to both brain

regions, such as the ventral pallidum or lateral hypothalamus

(Geisler and Zahm, 2005).

In order to decide between these alternatives, it will be impor-

tant for future studies to record activity in multiple brain areas

using the same subjects and behavioral tasks, so that the reward

memories in these areas can be directly compared. Notably, one

brain imaging study using punishments (aversive outcomes)

found that blood-oxygen level dependent signals in the amyg-

dala had a long timescale of memory, but during the same task

signals in the fusiform gyrus had a short timescale of memory

(Gläscher and Büchel, 2005). A similar approach may reveal

the sources of short- and long-timescale memories in the realm

of rewards. Another question for further study is whether neural
memories are similar for rewards and punishments (Yamada

et al., 2007). Many lateral habenula neurons and dopamine

neurons respond to rewards and punishments in opposite

manners as though encoding motivational value, whereas other

dopamine neurons respond to rewards and punishments in

similar manners as though encoding motivational salience

(Matsumoto and Hikosaka, 2009a, 2009b). These distinct types

of punishment-coding neurons are likely to receive input from

separate neural sources, suggesting that their punishment

memories may be distinct, as well.

We also found that many lateral habenula neurons and some

dopamine neurons reflected past reward outcomes in their tonic

activity. This is unexpected based on previous studies, which

largely emphasized phasic activations to task events (but see

Schultz, 1986; Fiorillo et al., 2003, 2008). These tonic signals

might be sent to lateral habenula and dopamine neurons by

the same brain regions that send them phasic signals in

response to task events. The tonic activity might also be created

within the neurons themselves as a biophysical after-effect of

their phasic responses on previous trials. Regardless of its origin,

an important caveat is that tonic memory effects were idiosyn-

cratic between neurons, which would make them difficult for

downstream brain areas to decode. If downstream neurons

simply averaged the activity of all habenula or dopamine neurons

together, then the tonic effects would largely cancel each other

out, leaving only phasic signals fully intact (Figure 3).

Studies of reward history effects on neural activity have often

focused on the framework of stimulus-reinforcement learning

(Bayer and Glimcher, 2005; Pan et al., 2008) which can be imple-

mented by a simple mechanism involving dopaminergic rein-

forcement of synaptic weights (Montague et al., 1996). By

contrast, our task required animals to use a more sophisticated

form of reward memory, a task-specific prediction rule based on

a storedmemory trace of past outcomes (Figures 1 and S1). This

would allow the timescale of memory to be adapted tomatch the

reward statistics of the task environment, perhaps including the

frequency of changes and reversals in stimulus values (Behrens

et al., 2007; Wark et al., 2009). It will be important to determine

whether this form of memory is implemented with a similar

synaptic mechanism, or whether it requires memory traces to

be stored in a fundamentally different manner. Also, given that

this form of memory had a potent influence on neural activity

and behavior in our task, it will be important to test its influence

in more conventional reward learning situations, as well.

In conclusion, we found that lateral habenula and dopamine

neurons make use of multiple timescales of reward memory in

amanner sensitive to task demands, expanding the set of mech-

anisms available to this neural pathway for guiding reward-

oriented behavior.

EXPERIMENTAL PROCEDURES

General

Two rhesus monkeys, E and L, were used as subjects in this study. All animal

care and experimental procedureswere approved by the National Eye Institute

Animal Care and Use Committee and complied with the Public Health Service

Policy on the humane care and use of laboratory animals. Eye movement was

monitored using a scleral search coil system with 1 ms resolution. For single-

neuron recordings, we used conventional electrophysiological techniques
Neuron 67, 499–510, August 12, 2010 ª2010 Elsevier Inc. 507
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described previously (Matsumoto and Hikosaka, 2007). All statistical tests

were two-tailed unless otherwise noted.

Behavioral Task

Behavioral tasks were under the control of a QNX-based real-time

experimentation data acquisition system (REX, Laboratory of Sensorimotor

Research, National Eye Institute, National Institutes of Health [LSR/NEI/NIH],

Bethesda, MD). The animal sat in a primate chair, facing a frontoparallel

screen �30 cm from the eyes in a sound-attenuated and electrically shielded

room. Stimuli generated by an active matrix liquid crystal display projector

(PJ550, ViewSonic) were rear-projected on the screen. The animals were

trained to perform a one-direction-rewarded version of the visually guided

saccade task (Figure 1A). A trial started when a small fixation spot appeared

at the center of the screen. After the animal maintained fixation in a small

window around the spot for 1200 ms, the fixation spot disappeared and

a peripheral target appeared at either left or right, typically 15� or 20� from

the fixation spot. The animals were required to make a saccade to the target

within 500 ms. Errors were signaled by a beep sound followed by a repeat

of the same trial. Correct saccades were signaled by a 100 ms tone starting

200 ms after the saccade. In rewarded trials, a liquid reward was delivered

which started simultaneously with the tone stimulus. The intertrial interval

was randomized from 2.2 to 3.2 s or (for a small number of neurons) fixed at

2.2 s. In each block of 24 trials, saccades to one fixed direction were rewarded

with 0.3 ml of apple juice while saccades to the other direction were not re-

warded. The direction-reward relationship was reversed in the next block.

Each block was subdivided into six four-trial subblocks, each consisting of

two rewarded and two unrewarded trials presented in a random order. Transi-

tions between blocks and between subblocks occurred with no external

instruction (see Supplemental Experimental Procedures for example blocks

and subblocks of trials).

Database

Our database consisted of 65 lateral habenula neurons (37 in animal L, 28 in

animal E) and 64 reward-responsive presumed dopamine neurons (44 in

animal L, 20 in animal E). We have previously reported other aspects of

most of the behavioral sessions and neurons analyzed here (Matsumoto and

Hikosaka, 2007). Lateral habenula neurons were included if they were respon-

sive to the task. We searched for dopamine neurons in and around the sub-

stantia nigra pars compacta. Putative dopamine neurons were identified by

their irregular and tonic firing around five spikes/s (range: 2.0–8.7 spikes/s),

broad spike waveforms (spike duration > �0.8 ms, measured between the

peaks of the first and second negative deflections; signals bandpass-filtered

from 200 Hz to 10 kHz), and response to reward-predicting stimuli with phasic

excitation. Neurons that did not meet these criteria were not examined further.

Recordings using similar criteria found that putative dopamine and nondop-

amine neurons formed separate clusters with distinct electrophysiological

properties (Matsumoto and Hikosaka, 2009b).

Our analysis was limited to trials with ‘‘pure’’ reward histories, i.e., histories

in which all trials were performed correctly and which did not include reversal

trials (the first trial of a block in which the reward values of the targets were

unexpectedly switched). The average number of trials meeting this criterion

was 98 ± 33 for habenula neurons and 94 ± 32 for dopamine neurons

(mean ± SD). There was no detectable change in memory effects related to

the proximity or recency of reversal trials. The initial analysis was done using

a single past reward outcome (Figures 2 and 3). The full analysis of behavioral

and neural memory was done using six past-reward outcomes because

beyond that point the behavioral and neural memories decayed to near zero

(Figures 4–7). The results did not depend on the precise number of past

outcomes that were analyzed. We observed similar behavioral results during

lateral habenula and dopamine neuron recording, so their data were pooled

for the behavioral analysis.

Memory Model

We fit the model of past-reward effects on neural activity using the method of

maximum likelihood. For the version of the model with separate memory

weights for each past trial, we used the MATLAB function ‘‘fminunc’’ to search

for the memory weight vector b that produced the maximum likelihood fit, with
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b2.b6 initialized to 0.5 and b1 held fixed at 1 so that the memory weights were

automatically normalized (as shown in Figure 5). For the version of themodel in

which the weights were constrained to follow an exponential decay, we fit the

single parameterD using a gradient descent procedure withD initialized to 0.5.

The memory weight vector was determined by the equation bk = (1 � D)k-1.

Fitting results did not depend on the initial settings of the parameters, and

for simulated data sets the fitted value of D on average matched the true value

of D (data not shown). For the plots in Figures 5 and 6, the analysis windows

were chosen to include the major component of the mean neural response

and of one past trial memory modulation. To pool data across rewarded and

unrewarded targets (Figure 7), we allowed each neuron to have different

neuron-specific parameters (mn,an,sn) for each target, but constrained both

targets to have the same the memory weight vector b.

The confidence intervals for the D parameter (Figure 7) were calculated

using a bootstrap procedure: for each population of neurons, the fitting proce-

dure was repeated separately on 20,000 bootstrap data sets each created by

resampling the neurons with replacement, creating a bootstrap distribution of

fittedD values. The 80%confidence intervals were created by taking the range

of the 10th to 90th percentiles of the bootstrap distribution. To compare a pair

of decay rates D1 and D2, we calculated the difference, Ddiff = (D1 – D2), and its

bootstrap confidence interval. The decay rates were considered to be signifi-

cantly different at level k if Ddiff = 0 was excluded by the 100 3 (1 � k)%

confidence interval.

Procedures for behavioral memories were the same as those for neural

memories, except the model was used to fit behavioral measurements instead

of neural firing rates (see below).

Behavioral Memory

The behavioral variables were defined as follows. The correct fixation rate

was the percentage of trials in which the animal fixated the fixation point to

initiate the trial and continued to fixate until the target appeared (i.e., no fixation

break errors). The anticipatory fixation rate was the percentage of trials in

which the animal’s eye was inside the fixation windowwithin 140ms of fixation

point onset, judged to be too fast for a reactive eye movement in these

monkeys based on examination of reaction time distributions (other criteria

produced similar results). The anticipatory target bias was the horizontal offset

of the eye position in the direction of the rewarded target location, measured at

the moment when the target appeared. The reaction time to the fixation point

was the time between the onset of the fixation point and the eye entering the

fixation window, excluding anticipatory fixations (RT < 140 ms, 61% of trials),

and very slow fixations indicating inattention to the task rather than saccadic

reactions (RT > 500 ms, <2% of trials). The reaction time to the target was

the time between the onset of the target and the onset of the saccade. The

reward-oriented reaction time bias was calculated from the reaction times

to the rewarded and unrewarded targets, using the equation RTbias =

(RTunrewarded – RTrewarded). The behavioral analysis was based on sessions in

which the relevant behavioral variable could be measured on at least 10 trials.

Confidence intervals and p values were computed using a bootstrap proce-

dure, in which the analysis was repeated on 20,000 bootstrap data sets

created by resampling trials with replacement. To measure the behavioral

timescale of memory (Figures 5 and 7), we used the same procedure as before

except fitting behavioral measures instead of neural activity. Each behavioral

session was treated as a separate ‘‘neuron,’’ except when fitting saccadic

reaction times to the targets, in which case each session was divided into

four separate ‘‘neurons’’ representing the 2 3 2 combinations of (saccade

direction) 3 (target reward value).

To measure the optimal timescale of memory (Figure 1D, black dots and

gray line), we again used the same model, but fitted to the actual reward

outcomes on each trial (+0.5 for rewarded, �0.5 for unrewarded) using a large

simulated data set generated from the task’s subblock-based reward

schedule. This produced the optimal linear predictor of a trial’s reward

outcome based on the recent reward history (optimal in the sense of

minimizing the mean squared error). To measure the accuracy of the optimal

linear predictor, we correlated its predicted reward probability for each

possible history of six past outcomes with the true reward probability for those

histories (computed using a large set of simulated data). For this correlation,

each history was weighed by its frequency of occurrence.
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Supplemental Experimental Procedures 

 In our task rewards were delivered on a pseudorandom schedule. Each block of 24 

trials was divided into 4-trials subblocks, each of which contained two rewarded trials 

and two unrewarded trials in a randomized order. The following is an example of a single 

block of trials, divided into its six component subblocks: 

 

RUUR | RUUR | UURR | RURU | RURU | RRUU 

 

 where “R” indicates a rewarded trial and “U” indicates an unrewarded trial. The 

original intent of this schedule was to keep the animals motivated to perform the task by 

preventing long stretches of unrewarded trials. In this schedule, past outcomes were 

negatively related to future outcomes. This happened because the trials in each subblock 

were drawn from the same limited ‘pool’ of outcomes; for instance, if the first two trials 

in the subblock were UU then the next two trials had to be the opposite, RR. Here we 

describe two detailed consequences of this schedule: that animals could predict rewards 

with high accuracy if they knew the current trial’s position in a subblock (although 

animals did not rely on this strategy), and that the optimal linear weighting included at 

least six past reward outcomes even though each subblock only had four trials. 

The globally optimal prediction strategy would require the animals to count the 

number of elapsed trials in each block and thus deduce the current trial’s position in a 

subblock. The reward probability could be expressed as p(R | trial # in subblock, past 

outcomes in subblock). This strategy would have several benefits. On the first trial of a 

subblock the reward outcome is truly random and all past trial outcomes could be safely 

ignored. On the last trial of a subblock the reward outcome could be predicted with 

certainty (e.g. if the first three outcomes in the subblock were RUR, the next outcome 

must be U). Therefore, if animals used this strategy, it would produce a distinctive pattern 

in how they made use of a single past reward outcome. There would be no past-outcome 

effects on the animal’s behavior for both the first trial of a subblock (because the 

outcome would be known to be truly random) or on the last trial of a subblock (because 

the saccade target location and reward outcome could be predicted with certainty, 

regardless of the outcome on the single past trial). They would only show effects of the 
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single past outcome on their behavior during the middle trials of the subblock. To test 

this, we calculated the past-outcome effects on behavioral variables separately for two 

groups of trials: trials occurring as the first or last trial of a subblock, and trials occurring 

as the middle trials of a subblock. We found that the past-outcome effects were 

qualitatively similar in both cases. The past-outcome effects were highly statistically 

significant in both groups of trials, for all five of the behavioral variables shown in 

Figure 2: correct fixation rate, anticipatory fixation rate, reaction time to the fixation 

point, anticipatory reward bias, and reward-oriented reaction time bias (each p < 0.005, 

Wilcoxon rank-sum test). This suggests that animals did not rely on knowing the trial 

position in the subblock when making predictions about future rewards. This is intuitive 

because to accurately track the trial position would require monkeys to perform an 

extremely difficult feat, errorlessly counting of the number of elapsed trials and 

sustaining this count in working memory. If we assume that animals did not make 

predictions based on the trial position in a subblock, then given this restriction, a linear 

weighting of past outcomes comes close to the true reward probability p(R | past six 

outcomes) (Figure 1D). 

Each trial outcome is only causally related to its own 4-trial subblock, so one would 

expect that only the 3 previous trials should be assigned any predictive weight. However, 

this ideal strategy can only be used when the boundaries between subblocks are known. 

When the boundaries are unknown, the optimal strategy is more complex. Consider two 

possible cases. In the first case, the 3-trials-ago outcome is in the same subblock as the 

current trial. Thus, the 3-trials-ago outcome is causally related to the current reward 

outcome and must be assigned predictive weight. In the second case, the 3-trials-ago 

outcome is the last trial from the previous subblock that came before the current 

subblock. In this case the 3-trials-ago outcome is not causally related to the current 

outcome and its weight only adds noise to the prediction. However, it turns out that this 

noise can be partially cancelled by assigning additional predictive weight to the 4-, 5-, 

and 6-trials-ago outcomes. This is because the 3-6 trials-ago outcomes all occurred in the 

same previous subblock. Since they were in the same subblock, they were all drawn from 

the same limited pool of trial outcomes, so their outcomes are negatively correlated with 

each other (e.g. if the 3-trials-ago outcome was R, the 4-trials-ago outcome was probably 
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U). When they are all assigned predictive weight, their noise contributions to the 

prediction will partially cancel each other out, leaving the prediction largely dependent 

only on the trials within the current subblock. 
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1. Formal TD models of reward expectation can reproduce the mean neural 

response and simple memory effects but not the observed pattern of multiple 

timescales of memory 

 The relationship between dopamine neuron activity and a subject’s reward 

expectation is often modeled using temporal-difference learning (TD learning) 

(Montague et al., 1996; Schultz et al., 1997; Nakahara et al., 2004; Pan et al., 2005, 

2008). Here we relate the predictions of the TD learning framework to the pseudorandom 

reward schedule shown in Figure 1 and to the schematic of reward expectation shown in 

Figure 3C, and test whether this framework can account for our finding of multiple 

memory timescales shown in Figures 4-5. At first glance, TD models appear to make the 

straightforward prediction that neurons should have a single, consistent timescale of 

memory at all times during the trial, since the neural dependence on past reward 

outcomes should be mediated by a single underlying prediction about the trial’s expected 

reward value (Figure 3C). However, TD models could potentially produce the 

appearance of multiple timescales of memory because their predictions change from 

moment to moment as a result of a continuous learning process.  

To test this possibility, we simulated our task using several current temporal-

difference (TD) learning models. The TD models are described below; they were based 

on the models originally described in (Sutton and Barto, 1998; Nakahara et al., 2004; Pan 

et al., 2008). Our finding was that several of these existing TD models had the theoretical 

potential to express certain forms of multiple timescales of memory; however, none of 

these models were able to reproduce the rapid switch between short- and long-timescale 

memories seen in our data. Thus our data cannot be explained as a mere side-effect of 

existing TD learning theories. Of course, it is possible that these models could be 

extended to account for our data by including changes between memory timescales as an 

explicit property of the model. 

 

 This text is organized in two sections. In this first section, we describe the Basic 

formalism of TD learning and our general Simulation procedure and results, illustrated in 

Figure S1. In the second section, we describe the detailed implementation of each TD 

learning model and the parameters used for each simulation (Simulation methods). 
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Basic formalism of TD learning 

The goal of TD learning is to learn a value function V(s) that represents the expected 

amount of future temporally-discounted rewards, given knowledge of the state of the 

environment s. When the value function has been properly learned, it is equal to: 

 

 V(s) = E[Στ γ
τ-1rt+τ | st = s], 

 

 where t is the current time step, st is the current state, rt+τ is the amount of reward 

delivered τ time steps in the future, 0 ≤ γ ≤ 1 is the temporal discounting factor which 

controls the degree to which immediate rewards are favored over delayed rewards, the 

sum is taken over all τ from 1 to infinity, and the expectation is taken over all possible 

sequences of future experiences starting from the current state.  

This value function is a property of the environment, and is not directly known by 

the learner. At each time t the learner only has access to an internal estimate of the value 

function, Vt(s). This estimate is learned through repeated experience. Specifically, at each 

time step the model observes a transition from the current state st to a new state st+1, and 

receives a reward rt+1. The model then updates Vt(s) based on this observation. The size 

and direction of the update is controlled by the temporal-difference error (TD error, δt), 

which represents the difference between the estimated value at time t, and an improved 

estimate of what the true value was at time t based on newly observed information st+1 

and rt+1. If the TD error is positive, Vt(s) is increased; if the TD error is negative, Vt(s) is 

decreased. The TD error is computed as: 

 

 δt = rt+1 + γVt(st+1) – Vt(st) 

 

It is this TD error signal which midbrain dopamine neurons are hypothesized to 

encode (Montague et al., 1996; Schultz et al., 1997). We therefore asked whether the 

simulated TD errors could reproduce the neural responses of lateral habenula and 

dopamine neurons. 
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As noted in the main text, our data cannot be reproduced by conventional TD 

learning algorithms used to simulate dopamine neuron activity because they assume that 

value is assigned to individual sensory stimuli, whereas in our task the value of each 

stimulus was not constant, but depended on the history of past outcomes. We therefore 

tested three novel TD models based on “Contextual TD learning”, in which stimulus 

values are allowed to depend on contextual factors such as an explicit memory trace of 

past reward outcomes (Nakahara et al., 2004). The three models were a Contextual TD 

model including only contextual effects (Figure S1A-C, “Contextual TD, context only”), 

a Contextual TD model including both contextual effects and trial-to-trial learning of 

state values (Figure S1D, “Contextual TD”), and a contextual version of a recently 

proposed multiple-timescale TD model (Figure S1E, “Contextual Multiple Timescale 

TD”; (Pan et al., 2008)). (Similar results were observed for other types of TD models, 

such as an average-reward model (Daw and Touretzky, 2002)). In the Contextual TD 

model including only contextual effects, reward memories depended entirely on a single 

explicit memory trace of past outcomes and therefore would be expected to have only a 

single timescale of memory at all times during the task. In the other two TD models, the 

memory trace for past outcomes was augmented by additional learning and forgetting 

processes that had their own distinct timescales. Therefore, these TD models had the 

potential to express multiple timescales of memory. 

 

Simulation procedure and results 

The results of a typical simulation using the “Contextual TD, context only” model 

are shown in Figure S1A,B. We analyzed the model’s TD errors using the same 

procedures that we used to analyze neural data in the main text. When the model’s mean 

TD errors were plotted separately for past-unrewarded trials vs. past-rewarded trials, they 

resembled the pattern of dopamine neuron responses seen in the main text (compare 

Figure S1A with Figure 3B). In addition, the model’s TD errors in response to the 

targets had a long timescale of memory, similar to that observed in dopamine neurons 

(Figure S1B, middle and right; compare with red and blue curves in Figure 5). However, 

the model’s TD errors in response to the fixation point also had a long timescale of 

memory (Figure S1B, left). This is very different from the pattern seen in lateral 
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habenula and dopamine neurons, which responded to the fixation point with a distinct 

short timescale of memory (compare Figure S1B with Figure 5). Thus, at least for the 

parameters used in this simulation run, the Contextual TD model was not able to 

reproduce the multiple timescales of memory seen in our data. 

To test this phenomenon systematically, we tested each TD learning algorithm using 

the following procedure. First, we made a computational model that implemented the TD 

learning algorithm and simulated its performance on our experimental task. We randomly 

chose 999 parameter settings for the model, subject to the constraint that the model’s TD 

errors had to match the basic properties of our neural data (with the exception of the 

difference in memory timescales, which was allowed to vary freely). For example, we 

required the TD model to reproduce the mean response to each task event and the proper 

effect of a single past reward outcome (see Criteria for valid TD model parameters, 

below). For each of the 999 parameter settings we fit the model’s TD errors for each task 

event using the same memory model that was used to analyze the neural data. We then 

plotted its memory decay rate for the fixation point DFix and its combined memory decay 

rate for the two targets DTarg (Figure S1C-E, top, gray dots). We then compared these 

simulation results with the fitted values of DFix and DTarg found in the neural data from 

lateral habenula and dopamine neurons (Figure S1C-E, top, black dots and error bars; 

same as in Figure 7). 

The result was that the models were never able to approach the pattern of memory 

timescales seen in the neural data. For the “Contextual TD, context only” model, the 

timescales of memory were always exactly identical for the fixation point and targets – 

all they gray dots lie along the identity line (Figure S1C). This shows that our data could 

not be reproduced by a TD model that contained only a single timescale of memory. 

As expected, the other two TD models were sometimes able to express multiple 

timescales of memory, indicated by the fact that some of the data points did not lie on the 

identity line (Figure S1D,E). However, their change in memory timescales was almost 

always opposite to that seen in the neural data. That is, most of their gray dots lie above 

the identity line, indicating a higher decay rate (shorter timescale of memory) for the 

target response; whereas the neural data is far below the identity line, indicating a higher 

decay rate for the fixation point response (Figure S1D,E). 
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We did observe a small number of parameter settings that produced a better result, a 

slightly shorter timescale of memory for the fixation point than for the targets (Figure 

S1D,E, gray dots below the identity line). However, this effect was rather weak and did 

not approach the timescales of memory seen in the neural data (Figure S1D,E, black 

dots). To test whether these parameter settings could be optimized in order to come closer 

to our data, we used the following optimization procedure. As an initial starting point, we 

selected the parameter setting that produced the largest difference between the memory 

timescales, DFix - DTarg (other choices of initial parameters produced very similar results). 

We then used this as the initial input to the MATLAB optimization function 

‘fminsearch’, run in order to search for parameter settings to maximize the difference 

between the memory timescales. After ~200 iterations, the function converged to a new 

set of parameters that produced a larger difference between the memory timescales 

(Figure S1C-E, top, magenta dots, “optimized params”). However, the improvement was 

quite small. Even for simulations using these optimized parameters, the fitted memory 

weights were very similar for all task events (Figure S1C-E, bottom row), unlike the 

distinct timescales of memory seen in our neural data (Figure 5). 

Thus, we conclude that existing TD models could not reproduce the switch between 

short and long timescales of memory seen in our data, even for TD models that contained 

multiple memory timescales and that had their parameters optimized to maximally 

resemble our data. Of course, it remains possible that future TD learning algorithms 

could be invented to account for our data by including changes between memory 

timescales as a designed property of the model. 
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Figure S1 (ref Fig 1). Formal TD models of reward expectation can reproduce the 

mean neural response and simple memory effects but not the observed pattern of 

multiple timescales of memory 

 (A) Mean simulated TD errors from an example simulation using the Contextual TD 

learning model, shown separately for past-unrewarded trials (blue) and past-rewarded 
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trials (red). The pattern of TD errors resembles the pattern seen in midbrain dopamine 

neurons. 

(B) Fitted memory weights for the TD errors from the example simulation, separately for 

the responses to the fixation point (black), rewarded target (red), and unrewarded target 

(blue). Weights were fitted using the version of the memory model in which the weight 

assigned to each past outcome could vary independently. The memory decay rate D was 

fitted using the memory model in the main text in which weights took the form of an 

exponential decay. The model had identical timescales of memory during all of its 

responses. 

(C,top) Comparison of simulated and neural timescales of memory for the fixation point 

response (x-axis, DFix) and target responses (y-axis, DTarg), for the “Contextual TD, 

context only” model. Black dots indicate the data from lateral habenula neurons (LHb) 

and dopamine neurons (DA); error bars indicate 80% CI. Gray dots indicate the simulated 

data from 999 simulations with randomly chosen parameters. Magenta dot indicates the 

data from a simulation with its parameters optimized to maximize the difference between 

DFix and DTarg. Unlike the neural data, the model always had identical timescales of 

memory for all of its responses. 

(C,bottom) Fitted memory weights for the “Contextual TD, context only” model for a 

simulation using the optimized parameters (the magenta dot in the top plot), separately 

for the responses to the fixation point (black), rewarded target (red), and unrewarded 

target (blue). Unlike the neural data, the model always had identical timescales of 

memory for all of its responses. 

(D) Same as (C), for the combined “Contextual TD ” model. This model was able to 

achieve multiple timescales of memory, but generally had the wrong direction of change 

between memory timescales (gray dots above the identity line). In a few cases the model 

was able to have the correct direction of change between memory timescales (gray dots 

below the identity line, optimized magenta dot). However, the effect was extremely 

weak, and did not approach the change in memory timescales seen in the neural data 

(black dots). Unlike the neural data, the timescales of memory were very similar for all 

task responses (bottom plot). 



Supplemental 12 

(E) Same as (D), for the “Contextual Multiple Timescale TD” model. This produced 

results similar to the (D) – either the wrong direction of change between memory 

timescales (gray dots above the identity line) or had very small changes in memory 

timescale (optimized magenta dot; bottom plot). 

 

 

Simulation methods 

 

Criteria for valid TD model parameters 

 In order to compare the timescales of memory between the model and experimental 

data, we first had to ensure that the model was able to at least roughly reproduce all other 

features of the data. To test this, we fitted each simulation’s TD errors using the memory 

model in the main text. This produced a fitted mean TD error μ, memory amplitude a, 

and memory decay rate D, fitted separately for the fixation point (μFix, aFix, DFix), 

rewarded target (μRew, aRew, DRew), and unrewarded target (μUnr, aUnr, DUnr). The 

simulation and its parameter set were then included in our analysis only if they met the 

following criteria: 

 

Correct direction of mean response: 

μFix > 0, μRew > 0, μUnr < 0 

Correct direction of memory effects: 

aFix < 0, aRew > 0, aUnr > 0 

Roughly similar sizes of target and fixation responses: 

0.5 < |μFix / μRew| < 2, 0.5 < |μFix / μUnr| < 2, 

Roughly similar sizes of target and fixation memory effects: 

0.25 < |aFix / aRew| < 4, 0.25 < |aFix / aUnr| < 4, 

Memory effects neither extremely small nor extremely large: 

 0.1 < |aFix / μFix| < 1.5, 0.1 < |aRew / μRew| < 1.5, 0.1 < |aUnr / μUnr| < 1.5,  

Memory decay rates similar for the two targets: 

 |DRew – DUnr| < 0.15 
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 In addition, we required that the model’s temporal discounting parameter was set 

such that a reward’s value was reduced by half after a delay no shorter than 2.5 seconds, 

in order to be consistent with experimental data in rhesus macaque monkeys (the 

measured half-maximal reward value occurred after delays of 3.2-5.9 seconds (Kobayashi 

and Schultz, 2008; Kim et al., 2009)). Overall, our results did not depend on the precise 

settings of the constraints; the constraints were chosen to be permissive to allow 

parameter settings to be used even if they did not match the experimental data precisely. 

 

State representation of the behavioral task 

To simulate the behavioral task, we generated a pseudorandom sequence of rewards 

according to the method used in the true data (a sequence of 4-trial subblocks, each 

containing two rewarded and two unrewarded trials). For simplicity, simulations did not 

include block transitions so the values of the two targets were never reversed. Each trial 

began with the fixation point, followed by either the rewarded target or the unrewarded 

target, followed by delivery of the reward outcome and transition to the inter-trial 

interval, after which the trial ended. Event times were discretized into 200 ms bins (see 

below). Simulations were performed in ‘episodic’ mode, in which each trial was 

presented to the model as a discrete episode (see below). 

To apply TD learning to our task, we described our task environment as a sequence 

of states st, each composed of a vector of state features, st,1, ..., st,N. The state value Vt(st) 

was approximated as a weighted linear combination of the state features, such that Vt(st) 

= Σi st,iwt,i (Sutton, 1988). The goal of the TD algorithm is then to learn the weights wt,i 

that best approximate the true value function V(s). In our model the task state had N=46 

features. The first 23 features, st,1,...,st,23, each represented a 200 ms segment of time 

during one of the task’s epochs. This matches conventional TD learning algorithms in 

which a distinct value is assigned to each sensory stimulus or task epoch based on the 

time since that task epoch began (e.g. (Montague et al., 1996)). Features 1-6 represented 

the fixation period, 7-8 represented the unrewarded target period, 9-10 represented the 

rewarded target period, and 11-23 represented the inter-trial interval. For example, st,3 

represented the time period from 400-600 ms after fixation point onset. At each moment 

in time, the single state feature representing the task’s current epoch and time was set to 
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1, and the other 22 were set to 0. A reward was delivered upon each transition from the 

rewarded target to the inter-trial interval. For example, the sequence of activated state 

features during a single rewarded trial might follow the sequence: 

(1,2,3,4,5,6,9,10,11,12,13,14,15,16,17,18,19,20,21), with the reward delivered upon the 

transition from state feature 10 (end of rewarded target) to 11 (start of inter-trial-interval). 

Thus, each learned weight wt,k represents the TD model’s estimate of the mean value of 

being in a specific task epoch at a specific time during that epoch. 

The second 23 state features, st,24,...,st,46, represented the model’s memory for the 

history of past reward outcomes. This is an example of a ‘contextual’ TD learning 

algorithm, in which the value of each sensory stimulus is allowed to depend on 

contextual information such as recent reward outcomes (Nakahara et al., 2004). 

Specifically, we implemented a reward memory matching the rule in the main text, an 

exponentially weighted running average of recent reward outcomes (similar results were 

obtained for other forms of reward memory, such as an explicit memory for the sequence 

of past reward outcomes). At each moment in time, these features are set according to the 

rule st,k+23 = (st,k)H, where st,k is the state feature representing the current epoch and time 

during the task, and H is a term representing the past reward history. The term H was 

calculated as an exponentially weighted average of past trial reward outcomes with its 

timescale of memory controlled by a memory decay rate parameter D, such that after 

each trial’s reward outcome r, H was updated according to the rule H = (1-D)H + (D)r. 

For example, if st,26 = 0.45, then it indicates that the task is currently in the time period 

400-600 ms after fixation point onset, and that the running average of recent reward 

outcomes is 0.45. Thus, each learned weight wt,k+23 represents the TD model’s estimate of 

the influence of the reward history on the state value, for a specific task epoch and for a 

specific time during that epoch. 

 

Contextual TD models and parameters 

 To learn the appropriate weights to approximate the true value function, the TD 

model updates its weights after observing each state transition st → st+1 and its associated 

reward outcome rt+1. In standard TD learning algorithms, the weights are updated based 

on the TD error, using the equation: 
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 wt+1,k = wt,k + αet,kδt 

 

 where 0 ≤ α  ≤ 1 is the learning rate that controls the speed of learning, and et,k is an 

eligibility trace that reflects the degree to which the TD error signal is used to update the 

values of states that were visited in the past. Specifically, the eligibility trace et,k is 

incremented by ∂Vt(st)/∂wt,k = st,k each time the state st is visited (reflecting the degree to 

which the estimated value Vt depends on the weight wt,k), and then decays after each 

further state transition by being multiplied by the factor γλ (where  0 ≤ λ  ≤ 1; reflecting 

the degree to which the model assigns credit to past states) (Sutton, 1988; Sutton and 

Barto, 1998). 

 Note that the weight update is proportional to the eligibility trace et,k, which is small 

for states experienced long in the past, and is large for states experienced recently. This is 

a reason why the TD models tend to have a pattern opposite to that seen in our data, a 

longer timescale of memory for the response to the fixation point than the targets (Figure 

S1C-E). For the state st,1 representing the onset of the fixation point, the trial’s TD error 

in response to the targets occurs after a delay of several time steps, so its weight updates 

are small, leading to gradual incremental learning and a long timescale of memory. In 

contrast, for the state st,6 representing the state just before the target onset, the trial’s TD 

error occurs immediately, so its weight updates are large, leading to a high amount of 

learning from each trial and a short timescale of memory. 

The simulations presented in Figure S1 were run in ‘episodic mode’, in which each 

trial was a discrete episode: at the end of each trial the eligibility traces were set to zero, 

and the next trial began from a ‘null state’ in which all state features set to zero (and thus 

had zero value) (Sutton and Barto, 1998; Ludvig et al., 2008). We also ran simulations in 

‘continuing discounted’ mode in which the task transitioned directly between trials while 

preserving eligibility traces (Sutton and Barto, 1998). This produced qualitatively similar 

results except that it no longer matched our experimental data because it caused the 

simulated response to the fixation to become an order of magnitude weaker. This 

occurred because the model could partially predict the timing of the fixation point based 

on the time during the inter-trial interval, reducing the size of the TD error. 
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 To simulate the “Contextual TD ” model, we randomly chose parameters from the 

ranges: 0.1 ≤ D ≤ 1, 0.005 ≤ α ≤ 0.4, 0 ≤ λ ≤ 1, 0.94 ≤ γ < 1.00. This model includes the 

“Contextual” influence of reward history (with a timescale of memory controlled by D), 

and the “Conventional” influence of incremental reinforcement learning (with a timescale 

of memory controlled by α). 

 To simulate the “Contextual TD, context only” model, we used the same ranges of 

parameters except requiring a low learning rate, 0.001 ≤ α ≤ 0.002. This model still 

includes the Contextual influence of reward history, but minimizes the influence of 

incremental reinforcement learning by using a low learning rate. 

 

Contextual Multiple Timescale TD model and parameters 

 In the multiple timescale TD model (Pan et al., 2008), learning occurs in a similar 

manner to the TD learning rule described above. However, the state value is 

approximated through two sets of weights: positive weights w+ which are clamped to be ≥ 

0, and negative weights w– which are clamped to be ≤ 0. These allow multiple timescales 

of learning. The positive weights learn using the standard learning rate term α, whereas 

the negative weights learn through a separate learning rate β, such that β/α ≥ 1. In 

addition, the model includes multiple timescales of forgetting. After each state transition, 

the positive weights decay by being multiplied by a factor 0 ≤ ψ+ 1, while the negative 

weights decay by being multiplied by a factor 0 ≤ ψ– ≤ 1, such that  ψ–/ψ+ ≤ 1. Thus, the 

state value is approximated as: 

 

 Vt(st) = Σi st,iw
+

t,i + Σi st,iw
–

t,i 

 

 And the learning rule is: 

 

 w+
t+1,k = max(0, w+

t,k + αet,kδt )ψ
+ 

 w–
t+1,k = min(0, w–

t,k + βet,kδt )ψ
– 

 

 To simulate this model, we randomly chose parameters from three different regimes 

where we observed that the model was able to produce TD errors meeting our criteria for 
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resembling the experimental data. All regimes used the following parameter ranges: 0.1 ≤ 

D ≤ 1, 0 ≤ λ ≤ 1, 0.94 ≤ γ < 1.00. In the first regime, other ranges were: 0.001 ≤ α ≤ 0.01, 

1 ≤ β/α ≤ 10, 0.99999 ≤ ψ+ ≤ 1, 0.99999 ≤ ψ–/ψ+ ≤ 1. In the second regime, other ranges 

were: 0.01 ≤ α ≤ 0.4, 1 ≤ β/α ≤ 10, 0.99999 ≤ ψ+ ≤ 1, 0.99999 ≤ ψ–/ψ+ ≤ 1. In the third 

regime, other ranges were: 0.01 ≤ α ≤ 0.4, 10 ≤ β/α ≤ 80, 0.9999 ≤ ψ+ ≤ 1, 0.9999 ≤ ψ–/ψ+ 

≤ 1. Overall, these parameter ranges were generally similar to those used in (Pan et al., 

2008). 

 

Simulation procedure 

 Each simulation had its weights initialized to be near the environment’s true value 

function, was run for 100,000 trials to allow convergence to the asymptotic estimate of 

the value function, and was then was run for an additional 25,000 trials upon which our 

analysis was performed. 
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2. Behavioral memory effects in each animal 

The past-outcome effects on behavior shown in Figure 2 were found in both 

animals, for the correct fixation rate, anticipatory fixation rate, anticipatory reward bias, 

and reward-oriented reaction time bias (Figure S2A,B, p < 0.05, bootstrap test). The 

past-outcome effect on reaction times to the fixation point was found in animal L. That 

effect could not be measured in animal E because that animal anticipated the fixation 

point on a large fraction of trials, so only a small number of sessions with enough fixation 

point reaction times were available (resulting in n = 22 trials). 

The past-outcome effect on reward-oriented reaction time bias was expressed in 

slightly different manners in the two animals. In animal E, higher reward probability 

caused a speeding of reaction times to the rewarded target and slowing of reaction times 

to the unrewarded target (Figure S2D). In animal L, higher reward probability caused 

only a slowing of reaction times to the unrewarded target (Figure S2C). This is 

consistent with previous studies which found that unrewarded reaction times were more 

sensitive than rewarded reaction times to manipulations such as reward expectation and 

target timing expectation (Takikawa et al., 2002; Ding and Hikosaka, 2007). This could 

be caused by a floor effect in which reaction times to the rewarded target were already as 

fast as possible and had no room to be modulated by trial-to-trial variations in reward 

expectation. 

An important point is that anticipatory and reactive eye movements provided 

separate measurements of memory effects. In particular, the past-outcome effect seen in 

reaction times to the fixation point was not caused by anticipatory positioning of the eye; 

the past-outcome effect occurred reliably even after controlling for the distance between 

the eye and the fixation point (Figure S2E, animal L). 
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Figure S2 (ref Fig 2). Behavioral memory effects in each animal. 

(A-B) Similar plot to Figure 2B, separately for animal L (A) and animal E (B). Text 

indicates non-significant p-values; asterisks indicate p < 10-3 (***), or p < 0.05 (*). Error 

bars indicate 80% bootstrap confidence intervals. Memory effects were found in all 

behavioral variables in both animals except for reaction times to the fixation point in 

animal E. 
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(C-D) Past-outcome effects on reaction times to the targets, separately for the unrewarded 

target (left) and rewarded target (right) in animal L (C) and animal E (D). 

(E) Past-outcome effects on reaction times to the fixation point in animal L, plotted as a 

function of the distance between the eyes and the fixation point. Error bars indicate ± 1 

SEM. Asterisks indicate significance (p < 0.05, Wilcoxon rank sum test). The past-

outcome effect occurred reliably even after controlling for the distance to the fixation 

point, indicating that it was not caused by anticipatory positioning of the eyes. 
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Figure S3 (ref Fig 3). Reward memory effects in single neurons 

(A) An example lateral habenula neuron. Top: rasters for single trials. Each row is a trial 

and each dot is a single spike. Data is plotted separately depending on whether the past 

trial was rewarded (“Past R”, red) or unrewarded (“Past U”, blue). Bottom: average firing 

rate; same format as Figure 3. Asterisks indicate a significant past-outcome effect (p < 

0.01); no asterisk indicates a non-significant effect (p > 0.05, Wilcoxon rank-sum test). 

This neuron had modest but reliable past-outcome effects during each task event. 

(B) same as (A) for a second lateral habenula neuron. This neuron had a weak and non-

significant past-outcome effect in response to the unrewarded target, but strong effects in 

response to the fixation point and rewarded target. 
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(C,D) same as A,B, for two dopamine neurons. The neuron in C had significant effects 

during each task event. The neuron in D had relatively weak and non-significant effects 

in response to the targets, but a strong effect in response to the fixation point.
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4. Coexistence of short- and long-timescale memories in the same neural population 

 We wondered whether the short-timescale memory in response to the fixation point 

and the long-timescale memory in response to the saccade targets were expressed by the 

same population of neurons. The null hypothesis would be that there were two separate 

subpopulations of neurons, ‘short-memory neurons’ which caused the memory effect in 

response to the fixation point and ‘long-memory neurons’ which caused the memory 

effect in response to the targets.  

We first tested whether single neurons had memory effects in response to multiple 

task events. For each neuron’s response to each task event, we calculated a "memory 

index" (MI), defined as the ROC area for using the present trial’s neural activity to 

discriminate the past trial’s reward outcome. An index < 0.5 indicates higher activity 

when the past trial was unrewarded; an index > 0.5 indicates higher activity when the past 

trial was rewarded; and a memory index of 0.5 indicates no discrimination. Each neuron 

had three memory indexes, MIFix, MIRTarg, and MIUTarg, calculated from its responses to 

the fixation point, rewarded target, and unrewarded target. The distribution of memory 

indexes is shown in Figure S4D. To compare memory effects between the fixation point 

and the targets, we calculated a combined target memory index, MITarg, defined as the 

average of the memory indexes for the two individual targets (MITarg = (MIRTarg + 

MIUTarg)/2). The relationship between the fixation point and target memory indexes is 

shown in Figure S4A. The majority of neurons cluster in a single quadrant, indicating 

that they had memory effects in response to both task events. 

 To perform a formal test, we calculated the number of cells for which the memory 

indexes MIFix and MITarg were significantly different from chance levels (permuation test, 

p < 0.05; colored dots in Figure S4A). The null hypothesis was that the fixation and 

target memory effects were expressed in separate populations of neurons. If this was the 

case, then a neuron that had a true memory effect for one task event (e.g. fixation point) 

would not have a true effect for the second task event (e.g. targets); for the second event, 

its probability of producing a significant memory index would be at chance levels (5%). 

On the contrary, we found that many neurons with significant memory indexes for one 

task event also had memory effects for the second task event. For lateral habenula 

neurons, 37 neurons had a significant MIFix, and of these, 11/37 (30%) also had a 
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significant MITarg; 16 neurons had a significant MITarg, and of these, 11/16 (69%) also had 

a significant MIFix. For dopamine neurons, 25 neurons had a significant MIFix, and of 

these, 11/25 (44%) had a significant MITarg; 21 neurons had a significant MITarg, and of 

these, 11/21 (52%) had a significant MIFix. All of these proportions are far greater than 

5% (all p < 10-5, binomial test). We conclude that single neurons commonly had memory 

effects in response to both the fixation point and the targets. 

 This finding rules out the straightforward hypothesis that neurons were divided into 

separate subpopulations of short-memory and long-memory neurons that expressed their 

memory effects at different times during the trial. The only remaining way for the null 

hypothesis to account for this data would be if both short-memory and long-memory 

neurons expressed memory effects at all times during the trial, but in a biased manner so 

that short-memory neurons were dominant in response to the fixation point and long-

memory neurons were dominant in response to the targets. This biased-expression 

hypothesis can be put to a straightforward test. It implies that selecting neurons with 

strong memory effects in response to the fixation point would yield a population 

dominated by short-memory neurons, which would then have an (atypical) short 

timescale of memory in their response to the targets. Similarly, selecting neurons with 

strong memory effects in response to the targets would yield a population dominated by 

long-memory neurons, which would then have an (atypical) long timescale of memory in 

their response to the fixation point.  

To test this possibility, we fitted the same memory model used in the main text 

(Figure 5) to subpopulations of neurons selected for their significant memory effects in 

response to single task events (Figure S4B). First, we fitted the model to the 

subpopulation of neurons with significant memory effects in response to the fixation 

point (blue curves, Figure S4B). This subpopulation did not have a bias for short 

timescales of memory; instead, it had a similar pattern of timescales as the population as 

a whole – a short memory for the fixation point and a significantly longer memory for the 

targets, as measured by the fitted memory decay rate D (habenula n = 37, DFix = 0.98, 

DTarg = 0.27, p < 10-3; dopamine n =25, DFix = 0.91, DTarg = 0.44, p = 10-3). Next, we 

fitted the model to the subpopulation with significant memory effects in response to the 

targets (red curves, Figure S4B). This subpopulation did not have a bias for long 
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timescales of memory; instead, it had a similar pattern of timescales as the population as 

a whole (habenula n = 16, DFix = 1.00, DTarg = 0.29, p < 10-3; dopamine n = 21, DFix = 

0.94, DTarg = 0.43, p = 0.01). This shows that our data cannot be explained by separate 

populations of short-memory and long-memory cells preferentially responding to 

different task events. Instead, the population that was responsible for the short timescale 

of memory for the fixation point also expressed a long timescale of memory in response 

to the targets, and vice versa. 

As an additional verification of this finding we compared the timescales of memory 

within single cells by fitting the memory model to the activity of individual neurons 

(Figure S4C). This analysis was difficult due to the relatively small amount of data for 

each neuron, but produced results supporting the above conclusions. We fit the model to 

each neuron that had significant memory indexes for both the fixation point and targets. 

In this fit the memory weights were constrained to take the form of an exponential decay, 

and the decay rates were constrained to be equal for the rewarded and unrewarded 

targets. Thus, each neuron had two fitted decay rates: DFix, which controlled the timescale 

of memory for the response to the fixation point, and DTarg, which controlled the 

timescale of memory for the responses to the targets (Figure S4C). We hypothesized that 

single neurons would have DTarg < DFix, indicating a longer timescale of memory in 

response to the target than in response to the fixation point (matching the pattern seen in 

the population as a whole (Figure 5)). Indeed, of 11 lateral habenula neurons that had 

significant memory indexes for both task events, 11/11 (100%) had DTarg < DFix, a 

proportion significantly greater than expected by chance (p = 0.001, binomial test). For 

dopamine neurons, 11 neurons had significant memory effects for both task events. Two 

neurons had a fixation memory effect in the opposite direction of that seen in the rest of 

the population (Figure S4A, purple circles in the upper right quadrant; Figure S4C, open 

circles). Of the remaining dopamine neurons, 8/9 (89%) had DTarg < DFix, a proportion 

significantly greater than expected by chance (p = 0.04, binomial test). We conclude that 

lateral habenula and dopamine neurons had a longer timescale of memory in response to 

the targets than in response to the fixation point. 
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Figure S4 (ref Fig 4). Coexistence of short- and long-timescale memories in the same 

neural population 

(A) Relationship between single-neuron memory indexes for the fixation point and the 

targets (MIFix and MITarg) for lateral habenula neurons (left) and dopamine neurons 

(right). The color of each circle represents statistical significance of that neuron’s 

memory indexes (p < 0.05, permutation test). The colors are: purple, significant for both 

fixation point and targets; blue, significant for fixation point; red significant for targets; 

gray, not significant. 

(B) Fitted timescale of memory in response to the fixation point (dark curves) and targets 

(light curves) for neurons that had significant memory effects in response to the fixation 

point (blue curves) or targets (red curves). Neural activity was fitted using the version of 

the memory model in which the rewarded and unrewarded targets were constrained to 

have the same memory weights. Format is the same as Figure 5. In both lateral habenula 

neurons (left) and dopamine neurons (right) the timescale of memory is similar regardless 

of whether cells were selected for significant fixation or target memory effects. 

(C) Fitted exponential decay rates for single neurons, separately for the response to the 

fixation point (DFix) and targets (DTarg). Open circles indicate two outliers, neurons with 

fixation point memory effects opposite to the rest of the population. In both lateral 

habenula neurons (left) and dopamine neurons (right) the majority of neurons fall below 

the identity line, indicating a longer timescale of memory in response to the targets than 

in response to the fixation point.  

(D) Distribution of single-neuron memory indexes for each task event (MIFix, MIRTarg, 

and MIUTarg). Colored bars represent neurons with memory indexes that were 

significantly different from chance levels (p < 0.05, permutation test). Dots, lines and text 

indicate the mean memory index; horizontal lines indicate 80% bootstrap confidence 

intervals (most too small to be seen); asterisks indicate that the mean is significantly 

different from 0.5 (p < 0.05, bootstrap test). The analysis windows for this figure were 

the same as in Figure 4. 
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5. Neural memory effects are not due to direct coding of behavioral actions 

 We interpreted neural activity as being related to the reward outcomes delivered on 

previous trials. An alternate hypothesis is that neurons were simply encoding behavioral 

variables such as reaction times, which in turn were correlated with the reward history. 

This hypothesis can be put to a clear test: if neurons were simply encoding behavioral 

performance, then their activity should be correlated with behavioral performance even 

on trials with identical reward histories (Satoh et al., 2003). To test this, we calculated the 

partial correlation between neural activity and behavior while controlling for the reward 

history. Specifically, we fit each neural variable and each behavioral variable in each 

animal as a function of six past reward outcomes, using the memory model from the main 

text. Then for each trial we calculated the neural residual, (firing rate – model’s predicted 

firing rate), and the behavioral residual, (behavioral measurement – model’s predicted 

behavioral measurement). Finally, for each neuron we calculated the rank correlation 

between these two residuals. This measures the trial-to-trial correlation between neural 

activity and behavior that was not caused by their mutual dependence on past reward 

outcomes. 

The resulting neural-behavioral correlations were modest in size, for both lateral 

habenula and dopamine neurons (Figure S5A, top, bottom) and for both saccadic 

reaction times and for anticipatory eye movements (Figure S5A, left, right). The 

correlations reaching significance were between lateral habenula responses to the 

rewarded target and reaction times to the rewarded target (mean = 0.07, p = 0.004), 

between dopamine responses to the fixation point and reaction times to the fixation point 

(mean = -0.05, p = 0.04), and between dopamine responses to the rewarded target and 

anticipatory eye position bias before the onset of the rewarded target (mean = 0.05, p = 

0.01). The other neural-behavioral correlations were not significantly different from zero 

(p > 0.1). 

Could these correlations between neurons and behavior explain the large memory 

effects present in neural activity? To test this, we calculated the size of memory effects 

that would be predicted under the null hypothesis that neurons simply encoded behavior 

(black bars, “Mem → Behav → Neural”, Figure S5B). We then compared this to the true 

memory effects seen in neural activity (red bars, “Mem → Neural”, Figure S5B).  
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Specifically, for each task event we quantified the size of each neuron’s true memory 

effect using the neuron’s fitted “memory amplitude” from the memory model used in the 

main text (the parameter an for each neuron n). This measured the effect of a single past 

outcome on neural activity (in spikes/sec) (“Mem → Neural”). To calculate the 

hypothetical memory effect under the assumption of direct encoding of behavior (“Mem 

→ Behav → Neural”), we first estimated the memory amplitude for each behavioral 

variable (“Mem → Behav”). We then estimated the linear regression slope relating that 

behavioral variable to neural activity (“Behav → Neural”). These two terms were then 

multiplied to produce the predicted memory amplitude, using the equation:  

 

(Predicted neural memory amplitude)  

= (Behavioral memory amplitude) x (Neural-behavioral regression slope) 

 

This procedure can be understood through the following example, in which we 

predict the mean memory amplitude of lateral habenula neurons based on behavioral 

reaction times to the fixation point. The first term in the above equation, the behavioral 

memory amplitude for reaction times to the fixation point, was calculated to be 37 ms. 

The second term in the above equation, the mean neural-behavioral regression slope, was 

calculated to be 0.01 (spikes/s)/(ms). In other words, for each 1 ms increase in reaction 

time there was a 0.01 spikes/s increase in neural firing rate. Multiplying these two terms, 

we get (37 ms) x (0.01 spikes/s/ms) = 0.37 spikes/s, the predicted mean neural memory 

amplitude under the null hypothesis that neurons simply encoded behavior (Figure S5B, 

top plot, leftmost black bar). In comparison, the true mean neural memory amplitude was 

3.57 spikes/s, nearly an order of magnitude higher (Figure S5B, top plot, leftmost red 

bar). Thus, the null hypothesis of direct encoding of behavior could only explain a small 

fraction of the observed neural memory effect. 

Similar results were found for the neural memory effects for all task events and in 

both lateral habenula and dopamine neurons (Figure S5B). The true memory effects (red 

bars, “Mem → Neural”) were typically an order of magnitude higher than the predictions 

under the null hypothesis (black bars, “Mem → Behav → Neural”), and the difference 

between the two was statistically significant in each case (p < 0.05, Wilcoxon signed-
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rank test). The same result occurred regardless of whether neural memory effects were 

predicted based on reaction times (left side of plot) or anticipatory eye movements (right 

side of plot). This shows that reward history effects in neural activity were not simply 

caused by direct neural encoding of behavioral performance. 

 

As a further test of the hypothesis of neural coding of behavioral actions, we 

considered whether neural responses to visual stimuli could have been caused by neural 

activity time-locked to saccadic eye movements. We previously showed that lateral 

habenula and dopamine neuron responses to the targets were not time-locked to saccade 

onset (Matsumoto and Hikosaka, 2007). Here we performed a similar test for neural 

responses to the fixation point. This analysis was restricted to trials when the animal 

made a reactive saccade to the fixation point (~37% of trials). We computed the 

population average response to the fixation point, aligned on either the appearance of the 

fixation point (Figure S5C, left) or the onset of the saccade (Figure S5C, right). Neural 

activity was much better aligned to stimulus onset than to saccade onset. Thus, lateral 

habenula and dopamine neuron responses to task events were better described as 

responses to visual stimuli rather than direct coding of behavioral actions. 
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Figure S5 (ref Fig 5). Neural memory effects are not due to direct coding of 

behavioral actions 

(A) Partial correlation between neural activity and behavior during each task event, 

controlling for the effect of reward history. Correlations were measured separately for 

two types of behavior: saccadic reaction times (left three data points) and anticipatory eye 

position (right three data points). Correlations were always measured between neural and 

behavioral responses to the same task event. For example, the leftmost data point on the 
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top plot is the mean of the single-neuron rank correlations between lateral habenula 

neuron responses to the fixation point and behavioral reaction times to the fixation point. 

Each data point was calculated using all neurons for which the neural and behavioral 

variables could be measured on at least 20 trials. Error bars are bootstrap 80% confidence 

intervals. Asterisks indicate significant differences from zero correlation (Wilcoxon 

signed-rank test, p < 0.05). The neural-behavioral correlations were modest in size. 

(B) Neural memory effects observed in the data (red, “Mem → Neural”) vs. predicted 

memory effects under the null hypothesis that neurons do not directly encode reward 

memory and instead simply encode behavior (black, “Mem → Behav → Neural”). 

Memory effects for each neuron were measured using the fitted “memory amplitudes” 

from the memory model in the main text (the parameter an for each neuron n). Memory 

effects are shown separately for neural responses to each task event (left to right: fixation 

point, rewarded target, unrewarded target) and separately for predicted memory effects 

based on saccadic reaction times (left) and anticipatory eye position (right). The height of 

each bar represents the mean of the memory amplitudes of all neurons for which the 

neural and behavioral variables could be measured on at least 20 trials. Error bars are 

bootstrap 80% confidence intervals. The neural memory effects (red) were much larger 

than predicted under the null hypothesis that neurons simply encode behavior (black). 

(C) Population average response to the fixation point on trials when the animal reacted to 

the fixation point with a saccade, aligned on fixation point onset (left) or saccade onset 

(right). Neural activity was smoothed with a Gaussian kernel (σ = 10 ms). Shaded area 

indicates ± 1 SE. Neural activity was time-locked to fixation point onset, not to saccade 

onset. 
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6. Tonic and phasic memory effects in the lateral habenula 

  To measure the relationship between tonic and phasic memory effects in lateral 

habenula neurons, we used the ROC area to quantify past-outcome effects separately for 

each period of tonic activity (Figure S6A, rows, “Inter-trial interval” and “Pre-target 

period”) and phasic activity (Figure S6A, columns, “Fixation point”, “Rewarded target”, 

and “Unrewarded target”). Tonic effects were largely independent of phasic effects in 

response to the rewarded and unrewarded targets (right two columns). Tonic effects were 

correlated with phasic effects in response to the fixation point (left column), but the 

relationship was not absolute. For example, several neurons had higher tonic firing rates 

on past-unrewarded trials (ROC < 0.5), but had higher phasic responses to the fixation 

point on past-rewarded trials (ROC > 0.5). 

 Some lateral habenula neurons had an additional form of phasic activity. On the first 

trial of each block, when the reward values of the two target locations were switched 

without warning to the animal, the target led to an unexpected outcome. For example, the 

target that had previously been rewarded was now unexpectedly unrewarded. This type of 

unpredicted reward omission caused lateral habenula neurons to be strongly excited 

(Matsumoto and Hikosaka, 2007; Hong and Hikosaka, 2008). On the remaining trials of 

the block the reward value of each target location was stable, making it possible to 

predict the reward outcomes in advance. However, as reported previously (Matsumoto 

and Hikosaka, 2007; Hong and Hikosaka, 2008), many lateral habenula neurons 

continued to be excited by reward omission even when it was predictable, although with 

lower intensity than when it was unpredictable (Figure S6B). Activity in response to the 

outcome was significantly higher on unrewarded trials in 36/65 neurons (55%) and was 

higher on rewarded trials in 11/65 neurons (17%; p < 0.05, Wilcoxon rank-sum test). The 

response to predictable reward omission was also influenced by past outcomes (Figure 

S6C, top), so that lateral habenula neurons tended to have two phasic bursts of memory 

effects in quick succession, one in response to the unrewarded target, and one a few 

hundred milliseconds later in response to reward omission. There was no clear memory 

effect in response to predictable reward delivery (Figure S6C, bottom). 

The response to predictable reward omission appeared to have an intermediate 

timescale of memory, longer than in response to the fixation point, but shorter than in 
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response to the targets (Figure S6D). It was difficult to estimate its timescale precisely (it 

had a large confidence interval (Figure S6E)), because the response to predictable 

reward omission was modest in size or absent in many neurons. Still, the apparent 

intermediate timescale of memory was consistent with the V-shaped pattern of results 

described in the main text (Figure S6E). 

 

 

 

Figure S6 (ref Fig 6). Tonic and phasic memory effects in the lateral habenula 

(A) Plot of phasic past-outcome effects in response to the fixation point, rewarded target, 

and unrewarded target (left, middle, right columns) vs. tonic past-outcome effects during 
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the ITI and pre-target period (top, bottom rows). Colored dots are neurons with 

significant tonic effects (red), phasic effects (blue), or both (magenta) (p < 0.05, 

Wilcoxon rank-sum test). Text indicates the rank correlation and its statistical 

significance (permutation test). 

(B) Average firing rate of lateral habenula neurons on rewarded trials (red) and 

unrewarded trials (blue) aligned at target onset (left) and outcome onset (right). On 

unrewarded trials, outcome onset was defined as the time when reward would have been 

delivered if the trial had been rewarded.  

(C) Same analysis as Figure 4 but applied to the outcome period.  

(D) Same analysis as Fig 5 but applied to the unrewarded outcome period, using the light 

gray analysis window shown in (B).  

(E) Same analysis of lateral habenula activity as Figure 7, but including the response to 

the unrewarded outcome. Although the timescale of memory could not be estimated 

precisely, it was consistent with the V-shaped pattern observed for other task events.  
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Figure S7 (ref Fig 7). Fitted memory decay rates in each animal 

Same as Figure 7 for each animal. Gray parenthesized text indicates the number of 

neurons or sessions for each condition. “(n.s.)” indicates that the number of sessions with 

enough data was too small to test for statistical significance. Animal L shows all of the 

major memory effects shown in the main text. Due to the smaller number of recording 

sessions in animal E and smaller number of sessions with enough reaction times to the 

fixation point, that animal has wider confidence intervals and the timescales of memory 

for reaction times could not be accurately measured. Still, the same pattern of memory 

effects was clear in lateral habenula activity and target-anticipatory eye movement 

behavior. 
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Table S1 (ref Fig 7). Fitted memory decay rates for each population and task event 

Dataset Fitted D 80% CI 

Lateral habenula   

LHb fixation point 0.96 [0.88, 1.00] 

LHb rewarded target 0.24 [0.20, 0.29] 

LHb unrewarded target 0.35 [0.25, 0.47] 

LHb targets (combined) 0.26 [0.22, 0.32] 

LHb inter-trial interval 0.81 [0.71, 0.94] 

LHb pre-target period 0.61 [0.57, 0.77] 

LHb unrewarded outcome 0.52 [0.33, 1.00] 

Dopamine   

DA fixation point 0.99 [0.84, 1.00] 

DA rewarded target 0.45 [0.32, 0.58] 

DA unrewarded target 0.59 [0.40, 1.00] 

DA targets (combined) 0.50 [0.38, 0.64] 

DA inter-trial interval 1.00 [0.68, 1.00] 

DA pre-target period 0.16 [0.00, 1.00] 

Behavior   

Correct fixation rate 0.06 [0.00, 0.85] 

Anticipatory fixation 0.64 [0.54, 0.76] 

Anticipatory reward bias 0.59 [0.53, 0.64] 

RT to fixation point 0.93 [0.86, 1.00] 

RT to targets 0.64 [0.51, 0.79] 

Optimal   

Optimal linear predictor 0.18 N/A 

 

“LHb” means lateral habenula neurons, “DA” means dopamine neurons, “RT” means 

saccadic reaction time. A few decay rates had wide confidence intervals: the lateral 

habenula response to unrewarded outcomes, the dopamine response to the unrewarded 

target and tonic activity during the pre-target period, and the behavioral correct fixation 

rate. The other decay rates could be measured with fair accuracy.
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