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SUMMARY

The desire to know what the future holds is a powerful
motivator in everyday life, but it is unknown how this
desire is created by neurons in the brain. Here we
show that when macaque monkeys are offered a
water reward of variable magnitude, they seek ad-
vance information about its size. Furthermore, the
same midbrain dopamine neurons that signal the ex-
pected amount of water also signal the expectation
of information, in a manner that is correlated with
the strength of the animal’s preference. Our data
show that single dopamine neurons process both
primitive and cognitive rewards, and suggest that
current theories of reward-seeking must be revised
to include information-seeking.

INTRODUCTION

Dopamine-releasing neurons located in the substantia nigra pars

compacta and ventral tegmental area are thought to play

a crucial role in reward learning (Wise, 2004). Their activity bears

a remarkable resemblance to ‘‘prediction errors’’ signaling

changes in a situation’s expected value (Schultz et al., 1997;

Montague et al., 2004). When a reward or reward-predictive

cue is more valuable than expected, dopamine neurons fire

a burst of spikes; if it has the same value as expected, they

have little or no response; and if it is less valuable than expected,

they are briefly inhibited. Based on these findings, many theories

invoke dopamine neuron activity to explain human learning and

decision-making (Holroyd and Coles, 2002; Montague et al.,

2004) and symptoms of neurological disorders (Redish, 2004;

Frank et al., 2004), inspired by the idea that these neurons could

encode the full range of rewarding experiences, from the primi-

tive to the sublime. However, their activity has almost exclusively

been studied for basic forms of reward such as food and water. It

is unknown whether the same neurons that process these basic,

primitive rewards are involved in processing more abstract,

cognitive rewards (Schultz, 2000).

We therefore chose to study a form of cognitive reward that is

shared between humans and animals. When people anticipate

the possibility of a large future gain—such as an exciting new

job, a generous raise, or having their research published in

a prestigious scientific journal—they do not like to be held in
suspense about their future fate. They want to find out now. In

other words, even when people cannot take any action to influ-

ence the final outcome, they often prefer to receive advance

information about upcoming rewards. Here we define ‘‘advance

information about upcoming rewards’’ as a cue that is available

before reward delivery and is statistically dependent on the

reward outcome. We do not mean information in the quantitative

sense of mathematical information theory (Supplemental Note A

available online). Related concepts have been arrived at inde-

pendently in several fields of study. Economists have studied

‘‘temporal resolution of uncertainty’’ (Kreps and Porteus, 1978),

and have shown that humans often prefer their uncertainty to

be resolved earlier rather than later (Chew and Ho, 1994; Ahl-

brecht and Weber, 1996; Eliaz and Schotter, 2007; Luhmann

et al., 2008). Experimental psychologists have studied ‘‘ob-

serving behavior’’ (Wyckoff, 1952), and have shown that a class

of observing behavior that produces reward-predictive cues can

be a powerful motivator for rats, pigeons, and humans (Wyckoff,

1952; Prokasy, 1956; Daly, 1992; Lieberman et al., 1997). To

date, however, there has not been a rigorous test of this prefer-

ence in nonhuman primates, the animals in which the reward-

predicting activity of dopamine neurons has been best

described (Schultz, 2000; Schultz et al., 1997; Montague et al.,

2004) (Supplemental Note B).

To this end, we developed a simple decision task allowing rhe-

sus macaque monkeys to choose whether to receive advance

information about the size of an upcoming water reward. We

found that monkeys expressed a strong behavioral preference,

preferring information to its absence and preferring to receive

the information as soon as possible. Furthermore, midbrain

dopamine neurons that signaled the monkey’s expectation of

water rewards also signaled the expectation of advance informa-

tion, in a manner that was correlated with the animal’s prefer-

ence. These results show that the dopaminergic reward system

processes both primitive and cognitive rewards, and suggest

that current theories of reward-seeking must be revised to

include information-seeking.

RESULTS

Behavioral Preference for Advance Information
We trained two monkeys to perform a simple decision task (‘‘infor-

mation choice task,’’ Figure 1A). On each trial two colored targets

appeared on the left and right sides of a screen, and the monkey

had to choose between them by making a saccadic eye
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movement. Then, after a delay of a few seconds, the monkey

received either a big or a small water reward. The monkey’s choice

had no effect on the reward size—both reward sizes were always

equally probable. However, choosing one of the colored targets

produced an informative cue—a cue whose shape indicated the

size of the upcoming reward. Choosing the other color produced

a random cue—a cue whose shape was randomizedand therefore

had no meaning. The positions of the targets were randomized on

each trial. To familiarize monkeys with the two options, we inter-

leaved choice trials with forced-information trials and forced-

random trials, in which only one of the targets was available.

After only a few days of training, both monkeys expressed

a strong preference to view informative cues (Figure 1B). Monkey

Z chose information about 80% of the time, and monkey V’s

choice rate was even higher, close to 100%. Their preference

for advance information cannot be explained by a difference in

the amount of water reward, because information did not allow

monkeys to obtain extra water from the reward-delivery appa-

ratus (Figure S1), and had little effect on whether they completed

a trial successfully (<2% error rate for each target, Figure S2).

An important concern is that advance information might

have allowed monkeys to extract a greater amount of subjective

value from the water reward by physically preparing for its

delivery—for instance, by tensing their cheek muscles to swish

water around in their mouths in a more pleasurable fashion (Per-

kins, 1955). We therefore introduced a second task that equal-

ized the opportunity for simple physical preparation (Mitchell

et al., 1965) (‘‘information delay task,’’ Figure 2A). Monkeys again

chose between informative and random cues, but afterward

a second cue appeared that was always informative on every

trial. Thus, information was always available well in advance of

reward delivery; the choice was between receiving the informa-

tion immediately, or after a delay.

Soon after being exposed to the new task, both monkeys ex-

pressed a clear preference for immediate information, compa-

rable to their preference in original task (Figure 2B). We then

reversed the relationship between cue colors and information

content, and monkeys switched their choices to the newly infor-

mative color (Figure 2B, Figure S3). We conclude that monkeys

treated information about rewards as if it was a reward in itself,

preferring information to its absence and preferring to receive it

as soon as possible.

Dopamine Neurons Signal Advance Information
To understand the neural basis of the rewarding value of informa-

tion, we recorded the activity of 47 presumed midbrain dopa-

mine neurons while monkeys performed the information choice

task shown in Figure 1. As in previous studies, we focused on

neurons that were presumed to be dopaminergic based on

A

B

Figure 1. Behavioral Preference for Advance Information

(A) Information choice task. Fractions represent probabilities of different trial

types.

(B) Percent choice of information for each monkey. Each dot represents

a single day of training. The mean number of choice trials per session was

152 for monkey V (range: 71–203) and 161 for monkey Z (range: 39–285).

The gray region is the Clopper-Pearson 95% confidence interval for each day.
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Figure 2. Behavioral Preference for Immediate Delivery of Infor-
mation

(A) Information delay task. The fixation point and target configurations (not

shown here) were the same as in the information choice task shown in

Figure 1A.

(B) Percent choice of immediate information. Conventions as in Figure 1B. The

vertical line labeled ‘‘reversal’’ marks the time when the informative and

random cue colors were switched. The mean number of choice trials per

session was 151 for monkey V (range: 50–222) and 111 for monkey Z (range:

35–176). The behavioral preference started below 50% because the cue colors

were reused from a pilot experiment; the informative color had been previously

trained as random, and vice versa (Figure S3).
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Figure 3. Dopamine Neurons Signal Information

(Top) Firing rate of an example neuron. Trials are sorted sepa-

rately for each task event, as follows. Target: forced-informa-

tion (red), choice-information (pink), forced-random (blue).

Cue: informative cues (red) indicating that the reward is big

(solid) or small (dashed); random cues (blue) with the same

shape as informative cues for big (solid, cross shape) or small

(dashed, wave shape) rewards. Reward: informative (red) trials,

the same trials as for the cue response; random (blue) trials,

where the reward was big (solid) or small (dashed). The firing

rate was smoothed with a Gaussian kernel, s = 20 ms. (Bottom)

Rasters for individual trials. Each row is a trial, and each dot is

a spike. Colors are the same as in the firing rate display, except

that dark colors correspond to dashed lines.
standard electrophysiological criteria and that signaled the value

of water rewards (henceforth referred to as dopamine neurons)

(Experimental Procedures). Figure 3 shows an example neuron

that carried a strong water reward signal. On trials when the

monkey viewed informative cues, the neuron was phasically

excited by the cue indicating a large reward, and inhibited

by the cue indicating a small reward. In contrast, on trials when

the monkey was forced to view uninformative random cues,

the neuron had little response to the cues but was strongly

responsive to the later reward outcome, excited when the

reward was large and inhibited when it was small. Thus, consis-

tent with previous studies, this neuron signaled changes in the

monkey’s expectation of water rewards.

The same neuron also responded to the targets indicating the

availability of information. On forced trials when only one target

was available, the neuron was excited by the informative-cue

target and inhibited by the random-cue target. On choice trials

when both targets were available, the monkey always chose to

receive information, and the neuron responded much as it did

when the informative-cue target was presented alone. Thus,

this dopamine neuron signaled changes in both the expectation

of water and the expectation of information.

This pattern of responses was quite common in dopamine

neurons. We measured each neuron’s discrimination between

targets, cues, and rewards using the area under the receiver

operating characteristic (ROC) (Figures 4B–4D, Experimental

Procedures). This measure ranges from 0.5 at chance levels to

0.0 or 1.0 for perfect discrimination. As in the example, neurons

discriminated strongly between informative reward-predicting

cues and between randomly sized rewards, but only weakly

between uninformative random cues and between fully predict-

able rewards (Figures 4C and 4D). The same neurons also

discriminated between the targets, with clear preferential activa-

tion by the target that predicted advance information (Figure 4B).

The discrimination was highly similar when measured using

either forced-information or choice-information trials in indepen-

dent data sets (rho = 0.68, p < 10�4; Experimental Procedures),

indicating that the neural preference for information was repro-

ducible and consistent across different stimulus configurations.

The same pattern occurred in both monkeys (Figure S4) and

could be seen in the population average firing rate (Figure 4A).
There was also a tendency for neurons to have a weak initial

excitation for each task event (Figures 4A and S4). This nonspe-

cific response is probably due to the animal’s initial uncertainty

about the stimulus identity (Kakade and Dayan, 2002; Day et al.,

2007) or stimulus timing (Fiorillo et al., 2008; Kobayashi and

Schultz, 2008). We did not observe a predominant tendency for

neurons to have anticipatory tonic increases in activity before

the delivery of probabilistic rewards, a phenomenon that has

been reported in one study (Fiorillo et al., 2003) but not others (Sa-

toh et al., 2003;Morris etal., 2006;Bayerand Glimcher,2005;Mat-

sumoto and Hikosaka, 2007; Joshua et al., 2008). This may be due

to differences in task design such as the size of the reward or the

manner in which the reward was signaled (Fiorillo et al., 2003).

An important question is whether dopamine neurons signal the

presence of information per se, or whether they truly signal how

much it is preferred. In the latter case, there should be a correla-

tion between the neural preference for information, expressed as

the neural discrimination between the informative-cue target and

the random-cue target, and the behavioral preference for infor-

mation, expressed as a choice percentage. Such correlations

were indeed present, both between-monkeys and within-

monkey. Between-monkeys, monkey V expressed a stronger

behavioral preference for information than monkey Z (Figure 1B),

and also expressed a stronger neural preference (p = 0.02, Fig-

ure 5A). Within-monkey, during the sessions in which monkey

Z’s behavioral preference was strongest, the neural preference

was enhanced (rho = 0.44, p = 0.02, Figure 5D). On the other

hand, behavioral preferences for information were not signifi-

cantly correlated with neural discrimination between water-

related cues or water rewards (all p > 0.25, Figures 5B, 5C, 5E,

and 5F). Thus, consistent with evidence that dopamine neurons

signal the subjective value of liquid rewards (Morris et al., 2006;

Roesch et al., 2007; Kobayashi and Schultz, 2008), they may also

signal the subjective value of information.

DISCUSSION

Here we have shown that macaque monkeys prefer to receive

advance information about future rewards, and that their behav-

ioral preference is paralleled by the neural preference of midbrain

dopamine neurons. Thus, the same dopamine neurons that
Neuron 63, 119–126, July 16, 2009 ª2009 Elsevier Inc. 121
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signal primitive rewards like food and water also signal the cogni-

tive reward of advance information.

Monkeys expressed a strong preference for advance informa-

tion even though it had no effect on the final reward outcome.

This is consistent with the intuitive belief that, all things being equal,

it is better to seek knowledge than to seek ignorance. It also

provides an explanation for the puzzling fact that the brain devotes

a great deal of neural effort to processing reward information even

when this is not required to perform the task at hand. For example,

many studies use passive classical conditioning tasks in which

informative cues are followed by rewards with no requirement for

the subject to take any action. In these tasks the brain could simply

ignore the cues and wait passively for rewards to arrive. Yet even

after extensive training, many neurons continue to use the cue

information to predict the size, probability, and timing of reward

delivery (e.g., Tobleretal., 2003; Joshuaetal., 2008). Inother tasks,

neurons persist in predicting rewards even when the act of predic-

tion is harmful, causing maladaptive behavior that interferes with

reward consumption (e.g., refusing to perform trials with low pre-

dicted value; Shidara and Richmond, 2002; Lauwereyns et al.,

2002). These observations suggest that the act of prediction has

a special status, an intrinsic motivational or rewarding value of its

own. Our data provide strong evidence for this hypothesis. When

given an explicit choice, monkeys actively sought out the advance

information that was necessary to make accurate reward predic-

tions at the earliest possible opportunity.

A limitation of our study is that it does not determine the precise

psychological mechanism by which value is assigned to informa-

A
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Figure 4. Analysis of the Dopamine Neuron Population

(A) Population average firing rate. Conventions as in Figure 3.

Gray bars indicate the time windows used for the ROC anal-

ysis. Colored bars indicate time points with a significant differ-

ence between selected pairs of task conditions (p < 0.01, Wil-

coxon signed rank test), as follows. Target: force-info versus

force-rand (red), choice-info versus force-rand (pink); Cue:

info-big versus info-small (red), rand-cross versus rand-wave

(blue); Reward: info-big versus info-small (red), rand-big versus

rand-small (blue).

(B–D) Neural discrimination between task conditions in

response to the targets (B), cues (C), and rewards (D). Each

dot’s (x, y) coordinates represent a single neuron’s ROC area

for discriminating between the pairs of task conditions listed

on the x and y axes. A discrimination of 1 indicates perfect pref-

erence for the condition listed next to ‘‘1’’ (e.g., ‘‘Choice info’’);

discrimination of 0 indicates perfect preference for the condi-

tion listed next to ‘‘0’’ (e.g., ‘‘Force rand’’). Note that in (B) the

x and y coordinates were both calculated using the same set

of forced-random trials. Colored dots indicate neurons with

significant discrimination between the conditions listed on

the y axis (red), x axis (blue), or both axes (magenta) (p <

0.05, Wilcoxon rank-sum test).

tion. There are several possibilities. Theories from

experimental psychology suggest that in our task

the value of viewing informative cues would simply

be the sum of the conditioned reinforcement gener-

ated by the individual big-reward and small-reward

cues. In this view, the preference for information

implies that the conditioned reinforcement is

weighted nonlinearly, so that the benefit of strong reinforcement

from the big-reward cue outweighs the drawback of weak rein-

forcement from the small-reward cue (Wyckoff, 1959; Fantino,

1977; Dinsmoor, 1983), akin to the nonlinear weighting of rewards

that produces risk seeking (von Neumann and Morgenstern,

1944). On the other hand, theories in economics suggest that pref-

erence is not due to independent contributions of individual cues

but instead comes from considering the full probability distribution

of future events. In this view, information-seeking is due to an

explicit preference for early resolution of uncertainty (Kreps and

Porteus, 1978) or an implicit preference induced by psychological

factors such as anticipatory emotions (Caplin and Leahy, 2001). In

addition, just as the value assigned to conventional forms of

reward (e.g., food) depends on the internal state of the subject

(e.g., hunger), the value assigned to information is likely to depend

on psychological factors such as personality (Miller, 1987),

emotions like hope and anxiety (Chew and Ho, 1994; Wu, 1999),

and attitudes toward uncertainty (Lovallo and Kahneman, 2000;

Platt and Huettel, 2008).

Implications of Information-Seeking for Attitudes
toward Uncertainty
In the framework of decision-making under uncertainty, advance

information reduces the amount of reward uncertainty by narrow-

ing down the set of potential reward outcomes. Our data there-

fore suggest that in our task, rhesus macaque monkeys preferred

to reduce their reward uncertainty at the earliest possible

moment, as though the experience of uncertainty was aversive.
122 Neuron 63, 119–126, July 16, 2009 ª2009 Elsevier Inc.
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Interestingly, several previous studies using similar saccadic

decision tasks came to a seemingly opposite conclusion:

macaque monkeys appeared to prefer uncertainty, choosing

an uncertain, variable-size reward instead of a certain, fixed-

size reward (McCoy and Platt, 2005; Platt and Huettel, 2008).

How can these results be reconciled? One possibility is that

they can be explained by a common principle; for instance,

perhaps monkeys treat the offer of a variable-size reward as

a source of uncertainty to be confronted and resolved. An impor-

tant point, however, is that a preference for reward variance can

be caused by factors unrelated to uncertainty—most notably, it

can be caused by an explicit preference over the probability

distribution of reward outcomes, for instance due to dispropor-

tionate salience of large rewards (Hayden and Platt, 2007) or

a nonlinear utility function (Platt and Huettel, 2008). In contrast,

the choice of information has no influence on the reward

outcome; it only affects the amount of time spent in a state of

uncertainty before the reward outcome is revealed. In this sense

the preference for advance information is a relatively pure

measurement of attitudes toward uncertainty.

Information Signals in the Dopaminergic Reward
System
Dopamine neuron activity is thought to teach the brain to seek

basic goals like food and water, reinforcing and punishing

actions by adjusting synaptic connections between neurons in

cortical and subcortical brain structures (Wise, 2004; Montague

et al., 2004). Our data suggest that the same neural system also

teaches the brain to seek advance information, selectively rein-

forcing actions that lead to knowledge about rewards in the

future. Thus, the behavioral preference for information could be

created by the dopaminergic reward system. At the neural level,

neurons that gain sensitivity to rewards through a dopamine-

mediated reinforcement process would come to represent

both rewards and advance information about those rewards in

a ‘‘common currency,’’ particularly neurons involved in reward

timing, conditioned reinforcement, and decision-making under

risk (Kim et al., 2008; Seo and Lee, 2009; Platt and Huettel,

2008). In turn, these signals could ultimately feed back to dopa-

mine neurons to influence their value signals.

An important goal for future research will therefore be to

discover how dopamine neurons measure information and

assign its rewarding value. One possibility is that dopamine

neurons receive information-related input from specialized brain

areas, distinct from those that compute the value of traditional

rewards like food and water. Indeed, signals encoding the

amount and timing of reward information, and dissociated from

preference coding of traditional rewards, have been found in

several cortical areas (Nakamura, 2006; Behrens et al., 2007;

Luhmann et al., 2008). How these information signals could be

translated into a behavioral preference, and whether they are

communicated to dopamine neurons, is unknown.

Another possibility is that dopamine neurons receive informa-

tion signals from the same brain areas that contribute to their

food- and water-related signals, such as the lateral habenula

(Matsumoto and Hikosaka, 2007). In this case, dopamine

neurons would receive a highly processed input, with different

forms of rewards already converted into a common currency

by upstream brain areas. We are currently testing this possibility

in further experiments.

Why Do Dopamine Neurons Treat Information
as a Reward?
The preference for advance information, despite its intuitive

appeal, is not predicted by current computational models of

dopamine neuron function (Schultz et al., 1997; Montague

A B C
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Figure 5. Correlation between Neural Discrimi-

nation and Behavioral Preference

(A) Histogram of single-neuron target response

discrimination between all informative trials (choice

and forced trials combined) versus forced-random

trials, separately for monkey V (left) and monkey Z

(right). Arrows, numbers, and horizontal lines indicate

the mean discrimination, and the width of the arrows

represents the 95% bootstrap confidence interval.

Red indicates statistical significance of the difference

between the monkeys.

(B and C) Same as (A), for discrimination between in-

formative big-reward and small-reward cues (B) or

between random big and small rewards (C).

(D) Plot of behavioral choice percentage against

single-neuron discrimination between all informative

trials versus forced-random trials in response to the

target. The line was fitted by least-squares regression.

Text shows Spearman’s rank correlation (rho), and red

indicates statistical significance. The data are from

monkey Z only, because monkey V almost exclusively

chose the informative target and therefore had no

behavioral variability.

(E and F) Same as (D), but for discrimination between

informative big-reward and small-reward cues (E) or

between random big and small rewards (F).
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et al., 2004), which are widely viewed as highly efficient algo-

rithms for reinforcement learning. This raises an important ques-

tion: could the information-predictive activity of dopamine

neurons be a harmful ‘‘bug’’ that impairs the efficiency of reward

learning? Or is it a useful ‘‘feature’’ that improves over existing

computational models? Here we present our hypothesis that

the positive value of advance information is a feature with

a fundamental role in reinforcement learning.

Specifically, modern theories of reinforcement learning rec-

ognize that animals learn from two types of reinforcement:

‘‘primary’’ reinforcement generated by rewards themselves,

and ‘‘secondary’’ reinforcement generated predictively, by ob-

serving sensory cues in advance of reward delivery. Predictive

reinforcement greatly enhances the speed and reliability of

learning, as demonstrated most strikingly by temporal-difference

learning algorithms (Sutton and Barto, 1998), which have

produced influential accounts of animal behavior (Sutton and

Barto, 1981) and dopamine neuron activity (Schultz et al., 1997;

Montague et al., 2004). This implies that animals should treat

predictive reinforcement as an object of desire, making an active

effort to seek out environments where reward-predictive sensory

cues are plentiful. If an animal was trapped in an impoverished

environment where reward-predictive cues were unavailable,

the consequences would be devastating: the animal’s sophisti-

cated predictive reinforcement learning algorithms would be

reduced to impotence. This can be seen clearly in our dopamine

neuron data (Figure 4A). When an action produces informative

cues, dopamine neuronssignal its value immediately, a predictive

reinforcement signal; but when an action produces uninformative

cues, dopamine neurons must wait to signal its value until the

reward outcome arrives, acting as little more than a primitive

reward detector. Thus, predictive reinforcement depends entirely

on obtaining advance information about upcoming rewards.

In light of these considerations, we propose that any learning

system driven by the ‘‘engine’’ of predictive reinforcement

must actively seek out its ‘‘fuel’’ of advance information. In this

view, current models of neural reinforcement learning present

a curious paradox: their learning algorithms are vitally dependent

on advance information, but they treat information as valueless

and make no effort to obtain it. These models do include

a form of knowledge-seeking by exploring unfamiliar actions,

but they make no effort to obtain informative cues that would

maximize learning from these new experiences. In fact, models

using the popular TD(l) algorithm (Sutton and Barto, 1998) are

actually averse to advance information (Figure S5). Our data

show that a new class of models is necessary that assign infor-

mation a positive value—perhaps representing the future reward

the animal expects to receive, as a result of obtaining better fuel

for its learning algorithm. This would be akin to the concept of

intrinsically motivated reinforcement learning (Barto et al.,

2004), in that dopamine neurons would assign an intrinsic value

to information because it could help the animal learn to better

predict and control its environment (Barto et al., 2004; Redgrave

and Gurney, 2006). Also, although dopamine neurons have been

best studied in the realm of rewards, they can also respond to

salient nonrewarding stimuli (Horvitz, 2000; Redgrave and

Gurney, 2006; Joshua et al., 2008; Matsumoto and Hikosaka,

2009). This suggests that dopamine neurons might be able to
124 Neuron 63, 119–126, July 16, 2009 ª2009 Elsevier Inc.
signal the value of information about neutral and punishing

events (Herry et al., 2007; Badia et al., 1979; Fanselow, 1979;

Tsuda et al., 1989), as part of a more general role in motivating

animals to learn about the world around them.

EXPERIMENTAL PROCEDURES

Subjects

Subjects were two male rhesus macaque monkeys (Macaca mulatta), monkey

V (9.3 kg) and monkey Z (8.7 kg). All procedures for animal care and experimen-

tation were approved by the Institute Animal Care and Use Committee and

complied with the Public Health Service Policy on the humane care and use

of laboratory animals. A plastic head holder, scleral search coils, and plastic

recording chambers were implanted under general anesthesia and sterile

surgical conditions.

Behavioral Tasks

Behavioral tasks were under the control of the REX program (Hays et al., 1982)

adapted for the QNX operating system. Monkeys sat in a primate chair, facing

a frontoparallel screen 31 cm from the monkey’s eyes in a sound-attenuated

and electrically shielded room. Eye movements were monitored using a scleral

search coil system with 1 ms resolution. Stimuli generated by an active matrix

liquid crystal display projector (PJ550, ViewSonic) were rear-projected on the

screen.

In the information choice task (Figure 1), each trial began with the appear-

ance of a central spot of light (1� diameter), which the monkey was required

to fixate. After 800 ms, the spot disappeared and two colored targets ap-

peared on the left and right sides of the screen (2.5� diameter, 10�–15� eccen-

tricity). (On forced-information and forced-random trials, only a single target

appeared). The monkey had 710 ms to saccade to and fixate the chosen

target, after which the nonchosen target immediately disappeared. At the

end of the 710 ms response window, a cue (14� diameter) was presented of

the chosen color. For the informative color, the cue was a cross on large-

reward trials or a wave pattern on small-reward trials. For the random color,

the cue’s shape was chosen pseudorandomly on each trial (see below). The

colors were green and orange, chosen to have similar luminance, and counter-

balanced across monkeys. Monkeys were not required to fixate the cue. After

2250 ms of display time, the cue disappeared and simultaneously a 200 ms

tone sounded and reward delivery began. The intertrial interval was 3850–

4850 ms beginning from the disappearance of the cue. Water rewards were

delivered using a gravity-based system (Crist Instruments). Reward delivery

lasted 50 ms on small-reward trials (0.04 ml) and 700 ms (0.88 ml, monkey

V) or 825 ms (1.05 ml, monkey Z) on large-reward trials. To minimize the effects

of physical preparation, licking the water spout was not required to obtain

rewards; water was delivered directly into the mouth.

The task proceeded in blocks of 24 trials, each block containing a random-

ized sequence of all 3x2x2x2 combinations of choice type (forced-information,

forced-random, or choice), reward size (large or small), random cue shape

(cross or waves), and informative target location (left or right). Thus, the

‘‘random’’ cues were actually quasirandom and could theoretically yield a small

amount of information about reward size, but extracting that information would

require a very difficult feat of working memory.

If monkeys made an error (broke fixation on the central spot, failed to choose

a target, or broke fixation on the chosen target before the cue appeared), then

the trial terminated, an error tone sounded, an additional 3 s were added to the

intertrial interval, and the trial was repeated (‘‘correction trial’’). If the error

occurred after the choice, only the chosen target was available on the correc-

tion trial.

The information delay task (Figure 2) was identical to the information choice

task except the cue colors and shapes were different, and a third set of always-

informative gray cues lasting for 1500 ms were appended to the cue period.

(There were also minor differences in the task parameters for monkey Z: the

duration of the first cue was 2000 ms, and the big reward volume was

�1.29 ml). The 1500 ms duration of the always-informative cue was chosen

to allow near-optimal physical preparation for rewards. With a shorter cue

duration (e.g., <750 ms), there might not be enough time to discriminate the
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cue and make a physical response (e.g., compare to the latency of anticipatory

licking in Tobler et al., 2003). With a longer cue duration (e.g., >2 s), physical

preparation for reward delivery begins to be impaired by timing errors (e.g.,

compare to the time course of anticipatory licking in Fiorillo et al., 2008;

Kobayashi and Schultz, 2008). To perform a reversal (vertical lines in Fig-

ure 2B), the colors of the informative and random cues were switched.

Neural Recording

Midbrain dopamine neurons were recorded using techniques described previ-

ously (Matsumoto and Hikosaka, 2007). A recording chamber was placed over

fronto-parietal cortex, tilted laterally by 35�, and aimed at the substantia nigra.

The recording sites were determined using a grid system, which allowed

recordings at 1 mm spacing. Single-neuron recording was performed using

tungsten electrodes (Frederick Haer) that were inserted through a stainless

steel guide tube and advanced by an oil-driven micro-manipulator (MO-97A,

Narishige). Single neurons were isolated on-line using custom voltage-time

window discrimination software (the MEX program (Hays et al., 1982) adapted

for the QNX operating system).

Neurons were recorded in and around the substantia nigra pars compacta

and ventral tegmental area. We targeted this region based on anatomical at-

lases and magnetic resonance imaging (4.7T, Bruker). During recording

sessions, we identified this region based on recording depth and using land-

marks including the somatosensory and motor thalamus, subthalamic

nucleus, substantia nigra pars reticulata, red nucleus, and oculomotor nerve.

Presumed dopamine neurons were identified by their irregular tonic firing at

0.5–10 Hz and broad spike waveforms. We focused our recordings on

presumed dopamine neurons that responded to the task and appeared to

carry positive reward signals. Occasional dopamine-like neurons that upon

examination showed no differential response to the cues and no differential

response to the reward outcomes were not recorded further. We then analyzed

all neurons that were recorded for at least 60 trials and that had positive reward

discrimination for both informative cues and random outcomes, positive

reward discrimination for cues and no discrimination for outcomes, or positive

reward discrimination for outcomes and no discrimination for cues (p < 0.05,

Wilcoxon rank-sum test). We were able to examine the response properties

of 108 neurons, 84 of which met our criteria for presumed dopaminergic firing

rate, pattern, and spike waveform, and 47 of which also met our criteria for trial

count and significant reward signals. This yielded 20 neurons from monkey V

(right hemisphere) and 27 neurons from monkey Z (left hemisphere) for our

analysis.

Data Analysis

All statistical tests were two-tailed. The neural analysis excluded error trials

and correction trials. We analyzed neural activity in time windows 150–

500 ms after target onset (targets), 150–300 ms after cue onset (cues), and

200–450 ms after cue offset (rewards). These were chosen to include the major

components of the average neural response. The neural discrimination

between a pair of task conditions was defined as the area under the ROC,

which can be interpreted as the probability that a randomly chosen single-trial

firing rate from the first condition was greater than a randomly chosen single-

trial firing rate from the second condition (Green and Swets, 1966). We

observed the same results using other measures of neural discrimination

such as the signal-to-baseline ratio and signal-to-noise ratio. Confidence inter-

vals and significance of the population averages of single-neuron ROC areas

(Figures 5A–5C) were computed using a bootstrap test with 200,000 resam-

ples (Efron and Tibshirani, 1993). Consistent with previous studies of reward

coding (Schultz and Romo, 1990; Kawagoe et al., 2004; Roesch et al., 2007;

Matsumoto and Hikosaka, 2007), we observed similar neural coding of behav-

ioral preferences for both of the target locations on the screen (average ROC

area, forced-information versus forced-random: ipsilateral = 0.60, p < 10�4,

contralateral = 0.62, p < 10�4; choice-information versus forced-random: ipsi-

lateral 0.58, p < 10�4, contralateral 0.62, p < 10�4), so for all analyses the data

were combined. We could not analyze activity on choice-random trials due to

their rarity (<3 trials for most neurons). All correlations were computed using

Spearman’s rho (rank correlation). To compare neural discrimination

measured using either forced-information or choice-information trials in inde-

pendent data sets, we calculated the correlation between two values, the
discrimination between forced-information trials versus even-numbered

forced-random trials, and the discrimination between choice-information trials

versus odd-numbered forced-random trials (rho = 0.68, p < 10�4). Significance

of correlations, and of the difference in mean ROC area between the two

monkeys (Figure 5), was computed using permutation tests (200,000 permuta-

tions) (Efron and Tibshirani, 1993).

SUPPLEMENTAL DATA

Supplemental data for this article include two Supplemental Notes and five

figures with accompanying text, and can be found at http://www.cell.com/

neuron/supplemental/S0896-6273(09)00462-0.
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Supplemental Note A 

When we use the phrase “advance information about upcoming rewards”, we mean a 

cue that is presented before reward delivery and is statistically dependent on the reward 

outcome. We should emphasize that, although we use the world “information”, humans 

and animals are not likely to prefer information in the precise technical sense defined by 

mathematical information theory. (Fantino, 1977; Dinsmoor, 1983; Daly, 1992). This is 

because information theory is only concerned with the probabilistic relationship between 

events; it is indifferent to their meaning or motivational significance (Shannon, 1948). In 

contrast, an animal's preference for information about rewards is tightly linked to the 

animal's attitudes toward the rewards themselves. For instance, rats express an enhanced 

preference for information about food rewards under conditions that are likely to increase 

the food's attractiveness - e.g. when animals are hungry, when rewards are scarce, and 

when the offered reward is large (Wehling and Prokasy, 1962; McMichael et al., 1967; 

Mitchell et al., 1965). None of these manipulations increase the information theoretic 

quantity, the mutual information between cues and rewards (Cover and Thomas, 1991). 

Information theory is also indifferent to motivational aspects of the cue, such as whether 

the cue’s meaning is easy or difficult to decode. The precise relationship between cues, 

rewards, and information-seeking remains a topic for future investigation. 

When we refer to a basic or primitive reward, we mean a reward that satisfies 

vegetative or reproductive needs such as food, water, or sex (Schultz, 2000). When we 

refer to a cognitive reward, we mean objects, situations, or constructs that a human or 

animal prefers but are not basic rewards. These include novelty, acclaim, territory, and 

security (Schultz, 2000). In our experiments animals preferred the informative option 
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even though the two options had the same probability distribution over the size and 

delivery time of basic rewards (water). In economic terms, their preference cannot be 

accounted for by any utility function defined over basic rewards alone. This suggests that 

their preference can be interpreted as the result of a cognitive reward.  

 

Supplemental Note B 

To test whether animals prefer advance information about upcoming rewards, it is 

necessary to offer a choice between a pair of experimental conditions with differing 

information content but equated for all other factors. Unfortunately, previous studies in 

non-human primates did not fulfill this requirement. In brief, several studies of 

“observing behavior” required animals to work for rewards by making a costly physical 

response, such that observing a cue indicating when rewards were available allowed 

animals to save considerable physical effort (Kelleher, 1958; Steiner, 1967; Steiner, 

1970; Lieberman, 1972; Woods and Winger, 2002). Other studies used an unbalanced 

design in which animals pulled a lever to observe informative cues but were not offered a 

control lever to observe uninformative cues (Steiner, 1967; Schrier et al., 1980). 

Although these were valid studies of observing behavior they were not controlled studies 

of advance information about upcoming rewards. A more detailed description is below. 

Several studies (Kelleher, 1958; Steiner, 1967; Steiner, 1970; Lieberman, 1972; 

Woods and Winger, 2002) used versions of Wyckoff’s original “observing response” 

paradigm (Wyckoff, 1952). These studies used a free-operant procedure with two phases, 

a reward phase and an extinction phase, that alternated unpredictably without notice to 

the animal. In the reward phase, the animal could obtain rewards by performing a 
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physical response, typically a strenuous one such as pulling a lever on a variable-ratio 25 

schedule (i.e. each pull of the lever had only a 1 in 25 chance of delivering a reward). In 

the extinction phase, the physical responses were ignored and no rewards were delivered. 

In both phases, the animal could perform an “observing response” to view a visual cue 

that indicated the phase’s identity. For example, in one experiment the animal could press 

a button to view a colored light that was red during the reward phase and green during the 

extinction phase. The major finding of these studies was that animals performed more 

observing responses when the cue was informative about the task phase, compared to a 

separate set of behavioral sessions when the cue was chosen randomly. However, this 

result can be trivially explained by the fact that informative cues provided the animal 

with a greatly improved tradeoff between physical effort and rewards: by observing the 

task phase, the animal could concentrate lever-pulling effort on the reward phase, and 

avoid making wasteful lever-pulls during the extinction phase. This effect was clearly 

evident in all studies which reported the relevant behavioral data (i.e., response rates 

sorted by cue condition and task phase). 

Other studies (Steiner, 1967; Schrier et al., 1980) used a procedure with response-

independent rewards. Each trial began with the appearance of a neutral cue lasting for a 

fixed delay period, followed by the delivery of a reward (on half of trials) or no reward 

(on the other half). During the delay period the animal could perform an observing 

response to transform the neutral cue into an informative cue. For example, in one 

experiment the animal could press a lever to make a white light change its color to green, 

signaling a reward, or red, signaling no reward. The major finding of these studies was 

that animals made observing responses on a large fraction of trials. However, the 
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experimental design was unbalanced because it offered a lever to produce informative 

cues, but did not offer a control lever to produce uninformative cues. Thus it is not clear 

whether the observing response was preferred strictly because the cues it produced were 

informative, or whether it was a superstitious preference that would have occurred for 

any cue stimulus made available during the tens of seconds before reward delivery, 

regardless of its information content. Indeed, both studies (Steiner, 1967; Schrier et al., 

1980) acknowledged the danger of superstitious associations and attempted to suppress 

them using a punishment procedure, in which each observing response that occurred 

within a few seconds of the scheduled reward delivery time caused the reward to be 

postponed. However, there was no evidence that this procedure caused superstitious 

associations to be fully eliminated, leaving it unclear how much of the animals’ behavior 

was due to a true preference for information, and how much was due to residual 

superstition. These studies also had other potential confounds. In one study (Steiner, 

1967), the informative cues were re-used from a previous experiment with the same 

animals in which the cues had been associated with a large savings in physical effort 

(because retrieving the reward required a costly physical response, as discussed above). 

In the other study (Schrier et al., 1980), the extension of the observing lever served as the 

signal to the start of a new trial, thus transforming the observing lever itself into a 

reward-signaling cue, a type that is well-known to motivate approach behavior such as 

lever-pressing (e.g. (Day et al., 2007)). 

In summary, previous experiments suggested that non-human primates might prefer 

advance information about rewards, but alternate interpretations could not be ruled out. 

To perform a rigorous test, we (and others (Daly, 1992; Roper and Zentall, 1999)) 
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recommend using a symmetrical choice procedure in which the ‘informative’ and 

‘uninformative’ options are selected using the same physical response, and are matched 

for the timing and physical properties of both cue stimuli and rewards. More formally, the 

two options should have the same marginal distributions p(cue) and p(reward). The only 

difference should be in the joint distribution, p(cue, reward). In a purely ‘informative’ 

condition, the cue fully specifies the reward (p(reward | cue) = 0 or 1). In a purely 

‘uninformative’ condition, the cues and rewards are statistically independent (p(cue, 

reward) = p(cue) x p(reward)). 
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1. The effect of advance information on water delivery 

To test whether monkeys were able to exploit advance information about rewards to 

extract a greater amount of water from the reward-delivery apparatus, we performed the 

following procedure. We had each monkey perform the information choice task for six 

sessions, alternating between information-only days which consisted entirely of forced-

information trials, and random-only days which consisted entirely of forced-random 

trials. At the end of each session, we measured the amount of water that had been drained 

from the water reservoir. We then expressed this as a percentage of the theoretical 

amount of water that should have been drained on that day, if the monkey had no ability 

to manipulate the apparatus. (the theoretical amount was measured by delivering water 

directly into a flask). The results are plotted in Figure S1. The percentages were slightly 

above 100%, about 103%, indicating that more water was delivered than we had 

expected. However, the amount of water delivered was highly similar for both 

information-only and random-only sessions. The difference between the two types of 

sessions was not statistically significant, and had a narrow confidence interval (unpaired 

t-test, P = 0.28, 95% CI = -3.2% to +1.0%). Such a small difference in water delivery, 

within the range of a few percentage points, could not explain the strong behavioral 

preferences we observed. Also, note that if monkeys had been able to gain a meaningful 

amount of extra water on informative trials, then their preference would have been 

greatly decreased during the information delay task (Figure 2), when informative cues 

were available on every trial regardless of their choice. Instead, their preference was 

qualitatively similar to that seen in the original task. We therefore conclude that the 
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behavioral preference for information was not caused by a difference in the amount of 

water reward. 

 

 

 

Figure S1. Effect of advance information on water delivery.  

Each dot represents the amount of water delivered during a single session, expressed as a 

percentage of the theoretical water amount. Blue dots are random-only sessions, and red 

dots are information-only sessions. Circles are sessions from monkey V, squares are 

sessions from monkey Z. Bars are the average of the single sessions. Inset: average 

difference between information-only sessions and random-only sessions. The error bar is 

the 95% confidence interval (unpaired t-test). 
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2. The effect of advance information on the error rate 

 If the error rate was lower during informative trials than random trials, then 

monkeys might choose information simply in order to avoid errors, and thus to gain a 

larger amount of water reward. Here we investigate this possibility. In this analysis we 

ignore errors that occurred before the trial’s information condition could be known (i.e., 

errors caused by failure to initiate a trial or by breaking fixation on the fixation point). 

The remaining errors occurred in three ways: if the monkey failed to make a saccade, or 

made a saccade that did not land on a target, or correctly saccaded to a target but then 

broke fixation by looking away from it. Figure S2A shows the combined probability of 

making these errors for each trial type – forced-information trials, forced-random trials, 

and choice trials – both during early learning and expert performance. Both monkeys 

made fewer errors on forced-information trials than forced-random trials. However, the 

overall rate of errors was very low. Errors occurred on less than 2% of forced-random 

trials, both during early learning and expert performance. As discussed in the previous 

section, a 2% difference in the reward rate seems much too small to explain the observed 

behavioral preferences. 

In fact, the reverse direction of causality seems more likely, “prefer information → 

more errors on random trials”. Forced-random trials were the least desirable trial type, so 

it makes sense that monkeys would be less motivated to complete them, and therefore 

more prone to make errors. This is consistent with a large number of studies that have 

used error rates to measure a monkey’s motivation for completing a trial (e.g. (Shidara 

and Richmond, 2002; Lauwereyns et al., 2002; Roesch and Olson, 2004; Kobayashi et 

al., 2006)). Similarly, the relatively high rate of errors on choice trials was directly caused 
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by the monkeys’ desire to avoid the random target. Occasionally the monkeys made a 

saccade to the random target, but then appeared to realize that this was a mistake, and 

caused an error by belatedly trying to switch to the preferred, informative target (Figure 

S2B,C). On the other hand, the reverse type of error – making an initial saccade to the 

informative target, and then trying to switch to the random target – was extremely rare 

(Figure S2B). We conclude that the small difference in error rates was the result of, not 

the cause of, the preference for information. 
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Figure S2. Effect of advance information on the error rate.  

(A) Probability of making an error on forced-information, forced-random, and choice 

trials. Data is presented separately for each monkey, and separately for early learning (the 

first 8 sessions) and expert performance (the rest of the sessions). Numbers in parentheses 

are Clopper-Pearson 95% confidence intervals.  

(B) Probability of making an error by looking away from the target, after either the 

informative or random target was initially chosen. Columns as in (A).  

(C) Example trace of eye position during a ‘looking away’ error. Black dots indicate eye 

position during the first 400 ms after target onset, sampled at 1 ms resolution. The 

monkey initially selected the random target, but then attempted to switch to the 

informative target. Note that after the random target was chosen, the informative target 

disappeared; the saccade was directed at its remembered location.
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3. Behavioral and neural data from a modified version of the task 

Here we report data from a pilot experiment in which the cue’s information content 

was indicated by the saccade target’s location, rather than by its color (Figure S3A). This 

data shows that the behavioral and neural preferences for information could be replicated 

using a new set of target and cue stimuli. Also, it shows that the behavioral and neural 

preferences did not require the target and cue stimuli to be perceptually similar to each 

other (e.g. the target did not need to have the same color as its associated cues). 

In this directional version of the task, both monkeys showed a preference for 

information despite repeated reversals of the mappings from target location to cue color 

(every ~60 trials) and from cue color to information content (1-2 reversals per monkey) 

(Figure S3B). In neural recordings from monkey Z, 13 dopamine neurons showed 

population average activity with a significantly higher firing rate in response to 

informative-cue-predicting targets compared to random-cue-predicting targets (Figure 

S3C). 
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Figure S3. Directional version of the information task.  

(A) Task diagram. The task was almost identical to those described in the main text, 

except that the informative-cue-producing and random-cue-producing targets were not 

identified by their color, but instead by their location. Top-left inset: in one block of 60-

120 trials, the left target produced informative cues and the right target produced random 

ones; in the next block, this rule was reversed. There were other, minor differences from 

the tasks in the main text: the targets were visually smaller, and the stimulus and reward 

durations were sometimes varied from session to session.  

(B) percent choice of information on each day of training. Because monkeys were slow to 

switch their directional preference between blocks, the first 12 trials of each block were 

excluded from analysis. Vertical dashed lines indicate reversals, when the colors of the 

informative and random cues were switched.  

(C) population average activity of 13 dopamine neurons recorded from monkey Z. 

Conventions as in Figure 4A. During these recordings, the monkey chose information on 

75% of choice trials. 
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4. Analysis of neural data separately for each monkey 

 Figure S4 shows the same neural analysis as in the main text, but calculated 

separately for each monkey. The pattern of results is similar. As noted in the main text, 

monkey Z’s dopamine neurons showed a weaker preference for information, in parallel to 

the monkey’s weaker behavioral preference. The mean neural discrimination between 

forced-information and forced-random trials was 0.67 for monkey V (P < 10-4) and 0.57 

for monkey Z (P = 0.003). The mean neural discrimination between choice-information 

and forced-random trials was 0.63 for monkey V (P < 10-4) and 0.57 for monkey Z (P = 

0.002). 

 

Figure S4. Analysis of neural data separately for each monkey.  

(A-D) data from monkey V. Conventions as in Figures 4A and 3B-D in the main text.  

(E-H) data from monkey Z.  
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5. Aversion to information by reinforcement learning algorithms based on TD(λ) 

It may be surprising that models based on temporal-difference learning (TD 

learning), which is formally indifferent to information, could show any preference in our 

task. However, TD learning is only a method for reward prediction; it does not specify 

how to use that knowledge to take action. When TD learning is coupled to a mechanism 

for action-selection (as is necessary in models of animal behavior), new behavior can 

emerge. 

Important for our case is a phenomenon in which a model based on TD learning 

became averse to risk (Niv et al., 2002; March, 1996). That is, the model chose a certain 

reward (say, rcertain = 0.5) over a risky gamble (say, a coin flip between rsmall = 0 and rbig = 

1). The underlying cause was that the value of the certain reward, V(certain), could be 

estimated precisely, but the value of the gamble, V(gamble), could only be estimated 

noisily, fluctuating based on the past history of wins and losses. The fluctuations had an 

asymmetric effect on action-selection. At times when the gamble’s value was 

overestimated, the action-selection mechanism chose the gamble at a high rate. This 

additional experience meant that the estimated V(gamble) was quickly brought back to its 

true value. At times when the gamble’s value was underestimated, the action-selection 

mechanism chose the gamble at a low rate. This reduced experience meant that it took 

many trials before the low estimate of V(gamble) was corrected. As a result, the model 

tended to alternate between short bouts of choosing the gamble repeatedly, followed by 

long stretches of avoiding it entirely, thus producing a net effect of risk aversion. This 

mechanism implies that models based on TD learning become averse to actions that have 

noisy estimated values. 
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Here we show that the same mechanism occurs in a computer model of the 

information task. For a wide range of parameters, the estimate of V(info) is more noisy 

than V(rand), and this induces an aversion to information. In the following section we 

assume the reader is familiar with the basic formalism of reinforcement learning and TD 

algorithms (Sutton and Barto, 1998). In brief, we consider a setting in which an agent 

repeatedly interacts with an environment in order to gain rewards. At each time t the 

agent observes the state of the environment st, chooses an action at, receives a reward rt+1, 

and transitions to a new state st+1. For illustration we will use the SARSA(λ) algorithm in 

which the agent's goal is to learn a state-action value function Q(s,a), which indicates the 

expected sum of future time-discounted rewards the agent will gain when starting in state 

s and taking action a: 

Q(s,a) = E[ ∞
=∑ 0k rt+k+1γk | st = s, at = a],  

where 0 ≤ γ ≤ 1 is a temporal discounting parameter. The value function is learned 

by incrementally updating Q(s,a) after each new experience, using the update equation: 

Q(s,a) ← Q(s,a) + α(rt+1 + γQ(st+1,at+1) – Q(st,at))e(s,a), 

where 0 ≤ α ≤ 1 is the learning rate and e(s,a) is an eligibility trace. The eligibility 

trace e(s,a) is incremented by 1 each time the state-action pair (s,a) is visited, and then 

decays after each state transition by being multiplied by the factor γλ (where 0 ≤ λ ≤ 1). 

As the state-action values are learned the agent can use them to choose between actions. 

Here we consider the popular softmax action selection rule: in state s each available 

action a is chosen with probability proportional to exp(βQ(s,a)) (where 0 ≤ β ≤ ∞). 
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We expressed the information task as a simple Markov decision process (Figure 

S5A). On each trial, the model chose whether to receive informative or random cues; the 

cue was then revealed; and after a number of time steps T, the reward was delivered. Note 

that unlike our behavioral tasks, every trial was a choice trial (interleaving forced trials 

would reduce the effects seen here). In an example simulation using the SARSA(λ) 

algorithm, we can see that the estimate V(info) is indeed more noisy than V(rand) 

(Figure S5B). (for convenience, we refer to estimated state-action values as V(info) and 

V(rand), instead of using the full notation Q(start,info) and Q(start,rand)). Before 

presenting the simulation results in more detail, we first discuss the reason for this 

difference in estimation noise, and how we might expect it to depend on different model 

parameters. We consider each parameter in turn, starting with a model without eligibility 

traces (λ = 0). 

The main culprit is the learning rate α. As α increases, each prediction-error induces 

a larger update of the estimated values, thus making the estimates more noisy. However, 

it causes greater noise in V(info) than V(rand). For info outcomes, the prediction-error 

occurs immediately upon viewing the cue, after a single timestep, so the size of the 

update is large, δα. For rand outcomes, the prediction-error occurs at the end of the trial. 

It must propagate back to the choice gradually, step-by-step, over the course of the next T 

trials in which rand is chosen. Each time it propagates back by one step, it is multiplied 

by α, so the final size of the update to V(rand) is very small, δαT
 . This means that 

V(rand) will be a more stable estimate than V(info), especially for large T. (Of course, 

this difference disappears if α is very large, close to 1, when αT ≈ α. This can be seen as 

an uptick in the black lines in Figure S5C). 
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 So far, we have seen that the noise in V(info) is larger than the noise in V(rand). 

How strongly this translates into information aversion depends on how heavily the 

action-selection mechanism relies on these estimated values. In the popular method of 

softmax action selection, this reliance is controlled by the inverse temperature parameter, 

β. β can be interpreted as the strength of the animal’s preference for the big reward rbig 

over the small reward rsmall (labeled as choice percentages in Figure S5C). When β is 

small (e.g. 1), the model selects actions almost at random. When β is large (e.g. 10), the 

model selects actions greedily, always selecting the action whose estimated value is 

highest. This is when the aversion to information should be greatest. A similar aversion to 

information should occur for any other action-selection policy (e.g. ε-greedy), so long as 

it selects high-value actions more often than low-value actions. 

 The eligibility trace parameter λ has a more complicated effect, but for extreme 

settings of λ the behavior is clear. If λ is very large (close to 1), then V(info) and V(rand) 

are both updated directly from each trial’s reward outcome, so they have the same noise 

as each other and information is treated as neutral. If λ is very small (close to 0), then the 

effects described above still hold, and information is aversive. 

In summary, current models should be most averse to information in exactly the 

conditions which, for a real animal, would make information most desirable – when the 

animal is trying to learn rapidly (high α), when the delay between actions and rewards is 

very long (high T), and when the potential reward is very large (high β/rbig). 

The above intuitions were borne out by computer simulations (Figure S5C). We 

used a model with softmax action selection and SARSA(λ) learning (equivalent to Q-

learning for this simple problem). For simplicity, we ran the simulation in trial-based 
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mode (eligibility traces set to zero at the start of a new trial) with no temporal discounting 

(γ = 1). For each set of parameters, (α,β,λ,T), the percent choice of information was 

calculated from the choices made during 100 simulations of 50000 time steps each. To 

focus on steady-state behavior (i.e. behavior after the initial learning process), we 

initialized each simulation by setting the estimated value function equal to the true value 

function, then running the simulation for a ‘burnin’ of 30000 time steps in which the two 

options were sampled with equal probability (β = 0).  

As expected, for λ = 1 there was no preference for or against information (gray 

lines). For λ < 1, say 0.9, an aversion to information appeared. The aversion increased 

with α, β, and T. As λ was further reduced down to 0, the aversion to information 

remained but changed nonlinearly depending on both the precise setting of λ and on the 

other three parameters. 
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Figure S5. Aversion to information by a model using SARSA(λ) and softmax action 

selection.  

(A) Information choice task expressed as a Markov decision process. Circles are states, 

arrows are transitions between states. Numbered arrows indicate transition probabilities < 

1. Transitions from ‘start’ to ‘info’ or ‘rand’ occur as a result of the model’s choice. Later 

states do not offer a choice; only a single action is available, to continue with the trial. 

(B) Model’s estimated values for the actions of choosing ‘info’ and ‘rand’ during the last 

10,000 timesteps of an example simulation. Parameters were α = 0.3, β = 0, T = 10, λ = 

0.3.  

(C) Probability of choosing information for each set of tested parameters. Rows are 

different values of β, columns are T, line colors are λ, and the x-axis is α. Error bars are 

Clopper-Pearson 95% confidence intervals. All parameter sets show a modest aversion to 

information, except for those with very small or large values of α or with λ = 1. 
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