
Neuron

Article
Contributions of Orbitofrontal and Lateral
Prefrontal Cortices to Economic Choice
and the Good-to-Action Transformation
Xinying Cai1 and Camillo Padoa-Schioppa1,2,3,*
1Department of Anatomy and Neurobiology
2Department of Economics
3Department of Biomedical Engineering
Washington University in St. Louis, St. Louis, MO 63110, USA

*Correspondence: camillo@wustl.edu

http://dx.doi.org/10.1016/j.neuron.2014.01.008
SUMMARY

Previous work indicates that economic decisions
can be made independently of the visuomotor con-
tingencies of the choice task (space of goods). How-
ever, the neuronal mechanisms through which the
choice outcome (the chosen good) is transformed
into a suitable action plan remain poorly understood.
Here we show that neurons in lateral prefrontal cor-
tex reflect the early stages of this good-to-action
transformation. Monkeys chose between different
juices. The experimental design dissociated in space
and time the presentation of the offers and the
saccade targets associated with them. We recorded
from the orbital, ventrolateral, and dorsolateral pre-
frontal cortices (OFC, LPFCv, and LPFCd, respec-
tively). Prior to target presentation, neurons in both
LPFCv and LPFCd encoded the choice outcome
in goods space. After target presentation, they
gradually came to encode the location of the targets
and the upcoming action plan. Consistent with
the anatomical connectivity, all spatial and action-
related signals emerged in LPFCv before LPFCd.

INTRODUCTION

Recent years witnessed a renewed interest in the neural mecha-

nisms underlying economic choice. Earlier models asserted that

all economic decisions unfold as processes of action selection

(action-based hypothesis [Glimcher et al., 2005]). However, later

results showed that neurons in the orbitofrontal cortex (OFC)

encode the identity and subjective value of offered and chosen

goods (Padoa-Schioppa and Assad, 2006). In general, a good

is defined by a collection of determinants, of which some are

external (e.g., commodity, quantity) and others are internal

(e.g., motivation) to the subject (Padoa-Schioppa, 2011). Impor-

tantly, OFC neurons encode the value of goods independently of

the visuomotor contingencies of the choice task. Based on these

results and on evidence from lesion studies (Buckley et al., 2009;
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Camille et al., 2011; Rudebeck and Murray, 2011; West et al.,

2011), we proposed that economic decisions generally take

place in this abstract representation (good-based hypothesis

[Padoa-Schioppa, 2011]). Other authors embraced the notion

of good-based decisions (Cisek, 2012; Glimcher, 2011; Rush-

worth et al., 2012; Wunderlich et al., 2010) but emphasized the

importance of motor systems for decision making during the

course of evolution (Cisek, 2012; Glimcher, 2011) and the likely

involvement of motor systems in decisions under different cir-

cumstances (e.g., when offers vary by their action cost [Rangel

and Hare, 2010; Rushworth et al., 2012]). Thus, while this topic

remains matter of active research, the current consensus is

that economic decisions can be made in the space of goods.

In most circumstances, a good-based decision must ulti-

mately guide a suitable action. In other words, the choice

outcome must be transformed from goods space to actions

space. Thus, to understand choice-guided behavior, it is critical

to assess the neural mechanisms of this good-to-action transfor-

mation. Notably, central OFC—abrain region where good-based

decisions might take place—has no direct anatomical connec-

tions with motor structures (Carmichael and Price, 1995). On

the other hand, a major anatomical output of the OFC is the

ventral portion of lateral prefrontal cortex (LPFCv) (Petrides and

Pandya, 2006; Saleem et al., 2013). This region projects to the

dorsal portion of lateral prefrontal cortex (LPFCd) (Takahara

et al., 2012), which in turn is densely connected with motor sys-

tems (Lu et al., 1994; Takada et al., 2004; Takahara et al., 2012).

Based on this pattern of anatomical connectivity, we hypothe-

sized that LPFCv/d participate in the early phases of the good-

to-action transformation.

To test this hypothesis, we designed an economic choice task

that promoted (but did not enforce) good-based decisions. Spe-

cifically, we let monkeys choose between different juices offered

in variable amounts while we dissociated in space and time the

presentation of the offers and the indication of the action associ-

ated with each offer. Choices were eventually revealed with an

eye movement. Neuronal responses in OFC, which encoded

the choice outcome long before the presentation of the saccade

targets, indicated that decisions were indeed made in goods

space. We thus recorded from LPFCv/d. We found that prior

to target presentation, neurons in both these areas encoded

the choice outcome in goods space. After target presentation,
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neurons in both areas gradually came to encode the spatial loca-

tion of the saccade targets and, subsequently, the upcoming

action plan. This pattern of activity suggests an involvement of

these areas in the good-to-action transformation. Consistent

with the anatomy, we also found that LPFCv leads LPFCd in

the computation of all spatial and action-related signals. While

the possible role of other brain regions remains to be assessed,

our results suggest that LPFCv/d serve as a key node in the

transition from the choice system to motor systems.

RESULTS

Neuronal Evidence for Good-Based Decisions
Monkeys chose between two juices (labeled A and B, with A

preferred) offered in variable amounts. Compared to a classic

economic choice task (Padoa-Schioppa and Assad, 2006), we

dissociated the spatial location of the offers from the saccades

necessary to obtain them and we introduced a delay between

thepresentation of the offers and the saccade targets (Figure 1A).

Behavioral choice patterns presented the typical tradeoff

between juice type and juice quantity (Figures 1B and 1C). In a

control analysis, we verified that choices did not depend on

the spatial congruence between the offers and the saccade

targets associated with them (see Supplemental Experimental

Procedures and Figure S1 available online).

In this study, saccade targets did not indicate the juice

amounts and thus did not provide sufficient information to

make a decision. Conversely, offers did not provide any informa-

tion about the saccade necessary to obtain the chosen juice.

This experimental design was used to encourage the animal to

make decisions in goods space, before planning the action. At

the same time, the task design did not necessarily prevent

action-based decisions. In particular, the animals could conceiv-

ably keep in working memory the two offer values until the

saccade targets appeared, attach these offer values to the

possible saccades, and finally make their decision in actions

space through a process of action selection. To verify that

decisions were indeed made in goods space, we examined the

activity of neurons in the OFC.We reasoned that neurons encod-

ing the choice outcome (chosen good, chosen value) before

saccade targets appear on the monitor would indicate that the

decisionwas indeed abstract from action planning (good based).

We thus recorded the activity of 1,014 cells from the OFC of

two monkeys. Neuronal activity was analyzed in nine time win-

dows aligned with different behavioral events: preoffer (0.5 s

before the offer), postoffer (0.5 s after offer on), late delay (0.5–

1.0 s after offer on), pretarget (0.5 s before target on), posttarget

(0.5 s after target on), prego (0.5 s before the ‘‘go’’), reaction time

(from ‘‘go’’ to saccade), prejuice (0.5 s before the juice), and

postjuice (0.5 s after the juice). As in previous studies, a neuronal

response was defined as the activity of one cell in one time

window. Task-related responses (930 in total) were identified

with an ANOVA (p < 0.001) and submitted to a variable selection

analysis (Padoa-Schioppa and Assad, 2006). In essence, we

defined a large number of variables that neuronal responses

could potentially encode and we performed a linear regression

of each response on each variable. Using two independent sta-

tistical procedures (stepwise method and best-subset method),
we identified a small subset of variables that best explained

the neuronal population. Replicating previous results (Padoa-

Schioppa and Assad, 2006, 2008) with this new task design,

we found that neurons in the OFC encoded three variables: offer

value, chosen value (Figure 1B), and chosen juice (Figure 1C). As

previously observed, these variables were encoded indepen-

dently of the spatial configuration of the offers and the direction

of the eventual saccade. Most importantly, a substantial fraction

of cells encoded chosen value and chosen juice (i.e., the choice

outcome in goods space) in the two timewindows following offer

presentation, long before saccade targets appeared on the

monitor (Figure 1D).

To further verify that decisions were made in goods space, we

tested the extent to which the choice outcome could be inferred

from chosen juice responses recorded prior to target presenta-

tion. Consider, for example, the cell in Figure 1C and, specif-

ically, offer types 2B:1A and 3B:1A. The critical question is

whether the firing rate recorded in trials in which the animal

chose juice A (diamonds) was significantly different from that

recorded in trials in which the animal chose juice B (circles).

We examined this issue with an ROC analysis. In essence, we

compared, for each offer type in which decisions were split,

the spike counts recorded for choices of juice A and juice B.

For each offer type, we thus obtained an ‘‘area under the curve’’

(AUC). To obtain a single AUC for each response, we averaged

the AUC across offer types (Kang and Maunsell, 2012). Thus,

AUC was the probability that an ideal observer would success-

fully infer the decision of the animal from the activity of one

chosen juice cell. The distribution of AUC obtained across the

population is shown in Figure 2A. Notably, mean AUCwas signif-

icantly higher than chance (mean AUC = 0.625, p < 10�10, t test;

Figure 2A). This result is particularly significant if one considers

the fact that neuronal noise correlations in the OFC are generally

low (K. Conen and C.P.-S., unpublished data; Miura et al., 2012).

In other words, by looking at the entire population of chosen

juice cells, an ideal observer would be able to assess with high

accuracy the decision of the animal in any particular trial.

One concern might be whether chosen juice cells are actually

saturated offer value cells. In another study (Padoa-Schioppa,

2013), we found that the activity of offer value cells was

not significantly correlated with the choice of the animal for a

given offer type, which would argue against this hypothesis. To

further examine this issue, we repeated the analysis of Figure 2A

on offer value cells. Across the population, the AUC was much

smaller than that measured for chosen juice cells and did not

differ significantly from chance (mean AUC = 0.514, p = 0.09,

t test; Figure 2B). In conclusion, our analyses demonstrated

that decisions were indeed made prior to target presentation

and thus in goods space.

Neuronal Activity in Lateral Prefrontal Cortex Reflects
the Good-to-Action Transformation
In our study and in many circumstances, economic decisions ul-

timately lead to suitable actions. Thus, if decisions are made in

goods space, through what neuronal mechanisms is the choice

outcome transformed into an action plan? Notably, central OFC,

the region where neurons encode goods’ identities and values

(Figure 1E), is interconnected with sensory and limbic regions
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Figure 1. Experimental Design, Recording Locations, and Neuronal Evidence for Good-Based Decisions

(A) At the beginning of the trial, themonkey fixated a center point on themonitor. After 1.5 s, two offers appeared to the left and right of the fixation point. The offers

were represented by sets of color squares, with the color indicating the juice type and the number of squares indicating the juice amount. In the trial shown here,

the monkey chose between one drop of grape juice (one yellow square) and three drops of tamarind kool-aid (three brown squares). The offers remained on the

monitor for 1 s, and then they disappeared. The monkey continued fixating the center point for another 1 s, after which two saccade targets appeared. The

location of the saccade targets was randomly selected on a circle (7� radius) centered on the fixation point (eight possible locations), with the two saccade targets

on opposite sides of the fixation point. (The circle shown here in gray did not appear on themonitor.) The saccade targets were of different colors corresponding to

the colors of the two juices. Themonkey maintained fixation for an additional randomly variable delay (0.6–1.2 s) before the center fixation point was extinguished

(‘‘go’’ signal). At that point, the monkey indicated its choice with a saccade. For example, if the animal made a saccade toward the yellow target, it received one

drop of grape juice. The monkey then maintained fixation of the target for 0.75 s before juice delivery.

(B) OFC response encoding the chosen value. Left: the x axis represents different offer types ranked by ratio #B:#A. Black symbols represent the percentage of

‘‘B’’ choices. Red symbols represent the neuronal firing rate (diamonds and circles for choices of juice A and juice B, respectively; error bars indicate SEM). This

neuronal response was recorded in the 0.5 s immediately following the offer (postoffer time window). Right: the same neuronal response is plotted against the

variable chosen value (expressed in units of juice B). The black line is derived from a linear regression.

(C) OFC response encoding the chosen juice. This response, encoding the binary choice outcome in goods space, was recorded in the 0.5 s immediately

following the offer (postoffer time window). All conventions are as in (B).

(D) Time course of encoded variables. Squares indicate the percentage of OFC neurons encoding offer value, chosen value, and chosen juice in different time

windows. Faded filled circles show the percentages recorded in a previous study, in which offers and actions were spatially associated and temporally coupled

(Padoa-Schioppa and Assad, 2006). Interestingly, the percentage of cells encoding the choice outcome (chosen value and chosen juice) in the time windows

immediately following the offer was statistically indistinguishable between the two studies (p > 0.3, c2 test).

(E) Recording locations.We recorded from three prefrontal regions: OFC (yellow), LPFCd (green), and LPFCv (red). AS, arcuate sulcus; PS, principal sulcus; MOS,

medial orbital sulcus; LOS, lateral orbital sulcus. See also Figure S1.
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Figure 2. Inferring the Choice Outcome from the Activity of Chosen

Juice Cells

(A) Distribution of AUC for chosen juice responses recorded before target

presentation. For each response, we identified the encoded juice as the one

eliciting higher activity across all offer types. The ROC analysis focused on

offer types in which decisions were split. It compared the neuronal activity for

the two groups of trials corresponding to the two choices (we imposed at least

five trials for each choice). If a neuronal response had more than one split offer

type, AUC was averaged across offer types to obtain one AUC for each

response. The distribution of AUC was significantly displaced from chance

level (mean AUC = 0.625, p < 10�10, t test).

(B) Distribution of AUC for responses encoding the offer value before target

presentation.
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but has vanishingly few connections with motor or premotor

regions (Carmichael and Price, 1995). Thus, the good-to-action

transformation probably involves multiple steps. To our knowl-

edge, the neural mechanisms of this process have not been

investigated previously. In this respect, the lateral prefrontal cor-

tex seems a particularly credible candidate for several reasons.

Anatomically, LPFCv receives direct input from central OFC

(Petrides and Pandya, 2006; Saleem et al., 2013) and projects

to LPFCd, which is connected with multiple motor regions (Lu

et al., 1994; Takada et al., 2004; Takahara et al., 2012). Physio-

logically, neurons in LPFCv/d can encode, in different circum-

stances, abstract concepts and spatial responses (Genovesio

et al., 2005; Miller and Cohen, 2001; Rainer et al., 1998; Tsuji-

moto et al., 2011; Wallis et al., 2001). To test the role of lateral

prefrontal cortex in the good-to-action transformation, we

examined the activity of 561 cells from LPFCv and 521 cells

from LPFCd (Figure 1E).

What activity pattern would identify a brain area that contrib-

utes to the good-to-action transformation? Presumably, neurons

involved in this transformation would encode the chosen juice

throughout the delay and gradually come to encode the spatial

location of the eventual saccade after target presentation.

Indeed, we foundmany neuronswith such activity profile. Repre-

sentative examples from LPFCv and LPFCd are shown in Figures

3A and 3B, where we divided trials in four groups depending on

the chosen juice (A or B) and on the cell’s preferred hemifield. It

can be observed that immediately before target presentation,

the cell activity encoded only the chosen juice; after target pre-

sentation, however, the neuron gradually came to also encode

the saccade direction (hemifield).

Preliminary observations indicated that neurons in LPFCv/

d generally multiplex different kinds of signals, including sub-

jective values, juice type, visual, and action-related signals (see

Supplemental Experimental Procedures and Figure S2). Conse-
quently, the variable selection analysis used for OFC (where

each response encodes only one variable) could not be simply

used to examine LPFCv/d. For a quantitative analysis, we thus

proceeded as follows. Since neurons in LPFCv/d are spatially se-

lective, their activity after target presentation may depend both

on the choice outcome and on the location of the saccade target.

In fact, given that two targets appear simultaneously on the

monitor, the spatial component can be separated into two fac-

tors—whether any target (A or B) appears in the cell’s response

field, and whether that target is eventually selected as the

endpoint of the saccade. To examine these factors separately

and quantify how individual neurons reflect them over time, we

performed a four-way ANOVA with factors chosen juice, chosen

value, target orientation and hemifield of A, including all the inter-

action terms. Importantly, different terms can be interpreted in

similar ways (see Experimental Procedures and Table 1). Thus,

combining similar terms, the variance of the activity recorded

for each neuron can be broken down into six main components:

chosen value, chosen juice, chosen value j juice, orientation,
position of A, and chosen target (see Table 1). This analysis

was performed in 100 ms time bins shifted by 25 ms. The results

obtained for the two cells illustrated in Figures 3A and 3B provide

a proof of concepts (Figures 3C and 3D).

We sought to estimate the variance explained by each ANOVA

component at the population level. We noted that the degrees of

freedom varied for different components and across cells (de-

pending on the number of trials included in each session). To

obviate this problem and to make the results comparable across

brain areas, we converted the R2 of each term into a normalized

Z score through the following steps. (1) For each cell i and each

ANOVA component j, we estimated the chance level for the cor-

responding R2 using a bootstrap procedure. Focusing on a con-

trol baseline period (100 ms window starting 500 ms before the

offer), we randomly reassigned the spike counts across trials

for 1,000 times. We thus obtained a distribution for the baseline

R2, for which we computed the mean (mi,j) and SD (si,j). (2) For

each cell i, each ANOVA component j, and each sliding time

bin t, we converted the R2 into a Z score: zi,j,t = (R2
i,j,t � mi,j)/

si,j. Thus, for each cell and each component, random fluctua-

tions at chance level had an expected value of 0 and an SD of

1. (3) We then averaged the Z scores across the population,

separately for each ANOVA component. Note that with a simple

population average, random fluctuations at chance level would

have an expected value of mpop = 0 and SD of spop = 1/sqrt (N),

where N is the number of cells in the population. Thus, to

make the results comparable across brain areas (i.e., popula-

tions with different number of cells) we normalized the mean:

Znorm j;t =
XN

i = 0

zi;j;t=sqrt ðNÞ:

Hence, for each brain area and for each ANOVA component,

Znorm had, at chance level, an expected value of 0 and an SD

of s = 1.

The results obtained for the population of LPFCv (561 cells;

Figure 4A) can be described as follows. During the delay, there

was a sustained working memory signal encoding the choice

outcome (chosen value, chosen juice) independent of the
Neuron 81, 1140–1151, March 5, 2014 ª2014 Elsevier Inc. 1143



Table 1. Combination and Interpretation of Four-Way ANOVA

Components

Term Component Interpretation

Chosen value Chosen value Choice outcome,

goods space

Chosen juice Chosen juice Choice outcome,

goods space

Orientation Orientation Purely visual signal

Hemifield of A Position of A Purely visual signal

Chosen value 3 chosen

juice

Chosen value j
juice

Correlated with

offer value

Chosen value 3 orientation Bias –

Chosen value 3 hemifield

of A

Bias –

Chosen juice 3 orientation Bias –

Chosen juice 3 hemifield

of A

Chosen target Action plan

Orientation 3 hemifield

of A

Position of A Purely visual signal

Chosen value 3 chosen

juice 3 orientation

Bias –

Chosen value 3 chosen

juice 3 hemifield of A

Bias –

Chosen value 3 orientation 3

hemifield of A

Bias –

Chosen juice 3 orientation 3

hemifield of A

Chosen target Action plan

Chosen value 3 chosen

juice 3 orientation 3

hemifield of A

Bias –

Neuronal data from LPFCv/d were submitted to a four-way ANOVA

including all the interactions. The interpretation of each term was as fol-

lows. Factors chosen juice and chosen value capture the choice outcome

in goods space. The factor orientation captures whether any target is

in the cell’s response field. Since it does not depend on the color of the

target or on the choice of the animal or on the value associated with

that target, we interpret it as a purely visual signal. Since there were eight

possible target locations and the two targets always appeared in oppo-

site locations, there were four possible orientations. The factor hemifield

of A specifies whether target A appears on the cell’s preferred or antipre-

ferred hemifield. Thus, the interaction orientation 3 hemifield of A dis-

criminates which of the two targets (A or B) is in the cell’s response field.

Since both terms hemifield of A and orientation 3 hemifield of A can be

interpreted as ‘‘visual recognition’’ signals, we combined them in the sub-

sequent analysis (component position of A). The three-way interaction

chosen juice 3 orientation 3 hemifield of A captures the location of the

chosen target. The interaction chosen juice 3 hemifield of A, which cap-

tures the chosen hemifield, is essentially analogous to the three-way

interaction, especially if response fields are large (Rainer et al., 1998).

We thus combined these two factors in the subsequent analysis (compo-

nent chosen target). Finally, the interaction chosen value 3 chosen juice

formally represents one aspect of the choice outcome (chosen value j
juice). However, this variable is intrinsically highly correlated with the pre-

decision variable offer value, which is not directly present in this analysis.

Thus, in our presentation, we conservatively treated chosen value j juice
as a predecision variable. All other interaction terms were negligible in our

data sets and were thus combined (component bias).

Neuron

Good-to-Action Transformation in Lateral PFC

1144 Neuron 81, 1140–1151, March 5, 2014 ª2014 Elsevier Inc.
visuomotor contingencies of the task (goods space). Immedi-

ately after target presentation, purely visual signals emerged first

(components orientation and position of A), followed by the ac-

tion planning signal (component chosen target). This sequence

of signals seems to closely reflect the logical steps of a good-

to-action transformation. The analysis of LPFCd provided very

similar results (521 cells; Figure 4B). Note that the term position

of A also captures the interaction between the location of the

chosen target and the chosen juice. We performed additional

analysis to validate this point (see Supplemental Experimental

Procedures and Figure S3).

Thecurves inFigures4Aand4B represent theaveragestrength

of the effect across the entire population of each area. In a

complementary assessment, wequantified for each area the per-

centage of neurons for which each ANOVA component was sta-

tistically significant (p < 0.01). The results of this analysis (Figures

4C and 4D) supported the same conclusions obtained based on

the analysis of the average strength. As a more conservative

measure, we also computed the percentage of neurons based

on the F values estimated using a bootstrap procedure and the

result was nearly identical to that depicted in Figures 4C and 4D.

Temporal Evolution of Spatial and Action-Related
Signals
The results illustrated thus far suggest that both LPFCv and

LPFCd participate in the good-to-action transformation. How-

ever, known differences between these areas include the

anatomical connectivity and physiological properties (Hoshi,

2006; Kennerley and Wallis, 2009; Lebedev et al., 2004; Saleem

et al., 2013; Takahara et al., 2012; Yamagata et al., 2012). To

compare their possible role, we examined the timing with which

spatial and action-related signals emerged in each area. For

each cell and for each ANOVA factor, we defined the neuronal

latency as the first time in which the normalized R2 exceeded

chance level by 3 SDs (zfactor > 3) in three consecutive time

bins. We then averaged latencies across cells separately for

each brain area (Figures 5A and 5B). In both LPFCv and LPFCd,

the latencies for orientation were significantly shorter than the

latencies for position of A (LPFCv: p < 10�8, LPFCd: p < 0.01;Wil-

coxon rank-sum test), which in turn were significantly shorter

than the latencies for chosen target (LPFCv: p < 10�9, LPFCd:

p < 10�5; Wilcoxon rank-sum test). This sequence corresponds

to the mental processes presumably undertaken by the animals

and is consistent with the interpretation of each ANOVA factor

(Table 1). Most strikingly, latencies for each of these three signals

were shorter in LPFCv compared to LPFCd. In LPFCv, signals for

orientation, position of A, and chosen target appeared on

average of 156, 203, and 269 ms after target onset. In LPFCd,

the same signals appeared on average 208, 236, and 291 ms

after target onset. For each ANOVA component, the difference

in latency across areas was statistically significant (orientation:

p < 10�11; position of A: p < 0.01; chosen target: p < 0.01; Wil-

coxon rank-sum test).

One concern in the analysis of neuronal latencies might be that

differences between factors or between areas might reflect dif-

ferences in signal strength. In fact, this is arguably a false issue

because the analysis focused on the normalized R2. Hence,

the time at which the signal becomes statistically different from



Figure 3. Good-to-Action Transformation, Two Cells

(A) Firing rate of one neuron recorded in LPFCv. Trials were divided in four groups depending on the chosen juice (A or B) and on whether the saccade was

directed toward the cell’s preferred or antipreferred hemifield (see legend). Immediately before target presentation, the cell activity is modulated by the chosen

juice. After target presentation, it gradually comes to also encode the direction of the upcoming saccade (action plan).

(B) One neuron recorded in LPFCd. Same format as in (A).

(C) Results of the four-way ANOVA for the cell shown in (A). ANOVA terms were combined in main components (see legend and Table 1). Because different

components had different degrees of freedom, the variance explained by each component was normalized (Z scored) compared to a control baseline (see

Experimental Procedures). Thus, for each component, the normalized R2 (y axis) had at chance level an expected value of 0 and an SD of s = 1. Immediately

before target presentation, the choice outcome term chosen juice is the only significant one. The chosen target term, reflecting the action plan, emerges after

target presentation.

(D) Results of four-way ANOVA for the cell shown in (B). Same format as in (C). See also Figure S2.
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chance can be compared across cells irrespective of the even-

tual peak. In any case, we also examined the distribution of

peak times and obtained consistent results (Figures 5C and

5D). In LPFCv, orientation, position of A, and chosen target sig-

nals reached their peak on average 254, 280, and 356 ms after

target onset. In LPFCd, the same signals reached their peak on

average 301, 312, and 385ms after target onset. For each signal,

the peak occurred significantly earlier in LPFCv compared to

LPFCd (all p < 0.01, Wilcoxon rank-sum test).

For a control, we also examined data from each monkey sepa-

rately. We found that for each animal, for each ANOVA factor, and

for each time measure (latency and peak) the average time was

shorter in LPFCv than in LPFCd (12 comparison total). Thus,

time differences between the two areaswere very robust. In sum-

mary, LPFCv leads LPFCd in processing both spatial and action-

related signals, suggesting that theLPFCvmaybemore intimately

involved in the early stages of the good-to-action transformation.

Conjunctive Coding of Choice Outcome and Action Plan
We next assessed whether individual neurons conjunctively en-

coded the choice outcome in goods space and the action plan.
More specifically, we examined whether cells that encoded

the chosen juice immediately before target presentation also

encoded the chosen target following target presentation.

For this analysis, we focused on large 0.5 s time windows.

For each cell and each time window, we repeated the four-way

ANOVA and we determined whether a particular component

was significantly encoded (p < 0.01). For components that

included multiple terms (Table 1), we used a Bonferroni correc-

tion. We found that cells encoding the chosen juice in the pretar-

get time window were 62/561 (11.0%) in LPFCv and 69/521

(13.2%) in LPFCd. In this respect, the two areas were statistically

indistinguishable (p > 0.2, z test). Among these neurons, cells en-

coding the chosen target in the subsequent five time windows

ranged 34%–69% in LPFCv (Figure 6) and 36%–65% in LPFCd.

The percentages obtained for the two areas were statistically

indistinguishable in each of the five time windows (all p > 0.6, z

test). We observed that neurons presenting conjunctive encod-

ing in LPFCdwere significantly above chance in all time windows

(all p < 0.01, c2 test). In contrast, the frequency of cells present-

ing conjunctive encoding in LPFCv did not significantly exceed

chance level (five time windows tested, all p > 0.05, c2 test). As
Neuron 81, 1140–1151, March 5, 2014 ª2014 Elsevier Inc. 1145



Figure 4. Good-to-Action Transformation, Population Analysis

(A) LPFCv (561 cells). The R2 obtained for each component of the four-way ANOVAwas normalized and averaged across the entire population (seeMain Text and

Experimental Procedures). The normalizedmeanR2 expressed in units of SD (s; y axis) is plotted here as a function of time (x axis). The insert provides an enlarged

view of the window immediately following target presentation (only components relevant to the good-to-action transformation are included). During the delay

prior to target presentation, we observed a working memory signal encoding the choice outcome in goods space (chosen juice). After target presentation, two

purely visual signals (orientation, position of A) emerged first, followed by the signal representing the upcoming action plan (chosen target). The orientation

component (red, offscale) peaked 175 ms after target on at Zorientation = 162 s. Shaded areas represent ±SEM.

(B) LPFCd (521 cells). The R2 for each component was normalized and averaged across the entire population. The results are qualitatively similar to those

obtained for LPFCv. All conventions are as in (A).

(C and D) Percentage of neurons encoding different components of the four-way ANOVA in LPFCv (C) and LPFCd (D). Each panel illustrates the percentage of

cells for which each component of the four-way ANOVA was significant (p < 0.01). For components position of A and chosen target, each of which is a com-

bination of two terms, we applied a Bonferroni correction when calculating the percentage of cells (we divided the p value in half). The dotted horizontal line

indicates chance level (1%). See also Figure S3.
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illustrated in Figure 6, this difference between the two areas is

essentially due to the fact that cells encoding chosen target,

but not chosen juice, were much more frequent in LPFCv

(33%–66%) than in LPFCd (19%–48%).

Neuronal Evidence against a Hybrid Decision Process
The analysis of data from OFC suggests that decisions in this

experiment were indeed good based, because neuronal re-

sponses encoding the choice outcome (chosen juice) were re-

corded long before target presentation (Figure 1D). One possible

concern is whether decisions were actually completed within the

space of goods. Indeed, one could entertain a hybrid hypothesis

in which the decision is initiated in goods space and finalized in

actions space after target presentation (Glimcher, 2011). In this

view, the chosen target signal recorded in LPFCv/d after target
1146 Neuron 81, 1140–1151, March 5, 2014 ª2014 Elsevier Inc.
presentation would represent a ‘‘decision variable’’ (Gold and

Shadlen, 2001). In analogy to results obtained for perceptual

decisions, one might thus predict that the chosen target signal

depends on the decision difficulty. Specifically, we would expect

the chosen target signal to emerge more slowly (rapidly) when

decisions are harder (easier). The following analysis failed to sup-

port this prediction.

In our task, the decision difficulty can be operationally identi-

fied with the variable value ratio = other value/chosen value

(where other value is the value of the nonchosen good). Notably,

value ratio z1 when values are very similar (hard decision) and

value ratio z0 when values are very different (easy decision).

For each cell, we thus divided trials into two groups depending

on whether the decision was easy or hard, and we repeated

the ANOVA separately for the two groups of trials (see



Figure 5. Timing of Spatial and Action-Related Signals

(A) Mean neuronal latencies in LPFCv and LPFCd. In both areas, the latencies for orientationwere significantly shorter than the latencies for position of A (LPFCv:

p < 10�8, LPFCd: p < 0.01; Wilcoxon rank-sum test), which were significantly shorter that the latencies for chosen target (LPFCv: p < 10�9, LPFCd: p < 10�5;

Wilcoxon rank-sum test). Error bars indicate SEM. For each signal, the mean neuronal latency in LPFCv was significantly shorter than that in LPFCd (orientation:

p < 10�11; position of A: p < 0.01; chosen target: p < 0.01; Wilcoxon rank-sum test).

(B) Distribution of neuronal latencies. Different colors refer to different signals and different areas (see Legend). The triangles indicate mean values.

(C) Mean peak times in LPFCv and LPFCd. For each signal, the mean peak time in LPFCv is significantly shorter than that in LPFCd (all p < 0.01, Wilcoxon

rank-sum test).

(D) Distribution of peak times.
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Experimental Procedures). As observed in Figure 7, the chosen

target signals measured for the two groups of trials were indistin-

guishable in both areas. We also performed a statistical analysis

of neuronal latencies. For each cell and each group of trials,

we defined the chosen target latency as the first time in which

zchosen target > 3 in three consecutive time bins. We thus obtained

two latency distributions for the two groups of trials. In both

areas, neuronal latencies measured for easy decisions were

indistinguishable from those measured for hard decisions (both

p > 0.2, Kolmogorov-Smirnov test; Figure 7, inserts). In conclu-

sion, our analyses argue against the hybrid hypothesis.

DISCUSSION

Lateral Prefrontal Cortex and the Good-to-Action
Transformation
Evidence from lesions (Buckley et al., 2009; Camille et al., 2011;

Rudebeck andMurray, 2011;West et al., 2011), neurophysiology

(Kennerley et al., 2009; O’Neill and Schultz, 2010; Padoa-

Schioppa and Assad, 2006; Watson and Platt, 2012), and func-

tional imaging (Chaudhry et al., 2009; Hare et al., 2008; Kable

and Glimcher, 2007) suggests that economic choices are based

on values computed in the OFC and/or the ventromedial prefron-

tal cortex (vmPFC) (Kable and Glimcher, 2009; Padoa-Schioppa,
2011; Wallis, 2007). Furthermore, it is generally believed that

economic decisions can be made within an abstract representa-

tion (Cisek, 2012; Glimcher, 2011; Padoa-Schioppa, 2011; Rush-

worth et al., 2012; Wunderlich et al., 2010), which might include,

in addition to the OFC, vmPFC, the amygdala, parts of the basal

ganglia, and possibly other regions. In this study, we examined

good-based decisions andwe investigated the neuronal process

through which the choice outcome, represented in goods space,

is transformed into a suitable action plan. We designed a task

that dissociated in time decision making from action planning.

Prior to target presentation, neurons in OFC and LPFCv/d en-

coded the chosen good. Shortly after target presentation,

neurons in LPFCv/d came to encode the spatial location of the

targets and, subsequently, the upcoming action plan. Central

OFC, where choice-related signals were found, has no direct

connections with motor structures (Carmichael and Price,

1995), but it has major anatomical projections to LPFCv. In

turn, LPFCv is connected with motor structures directly and,

most prominently, through LPFCd (Lu et al., 1994; Petrides and

Pandya, 2006; Saleem et al., 2013; Takada et al., 2004; Takahara

et al., 2012). Consistent with this scheme, spatial and action-

related signals emerged first in LPFCv, followed by LPFCd.

Thus, taken together with the anatomy, our results suggest

that neurons in LPFCv/d participate in the early stages of the
Neuron 81, 1140–1151, March 5, 2014 ª2014 Elsevier Inc. 1147



Figure 6. Analysis of Conjunctive Encoding

For each cell and each time window, we deter-

mined whether a particular component of the four-

way ANOVA was significantly encoded (p < 0.01).

We thus assessed whether the same cells that

encoded the chosen juice in the pretarget time

window also encoded the chosen target after

target presentation. Top: of the 561 cells recorded

in LPFCv, 62 (499) encoded (did not encode) the

chosen juice in the pretarget time window. For

each time window after target presentation, each

of these two groups was divided depending on

whether cells encoded the variable chosen target.

Each panel in the figure illustrates the results of

conjunctive coding of chosen juice and chosen

target. Numbers and shades of gray indicate

the percent of cells, normalized by the row. For

example, considering the leftmost panel, 34%

(66%) of cells that encoded the chosen juice in

the pretarget time window also encoded (did not encode) the chosen target in the posttarget time window, whereas 33% (67%) of cells that did not

encode the chosen juice encoded (did not encode) the chosen target. Bottom: LPFCd. Same format as for LPFCv.

Neuron

Good-to-Action Transformation in Lateral PFC
good-to-action transformation. However, several questions

remain open.

First, it is not clear whether the good-to-action transformation

requires LPFCv/d or, alternatively, whether the activity in these

areas merely reflects a process that takes place in other brain

regions. It is also possible that LPFCv/d are specifically engaged

in the transformation only if the choice task includes a delay

bridged by working memory, as was the case in the present

study. Candidate brain areas that could implement the good-

to-action transformation include the dorsal anterior cingulate

cortex (ACCd). Indeed, signals encoding choice outcome

and movement direction coexist in this area (Cai and Padoa-

Schioppa, 2012; Luk and Wallis, 2009). However, we previously

observed in ACCd that neuronal activity encoding the chosen

juice was nearly absent during the decision phase and became

prominent only around juice delivery (Cai and Padoa-Schioppa,

2012), too late to contribute to the good-to-action transforma-

tion. This fact and the observation that neurons in ACCd encode

the choice outcome and the direction of the previous action (Luk

and Wallis, 2009) are broadly consistent with the understanding

that ACCd is not directly involved in choices between goods

and that this area may play a role in associative learning (Alex-

ander and Brown, 2011; Kennerley et al., 2011; Rudebeck

et al., 2008). Additionally, it may be noted that anatomical con-

nections between OFC and ACCd are rather indirect and pre-

sumably through LPFCv/d. Another candidate region is the tail

of the caudate (CDt). A recent study found in CDt neurons tuned

to both objects and spatial locations, suggesting that these cells

may contribute to orienting the eyes to a particular object in a

complex visual environment (Yamamoto et al., 2012). Although

these traits resonate with those found here in LPFCv/d, whether

neurons in CDt participate in the good-to-action transformation

remains to be tested directly. More generally, further work is

necessary to examine the possible role of other brain regions

in this important process.

Second, each juice in our experiments was associated to a

particular color. Thus, the ‘‘chosen juice’’ signals measured in

LPFCv/d immediately before target presentation may in fact be
1148 Neuron 81, 1140–1151, March 5, 2014 ª2014 Elsevier Inc.
related to the chosen color. We cannot rule out this possibility

and previous findings would justify either interpretation. Indeed,

neurons in this region were found to encode the color of the

stimulus when the color was behaviorally relevant (Genovesio

et al., 2012). Conversely, in a task designed to make behaviorally

relevant the gustatory properties as opposed to the visual prop-

erties of the stimulus, the majority of neurons in LPFCv/d en-

coded the juice taste (Lara et al., 2009). These and other results

(Freedman et al., 2001; Nieder et al., 2002; Wallis et al., 2001) un-

derscore the fact that neuronal representations in LPFCv/d are

generally malleable to the task demands and do not consistently

process the same stimulus attribute. Such malleability arguably

facilitates the good-to-action transformation. In general, in any

experimental or real-life setting, a good must be pointed to

with some label. Here we used color, but labels can in principle

be arbitrary. The good-to-action transformation necessarily

involves the representation of the proper label. Thus, a brain

area that mediates this transformation must be capable of repre-

senting arbitrary labels. These considerations motivate the

hypothesis that if goodswere associated tomore complex labels

(e.g., different sounds or categories of visual stimuli), neurons in

LPFCv/d would generally reflect the transformation from the

chosen good/label to the chosen action. This hypothesis shall

be tested in future work.

It is also interesting to discuss our results in relation to those

obtained in studies of perceptual judgment, where Genovesio

et al. (2012) found that neurons in LPFCv/d report the judgment

outcome in a domain-general way. In those studies, animals

were trained to compare the duration of two stimuli presented

sequentially and associated with two colors (red and blue).

The color of each stimulus was randomly assigned on a trial-

by-trial basis. A substantial population of cells in LPFCv/d en-

coded the identity of the stimulus (i.e., the color) with a longer

duration, especially during the decision and action periods.

The authors also compared the activity recorded in two percep-

tual judgment tasks (discriminating duration and discriminating

distance). Neurons in LPFCv/d encoded the identity of the

same target stimulus in both tasks (i.e., in a domain-general



Figure 7. Time Course of Chosen Target

Signals in Relation to the Decision Difficulty

(A) LPFCv. We examined a hybrid hypothesis in

which the decision is initiated in goods space and

finalized in actions space after target presentation.

Accordingly, we would expect the chosen target

signal recorded in LPFCv/d to emergemore rapidly

when decisions are easy than when decisions are

hard. For each cell, we divided trials depending on

the decision difficulty. The figure illustrates the time

course of the chosen target signal separately for the

two groups of trials. Contrary to the prediction, the

signals obtained in LPFCv for the two groups of

trials were very similar. The insert depicts the anal-

ysis of neuronal latencies. The distributions ob-

tained for the two groups of trials were statistically

indistinguishable (p > 0.2, Kolmogorov-Smirnov

test; see insert). Shaded areas represent ±SEM.

(B) LPFCd, same analysis as in (A). The distribu-

tions of neuronal latencies obtained for the two

groups of trials were statistically indistinguishable

(p > 0.7, Kolmogorov-Smirnov test).
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way). Our results suggest that such generality extends not

only to different domains of perceptual judgment but also to

fundamentally different mental processes—perceptual judg-

ment and economic choice.

Differences between Regions of Lateral Prefrontal
Cortex
We observed two differences between LPFCv and LPFCd. First,

while the percentage of cells encoding the choice outcome

(chosen juice) and the action plan (chosen target) were compara-

ble in the two areas, neurons encoding only spatial variables

were significantly more frequent in LPFCv than in LPFCd. Sec-

ond, all spatial and action-related signals appeared in LPFCv

earlier than in LPFCd. As discussed above, these differences

are broadly consistent with the anatomical connectivity. They

are also consistent with previous results from neurophysiology

and lesion studies. In one experiment, Lebedev et al. (2004)

trained monkeys to memorize the original spatial location of a

target moving to a new location. Neurons reflecting the attended

location, where a target newly appeared, were found more

frequently in LPFCv than LPFCd. In another experiment, Rush-

worth et al. (2005) found that the performance of animals with

LPFCv lesions was more severely impaired when the attentional

demands of a conditional visuomotor task increased. In a related

study, Hoshi and Tanji (2004) found that visual spatial signals in

LPFCv lead those in LPFCd. Along similar lines, Kennerley and

Wallis (2009) reported that reward-related modulations of spatial

signals emerged in LPFCv earlier than that in LPFCd. All these re-

sults point to a role of LPFCv in spatial processing and atten-

tional allocation. In contrast, in a study in which monkeys were

trained to retrieve two components of information (location of

the target and which arm to use) and to integrate them to plan

for future action, the proportion of neurons encoding either or

both components was significantly higher in LPFCd compared

to LPFCv (Hoshi and Tanji, 2004). Thus, one possible interpreta-

tion is that the good-to-action transformation involves multiple

computational steps, including the allocation of spatial attention

followed by the formation of a motor plan. In this view, the timing
difference between LPFCv and LPFCdmight reflect a differential

role of the two areas in these processes.

EXPERIMENTAL PROCEDURES

Animal Preparation and Recordings

Two rhesus monkeys (B, male, 9.0 kg; L, female, 6.5 kg) were used in the

experiments. Procedures for surgery, behavioral control, neuronal recordings,

and spike sorting were similar to those described previously (Cai and Padoa-

Schioppa, 2012; Padoa-Schioppa and Assad, 2006). Briefly, animals sat in an

electrically insulated enclosure (Crist Instruments), their head was restrained,

and the eye position was monitored with an infrared video camera (Eyelink; SR

Research). The behavioral task was controlled through a custom-written

software based on MATLAB (MathWorks) and available at http://www.

monkeylogic.net/. Structural MRI scans obtained for each animal before and

after implant-guided recordings. Tungsten electrodes (125 mm diameter,

FHC) were advanced using custom-built motorized microdrives, with a

2.5 mm resolution. We typically used four electrodes in each session. Electrical

signals were amplified and band-passed filtered (high pass: 300 Hz, low pass:

6 kHz; Lynx 8, Neuralynx). Action potentials were detected online and saved to

disk for subsequent analysis (Power 1,401, Spike 2; Cambridge Electronic

Design). All experimental procedures strictly conformed to the NIH Guide for

the Care and Use of Laboratory Animals and with the regulations at Washing-

ton University School of Medicine.

In total, we recorded 1,014 cells from OFC (356 and 658 from monkeys

B and L, respectively), 561 cells from LPFCv (362 and 199 from monkeys B

and L, respectively), and 521 cells from LPFCd (267 and 254 from monkeys

B and L, respectively). Based on the MRI and on the sequence of gray and

white matter encountered during electrode penetrations, we identified the

region of recordings in OFC as centered on area 13m. For lateral prefrontal

cortex, we defined the regions ventral and dorsal to the fundus of the principal

sulcus as LPFCv (9/46v) and LPFCd (9/46d), respectively.

Economic Choice Task and Behavioral Analysis

At the beginning of the trial, the monkey fixated a center point on the monitor,

within a tolerance window of 2�. (In a small subset of sessions, the tolerance

was 3�.) After 1.5 s, two offers appeared to the left and right of the fixation

point. The offers were represented by sets of colored squares, with the color

indicating the juice type and the number of squares indicating juice amount.

The offers remained on the monitor for 1 s, and then they disappeared. The

monkey continued fixating the center point for another 1 s. (In a subset of ses-

sions for monkey L, this additional delay lasted only 0.5 s.) At the end of this

delay, two saccade targets appeared. The location of the saccade targets
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was randomly selected on a circle (7� radius) centered on the fixation point

(eight possible locations), with the two saccade targets on opposite side of

the fixation point. The color of the saccade targets matched those of the

squares representing each offer. The monkey maintained fixation for a

randomly variable delay (0.6–1.2 s) before the center fixation point was extin-

guished (‘‘go’’ signal), at which point the monkey indicated its choice with a

saccade.

All the analyses were conducted inMATLAB. Behavioral data were analyzed

as in previous studies (Padoa-Schioppa and Assad, 2006, 2008). Briefly, we

expressed choice patterns as a function of log (qB/qA), where qA and qB are

the quantities of juices A and B offered to the monkey, respectively. Each

choice pattern was then fit with a normal sigmoid. The underlying Gaussian

can be viewed as a distribution of probability for the relative value. The

mean of that distribution, corresponding to the flex of the sigmoid, identified

the relative value of the two juices.

Variable Selection Analysis and Four-Way ANOVA

The variable selection analysis was conducted as in previous studies (Padoa-

Schioppa and Assad, 2006, 2008). We defined nine time windows aligned with

different behavioral events. An offer type was identified by two offers (e.g.,

1A:3B). A trial type was identified by two offers and a choice (e.g., 1A:3B, A).

A neuronal response was defined as the activity of one cell in one time window

as a function of the trial type. Task-related responses were identified with a

one-way ANOVA (factor trial type, p < 0.001) and included in subsequent an-

alyses. We defined 19 variables that neurons in OFC could potentially encode,

including value-related variables (chosen value, other value, total value, etc.),

juice-specific variables (offer value A, offer value B, etc.), the binary variable

chosen juice (previously referred to as taste [Padoa-Schioppa and Assad,

2006, 2008]), and number-related variables (max number, total number,

etc.). Each response was regressed on each variable, which was said to

explain the response if the regression slope was significantly nonzero (p <

0.05). Two methods (stepwise and best subset) were used to identify the sub-

set of variables that best explained the population. As in previous studies, both

methods identified offer value, chosen value, and chosen juice as the variables

with highest explanatory power. Because the procedures were essentially

identical, we could compare the percentage of neurons encoding each vari-

able across studies (see Figure 1D).

A preliminary analysis indicated that neurons in both LPFCv and LPFCd

generally carry multiple signals, including subjective values, juice type, and

spatial signals. As a consequence, the variable selection analysis used for

OFC could not simply be adapted to examine these areas. Indeed that anal-

ysis assumes that each neuronal response encodes only one variable. Thus,

to examine different factors contributing to the activity of neurons in LPFCv/

d, we proceeded as follows. First, we identified for each cell the preferred

hemifield using a subset of trials (approximately 20%, with high chosen

value). We then submitted each cell to a four-way ANOVA with factors

chosen juice, chosen value, orientation, and hemifield of A, including all the

interactions. For this analysis, the factor chosen value was reduced to a

binary variable, high or low compared to the median. The factor orientation

was a categorical variable with four levels (since there were eight possible

target locations and two targets always appeared in opposite locations, there

were four possible orientations). The factor hemifield of A was a binary var-

iable depending on whether target A was in the cell’s preferred or antipre-

ferred hemifield.

Analysis of Easy versus Hard Decisions

We examined a hybrid model in which the decision is initiated in goods space

and completed in actions space after target presentation. If this is the case,

the chosen target signal recorded in LPFCv/d would be a decision variable,

the timing of which would presumably depend on the decision difficulty.

Importantly, the timing of the chosen target signal can generally depend on

multiple factors, including the value of the chosen juice. Thus, to isolate the

possible effects of decision difficulty, we proceeded as follows. First, we

restricted the analysis to trials in which the monkey chose 1A. Second, we

operationally identified the decision difficulty with the variable value ratio.

Third, we divided trials in two groups depending on the value ratio (same

number of trials in both groups). Finally, we repeated the ANOVA for the
1150 Neuron 81, 1140–1151, March 5, 2014 ª2014 Elsevier Inc.
two groups of trials separately. Because the analysis was restricted to

choices of 1A, this was a two-way ANOVA with factors orientation and

hemifield of A. The term chosen target thus included the term hemifield of

A and the interaction orientation 3 hemifield of A. For a statistical analysis,

we defined the neuronal latency as the first time in which zchosen target > 3 in

three consecutive time bins. We thus obtained two latency distributions for

the two groups of trials (easy and hard decisions). These distributions were

compared with a Kolmogorov-Smirnov test.
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