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Single neurons may encode simultaneous stimuli
by switching between activity patterns
Valeria C. Caruso 1,2,3,4, Jeff T. Mohl 1,2,3,4, Christopher Glynn 5,9, Jungah Lee 1,2,3,4,10,

Shawn M. Willett 1,2,3,4, Azeem Zaman5,11, Akinori F. Ebihara 6, Rolando Estrada7,8, Winrich A. Freiwald6,

Surya T. Tokdar1,5 & Jennifer M. Groh1,2,3,4

How the brain preserves information about multiple simultaneous items is poorly understood.

We report that single neurons can represent multiple stimuli by interleaving signals across

time. We record single units in an auditory region, the inferior colliculus, while monkeys

localize 1 or 2 simultaneous sounds. During dual-sound trials, we find that some neurons

fluctuate between firing rates observed for each single sound, either on a whole-trial or on a

sub-trial timescale. These fluctuations are correlated in pairs of neurons, can be predicted by

the state of local field potentials prior to sound onset, and, in one monkey, can predict which

sound will be reported first. We find corroborating evidence of fluctuating activity patterns in

a separate dataset involving responses of inferotemporal cortex neurons to multiple visual

stimuli. Alternation between activity patterns corresponding to each of multiple items may

therefore be a general strategy to enhance the brain processing capacity, potentially linking

such disparate phenomena as variable neural firing, neural oscillations, and limits in atten-

tional/memory capacity.
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In the natural world many stimuli or events occur at the same
time. Sensory neurons in the brain are broadly tuned and
potentially responsive to more than one such stimulus, raising

the question of how information about multiple simultaneous
items can be preserved. We investigated whether the brain solves
this problem at the neuronal level via activity patterns that fluc-
tuate between those evoked by each stimulus alone (Fig. 1a). If
present, such fluctuations could allow each individual stimulus to
be represented across time in a common neuronal ensemble. Such
switching would contrast with possibilities such as signal sum-
mation or normalization/averaging, either of which results in
information about each item being lost. Fluctuation is more
related to winner-take-all but suggests that the winning stimulus
might change across time for an individual neuron1–11.

Specifically, we tested how neurons in the monkey inferior
colliculus (IC) respond when two sounds are presented simulta-
neously from different locations and both must be behaviorally
reported. The IC is an early12,13 and nearly obligatory station
along the auditory pathway14, and thought to be essential for
accurate sound localization behavior15–17. Importantly, the IC is
thought to encode sound location via a monotonic firing rate
(meter) code in which individual neurons respond broadly across
a range of spatial positions but the level of activity is correlated
with the location of the sound18–21. We developed a novel sta-
tistical approach to assess whether signal fluctuations in the IC
serve to interleave information about both sounds at a variety of
time scales.

We found that a subpopulation of IC neurons exhibited fluc-
tuating activity consistent with switching between individual
sound responses at different time scales. Such activity fluctuations
were masked in conventional analysis of spiking activity (trial-
and-time pooled spike counts), which indicated that average dual-
sound activity levels were intermediate between the average
single-sound responses. The state of the network prior to stimulus
onset (assessed by the mean voltage of the local field potentials)
predicted the slower whole-trial spiking fluctuations, and in turn,
these fluctuations could predict which sound location the monkey
reported first. We replicated the key observations regarding
fluctuating activity in a separate data set involving inferotemporal
cortex: neurons confronted with multiple object stimuli exhibited
activity fluctuations consistent with switching between individual
object responses. These observations support fluctuating activity
as a viable and likely a general strategy for encoding simulta-
neously presented stimuli. We conclude by discussing how such a
code can be read out, especially with regard to such factors as
time scale and coordination across ensembles of neurons. Finally,
we consider several broad implications of activity fluctuations for
interpreting variability and other aspects of neural encoding.

Results
Time-and-trial pooled activity does not account for behavior.
We first tested whether monkeys can perceptually preserve
information about multiple sounds presented simultaneously.
Two monkeys performed a localization task (Fig. 1b) in which
they made eye movements to each of the sounds they heard: one
saccade on single-sound trials and two saccades in sequence on
dual-sound trials (Fig. 1c and Supplementary Figure 1). The
sounds were separated horizontally by 30 degrees and consisted
of band-limited noise with different central frequencies. The
sounds were thus physically distinguishable in principle, and
humans are able to do so22–24. The monkeys learned the task
successfully, and, like humans, typically performed better when
the frequency separation between the two sounds was larger
(Fig. 1c, Supplementary Figure 1, ~72% vs. ~77% correct for
frequency differences of 3.4 vs. 6.8 semitones).

If the monkeys can report the locations of two sounds
presented simultaneously, it follows that their brains, and the IC
in particular, must preserve information about both sound items.
To investigate the neural basis of this perceptual ability, we
recorded 166 single units from the left and right IC of two
monkeys (see Methods), and evaluated the activity patterns
evoked on dual-sound trials (involving a given pair of sound
locations and frequencies, AB) in comparison to the activity
patterns evoked on the matching single-sound trials (A and B).
We refer to such related sets of stimuli as triplets.

Conventional analysis of spike data typically involves two
simplifications: spikes are counted within a fairly long window of
time, such as a few hundred milliseconds, and activity is pooled
across trials for statistical analysis. If IC neurons interleave signals
related to each of the two sounds, then they might appear to show
averaging responses on dual (or AB) trials when activity is pooled
across time and across trials. But they should not appear to show
summation responses, i.e., in which the responses on dual-sound
trials resemble the sum of the responses exhibited on single-
sound trials involving the component sounds. Such summation
has been observed in some neural populations in areas such as
primary visual cortex25,26, the hippocampus27, and the superior
colliculus28 when multiple stimuli are presented.

Indeed, IC dual-sound responses do not generally appear to
sum the responses to the component single sounds. Using an
analysis similar to that of28, dual-sound responses were converted
to Z-scores relative to either the sum or the average of the
corresponding single-sound responses (see Methods). For 81% of
the tested triplets, the Z-score values relative to the average were
smaller than those relative to the sum, indicating that the
responses more closely resembled averaging (Fig. 1d, see also
Supplementary Figure 2 and 3)

However, such apparent averaging response patterns appear
inconsistent with the behavioral results: if the neurons truly
responded at an average firing rate, then presumably the monkeys
should respond to dual-sounds as if there were only a single
sound at the midpoint of the two sources (Supplementary
Figure 2A). Since monkeys can indicate the locations of both
sounds (Fig. 1c), fluctuating activity patterns that could preserve
both items across time in a neuronal ensemble might provide a
better explanation for so-called averaging response patterns.

Evaluating activity fluctuations at various time scales. To
determine whether neural activity fluctuates within and/or between
trials, creating an overall averaging response but retaining infor-
mation about each sound at distinct moments, we developed a
series of statistical analyses that test for the presence of various
forms of alternation in firing rates. Several unknown parameters
must be taken into consideration when testing for activity fluc-
tuations, specifically, the time scale, repeatability, and potential
correlations across the neural population. We made minimal
assumptions about the time scale at which neurons might alternate
between encoding each stimulus, and considered that switching
behaviors might vary from trial to trial and/or across time within a
trial, as suggested by the visual inspection of single unit responses.

Figure 1e, f shows the activity of two example neurons on dual-
sound trials compared to their matched single-sound trials. The
colored backgrounds illustrate the median and 25–75% quantiles
of the activity on single-sound trials, in 50 ms time bins.
Superimposed on these backgrounds is the activity on individual
trials. Individual single-sound (A alone, B alone) trials align well
with their corresponding 25–75% quantiles, by definition (Fig. 1e,
f). But on dual-sound (AB) trials, for any given trial or time bin,
some individual traces correspond well to the 25–75% quantiles
of one of the component sounds, and on other trials or time bins
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they correspond well to the 25–75% quantiles of the other
component sound. For the neuron in Fig. 1e, there are whole
trials in which the activity matches that evoked by sound A alone
and others in which it better corresponds to that evoked by sound
B alone. For the neuron in Fig. 1f, the firing pattern on dual-
sound trials appears to switch back and forth between the levels
observed for sounds A and B as the trial unfolds. In short, for
these two examples, the activity on dual-sound AB trials does not
appear to occur at a consistent value intermediate between those
evoked on single-sound A and B trials, but can fluctuate between
those levels at a range of time scales. The following analyses will
quantitatively assess these fluctuations across trials and/or time.

Evidence for fluctuations in whole-trial spike counts. If neurons
alternate firing rates at the time scale of trials, as appears to be the
case for the neuron in Fig. 1e, then the spike counts from dual-
sound responses should resemble a mix of spike counts from each
of the component single-sound responses. We statistically tested
this hypothesis against other reasonable competing possibilities
using the subset of triplets whose spike counts on single-sound A
and B trials could be well modeled by Poisson distributions with
statistically different mean rates λA and λB (N= 363 triplets from
N= 108 neurons, see Methods for details).

The competing scenarios to describe the corresponding dual-
sound trials were:

a
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(a) Mixture: The spike counts observed on individual trials are
best described as draws from a mixture of Poi(λA) and Poi
(λB) (Fig. 2a). This is consistent with fluctuating activity
across trials.

(b) Intermediate: A single Poisson distribution best describes
the spike counts, and this Poisson has a rate λAB between λA

and λB (Fig. 2b). This is consistent with either fluctuations
at faster, sub-trial time scales or with true averaging/
normalization.

(c) Outside: A single Poisson distribution best describes the
spike counts, but the rate λAB is outside the range of λA and
λB (i.e., it is greater than both or less than both; Fig. 2c).
Summation-type responses would be captured under this
heading, as would inhibitory interactions.

(d) Single: A single Poisson describes the dual-sound trial spike
counts, but the rate λAB is equal to one of the single-sound
rates λA or λB (Fig. 2d). A winner- (or loser-)-take-all
pattern would fit this category.

In summary, these four models capture the spectrum of
possibilities at the whole-trial time scale. For each triplet, we
computed the posterior probabilities of the four competing
models as a (Bayesian) measure of goodness of fit to the data29

(see Methods). In other words, for each triplet the model with the
highest posterior probability can be interpreted as the best fit, and
the posterior probability itself is a measure of the confidence in
the model. We consider three levels of confidence from high to
low (posterior probability >0.95, >0.50, and no threshold on the
confidence level, that is, posterior probability > the minimum,
0.33, Fig. 2i).

The Mixture model had the strongest support of any of the
models tested. For such triplets, the spike counts on dual-sound
trials were better fit by a mixture of the single-sound Poisson
distributions than by any single Poisson distribution (Fig. 2i, bar
labeled Mixture). These response patterns indicate the presence of
fluctuating activity at the level of individual trials; the neurons
illustrated in Fig. 2e (same as Fig. 1e) and 2f (same as Fig. 3b) met
these criteria. Of the 72 triplets (from N= 46 neurons) in which
one model had a winning probability > 0.95, 50 triplets (69%)
were categorized as Mixtures.

For the next largest category, the best fitting model involved a
unique λAB between λA and λB (Fig. 2i, bar labeled Intermediate).
These triplets are ambiguous: they could exhibit a true
intermediate firing rate on the dual-sound trials, or they could
simply show alternation at a time scale more rapid than individual
trials. The neurons illustrated in Fig. 2g (same as Figs. 1f and 3c)
and 2h (same as Fig. 3d) were classified as Intermediate. Of the 72

triplets in which one model had a winning probability > 0.95, 18
triplets (25%) were categorized this way.

The remaining triplets were categorized as Single, or λAB= λA

or λB (a narrowly defined category that consequently did not
produce any winning model probabilities > 0.95) or Outside, λAB

greater or less than both λA and λB. Single can be thought of as a
winner-take-all response pattern. Outside may be consistent with
a modest degree of summation in the neural population,
particularly as λAB was generally greater than both λA and λB

in this subgroup. The small prevalence of the Single and Outside
groups compared to the Mixture and Intermediates is in
agreement with the aggregated analysis of spiking data (Supple-
mentary Figures 2, 3). The overall pattern of classification in the
whole-trial analysis was similar in the population of triplets that
exhibited responses to both sounds individually vs. those that
responded to only one of the two sounds (Supplementary
Figure 5), with the exception that the bulk of the Outside triplets
were indeed responsive to both A and B sounds individually.

Evidence for within-trial fluctuations vs. stable averaging. We
next evaluated whether firing patterns fluctuated or remained
stable across time within a trial. In particular, might triplets
categorized as Intermediate in the whole trial analysis show evi-
dence of fluctuating activity on a faster time scale?

We developed a novel statistical approach to study temporal
patterns of the spike trains, the Dynamic Admixture of Poisson
Process (DAPP) model. The computation is schematized in
Fig. 3a (see also Methods). We focused on the same 363 triplets
selected above. For each triplet, spike trains from individual
single-sound trials were assumed to be independent realizations
of a nonhomogeneous Poisson process with unknown time-
dependent firing rates λA(t) and λB(t) for sounds A and B. Dual-
sound trials were modeled as a weighted combination: λAB(t)= α
(t)λA(t)+ (1− α(t))λB(t) (Fig. 3a). The weight function α(t) was
unique to each dual-sound trial and quantified the relative
contribution of sound A on that trial at time t, while 1−α(t)
quantified the complementary contribution of sound B. Thus, the
dynamics of the α(t) function characterize the dynamics of each
dual-sound trial (see examples in Fig. 3b–d).

For each selected triplet, we used a Bayesian analysis to
estimate the function valued model parameters (see Methods)
and predict the α(t) curves that the corresponding cell was likely
to produce on future dual-sound AB trials (Fig. 3a). Each
predicted curve was summarized by two features: its time average
over the response period of a given trial and its maximum swing
size, that is, the difference between its highest peak and lowest

Fig. 1 Experimental rationale, task and visualization of individual trial activity. a In telecommunications, multiple signals can be conveyed along a single
channel by interleaving samples of each, thus increasing the amount of information transmitted by a single physical resource. Here we investigated
whether the brain might employ a similar strategy: do neurons encode multiple items (A and B) using spike trains that alternate between the firing rates
corresponding to each item, at some unknown time scale? Such a strategy would preserve information about both items, in contrast to alternatives such as
winner-take-all, summation, or averaging, which involve varying degrees of information loss. b Sound localization task. Two monkeys were successfully
trained to report one or two simultaneous (bandlimited noise) sounds by saccading at them. See Supplementary Figure 1 for accuracy. c Eye traces of the
saccades towards one (left) or two targets (right) during a sample session. d Time-and-trial aggregated dual-sound responses resemble the averaging
more than the summation of single-sound responses. For 81% of the triplets tested, the absolute values of the Z-score of each dual-sound response relative
to the average were smaller than those relative to the sum. e, f Visualization of individual trials of two IC neurons in which dual-sound responses alternate
between firing rates corresponding to single-sounds, across trials for the neuron in e, or within trials for the neuron in f. In each panel, the red and blue
shaded areas indicate the median and central 50% of the data on the single-sound trials. The black traces are the individual trials, for single-sound and
dual-sound trials as indicated above the panel. For the neuron in e, individual traces on dual-sound trials were classified based on whether they matched
the responses to single-sounds A and B (A vs. B assignment score, see Methods) and are plotted in two separate panels accordingly. For the neuron in f,
the fluctuations occurred faster, within trials, and are plotted in the same panel. See Supplementary Figure 4 for peristimulus time histograms and
frequency sensitivity of these two example neurons
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trough on that trial. The triplet was then subjected to a two-way
classification based on the distribution of these two features over
the predicted curves (DAPP tags, Fig. 3a). The triplet was
categorized as Wavy vs. Flat depending on whether the
distribution of the maximum swing size peaked at high or low
values, and as Central vs. Extreme according to whether the
distribution of the time average α(t) had a peak close to 0.5 or had
one to two peaks at the extreme values of 0 and 1. In addition to

this main classification scheme, triplets were subcategorized as
exhibiting Symmetric or Skewed response patterns, indicating
whether the α(t) curves reflected roughly equal contributions
from the stimulus A and stimulus B response patterns or whether
one or the other tended to dominate (Supplementary Figure 6).

The DAPP tags confirmed and extended the results of the
whole-trial analysis. Figure 3e shows the different distributions of
DAPP tags for the triplets categorized as Intermediate and
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Fig. 2Whole-trial analysis. a–d show the four models that could describe the distribution of spike counts on individual dual-sound trials (0–600 or 0–1000
ms after sound onset, see Methods). a Mixture of the Poisson distributions of spike counts for the component single-sound trials, b Intermediate Poisson
distribution, with rate between the rates of single-sounds responses, c Outside, Poisson distribution with rate larger or lower than the rates of single-
sounds responses, d Single, Poisson distribution with rate equal to one of the two single-sound rates. e–h Four examples of spike count distributions for
triplets classified as Mixtures or Intermediates. Red and blue shades indicate distributions of spike counts for single-sounds; black outlines indicate
distributions for dual sounds. The triplets in e, f were classified as Mixture with winning probability > 0.95 (e shows the same triplet as Fig. 1e; f shows the
same triplet as Fig. 3b). Triplets in g, h were classified as Intermediate with winning probability > 0.95 (g shows the same triplet as Fig. 1f and Fig. 3c;
h shows the same triplet as Fig. 3d). i Population results of the whole-trial analysis. Shading indicates the confidence level of the assignment of individual
triplets to winning models
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Mixture in the whole-trial analysis with winning probability >
0.95 (see also Supplementary Figures 6, 7). Mixture triplets
tended to be classified as Flat-Extreme (70%), that is, the
dynamics of these dual-sound responses were flat in time and
matching either the responses to A (α ≈ 1) or B (α ≈ 0) on
different trials. In addition, the distribution of the average α

values tended to be either Symmetric or unlabeled with regard to
symmetry, a sanity check that excludes winner-take-all responses
(these would be characterized by Flat-Extreme-Skewed responses,
Supplementary Table 1, Supplementary Figure 6).

In contrast, Intermediate triplets showed a combination of two
types of labeling patterns relevant to our hypothesis. Some (22%)
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were classified as Flat-Central (and Symmetric), indicating stable
α between 0 and 1, that is, stable firing at roughly the average of
the responses evoked by each sound separately (see example cell
in Fig. 3d). One triplet was classified as Flat-Extreme suggesting a
stable α very close to either 0 or 1. Together these two firing
patterns are consistent with some form of normalization
occurring in this subpopulation. Other triplets (28%) were
classified as Wavy-Central (and Symmetric) indicating responses
that fluctuated symmetrically around a central value (see example
cell in Fig. 3c).

In short, the DAPP analysis shows that the dynamics of the
Mixture responses were consistent with fluctuations at the level of
whole trials like the cell in Fig. 3b, whereas the dynamics of the
Intermediate responses classified as Wavy-Central are suggestive
of a neural code that could switch relatively rapidly between
responses consistent with two single stimuli.

Fluctuations appear coordinated and predict behavior. We next
considered the question of whether and how activity fluctuations
are coordinated across the neural population, in two ways: (1) by
evaluating activity correlations across time within trials between
pairs of simultaneously recorded neurons, and (2) by evaluating
whether the state of the local field potential prior to sound onset
predicts between-trial fluctuations in activity e.g., 30,31. Finally, we
determined whether the observed fluctuations are of functional
relevance for the execution of the task by testing the relation
between the trial-by-trial fluctuation and which target the mon-
key looked at first on that trial.

First, we evaluated correlations in within-trial switching based
on how A-like vs. how B-like the responses were across time on
individual trials. A total of 91 pairs of triplet conditions from 34
pairs of simultaneously recorded neurons (from among the 363
triplets used for the previous analyses) were assessed. For each 50
ms bin of a dual-sound trial in a given triplet, we assigned a
probability score between 0 and 1 that the spike count in the bin
was drawn from the Poisson distribution with rate equaling the
bin’s sound A rate. The complementary probability indicated the
likelihood that the count was drawn from a Poisson distribution
with a rate equaling the bin’s sound B rate (Fig. 4a; see Methods:
A vs. B assignment scores). We normalized these probabilities by
converting them to Z-scores within a given time bin but across
trials, to minimize the contribution of shared correlations due to
stimulus responsiveness or changes in motivational state across
time32. We then calculated the neuron-to-neuron correlation
coefficients between the normalized assignment scores across
time bins within each trial (i.e., one correlation coefficient value
estimated per trial). This analysis is conceptually similar to
conventional cross-correlation analysis of spike trains in neural
pairs, but does not focus on precise timing of spikes or the relative
latency between them33,34. The 50 ms time scale is consistent with

the frequency range in which spike-to-spike coherence has been
observed in visual attention paradigms35.

The observed correlations were generally positive, indicating
that the activity was coordinated within the neural population.
Figure 4 illustrates analysis of the dual-sound trials for a
particular triplet in an example pair of neurons (Fig. 4a), and
the distribution of the mean neuron-to-neuron correlations in the
population for all the dual-sound conditions (Fig. 4b). The
distribution of mean correlation coefficients was skewed positive
(t-test, p= 6.8 × 10-6). Similar results were obtained when the raw
spike counts were analyzed rather than the assignment scores
(Supplementary Figure 8). This was the case even though we
included triplets that were not categorized as showing wavy
behavior in the DAPP analysis. It may be that coordinated
activity fluctuations occur in more neurons than those that met
our statistical criteria.

Next, we determined whether the state of the local field
potential prior to sound onset predicts between-trial fluctuations
in activity. We analyzed the LFP data recorded simultaneously
with single unit spiking data. We combined data across triplets,
creating two groups of trials based on whether the whole-trial
spike count on a given dual-sound trial more closely resembled
the responses evoked by sound A alone (where A is the
contralateral sound) or sound B alone (see Methods: A vs. B
assignment scores). Figure 5a shows the average LFP for the two
groups of dual-sound trials. We quantified differences between
these two groups with a t-test in the 600 ms windows before and
after sound onset (each trial contributed one mean LFP value in
each time window). As expected, the LFP signals statistically
differed after sound onset in these two trial groupings (red vs.
blue traces, time period 0–600 ms, p= 1.0474 × 10-5). But the
average LFP voltage also differed prior to sound onset (p=
0.0064), suggesting that the state of activity in the local network
surrounding an individual neuron at the time of sound onset is
predictive of whether the neuron encodes the contralateral or the
ipsilateral sound on that particular trial. What exactly that
network state consists of is unknown; but it could be an altered
balance in the levels of activity in the ICs contralateral and
ipsilateral to the first-saccade target.

If fluctuations in neural activity are coordinated across the
population, it follows that there should be a relationship between
variability in neural activity and behavior. Accordingly, we
investigated whether the activity on individual trials predicted
whether the monkey would look first to sound A or sound B on
that trial. We focused here on the whole-trial time scale as the
most robust measure of activity fluctuations in our data. As noted
in Methods, we trained the monkeys on sequential sounds first
and this training strategy tended to promote performing the task
in a stereotyped sequence. Partway through neural data
collection, we provided monkey Y with additional training on
the non-sequential task, after which that monkey began

Fig. 3 Dynamic Admixture Point Process (DAPP) model: rationale and results. a The DAPP model fits smoothly time-varying weights (α and (1−α))
capturing the relative contribution of A- and B-like response distributions to each AB dual-sound trial (point1). The dynamic tendencies of the α curves
were then used to generate projected new α curves for hypothetical future draws from this distribution. The waviness and central tendencies were
quantified by computing the max swing size and trial-wise mean for an individual trial drawn from the distribution (point 2). Low max swing sizes indicate
flat curves and higher values indicate wavy ones (point 3, right panel). Similarly, the distribution of trial-wise means could be bimodal (Extreme) or
unimodal (Central) (point 3, left panel). b–d Fit alphas for three example triplets (triplets in b–d are the same as in Fig. 2f, g, h, respectively) and the
distributions of trial-wise means and max swing sizes for future draws from the alpha curve generator. e The pattern of DAPP results extended the whole-
trial analysis results. Triplets categorized as Mixtures with a win probability > 0.95 tended to be tagged as Flat-Extreme (as example in b). Triplets
categorized as Intermediates fell in two different main groups, Wavy-Central (as example in c) and Flat-Central (as example in d). Information about the
Skewed vs. Symmetric tag is not shown. See Supplementary Table 1 and Supplementary Figures 6 and 7 for a complete listing of all the tag combinations
and additional analyses
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displaying less stereotypical behavior and sometimes saccaded
first to A and sometimes first to B for a given AB dual-sound
combination (see Fig. 5b for example). We then analyzed
recording sessions after this training (N= 73 triplets) and we
found that at both the whole trial and sub-trial time scales, the
activity of individual neurons was predictive of what saccade
sequence the monkey would choose on that particular trial.
Specifically, the average dual-sound AB assignment score for a
given triplet was computed separately for trials in which the first
saccade was toward A vs. toward B. The average scores
statistically differed between the two groups of dual-sound trials
(t-test, p= 5 × 10−9, Fig. 5c) and in the expected direction, with
more A-like scores occurring on trials in which the monkey
looked at A first. This relationship was also present when looking
at finer, 50 ms bin time scales (Fig. 5d).

Multiplexing across time may be a general brain phenomenon.
The problem of encoding multiple simultaneous stimuli is neither
limited to the auditory system nor to the localization of sounds,
but ubiquitous in the brain and sensory information processing.
To gain insight into whether activity fluctuations may contribute
to preserving information about multiple stimuli in other sys-
tems, we turned to a different sensory system, vision, and a dif-
ferent neural substrate, cortex. Cells in an fMRI-identified face
area, the middle fundus (MF) face patch36 are highly face-
selective and strongly tuned to head orientation. It is thus possible
to find a stimulus eliciting a strong response in a given MF
neuron, and another one that elicits a weak one (e.g., a non-face
stimulus or a face at a non-preferred orientation). We found such
stimuli for 105 MF neurons and recorded responses during single
stimulus presentation or combinations of preferred and non-
preferred stimuli within the receptive field (see Methods and37).
Monkeys maintained fixation throughout stimulus presentation
(400 ms).

Results of whole trial analysis are shown in Fig. 6a: the two
most common response patterns at this time scale were Mixtures
and Intermediates. The within-trial DAPP analysis (Fig. 6b)
confirmed that most Mixtures could be classified as showing Flat-
Extreme response patterns. For the Intermediates, in this data set

we found little evidence for Flat-Central; rather the largest
category showed a Wavy-Central activity pattern, consistent with
fluctuations at the sub trial time scale. In short, the evidence for
item-preserving activity fluctuations was at least as strong in face
patch MF as in the IC data set.

Discussion
Our results show that the activity patterns of IC neurons fluc-
tuate, and that these fluctuations may be consistent with encoding
of multiple items in the same processing channels (i.e., the set of
neural spike trains occurring in the IC). The time scale of these
fluctuations ranges from the level of individual trials down to at
least 50 ms bins within a trial. The fluctuations are positively
correlated across pairs of neurons (at least, those recorded within
the IC on a given side of the brain), are reflective of the state of
local field potentials at the time of sound onset, and are predictive
of the behavioral response to follow. These fluctuations may be a
necessary element of the neural code, permitting the repre-
sentation of more than one stimulus across time within a neural
ensemble, and they may serve as a critical element of the coding
of natural scenes replete with many simultaneous stimuli. The
fact that similar activity patterns occurred in a completely dif-
ferent sensory system and brain region, face patch MF, supports
this general interpretation.

The notion that aspects of signal fluctuations can be used to
encode multiple items in a limited capacity channel has a history
in telecommunications and engineering. Similar strategies have
been postulated to occur in some form in the brain1–11, but
empirical evidence and statistical methods of assessment have
been lacking.

A strength of our statistical approach is that we do not simply
assess unimodality/bimodality (e.g.10.) but anchor our con-
sideration of the dual stimulus response distributions to the
observed distributions for single stimulus trials. However, there
are several limitations to the present statistical approach. First,
the analyses could only be conducted on a subset of the data,
requiring a good fit of a Poisson distribution to the single-sound
trials and adequate separation of the responses on those trials. For
the moment, it is unknown whether any of the excluded data
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exhibit meaningful response fluctuations. In principle, the mod-
eling approach can be extended to other types of response dis-
tributions which should reduce the amount of data that is
excluded. Second, the full range of time scales at which fluctua-
tions occur is still undetermined. We focused on the whole-trial
timescale and on 50 ms bins—biologically plausible for both the
task and the stimuli. However, any faster fluctuations would likely
have been (erroneously) categorized as Flat-Central in the DAPP
model. Indeed, the preponderance of Flat-Extreme/Mixtures may
not reflect the true state of the underlying population but rather
the greater sensitivity of the analysis method for detecting slower
fluctuations rather than faster ones. Third, our statistical
approach based on the DAPP model involves a categorization
step that summarizes the dominant features of a triplet. If a
neuron sometimes behaves as a Flat-Extreme type and sometimes
as a Wavy-Central type for a given triplet of conditions, it would
likely be categorized as ambiguous. In other words, even though
the DAPP model can pick up composite response patterns, the
results we present ignore the existence of any such patterns.

The observed fluctuations have broad implications because
they provide a novel account linking a number of other well-
known aspects of brain function under a common explanation.
First, it is widely recognized that neural firing patterns are highly
variable. This variability is often thought to reflect some funda-
mental inability of neurons to code information accurately. Here,

we suggest that some of this variability may actually reflect
interleaved periods of potentially quite accurate coding of dif-
ferent items. What else individual neurons may commonly be
coding for in experiments involving presentation of only one
stimulus at a time is not known, but possibilities include stimuli
not deliberately presented by the experimenter, memories of
previous stimuli, or mental imagery as suggested by the theory of
embodied cognition38. Indeed, variability has been found to be
higher when no deliberate stimulus is present at all39. In the
present study, we were able to demonstrate signal in these fluc-
tuations by virtue of statistical tests comparing each of the trial
types in A-B-AB triplets, but it may be the case that fluctuations
were occurring in the single stimulus trials as well. We could not
test this because our analysis required having as benchmarks the
response distributions corresponding to the potentially encoded
items.

Second, as a concept, stimulus multiplexing via activity fluc-
tuations across time provides insight into why limitations in
certain types of cognition exist. Working memory capacity is
limited; attention filters stimuli to allow in-depth processing of a
selected set of items. These limitations may stem from using the
same population of neurons for each attended or remembered
item, a situation that may arise whenever neurons are broadly
tuned. If this is the case, then the puzzle becomes why these limits
are often greater than one. Stimulus multiplexing across time
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suggests that cycling between different items allows evading what
might otherwise be a one-item limit2. Here, we investigated only
two time scales, 50 ms and whole trials. Additional work is nee-
ded to more fully explore the time scales on which this occurs and
to tie the resulting information on duty cycle to perceptual
capacity.

Third, brain oscillations are ubiquitous, have been linked
specifically to attentional and memory processes31, e.g. 40., see
also41, and have been suggested as having a connection to the
coding of multiple stimuli2–8,42,43. Field potential oscillations
indicate that neural activity fluctuates, although they capture only
the portion of such fluctuation that is coordinated across the
underlying neural population and is regular in time. It remains to
be determined to what degree field potential oscillations reflect
cause vs effect. In other words, field potential oscillations could
stem from the activity of neural circuits involved in controlling
multiplexing, or they could reflect the activity of the neural cir-
cuits subject to the effects of such control. In a highly inter-
connected system such as the brain, both are likely to occur.

Our findings are particularly relevant to the domain of atten-
tion at both the behavioral and neural mechanism levels. Multi-
plexing implies that multiple stimuli are handled by a common
circuit in a serial fashion. Serial processing of multiple stimuli has
been suggested using several different behavioral paradigms such
as searching for or tracking targets among distractors e.g.,
refs. 44,45. There is also evidence for sampling of the visual scene
across time: the detectability of visual stimuli can fluctuate in an
oscillatory fashion46, and this is correlated with the phase of EEG
signals in the 4–12 Hz range47,48. A similar relationship between
auditory perception and EEG phase has also recently been
demonstrated49. On the whole, this line of investigation suggests
that the brain samples stimuli in a periodic or sequential manner.

The scope of such sampling processes may be more extensive
than is possible to demonstrate with behavioral assays alone. Our
neural analyses do not require that activity fluctuations be either
coordinated or periodic at the level of individual neurons. Instead,
neural ensembles may fluctuate asynchronously with other
ensembles and the fluctuations may not always be periodic.
Perceptual studies such as those described above can likely only
reveal effects when the underlying neural activity is highly
coordinated across the neural population. This would account for
why the perceptual impact of a sampling mechanism of the brain
is not evident in daily life, but requires experiments designed to
elicit or align with maximum synchrony across component neural
ensembles to reveal it.

Single-neuron recording studies concerning the impact of
attention on (chiefly visual) representations have debated two
main possibilities: that attention biases the competition
between stimuli for processing in neural populations vs. that it
operates as either a filter or spotlight that adjusts the gain of
neural responses to unattended vs. attended stimuli (for review,
see ref. 50). The biased competition view bears the closer rela-
tionship to multiplexing. Stated strongly, under this theory
neurons should respond as if only the attended stimulus is
present, ignoring distractors, and the response rate should be
the same as if the attended stimulus was the only one presented.
If attention were to shift between items across time, as it might
have in our study, neural activity would be expected to fluctuate
accordingly.

Most research to assess this theory has not investigated fluc-
tuations but has instead pooled the activity across time and trials
(see ref. 10 for an exception). The results have generally produced
responses to dual stimuli that are intermediate between the
responses evoked by each stimulus alone but with a bias in favor
of the attended stimulus (e.g., refs. 51,52). It will be of interest to
ascertain whether such intermediate responses and incomplete
bias in favor of the attended stimulus reflects underlying activity
fluctuations that serve to preserve information about both stimuli
while enhancing the salience of the attended one. Such a pattern
would help account for the otherwise curious observation that
intermediate responses also apparently occur when neither sti-
mulus is attended (e.g., ref. 52). In short, stimulus multiplexing
across time may operate both in concert with attention and
independently of it. We note that we did not attempt to assess
whether attention was shifting between the two stimuli that were
presented, so future work will be needed to tease apart these
possibilities.

The need for multiplexing extends to any domain where neural
tuning is broad. The meter/firing rate code for sound location in the
IC is one example. The IC’s sensitivity to sound frequency can only
partially ameliorate this problem, because here too the tuning is
very broad: a pure tone in the frequency range employed in this
study has been shown to evoke activity in 40–80% of IC neurons53.
Indeed, about 2/3 of the triplets in the present sample responded to
both of the two sounds individually (Supplementary Figure 5). Most
natural sounds are spectrally rich and will activate hills of neural
activity with even greater overlap. That said, it is possible that the
resolution of the frequency map might sharpen via lateral inhibition
when more than one sound is present; such a mechanism might
work in concert with stimulus multiplexing across time.
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In the case of our particular experimental paradigm, several
additional questions arise. How do signals related to different
items come to be multiplexed? Are they later de-multiplexed? If
so, how?

To some degree, sounds are multiplexed in the world. That is,
the sound waves from multiple sources sum in the world and are
never purely distinct from one another. The air pressure waves
arriving at each ear reflect the combined contribution of all sound
sources. Where and how signals may be de-multiplexed critically
depend on the nature of the representation to which a de-
multiplexed output could be written. In barn owls, which have
maps of auditory space, the coding bottleneck intrinsic to meter/
rate coding does not occur, and two sounds produce two separate
active populations54–57. Such distinct peaks suggest that the
multiplexed-in-the-air signals have been de-multiplexed and
segregated into two hills of activity.

In primates and several other mammals, neural representations
of space employ meters (rate codes) rather than maps throughout
the pathway from sound input to eye movement output, as far as
is currently known18–21,58–62. This is the case even at the level of
the superior colliculus63, an oculomotor structure which has a
well-deserved reputation for mapping when activity is evoked by
non-auditory stimuli64,65.

Given that different types of codes exist in different species,
and given that coding format is not known in all the circum-
stances in which multiplexing might apply (e.g., attention,
working memory), we developed two different models to illustrate
a range of different de-multiplexing possibilities (Fig. 7) based on
the nature of the recipient representation. In the first (Fig. 7a), a
multiplexed signal in a meter is converted into two hills of activity

in a map, using a basic architecture involving graded thresholds
and inhibitory interneurons suggested previously66. Adding an
integration mechanism such as local positive feedback loops
would then serve to latch activity on at the appropriate locations
in the map, producing a more sustained firing pattern. No clock
signal is necessary for this model.

In the second model (Fig. 7b), there are multiple output
channels, each capable of encoding one item. An oscillating cir-
cuit that knows about the timing of the input gates signals to each
output channel at the appropriate moments. As in the first model,
a local positive feedback mechanism acts to sustain the activity
during the gaps in the input. This model thus retains the efficient
coding format of a meter but requires a controlling signal with
knowledge of when to latch input flow through to each output
channel. In our data, fluctuations were at least somewhat coor-
dinated across pairs of simultaneously recorded neurons, in
agreement with this model. It is possible that within-trial fluc-
tuating units lie at the input stage of such a circuit, and that
between-trial fluctuating units actually lie at the output stage. A
given unit might be allocated to either the A or the B pools based
on state of the network (as detected by the LFP measurements) on
different trials.

Although the stimulus multiplexing across time that we
observed here has parallels in engineering (particularly with time
division multiplexing in telecommunications) these two models
also help illustrate that multiplexing is unlikely to occur exactly
the same way in biological systems as it does in technological
ones. For example, the time course may be more fluid in biolo-
gical systems, and different neural ensembles may operate asyn-
chronously and/or aperiodically as opposed to operating under a
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Fig. 7 Two possible mechanisms for de-multiplexing a fluctuating signal. A clock signal that knows about coding transitions is not necessarily needed if
signals are read out into a map (a), but is required if signals are retained in a meter or rate-coded format (b). Both models have an input signal that
employs a meter code for sound location (purple, c top panel), and this signal is assumed to fluctuate between two response levels when two sounds are
present (c bottom panel). In the meter-to-map model (a), the second stage consists of group of excitatory neurons (open circles) with varying thresholds,
paired with inhibitory neurons (filled circles) that have slightly higher thresholds. These neurons all receive input from the input meter signal. An individual
excitatory neuron is activated when the input signal exceeds its own threshold and is lower than the threshold of the paired inhibitory interneuron,
producing tuning curves like those shown in d. The net drive across time to two examples A and B is shown schematically as the thin gray line in the two
inset graphs (e). These two neurons would turn on and off out of phase with each other based on their external inputs alone. Adding a positive
autofeedback loop to each excitatory neuron in the map (green) provides integration of the activity of each neuron and permits the activity to be sustained
across periods of time when there is no external drive (dark line). This model is derived from a portion of the Vector Subtraction model of66. In the meter-
to-meter model (b), the input is forked to an A meter channel neuron and a B meter channel neuron. A bistable oscillator coupled to the same unknown
clock (shared timing signal) that controls the input fluctuations would be needed to appropriately route the output to these two units. The resulting output,
in the absence of positive autofeedback, would also fluctuate but between an off state and a level that corresponds to signaling the presence of sound A or
B respectively (f gray lines). Adding positive autofeedback would again allow bridging across the off states (dark lines)
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regular, shared, clock cycle of some kind. The strongest shared
element of the analogy with telecommunications is the trans-
mission of more than one item or type of information via signal
fluctuations at some time scale.

Similarity of results in the IC with auditory stimuli and MF
with visual stimuli suggest that multiplexing may be a general
mechanism that is commonly at play to enhance the total pro-
cessing power of the brain. The statistical tools developed here
can be applied to any triplet data. Additional studies with both
single stimulus conditions, to define the distributions of signals,
and dual stimulus conditions, to evaluate fluctuations between
membership in those distributions, will be important for deli-
neating the extent of this phenomenon. Digging under the hood
of the time-and-trial pooled activity to look at activity patterns on
a moment by moment basis will be essential to advancing our
understanding of how the brain operates dynamically to max-
imize its processing power.

Methods
General procedures. All procedures conformed to the guidelines of the National
Institutes of Health (NIH Pub. No. 86–23, Revised 1985) and were approved by the
Institutional Animal Care and Use Committee of Duke University. Two adult
rhesus monkeys (Macaca mulatta) participated (monkey P, and monkey Y, both
female). Under general anesthesia and in sterile surgery we first implanted a head
post holder to restrain the head and a scleral search coil to track eye move-
ments67,68. After recovery with suitable analgesics and veterinary care, we trained
the monkeys in the experimental task. In a second surgery, we implanted a
recording cylinder (2 cm diameter) over the right (monkey Y) or left (monkey Y, P)
IC respectively. We determined the location of the cylinder with stereotactic
coordinates and verified it with MRI scans e.g. 53.

Sound localization task. The monkeys performed a single-sound or dual-sound
localization task (Fig. 1b) by making saccades toward one or two simultaneously-
presented auditory targets with one or two saccades as appropriate. All sound
targets were located in front of the monkey at eye level; the horizontal location,
frequency and intensity were varied pseudorandomly as described below
(Recording Procedures). Each trial began with 600–700 ms of fixation of a visual
stimulus (light emitting-diode, LED, located straight ahead and 10–14° below the
speakers). During fixation we presented one sound (single-sound trials) or two
simultaneous sounds (dual-sound trials). After a fixation time of either 600–800 ms
(Data Set I, some of Data Set II) or 1000–1100 ms (remainder of Data Set II), the
fixation light was extinguished and the monkey was required to make a single
saccade on single-sound trials or a sequence of two saccades (in either order) on
dual-sound trials. Trials were considered correct if each saccade was directed
within 10–17.5 degrees horizontally and 20–40 degrees vertically of a target due to
vertical inaccuracies in localizing non-visual targets in primates69, and if the gaze
was maintained on the final target for 100–200 ms. On correct trials monkeys were
rewarded with juice drops.

Training. Training was accomplished in three stages. We initially trained the
monkeys to report the location of single visual targets by saccading to them. We
then introduced single auditory targets. As these were novel and unexpected in the
silent experimental booth, monkeys readily saccaded to them70. To help the
monkeys calibrate their auditory saccades, a visual feedback was added on trials
where the auditory saccade was not initiated correctly within 700 ms. The feedback
was presented only at the most peripheral target locations (+/−24 degree) and only
for a few initial days of training. Finally, we trained monkey to localize dual-sound
targets. Initially we presented the two sounds sequentially in a specific order, then
we gradually reduced the temporal gap between them until the sounds were
simultaneous.

In the final version of the task, monkeys were allowed to look at the targets in
either order, as noted above. However, due to the initial training with sequential
sounds, they retained stereotyped patterns of saccades in which they tended to look
first to whichever sound location had been presented first during the sequential and
partial overlap stages of training. Monkey P was trained with more central target
locations (e.g., −6 or 6 degree targets) initially occurring first and more peripheral
targets (e.g., −24 or 24 degree targets) occurring second, and monkey Y was
trained with sounds initially occurring in the opposite sequence. Midway through
neural data collection, we provided additional training to monkey Y to encourage
free choice of which sound to look at first. This allowed us to investigate the
relationship between each behavioral response and the neural representation at that
moment.

Recording procedure and strategy. The behavioral paradigm and the recordings
of eye gaze and single cell activity were controlled using the Beethoven program

(Ryklin Software). Recordings were made with one or two tungsten electrodes
(FHC, impedance between 1 and 3MΩ at 1 kHz). Each electrode was lodged in a
stainless-steel guide tube (manually advanced through the dura) and controlled
independently with an oil hydraulic pulse micropositioner (Narishige International
USA, Inc. and NAN INSTRUMENTS LTD, Israel). First, we localized the IC (and
isolated single neurons) while the monkey listened passively to sounds of different
frequencies. We then collected single unit spiking activity and local field potential
while the monkey performed the single-sound and dual-sound localization tasks.
We used a Multichannel Acquisition Processor (MAP system, Plexon Inc., Dallas,
TX) and Sort Client software. The single unit spiking activity was filtered between
150 Hz and 8 kHz and sampled at 20 kHz, while the LFP signal was filtered between
0.7 and 300 Hz and sampled at either 20 or 1 kHz (see 'Local field potential'). Data
were collected as long as the neurons were well isolated and the monkey performed
the tasks.

Neural signals were recorded primarily from two functionally-defined
subregions of the IC, the low frequency area and the tonotopic area53. Neurons in
the low frequency tuned area generally respond best to low frequencies and there is
little heterogeneity in tuning, whereas neurons recorded in the tonotopic area had
best frequencies that could be either low or high depending on the position of the
recording electrode.

Data sets and sound stimuli. The spiking activity of 166 single neurons was
recorded in two datasets involving the same task but differing in which sound levels
and frequencies were included. A total of 68 of these neurons were recorded as
pairs from separate electrodes positioned in the IC on the same side of the brain at
a minimum spatial separation of 2 mm. Local field potentials (LFP) were also
recorded from 87 of these recording sites.

In both datasets, the sounds consisted of bandpass noise with a bandwidth of
+/−200 Hz. On dual-sound trials, the sounds were delivered from pairs of
locations (24 degrees and −6 degrees), and (−24 and +6 degrees) i.e., 30 degrees
apart. The two sounds differed in frequency, with one of the two sounds having a
742 Hz center frequency and the other differing by at least 0.285 octaves or
multiples of this distance. Single-sound trials involved the same set of locations and
frequencies as on dual-sound trials, but with only a single-sound presented at a
time. All sounds were frozen within an individual session; that is, all trials with a
given set of auditory parameters involved the same time series signal delivered to
the relevant speaker.

In data set I (N= 98 neurons), the sounds presented on dual-sound trials were
742 Hz and a sound from the set (500, 609, 903, 1100 Hz); these frequencies were
±0.285 octave or ±0.57 octaves above or below 742 Hz, or ±3.4 and 6.8 semitones.
Combining two sounds will produce a combination that is louder than either
component. Sound levels were therefore calibrated to provide two sets of
conditions: dual sounds for which the component sounds involve the same signals
to the audio speakers as on single-sound trials, producing a louder dual sound, and
dual sounds for which the level of the component sounds was reduced so that the
overall loudness was the same on dual as on single trials. The levels used for the
components were 51 and 55 dB, producing sound levels of minimum 55 or
maximum 60 dB on dual-sound trials. The same-signal comparison involved using
the 55 dB component levels, singly and on dual-sound trials. The same-loudness
comparison involved using the 55 dB levels on single-sound trials and the 51 dB
levels for the components of dual-sound trials. Calibrations were performed using a
microphone (Bruel and Kjaer 2237 sound level meter) placed at the position
normally occupied by the animal’s head.

Because results did not differ substantively when comparisons were made
between same-signal and same-loudness conditions (Supplementary Figure 2 vs.
Supplementary Figure 3), we pooled across sound levels for subsequent analyses,
and we dispensed with the multiple sound levels for data set II (monkey Y only,
N= 68 neurons), using either 50 or 55 dB levels for all components. We also
incorporated additional sound frequencies, [1340 1632 1988 Hz], to improve the
odds that responses to each of the component sounds differed significantly. Again,
one of the two sounds on dual-sound trials was 742 Hz; the other sound frequency
was either from the original list of [500 609 903 1100] or from the new
frequencies. Most of the neurons in this data set were tested with [500 742 1632].

Cell inclusion and trial counts. The N= 166 neurons (N= 98 from Data Set I and
N= 68 from Data Set II) included for analysis were drawn from a larger set of 325
neurons. Neurons were excluded from analysis if the neuron proved unresponsive
to sound (Student’s t-test, spike counts during the 600 ms after sound onset
compared to the same period immediately prior to sound onset, one-tailed, p >
0.05), or if there were too few correct trials (minimum of five correct trials for each
of the components [A, B, and AB trials] that formed a given triplet of conditions or
if there were technical problems during data collection (e.g., problems with random
interleaving of conditions or with computer crashes). The average number of
correct trials for a given set of stimulus conditions in the included dataset (N=
166) was 10.5 trials. The total number of included triplets was 1484. All analyses
concerned correctly performed trials.

Summation vs. averaging in time-and-trial pooled activity. To evaluate IC
activity using conventional analysis methods that pool across time and/or across
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trials, we counted action potentials during two standard time periods. The baseline
period (Base) was the 600 ms period before target onset, and the sensory-related
target period (Resp) was the 600 ms period after target onset (i.e., ending before, or
at the time of, the offset of the fixation light, Fig. 1b).

Summation/averaging indices: We quantified the activity on dual-sound trials
in comparison to the sum and the average of the activity on single-sound trials,
expressed in units of standard deviation (Z-scores), similar to a method used by28.
Specifically, we calculated,

PredictedSumA;B; ¼ mean RespAð Þ þmean RespBð Þ
�mean BaseA;B

� � ð1Þ

and

PredictedAvgA;B; ¼ mean RespAð Þ þmean RespBð Þð Þ=2 ð2Þ

where RespA and RespB were the number of spikes of a given neuron for a given set
of single-sound conditions A and B (location, frequency, and intensity) that
matched the component sounds of the dual-sound trials being evaluated. As the
response may actually include a contribution from spontaneous baseline activity,
we subtracted the mean of the baseline activity for the single-sounds (BaseA,B).
Without this subtraction, the predicted sum would be artificially high because two
copies of baseline activity are included under the guise of the response activity.

The Z scores for the dual-sound trials were computed by subtracting these
predicted values from the mean of the dual-sound trials (mean(RespAB)) and
dividing by the mean of the standard deviations of the responses on single-sound
trials:

ZsumAB ¼ mean RespABð Þ � PredictedSumA;B

mean std RespAð Þ; std RespBð Þð Þ ð3Þ

and

ZAvgAB ¼ mean RespABð Þ � PredictedAvgA;B
mean std RespAð Þ; std RespBð Þð Þ ð4Þ

If the dual response was within +/−1.96 standard deviations of the predicted
sum or predicted average, we could say the actual dual response was within the
95% confidence intervals for addition or averaging of two single responses,
respectively.

Analysis of whole-trial fluctuations and inclusion criteria. Our statistical tests
for fluctuations in neural firing were conducted on triplets, or related sets of single
and dual-sound trials (A, B, AB trials). To evaluate whether neural activity fluc-
tuates across trials in a fashion consistent with switching between firing patterns
representing the component sounds, we evaluated the Poisson characteristics of the
spike trains on matching dual and single-sound trials (triplets: AB, A and B). Spike
train data from each trial was summarized by the total spike count between
0–600 ms or 0–1000 ms from sound onset (i.e., whatever the minimum duration of
the overlap between fixation and sound presentation was for that recorded neuron,
see section Sound localization task). We modeled the distribution of spike counts in
response to single-sounds A and B as Poisson distributions with unknown rates λA,
denoted Poi(λA), and λB, denoted Poi(λB). Four hypotheses were considered for the
distribution of sound AB spike counts:

1. a mixture distribution α � Poi λA� �þ 1� αð Þ � Poi λB� �
with an unknown

mixing weight α (Mixture)
2. a single Poi(λAB) with some λAB in between λA and λB (Intermediate)
3. a single Poi(λAB) where λAB is either larger or smaller than both λA and λB

(Outside)
4. a single Poi(λAB) where λAB exactly equals one of λA and λB (Single)

Relative plausibility of these competing hypotheses was assessed by computing
their posterior probabilities with equal prior weights (1/4) assigned to the models,
and with default Jeffreys’ prior71 on model specific Poisson rate parameters, and a
uniform prior on the mixing weight parameter α. The Jeffreys’ prior was truncated
to appropriate ranges for the Intermediate and Outside models. Posterior model
probabilities were calculated by computation of relevant intrinsic Bayes factors29.

Triplets were excluded if either of the following applied: (1) the Poisson
assumption on A and B trial counts was not supported by data; or (2) λA and λB

were not well separated. To test the Poisson assumption on single-sound trials A
and B of a given triplet, we used an approximate chi-square goodness of fit test with
Monte Carlo p-value calculation. For each sound type, we estimated the Poisson
rate by averaging counts across trials. Equal probability bins were constructed from
the quantiles of this estimated Poisson distribution, with number of bins
determined by expected count of five trials in each bin or at least three bins—
whichever resulted in more bins. A lack-of-fit statistic was calculated by summing
across all bins the ratio of the square of the difference between observed and
expected bin counts to the expected bin count. Ten thousand Monte Carlo samples

of Poisson counts, with sample size given by the observed number of trials, were
generated from the estimated Poisson distribution and the lack-of-fit statistic was
calculated from each one of these samples. p-value was calculated as the proportion
of these Monte Carlo samples with lack-of-fit statistic larger than the statistic value
from the observed data. Poisson assumption was considered invalid if the resulting
Monte Carlo p-value < 0.1.

For triplets with valid Poisson assumption on sound A and B spike counts, we
tested for substantial separation between λA and λB, by calculating the intrinsic
Bayes factor of the model λA ≠ λB against λA= λB with the non-informative
Jeffreys’ prior on the λ parameters: λA, λB or their common value. The triplet was
considered well separated in its single sounds if the logarithm of the intrinsic Bayes
factor equaled three or more, which is the same as saying the posterior probability
of λB ≠ λA exceeded 95% when a priori the two models were given 50–50 chance.

It should be noted that the sensitivity/specificity of detection were not equal
across the four competing hypotheses. Because the Single hypothesis is a limiting
case of each of the other three hypotheses, the method’s sensitivity to this response
pattern is lower than for the other three possible outcomes. This was verified on
simulated data for which the truth could be known; simulated Mixtures,
Intermediates, and Outsides were commonly correctly categorized with >95%
confidence, whereas Singles were correctly categorized but at a lower level of
confidence.

Dynamic Admixture Point Process Model. To evaluate whether neural activity
fluctuates within trials, we developed a novel analysis method we call a Dynamic
Admixture Point Process model (DAPP) which characterized the dynamics of
spike trains on dual-sound trials as an admixture of those occurring on single-
sound trials. The analysis was carried out by binning time into moderately small
time intervals. Given a predetermined bin-width w= T/C for some integer C, we
divided the response period into contiguous time intervals I1= [0;w); I2= [w; 2w)
… IC= [(C-1)w,Cw) and reduced each trial to a C-dimensional vector of bin counts
(Xe

j1,…,Xe
jC) for e ∈ {A;B;AB} and j= 1,…, ne. Mathematically, Xe

jC=Ne
j(Ic). The

results reported here were based on w= 50 (with time measured in ms and T= 600
or 1000), but we also repeated the analyses with w= 25 and noticed little
difference.

Our model for the bin counts was the following. Below we denote by t�c the mid-
point (c−1/2)w of sub-interval Ic.

1. Xe
jc � Poi w � λe t�c

� �� �
, e∈{A,B}, c ∈ {1,…,C}, j∈{1,…,ne}. We assume both λA

(t) and λB(t) are smooth functions over t∈ [0, T].

2. XAB
jc � Poi w � λj t�c

� �� �
, where λj(t) = αj(t) + {1 − αj(t)}λB(t) with αj:[O,

T]→(0,1) being unknown smooth functions.
We modeled αj(t) = S(ηj(t)), where S(t) = 1/(1 + e−t), and, each ηj(t) was taken

to be a (smooth) Gaussian process with E{ηj(t)} ≡ ϕj, Var ηj tð Þ
n o

� ψj , and,

Corfηj tð Þ; ηjðt′Þg ¼ expf�0:5 t � t′
� �2

=‘2j g. The three parameters ðϕj;ψj; ‘jÞ
respectively encoded the long-term average value, the total swing magnitude and
the waviness of the αj(t) curve.—Intuitively, these parameters can be thought of as
related to the means and variances of the distribution of weight values α regardless
of time within a trial, as well as the correlation between the weight observed at one
point in time and the weight observed at another on any given trial. While the
temporal imprint carried by each αj was allowed to be distinct, we enforced the

dual trials to share dynamic patterns by assuming ϕj;ψj; ‘j

� �
; j ¼ 1; ¼ ; nAB, were

drawn from a common, unknown probability distribution P, which we called a
dynamic pattern generator and viewed as a characteristic of the triplet to be
estimated from the data.

To facilitate estimation of P, we assumed it decomposed as P ¼ Pϕψ ´P‘, where
Pϕψ was an unknown distribution on (−∞,∞)×(0,∞) generating (ϕj,ψj), and, P‘ was
an unknown distribution on (0,∞) generating ‘j . To simplify computation, we
restricted ‘j to take only a finitely many positive values, representative of the
waviness range we are interested in (in our analyses, we took these representative
values to be {75, 125, 200, 300, 500}, all in ms). This restricted P‘ to be a finite
dimensional probability vector.

We performed an approximate Bayesian estimation of model parameters.
Note that only λA(t) and λB(t) were informed by the single-sound trial data.
All other model parameters were informed only by the dual-sound trial data
conditionally on the knowledge of λA(t) and λB(t). To take advantage of this
partial factorization of information sources, we first smoothed each set of single-
sound trial data to construct a conditional gamma prior for the corresponding
λe t�c
� �

; e 2 A;Bf g; c ¼ 1; ¼ ;C, where the gamma distribution’s mean and
standard deviation were matched with the estimate and standard error of λe t�c

� �
. A

formal Bayesian estimation was then carried out on all model parameters jointly by
(a) using only the dual-sound trial data, (b) utilizing the conditional gamma priors
on λA(t) and λB(t), and, (c) assuming a Dirichlet process prior72 on Pϕψ and an
ordinary Dirichlet prior on P‘ . This final step involved a Markov chain Monte
Carlo computation whose details will be reported in a separate paper.

Next, the estimate of the generator P was utilized to repeatedly simulate α(t)
functions for hypothetical, new dual trials for the triplet. For each simulated α(t)
curve, we computed its maximum swing size αj j ¼ maxtαðtÞ �mintα tð Þ; and, time

aggregated average value �α ¼ R T
0 αðtÞdt=T . The waviness index of the triplet was

computed as the odds of seeing an α(t) function exhibiting a swing of at least 50%
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between its peak and trough:

rw ¼ Pðjαj> 0:5Þ
Pðjαj< 0:5Þ

where P denotes the sampling proportion of the simulated α draws. The triplet’s
extremeness index was computed as the odds of seeing an α(t) function with its
long-term average �α being closer to the mid-way mark of 50% than the extremes:

rc ¼
P �α 2 0:25; 0:75ð Þð Þ
P �α =2 0:25; 0:75ð Þð Þ

The two indices were then thresholded to generate a 2-way classification of all
triplets. On waviness, a triplet was categorized as Wavy, Flat or Ambiguous
according to whether rw>1.3, rw>0.77, or, 0:77 � rw � 1:3, respectively On
extremeness, the categories were Central, Extreme, or, Ambiguous according to
whether rc>3.24, rc<1.68, or, 1:68 � rc � 3:24, respectively.

In addition to the Flat/Wavy and Extreme/Central classification, a third
parameter was evaluated for each triplet: the degree of skewness in the distribution
of �α� :

rs ¼ max
P �α�< 0:5ð Þ
P �α�> 0:5ð Þ ;

P �α�> 0:5ð Þ
P �α�< 0:5ð Þ

� ��

which ranges in (1,∞). Each triplet’s Flat/Wavy/Central/Extreme tag could then
be subcategorized as either Skewed or Symmetric depending on whether rS > 4 or
rS < 2 (with no label in the middle). This subcategorization step was useful for
distinguishing the dynamic admixtures associated with the whole-trial
categorizations of Single and Outside from Intermediate and Mixture, with Single
and Outside tending to be classified as Skewed. Supplementary Table 1 and
Supplementary Figures 6 and 7 give the full results of the main 2-way classification
together with the symmetry/skewness subclassification, cross tabulated with the
classification done under the whole trial spike count analysis.

A vs. B assignment scores. A vs. B assignment scores were computed for several
analyses (the example shown in Fig. 1e, f; pairs of recorded neurons; the rela-
tionship between spiking activity and local field potential; and the relationship
between saccade sequences and spiking activity). For each triplet, every dual-sound
trial received an A-like score and a B-like score, either for the entire response
window (600–1000 ms after sound onset) or for 50 ms time bins. The scores were
computed as the posterior probability that the spike count in each dual-sound trial
was drawn from the Poisson distribution of single-sound spike counts.

For the pairs analysis, the A vs. B assignment scores were computed within each
50 ms time bin independently for each pair of neurons recorded simultaneously.
The scores were normalized across trials by subtracting the mean score and
dividing by the standard deviation of scores for that bin (a Z-score in units of
standard deviation). Only conditions for which both recorded neurons exhibited
reasonably different responses to the A vs. the B sound and for which there were at
least five correct trials for A, B, and AB trials were included (t-test, p < 0.05). A total
of 206 conditions were included in this analysis.

Local field potential analysis. We analyzed the local field potential from 87 sites
in both monkeys (30 sites from monkey P’s left IC, 31 sites from monkey Y’s right
IC and 26 sites from monkey Y’s left IC). The LFP acquisition was either recorded
in discrete temporal epochs encompassing behavioral trials (roughly 1.2 to 2 s long)
and at a sampling rate of 20 kHz (Dataset I, part of Dataset II), or as a continuous
LFP signal during each session, at a sampling rate of 20 or 1 kHz (rest of Dataset
II). We standardized the LFP signals by trimming the continuous LFP into single
trial intervals and down-sampling all signals to 1 kHz. The MAP system filters LFP
signals between 0.7 and 300 Hz; no additional filtering was applied. For each site we
subtracted the overall mean LFP value calculated over the entire session, to remove
any DC shifts, and we excluded trials that exceeded 500 mV.

For the voltage-and-time domain analysis presented in Fig. 5a, for each triplet,
we assigned individual dual-sound trials to two groups based on the total spike
count in a 600 ms response window (see Methods: A vs. B assignment scores). The
average LFP was then compared across the two groups in two 600 ms windows
before and after sound onset (baseline and response periods). The results reported
here refer to these mean-normalized LFP signals. We obtained similar results when
the amplitude of each trial’s LFP was scaled as a proportion of the maximum
response within the session.

Face patch MF recording procedures. The full experimental procedure is
described in37. We give a summary here. All procedures conformed to the US
National Institutes of Health Guide for Care and Use of Laboratory Animals, and
were approved by The Rockefeller University Institutional Animal Care and Use
Committee (IACUC).

The localization of face patch MF was guided via fMRI as described in37. A total
of 105 single neurons were recorded from MF in two male adult macaques
(monkey Q, Macaca mulatta, and monkey J, Macaca fascicularis). The monkeys
were head-restrained and performed a fixation task while viewing visual stimuli on
a CRT screen placed 57 cm in front of them. Eye position was monitored with an
infrared pupil tracking system (ETL-200, ISCAN Inc.,Burlington, MA). The
monkeys were rewarded with juice for maintaining the eyes within a ≤2 × 2 degree
square window around the fixation point.

All stimuli were controlled by custom software written in C (Visiko) running on
a Windows PC. For each neuron, three visual stimuli (400 ms, 4 × 4 degrees in size)
were selected from among a pool of face and object stimuli: a face that elicited a
strong response, dubbed the preferred face; a face that elicited a weak or no
response, dubbed the non-preferred face; and an object that also elicited a poor
response, dubbed the non-preferred object. They were presented either alone or in
pairs consisting of the preferred face and one or the other of the non-preferred
stimuli. Thus, there were two triplets per cell suitable for analysis. The stimuli were
randomly interleaved with each other and with other conditions not analyzed here
see37.

Stimulus positions on the screen were such that the preferred face was always at
the center of the neuron’s receptive field whereas the non-preferred stimulus could
occupy one of eight equidistant locations adjacent to the preferred face. The exact
location of the non-preferred face/object was ignored in the present analysis, but
excessive heterogeneity in the responses due to variation in location would have
caused the triplet to be excluded on the grounds of not exhibiting a sufficiently
Poisson-like spike count distribution on the relevant single-stimulus trials.

The data were otherwise analyzed as described in the preceding Analysis
section.

Data availability. The data and computer code that support the findings of this
study are available from the corresponding authors upon reasonable request.
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