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Saccadic Corollary Discharge Underlies Stable Visual
Perception
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Saccadic eye movements direct the high-resolution foveae of our retinas toward objects of interest. With each saccade, the image jumps
on the retina, causing a discontinuity in visual input. Our visual perception, however, remains stable. Philosophers and scientists over
centuries have proposed that visual stability depends upon an internal neuronal signal that is a copy of the neuronal signal driving the eye
movement, now referred to as a corollary discharge (CD) or efference copy. In the old world monkey, such a CD circuit for saccades has
been identified extending from superior colliculus through MD thalamus to frontal cortex, but there is little evidence that this circuit
actually contributes to visual perception. We tested the influence of this CD circuit on visual perception by first training macaque
monkeys to report their perceived eye direction, and then reversibly inactivating the CD as it passes through the thalamus. We found that
the monkey’s perception changed; during CD inactivation, there was a difference between where the monkey perceived its eyes to be
directed and where they were actually directed. Perception and saccade were decoupled. We established that the perceived eye direction
at the end of the saccade was not derived from proprioceptive input from eye muscles, and was not altered by contextual visual informa-
tion. We conclude that the CD provides internal information contributing to the brain’s creation of perceived visual stability. More
specifically, the CD might provide the internal saccade vector used to unite separate retinal images into a stable visual scene.

Key words: corollary discharge; efference copy; FEF; macaque; MD; visual perception

Introduction
We benefit from rapid saccadic eye movements that direct the
high-resolution foveae of our retinas toward objects of interest
(Fig. 1A). Unfortunately, such rapid eye movements, which oc-
cur several times per second, displace the image on the retina, and
so should produce a perceived jump of the visual scene like the
jerks so frequently seen in home videos. Our visual perception,

however, remains stable because our brain compensates for these
disruptions.

This perceptual stability almost certainly results from not one
but a combination of compensations executed by extensive cir-
cuits in the brain (Wurtz, 2008). Whatever the final perceptual
stages of such compensation may be, an initial step must be de-
riving the perceived amplitude and direction of each saccade. For
example, the saccades illustrated in Figure 1A can be represented
by a vector (white arrows) where each vector produces a new
image centered on the fovea (Fig. 1B). Thus, vision is a continu-
ing repetition of the perceived saccadic vector and a new visual
image falling on the fovea. If both the saccade vector and the
resulting image centered on the fovea are known, the visual scene
can be reconstructed (Fig. 1C). This is true whether the mecha-
nism for visual stability is a remapping of a retinotopic system or
a conversion to a spatiotopic map (Wurtz, 2008).

Much is known about the image processing underlying per-
ception, but little is known about the source of the vectors con-
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Significance Statement

Visual stability is one of the most remarkable aspects of human vision. The eyes move rapidly several times per second, displacing
the retinal image each time. The brain compensates for this disruption, keeping our visual perception stable. A major hypothesis
explaining this stability invokes a signal within the brain, a corollary discharge, that informs visual regions of the brain when and
where the eyes are about to move. Such a corollary discharge circuit for eye movements has been identified in macaque monkey.
We now show that selectively inactivating this brain circuit alters the monkey’s visual perception. We conclude that this corollary
discharge provides a critical signal that can be used to unite jumping retinal images into a consistent visual scene.
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necting successive retinal images. One possibility proposed by
philosophers and scientists from Descartes to Helmholtz
(Grüsser, 1995) is that signals within the brain provide the infor-
mation needed to monitor ongoing movements. This internal
information has come to be known as corollary discharge (CD)
or efference copy (Sperry, 1950; Von Holst and Mittelstaedt,
1950). Each time a saccade occurs, a CD copy of the actual sac-
cade vector driving the eye is sent to other brain regions related to
visual perception to inform them of the impending saccade (Fig.
1D, right). Recently, a CD for saccades has been identified in the
Rhesus monkey, an animal with visual brain anatomy and func-
tion remarkably similar to that in humans (Orban et al., 2004).
This CD copy of the actual saccade vector travels in a circuit (Fig.
1D, left) from superior colliculus (SC) to the medial dorsal (MD)
region of thalamus, and then to the frontal eye field (FEF) in
frontal cortex (Sommer and Wurtz, 2002, 2004a, 2008). A role for
this CD in controlling movement has been established by show-
ing that disruption of the CD circuit degrades a monkey’s ability
to guide rapid sequences of saccades when visual input is not
fast enough to guide them (Hallett and Lightstone, 1976; Som-
mer and Wurtz, 2004b). The relationship of the CD to motor
control is compelling enough that several commentaries have
concluded that the CD is probably used for motor control
(Bays and Husain, 2007) or for the selection of saccade targets
(Zirnsak and Moore, 2014). So far no direct evidence has been
presented that CD contributes to perception (for review, see
Higgins and Rayner, 2015).

We address whether the established CD circuit from superior
colliculus to frontal cortex actually contributes to visual percep-
tion. Our first task was to get the monkey to report where it
perceived its eye to be directed at the end of a saccade (Fig. 1B,
arrows). We did this using a method developed in human psy-
chophysical experiments (Deubel et al., 1996). We then located
and reversibly inactivated the CD at its relay in the lateral edge of
MD, and found that this altered the monkey’s perceived saccade
vector. Finally, we established the dominance of the CD signal
over both proprioceptive and visual influences. We conclude that
the vector provided by the CD of each saccade provides the crit-
ical internal vector used to eventually unite the jumping retinal
images into a stable visual scene.

Materials and Methods
Two adult male monkeys (Macaca mulatta, Monkeys C and W), weigh-
ing between 9 and 10 kg, were implanted with scleral search coils for
measuring eye position, a post for immobilizing the head during exper-
iments, and a recording cylinder to record from and inactivate regions of
the thalamus. Details of these procedures, the task, and the training pro-
cedures have been described previously (Sommer and Wurtz, 2000;
Joiner et al., 2013). All procedures were approved by the Institute Animal
Care and Use Committee and complied with Public Health Service Policy
on the humane care and use of laboratory animals.

Psychophysical task. We used a task that allowed us to infer differences
between the monkey’s perceived saccade vector and its actual saccade
vector. We did this by measuring the monkey’s postsaccadic judgments
of the locations of presaccadic targets. The task we used was adapted from
that developed for humans by Deubel et al. (1996, 1998, 2002), and then
used in other human experiments (Collins et al., 2009; Ostendorf et al.,
2010), and finally adapted for the monkey (Joiner et al., 2013).

On each trial the monkey looked at a red fixation spot generated by a
laser (�0.1° diameter) at the center of a tangent screen 58 cm in front of
it. The monkey fixated for 500 ms until a peripheral target (another laser
spot) appeared 8° either to the left or right of the fixation spot (Fig. 2A).
The fixation spot went off after a random interval of 500 –1000 ms,
cueing the monkey to make a saccade to the target. During the saccade,
we displaced the saccade target up to 2° to either the left or the right of the
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Figure 1. A possible solution for the problems that saccades present for stable visual per-
ception. A, Saccades (lines) and fixations (dots) from a human subject viewing a fragment of the
painting by Seurat, “A Sunday Afternoon on the Island of La Grande Jatte”. The white arrows
represent three hypothetical saccade vectors. B, The foveal images at the end of each of the
three saccade vectors. C, Reconstruction of the visual scene using just perception of the saccade
vectors and the retinal image. D, A corollary discharge that could provide the saccade vectors. Arrows
on the right indicate a CD vector to cortex that represents a copy of the movement vector generating
the saccade. The circuit on the left outlines an identified CD in the monkey brain from saccade-related
neurons in SC through a thalamic relay in the MD to FEF. We hypothesize that the CD informs frontal
cortex how to arrange successive retinal inputs into a stable visual perception.
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target’s original position. We refer to these left and right target displace-
ments as either being forward (in the direction of the saccade) or back-
ward (in the opposite direction). The displacement (up to 2° maximum
in either direction) varied randomly across trials, and consisted of the
target disappearing after saccade initiation, and then reappearing in the
new location before the end of the saccade. We displaced the target dur-
ing the saccade because thresholds for detecting displacement are ele-
vated during saccades; transients associated with target displacement (ie,
apparent motion) are not detected (Bridgeman et al., 1975).

Targets were displaced up to 2° forward or backward in either 0.2° or
0.3° increments. On any given trial, the target displacement was chosen
by first generating a normally distributed random number with a mean
of 0° and SD of 1.3°, then selecting the displacement that was closest to
that random number. Displacement locations chosen from this distribu-
tion were truncated at 2°, the maximum target displacement allowed in
either direction. This insured that smaller target displacements would be
more frequent, quickly providing data to produce a significant psycho-
metric curve. During all trials, the monkey was in the dark so there were
no visual spatial cues available, and between trials a background light was
turned on to minimize dark adaptation during the experiment.

At the end of the saccade, the monkey indicated the direction of the
target displacement (left or right) by moving a bar in the same direction

(left or right) to obtain a liquid reward. Over a series of trials, we plotted
the frequency of “forward” or “backward” reports for each displacement.
From the resulting psychometric curve (shown schematically in Fig. 2B)
we determined the point at which the monkey moved the bar with equal
frequency (50%) forward and backward, or put another way, the point at
which the monkey perceived no target displacement during the saccade.
This is the perceptual null location, indicating the monkey’s perception
of the presaccadic target location made after the end saccade of the sac-
cade. We also measured the perceptual threshold: the distance in degrees
on the psychometric curve from the perceptual null point to the point
where the monkey reports 75% forward displacements.

It should be noted that monkeys received significant training on the
task before the collection of experimental data. Initial training was com-
plete when the monkey could dissociate saccade direction and target
displacement. For example, when the monkey reliably made correct per-
ceptual reports (�75%) for an obvious leftward target displacement (2°)
for a rightward saccade, it was considered trained on the task. Overtrain-
ing was then done to reduce the variability in the psychometric curve
from day to day. Monkeys did �300 – 600 correct trials in a given exper-
imental session.

A variation used in the human task was that the displaced target came
on either during the saccade or after a 200 ms gap (Deubel et al., 1996),
long after the saccade had ended. In our previous behavioral experi-
ments, monkeys performed no differently whether we presented the dis-
placed target during the saccade or after a delay (Joiner et al., 2013),
which we assume is a consequence of the substantially greater training
received by monkeys. In the present experiments, the displaced target
always reappeared during the saccade, not afterward.

The overall timeline for each monkey was as follows: initial surgery for
the eye coil and head implant, preliminary training on simple fixation
and saccade tasks, training on the psychophysical task implementing
manual bar responses (4 –9 months), second surgery for the recording
cylinder and craniotomy, initial MRI for location of the thalamic target,
verification of location by neuronal recording, and finally muscimol in-
activations while performing the psychophysical task.

Significance tests. For determining the significance of perceptual offsets
(POs) and changes in thresholds during MD inactivation, we first fit the
data to a simple psychometric curve (a cumulative Gaussian) by mini-
mizing the (negative) log-likelihood of the curve parameters (Wichmann
and Hill, 2001). We then used a likelihood-ratio test to test for significant
differences between the curves. Because the perceptual offset is the dif-
ference between the perceptual null locations during control and inacti-
vations, the significance of the difference between perceptual null
locations due to MD inactivation is equivalent to the significance of the
perceptual offset. We first fit the control and inactivation data from each
hemifield to an unconstrained pair of cumulative Gaussian curves. In
each hemifield, for both the control and the inactivation we allowed the
perceptual null location and threshold to change, obtaining the log-
likelihood for the fitted perceptual null location and threshold parame-
ters (the mean and SD of the cumulative Gaussian). We then fit the same
control/inactivation data to a pair of curves that shared the same percep-
tual null location parameter, obtaining a second log-likelihood for the
new fit with no change in perceptual null location. We calculated the
difference between the two log-likelihoods, which ends up being � 2 dis-
tributed with one degree of freedom (because of the difference in the
added perceptual null location parameter between fits). (The ratio of the
likelihoods is also � 2 distributed, but obtaining the log-likelihoods dur-
ing fitting is more straightforward). The � 2 difference in log-likelihoods
represents the significance of the difference between the two perceptual
null locations (PNLs): the perceptual offset. Therefore, the p value de-
rived from this � 2 difference represents the significance of the perceptual
offset from MD inactivation.

For changes in threshold due to MD inactivation, we performed a
similar analysis, this time using the threshold values between control and
inactivation curves.

We also used an extended version of the psychometric function in
which the lower and upper asymptotes were not fixed at zero and one, but
were permitted to vary. To compare the relative contributions of varying
perceptual null locations and varying asymptotes, we again used the
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Figure 2. Measuring a monkey’s perceived saccade vector. A, Behavioral task. At the start of
each trial, when the fixation point went out, the monkey made a saccade to a target 8° either to
the right or to the left of initial fixation. During the saccade, the target was displaced randomly
(up to 2°) either forward or backward during the saccade. After the saccade to the original
target, the monkey received a reward for manually moving a bar in the direction of the target
displacement. B, Schematic of a possible psychometric function. The function shows the pro-
portion of forward (in the direction of the saccade) judgments ( y-axis) for each target displace-
ment (x-axis). The PNL is the postsaccadic target location at which the monkey perceived no
displacement. The threshold is the difference in displacement between 50 and 75% forward
judgments.
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likelihood-ratio test. We fit the control/inactivation data to a pair of
curves in which only the asymptotes were permitted to change. We
compared the log-likelihood from this fit to that when the PNLs were
permitted to vary between curves as well. A significant difference in the
log-likelihoods meant that varying the PNLs significantly improved
the fit. The significance of varying the asymptotes was computed in a
manner similar to that of varying the perceptual null locations.

To measure the change in the monkey’s behavior in a parameter-
independent manner, we calculated a performance asymmetry index that
quantified the difference in the monkey’s error rates for forward and
backward target displacements (see Fig. 4D). We used unconstrained fits
to the extended psychometric function above to characterize the data,
and calculated the integral below the psychometric function (from �2°
to 0° for backward displacements) and above the psychometric function
(from 0° to 2° for forward displacements). Each integral could range
from 0 to 2, so we divided by 2 resulting in integrals that ranged from 0 to
1. The asymmetry index was simply the normalized integral above the
curve (for forward displacements) minus the integral below the curve
(for negative displacements). This yielded an index from �1 to 1 that
represented the asymmetry in the monkey’s error rates between forward
and negative displacements, in effect quantifying the change in the psy-
chometric function. Negative values of the asymmetry index suggest
backward shifts in the psychometric function (regardless of its actual
parameterization), whereas positive indices suggest forward shifts.

Differences in saccade endpoints between control and inactivation days
were calculated using a two-dimensional Kolmogorov–Smirnov test.

To examine correlations between saccadic eye movements and percep-
tual judgments, we first classified trials based on the amplitude of the
saccade. Taking trials only with target displacements �0.5° (Joiner et al.,
2013; see Fig. 6 for explanation of the 0.5° threshold), we binned saccade
amplitudes into 10 bins with equal numbers of trials, and then calculated
the proportion of forward responses in each bin. If the monkey accounts
for its eye position using the CD, there should be little correlation be-
tween saccade amplitude and perceptual judgment. In each hemifield, we
calculated the change in the strength of correlation (the absolute value of
the correlation coefficient) between controls and inactivation.

Saccadic eye movements. Eye position was sampled at 1000 Hz. At the
start of each trial, monkeys were required to be within a 1.5° square
around the fixation point. After the saccade to the target, only trials
where the saccade ended within 5° of the original target location were
analyzed. Saccade initiation was identified offline as the time that eye
velocity and acceleration both exceed 100°/s and 5000°/s 2, respectively.

The procedure for calibrating eye position was minimized to maxi-
mize task trials. Calibration concentrated on the location of fixation. We
qualitatively deemed the peripheral eye positions to be sufficient if the
saccade endpoints before the inactivation were well within the 5° target
window. Although this imperfect calibration introduced day-to-day dif-
ferences in saccade endpoints, the speediness of the calibration proce-
dure yielded substantially more experimental trials.

One monkey had occasional corrective saccades to the targets after they
appeared in their displaced locations. Such saccades were even rarer in the
second monkey. When they did occur, they were to the displaced target, and
so were visually guided. As these corrective saccades were either absent or not
related to perceptual judgments, we do not consider them further.

Grid-aligned MRI localization of inactivation sites. One of the greatest
challenges in these experiments was localizing the appropriate area of
MD identified previously as a relay in the CD circuit between SC and FEF
(Sommer and Wurtz, 2004a). We achieved this through a combination of
structural MRI identification and single neuron recording. The first step
was to review the histology comprising fiber- and cell-stained sections
from Sommer and Wurtz (2004a). We located the sections with penetra-
tion tracks in a standard atlas (Paxinos et al., 2000) using multiple land-
marks: the claustrum, the putamen, the tail of the caudate nucleus, the
lateral geniculate nucleus, and the cortical patterns of gyri and sulci. We
then located the corresponding slices in the structural MRIs that matched
both the histology and the atlas using the same landmarks. We digitally
overlaid both the histology slides and the atlas sections on the corre-
sponding MRI slices to locate the lateral edge of MD thalamus.

The MRIs were made with a contrast agent filling the recording grid so
that the geometry of the grid and chamber was evident. Once the area of
interest was located in the MRIs, we easily determined the A-P and M-L
grid locations targeting the desired area.

We recorded from the target area with standard recording techniques,
and identified the relay in MD by the presence of neurons that began
their activity before the onset of the saccade. We found such neurons in a
very limited area extending usually only 2–3 mm anterior to posterior
and 1–2 mm medial to lateral.

After establishing our location in the desired region of MD, we made
injections in this area and verified the locations of the injections by
recording from an electrode attached to the side of the injection syringe
that protruded 0.5 mm beyond the tip of the syringe. Once we deter-
mined the injection site, we advanced the syringe to place the vertical
center of the opening of the syringe needle at the desired location.

We developed a custom application, implemented as a plug-in for
ImageJ (Schneider et al., 2012), to visualize injection sites in the struc-
tural MRIs. We first rotated the 3D MRI dataset in three dimensions so
that the grid (which was visible in the MRI) was aligned to the rotated
MRI volume. We selected the boundaries of the grid and initiated the
custom plug-in, which then zeroed the image coordinate frame to the
center of the grid. By entering the grid coordinates and depth of each
injection, the plug-in calculated the x-, y-, and z-coordinates of each
injection within the MRI, and placed a mark in the appropriate MRI slice
at the location of the injection. We calibrated our method by entering the
grid coordinates and depths of lesions we made by passing current
through an Elgiloy electrode (Koyano et al., 2011), and confirming the
alignment of the visible lesions with their marked locations.

Injection parameters. Our primary data were derived from 22 musci-
mol injections in two monkeys. In Monkey W, we did eight injections in
one hemisphere, and in Monkey C, we did eight injections in one hemi-
sphere and six in the other. In addition, in Monkey C, we did two saline
injections: one in each hemisphere at locations that had previously
yielded significant results. This comprised a total of 24 injections.

We performed an additional 12 muscimol injections (7 in Monkey W,
5 in Monkey C) to examine the effect of interleaving trials performed in
the light and in the dark. These were not included in the main analysis
because of the halved number of trials the monkey performed in the dark.

We made muscimol injections of 0.25– 0.35 �l (5 mg/ml) at sites that
met the two criteria outlined above: (1) the site was in or near the region
suggested by MRI analysis, and (2) we recorded neurons with presaccadic
activity at the potential injection site. Our goal was to make small injec-
tions to minimize spread of muscimol into areas adjacent to our target.
Injections were made over 6 –10 min. using a computer-controlled sy-
ringe driver usually injecting 0.1 �l every 12 s.

Results
Perception changes during MD inactivation
We cannot directly measure the underlying CD vectors suggested in
Figure 1B. However, we can infer the internal CD vectors from mea-
surements of the perceived saccade vectors. We did so using the task
described in Materials and Methods and in a previous report (Joiner
et al., 2013). In each trial, the monkey moved a bar to indicate which
direction it perceived a target to be displaced during the saccade.
Target displacement occurred entirely during the saccadic eye move-
ment (Fig. 2A). Judgments over many trials in this two-alternative
forced-choice task produced a psychometric function (illustrated
schematically in Fig. 2B) that shows the monkey’s report of displace-
ment direction ( y-axis) as a function of actual displacement (x-axis,
forward displacements are in the direction of the saccade). The point
on the psychometric curve where the monkey reported forward and
backward displacements with equal frequency was taken as the per-
ceptual null point. We regard this point as the monkey’s perception
of the original target location; if the target was not perceived to move,
it must be in the same location as it was before the saccade.

Figure 3A shows the results of an example muscimol inactivation
in MD thalamus. In this experiment, inactivation predominantly

34 • J. Neurosci., January 6, 2016 • 36(1):31– 42 Cavanaugh et al. • Perception and Corollary Discharge



affected perception in the visual field ipsilateral to the inactivation
(Fig. 3A, left). The black curve shows the psychometric function
from the control day before the injection The perceptual null loca-
tions for this control day and for the day after the inactivation (data
not shown) were near zero, and their difference (0.16°) was not
significant (p � 0.26, likelihood ratio test). The ipsilateral psycho-
metric function during inactivation (red curve) was shifted back-
ward from the direction of the saccade (in the negative direction on
the horizontal axis) compared with controls. The perceptual null
location during MD inactivation was �0.77° and was significantly
different from both control days (p � 0.001).

Although modification of the CD produced a clear and signif-
icant perceptual offset in the ipsilateral hemifield in this case, no
significant offset was evident for judgments in the contralateral
visual field (Fig. 3A, right). In addition, there was no significant
difference from inactivation in the slopes of the curves (ie,
changes in perceptual threshold). Other inactivations did, how-
ever, show changes in threshold, but these did not correlate with
changes in perceptual offset (r � �0.12, p � 0.39).

The perceptual offset represents the difference in the mon-
key’s perceived target location before and during CD modifica-
tion. This difference, we submit, is equivalent to the difference in
the monkey’s perceived saccade vector before and during CD
modification. This is true, however, only if these differences do
not correlate with variations in the actual saccade vector. With-
out this assumption, the difference between the perceived sac-
cade vector and the actual saccade vector could be due to changes
in either one or the other. This assumption is tested in the next
section, in which we will verify that perceived changes in target
locations are not correlated with changes in the actual saccades.

Figure 3B shows the perceptual null locations during all 24
MD inactivations (including 2 saline injections) during controls
(x-axis) and during injections (y-axis). Each point represents a
separate inactivation, and positive values represent perceptual
null locations displaced forward (in the direction of the saccade).
The dispersion of the data along the y-axis compared with the
x-axis shows that perceptual null locations were frequently far-
ther from zero during MD inactivation than on control days.

Previous inactivations of the CD in MD produced deficits
primarily in the visual field contralateral to the injection site
(Sommer and Wurtz, 2004a,b), but clearly the sample in Figure
3B show changes in both ipsilateral and contralateral visual fields.
Figure 3C compares the effects in the two visual fields by plotting
the perceptual offsets with each inactivation. These perceptual
offsets are the differences between controls and inactivations in
Figure 3B. We have converted the forward/backward perceptual
null locations from Figure 3B into ipsiversive/contraversive per-
ceptual offsets for Figure 3C so that for both sides, positive values
indicate ipsiversive perceptual offsets (those toward the ipsilat-
eral side). Inactivations with ipsiversive perceptual offsets in both
hemifields fall in the upper right quadrant. Commensurate con-
traversive perceptual offsets fall in the lower left quadrant. Such
matching was frequently the case as indicated by the correlation
between perceptual offsets in both visual hemifields (least-
squares regression shown, r � 0.70, p � 0.0001). Note, however,
that some inactivations did not have perceptual offsets in the
same direction (Fig. 3C, top left, bottom right).
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greater effects. C, Relationship between perceptual offsets in ipsilateral and contralateral hemi-
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4

and the y-axis shows perceptual offsets for targets in the contralateral hemifields. The circled
point represents the experiment illustrated in A. MD inactivation altered the perceived saccade
vectors to variable degrees in both ipsilateral and contralateral visual hemifields.
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This range of observations is consistent with the finding that
some FEF neurons receive information from both contralateral and
ipsilateral SC, and some from one or the other, and that the cross-
hemifield interactions could first occur in thalamus (Crapse and
Sommer, 2009). A variety of visual field deficits would therefore be
expected following MD inactivation, and a variety were found both
in monkeys (Sommer and Wurtz, 2004b) and humans (Gaymard et
al., 1994; Bellebaum et al., 2006; Ostendorf et al., 2010, 2013).

In the example shown in Figure 3A, the responses for contra-
versive target displacements (negative ipsilateral displacements
and positive contralateral displacements) are more variable than

the responses for ipsiversive displacements. Because of this vari-
ability, the individual response points do not reach the canonical
psychophysical asymptotes of zero (ipsilateral) or one (contralat-
eral). For this reason, we next examined the possibility that our
data might be better represented by a psychometric function with
upper and lower asymptotes that were free to vary, rather than
being fixed at zero or one. Figure 4A shows that allowing such
variation changes the curves for contraversive displacements.
Figure 4B shows that a consequence of adding the asymptote
parameters was to reduce the differences in perceptual null loca-
tions between control and inactivation. Therefore the correlation
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we initially observed between ipsilateral and contralateral per-
ceptual offsets (Fig. 3C) was not present when the asymptotes in
the fits were allowed to change (Fig. 4C).

Using a likelihood-ratio test, we found that permitting the per-
ceptual null points to change (modeling the perceptual offset) im-
proved fits significantly in 16/24 experiments, and permitting the
asymptotes to vary improved fits significantly in 14/24 experiments
(p � � 0.01 in both cases). Qualitatively, visual inspection of the
new fits confirmed that the varying asymptotes of the fit curves did
not fit the region of response variability any better than the psycho-
metric function with the asymptotes fixed at zero and one.

The monkey’s behavior was definitely altered by MD inacti-
vation, and both of our fitting procedures modeled the asymme-
try in performance induced by MD inactivation. We therefore
quantified the behavioral alteration in a more parameter-
independent manner to take into account both the perceptual
offsets and the asymptote shifts. We calculated a performance
asymmetry index, which was simply the normalized ratio of er-
rors during forward target displacements minus the ratio of er-
rors for backward displacements (using the integrals of the fit
curves, as shown in Fig. 4D for the same example data; see Mate-
rials and Methods for details). This yielded an index between �1
and 1. If all the monkey’s errors were for backward target dis-
placements, the index would be �1; errors only during forward
displacements would yield an asymmetry index of 1. If the error
rates were the same for forward and backward displacements, the
index would be zero.

We chose to use the fit curves with the varying asymptotes
(Fig. 4A) for calculation of the asymmetry index because the
absolute error between the fit curves and the data were smaller
than when the asymptotes were fixed (Fig. 3A), because of the
greater number of parameters. However, it turns out that this
choice made little difference in the asymmetry index as using the
more constrained fits produced almost identical indices (mean
difference �0.004 � 0.026 SD, r � 0.99, p � 10�87).

Fig. 4E compares asymmetry indices during controls and dur-
ing MD inactivation, and we once again observed the vertical
spread of data as we did for the perceptual nulls in Fig. 3B. More-
over, the ipsilateral changes in the asymmetry index were highly
correlated with those on the contralateral side (r � 0.69, p �
0.0002), as were the perceptual offsets in Fig. 3C. More impor-
tantly, Fig. 4F relates the changes in the asymmetry index to our
original measurement of perceptual offset in Fig. 3C. This origi-
nal measure is shown on the x-axis, and the change in the asym-
metry index during MD inactivation is on the y-axis. The
measurements were highly correlated (r � 0.98, p � 10�36). The
slope of the regression line through the data was 0.40, indicating
that the asymmetry index and the perceptual offset similarly rep-
resent the shift in the psychometric function (within a propor-
tional factor).

To summarize, inactivation of the MD relay in the CD circuit
from SC to FEF produces a shift of the psychometric function
(the perceptual offset), resulting in a change in performance, as
shown by the asymmetry index. We propose that the shift in the
psychometric function results from changes in the internal CD
signal representing the perceived saccade vector.

Lack of correlation between changes in perceived saccade
vectors and actual saccade vectors
We have defined the perceptual offset as the change in the per-
ceived saccade vector (based on the CD) from MD inactivation.
We have explicitly assumed that the perceptual offsets result from
changes in the perceived saccade vector, not changes in the actual

saccade to the target, because our inactivations in MD should
alter only the CD, not the actual motor command. We now test
this assumption by examining whether saccade amplitudes are
indeed independent of perceptual judgments.

We begin by looking at saccades to the target for our example
experiment shown previously (Fig. 3A). Figure 5A shows saccade
endpoints during the control periods compared with those dur-
ing the inactivation, and we found that the mean endpoints (open
and solid crosses �1 SD) differed significantly between control
and inactivation days. Because the control and inactivation ex-
periments were almost always run on different days to maximize
the number of trials that we could obtain, we next evaluated the
variation in saccade amplitude between control days, where any
difference would be due to normal variability in the eye position
recording. The histograms at the top of Figure 5B were derived by
comparing mean saccade amplitudes between each control day
and every other control day. The resulting histogram represents
the frequency of differences in saccade amplitude that result from
normal day-to-day differences. The variability evident in the his-
tograms was most likely exacerbated by our use of an abbreviated
eye calibration procedure to preserve trials for the essential psy-
chophysical judgments (see Materials and Methods).

We next compared these normal variations with those seen
between controls and inactivations. The scatterplot at the bottom
of Figure 5B shows the differences in mean saccade endpoints
(�1 SD) for all inactivation experiments. Many individual differ-
ences were significant, but when compared with the histograms
just above, we see that the differences we observed between con-
trol and inactivation days were no different from the differences
we observed between pairs of control days. The vertical dashed
lines extending down encompass the central 95% of each histo-
gram. Points falling outside these bounds indicate saccade ampli-
tudes differing from normal saccade variability at p � 0.05 (there
was one ipsilateral point). Therefore, although significant differ-
ences in saccade endpoint between control and inactivation were
common, they were rarely greater than expected from the under-
lying variability evident from the controls.

A more important test would be to directly assess the relation-
ship between saccades and perception. Such a test has been de-
rived from the work of Collins et al. (2009) and Ostendorf et al.
(2010) in humans, and Joiner et al. (2013) in monkeys. They
observed that the subject’s judgment of displaced target location
was independent of eye position at the end of the saccade, sug-
gesting that their subjects were reliably using their CD of the
saccade, rather than visual information related to retinal posi-
tion, for their perceptual judgments. We repeated this analysis for
the current experiments.

We analyzed saccade amplitudes for all target displacements
�0.5° (Joiner et al., 2013 provides a discussion and justification
of the 0.5° threshold). We binned saccade amplitudes into 10 bins
containing equal numbers of saccades, calculated the proportion
of forward responses in each bin, and then correlated the saccade
amplitudes with the proportions of forward judgments. We cal-
culated the change in the strength of this correlation between
controls and their corresponding inactivations to determine
whether perceptual judgments during MD inactivation de-
pended on the actual saccade amplitude. For ipsilateral and con-
tralateral hemifields, Figure 5C shows the changes in correlation
for all inactivations. In neither hemifield was there an overall
change in the correlations between eye position and perceptual
judgment during MD inactivation.

In summary, this final test confirms that MD inactivation
changed perception by altering the perceived saccade vectors
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rather than the actual saccade vectors. Thus, the changes in the
psychometric function are not due to changes in the actual sac-
cade vectors.

Proprioception does not influence the perceived
saccade vector
We must now determine whether the changes in the perceived
saccade vectors during MD inactivation are due to modifying the
internal CD signal or one of two other signals: proprioception,
which is extra-retinal (like the CD), or vision, which might pro-
vide contextual information from the visual scene.

To influence proprioception arising from receptors in the eye
muscles, the saccadic eye movements and the underlying muscle
contractions must change so as to provide information about a new
eye location at the end of the saccade. As just reported, changes in
saccadic eye movements did not correlate with perceptual offsets.
This contradicts the idea that changes in extra-retinal proprioceptive
signals affect perceptual offsets. Another possibility, however, is that
our injections might have spread to areas near MD that perhaps
carry proprioceptive information. Neurons previously recorded
near our area (Schlag et al., 1980; Tanaka, 2007) discharged before
saccades, as did the ones we recorded. We also never observed neu-
ronal firing rates changing in a step-like manner with saccades as is
found in proprioception areas, such as somatosensory cortex (Wang
et al., 2007; Xu et al., 2011). As we are not aware of any propriocep-
tive relays in the MD region we inactivated, and we never observed
any neuronal activity consistent with proprioception, it is unlikely
that our results are due to altering a proprioceptive signal. We con-
clude that our results cannot be attributed to proprioception.

Comparing the influence of CD to visual context
The stabilizing influence of large field visual images on visual percep-
tion has been emphasized by Gibson (1966) so it is possible that
visual context might override the CD signal in determining the per-
ceived saccade vector. Such an override was reported in a previous
experiment, in which subjects with weakened eye muscles mislocal-
ized targets in the dark, but localized quite well in the light (referred
to as visual capture; Matin et al., 1982). We eliminated any contex-
tual visual information in our experiments by keeping the monkey in
the dark during trials, by using target spots produced by lasers to
avoid incidental light from monitors, and by illuminating the screen
between trials to avoid dark adaptation. To examine the effect of
light and possible visual capture on changes in perception with MD
inactivation, we randomly interleaved trials in total darkness with
trials using an illuminated background during a second set of 12
experiments. This allowed us to determine whether the monkey au-
tomatically uses visual context to overcome any deficits in perceived
saccade vectors.

We used three different illuminated backgrounds: a uniform
lighted background (2 experiments, Monkey W), a stationary
blurred grid pattern (2 experiments, Monkey W), and a random
dot pattern (3 experiments, Monkey W; 5 experiments, Monkey
C). The sparse random dot pattern extended horizontally with
randomly placed 0.8° squares, the locations of which changed on
each lighted trial. Our goal was to see whether the monkey would
reflexively switch, during MD inactivation, to using the newly
available visual information.

We consider two hypothetical results that could arise from
providing visual context during 12 separate inactivations (Fig.
6A). The perceptual offsets from MD inactivation during the
dark trials are on the x-axis. Perceptual offsets during light trials
are on the y-axis. The open symbols on the diagonal represent no
change from the illuminated background; perceptual offsets in
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the light are the same as those in the dark. The gray symbols on
ordinate zero would be expected if visual context completely by-
passed the modified CD; perceptual offsets in the light would be
zero, regardless of perceptual offset in the dark. Any intermediate
beneficial effect of the illuminated background would fall in the
shaded gray areas.

Figure 6B shows the actual results for the additional 12 inac-
tivations. The dashed lines in Figure 6B are the least-squares lin-
ear regressions to the data. Note first that very few points fall in
the gray regions (where visual context would reduce the offset).
For the ipsilateral side, the least-squares line closely follows the
unit diagonal; the trend in the ipsilateral data indicates that per-
ceptual offsets with visual context were no different from those in

the dark. In the contralateral hemifield (right), the least-squares
line shows that visual context only distracted the monkeys; per-
ceptual offsets in the light were typically worse than those in the
dark.

To summarize, monkeys did not use visual context to their
advantage in our task. We found no evidence of visual capture, or
any indication that visual context overrides the perceived saccade
vector determined by the CD.

Localization of inactivations
Locating our injection sites was critical because a key requirement
was that inactivations were made at the same area of MD thalamus
that had previously been demonstrated to be the relay in the CD
circuit from SC to FEF (Sommer and Wurtz, 2004a,b). We located
our injection sites in the desired brain area by using a custom grid-
aligned MRI localization technique (see Materials and Methods).
Figure 7A shows the close match between actual locations in the
brain (3 Elgiloy electrode lesions) and the locations predicted by our
grid-based method (3 red circles). Using this method we located all
of our injections, which are shown for both monkeys (C and W) in a
sample coronal section from each (Fig. 7B,D) and a horizontal sum-
mary section from each (Fig. 7C,E).

We found the injections to be near the lateral edge of MD
adjacent to the internal medullary lamina. We verified that the
current muscimol injections were in the previously studied area
of MD by comparing the MRIs of the current monkeys with the
histology from a monkey used in previous experiments (Sommer
and Wurtz, 2004a). We also made injections only at sites where
presaccadic activity was observed. We must also emphasize that
our muscimol injections were deliberately small and were not
expected to eliminate all the CD signals in MD, and of course, not
all relevant CD signals may pass through MD.

We do not know whether this particular region of MD thala-
mus contains a spatial map of presaccadic activity, as is the case
for the SC (Lee et al., 1988; Cavanaugh et al., 2012). However, if it
does (as we surmise) then injections at different locations would
affect different regions of the presaccadic activity map. We would
therefore expect that target location, which was kept constant
between experiments, and injection location, which varied for
each experiment with grid position and depth in the brain, would
often be misaligned. This misalignment might underlie the vari-
ability of injections affecting one or both hemifields, the variation
of positive or negative POs, and the variety in the magnitudes of
observed effects—all of which we have shown. It remains to be
seen how this region of MD represents visual space, and current
experiments in our laboratory are focused on this question.

Discussion
Each saccade is generated by a movement command, a vector
indicating the amplitude and direction of the saccade, and this
vector is represented in the activity of the saccade-related neu-
rons in the SC. At the same time, the visual system must have a
copy of that vector (a CD) to relate what is centered on the fovea
to the larger visual scene (Fig. 1). Such a CD has been identified in
the monkey. It originates in the same SC neurons that initiate the
saccade, and is conveyed to frontal cortex by a circuit passing
through MD thalamus.

We investigated whether this CD is the source of saccade vectors
contributing to visual perception. Using monkeys trained to report
their perceived saccade vector, and interrupting the identified CD
for saccades, we found altering the CD signal changed the monkey’s
perception but not its actual saccade vector. To our knowledge, this
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A, Two possible outcomes of adding visual context during MD inactivation. The x-axis indicates
perceptual offsets in the dark, y-axis in the light. The x values are actual perceptual offsets taken
from the interleaved dark trials. If there is no effect of added light, points will fall on the diagonal
(white symbols). If the added light eliminates perceptual offsets, the points will fall on the
horizontal (gray symbols). Intermediate benefits of visual context will fall in the gray areas. B,
Actual effects of light on MD inactivations. The dashed lines are the least-squares linear fits to
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no benefit in eliminating perceptual offsets during MD inactivation.
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is the first experimental evidence that a CD
in the primate provides perceptual
information.

One possibility is that these vectors
provide a basis for the continuity of vision
across saccades because they supply the
necessary information for tying together
the successive fovea-centered images. A
possible neuronal mechanism for this
might be anticipatory shifting receptive
fields that occur at the time of a saccade,
discovered in lateral intraparietal area
(LIP) and FEF (Duhamel et al., 1992 in
LIP; Umeno and Goldberg, 1997 in FEF).
In these areas, as the activity in the recep-
tive fields of some neurons decreases be-
fore the saccade, the activity increases at
the site that the same receptive field will
occupy after the saccade occurs (Kusu-
noki and Goldberg, 2003). This could
provide a fading of an image at one loca-
tion and its emergence at another, and
produce continuity between the sequence
of images across saccades.

Relation of perceived saccade vectors to
stable visual perception
Although the contribution of the internal
CD vector to perception does not alone pro-
vide a complete mechanism that explains
how we achieve stable visual perception, es-
tablishing the source of the vectors does
provide an ideal start for the subsequent
computations that might underlie such sta-
bility. The CD is available as much as 100 ms
before the saccade, it is a close copy of the
actual movement command, and it is inde-
pendent of proprioception and visual con-
text. There are two prominent scenarios in
which such a signal might be used to achieve
visual stability (Wurtz, 2008). The first pro-
duces a supra-retinal spatial map that is up-
dated with each saccade (Galletti and
Fattori, 2002; Cicchini et al., 2013). This is
essentially the scene reconstruction illus-
trated in Figure 1C. The evidence for this is
sparse (Wurtz, 2008), but new methods of
multichannel recordings of populations of
neurons might well produce more compel-
ling evidence for such a transformation
from a retinotopic to a spatiotopic map. The
second scenario is predictive remapping
based on the observation of the shifting re-
ceptive fields that provide an anticipatory
facilitation of visual activity at the future site
of the receptive field after the saccade. The jump in the receptive field
with the impending saccade can then be anticipated, and the percep-
tual consequences ameliorated in ways not yet understood. A CD is
required for this anticipatory activity; the anticipatory sensitivity oc-
curs in a limited region of the visual field that depends on the vector
of the upcoming saccade. The only known source of an anticipatory
vector is the CD (the perceived saccade vector) that is developing at
the same time as the increased sensitivity in the future receptive field.

In previous inactivation experiments, the anticipatory neuronal ac-
tivity in cortex was reduced when the CD was interrupted in its
passage through MD thalamus (Sommer and Wurtz, 2006). Our
present experiments show that inactivating the same MD relay also
changes the perceived saccade vector contributing to the perceived
direction of gaze. Thus, we have anticipatory shifts in receptive fields
of FEF neurons before saccades, ideas of how such shifts might lead
to stability of perception, the demonstration that inactivation of a
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needed CD reduces the shifts, and now the demonstration that in-
activation of the same CD produces a change in perception. These
multiple factors are consistent with a contribution to visual stability,
and several models have related these observations to possible brain
circuits (Quaia et al., 1998; Hamker et al., 2011; Ziesche and Ham-
ker, 2014), but the exact computations required to produce such
stability remain to be revealed.

Interaction of CD, proprioception, and vision
Proprioception from the extraocular eye muscles could also provide
extra-retinal information about the perceived saccade vector, but we
found no evidence that the perceptual changes following Inactiva-
tion of MD were correlated with changes in saccades. Thus, our
experiments indicate that at the end of the saccade the CD is the
extra-retinal signal that represents the perceived saccade vector, not
proprioception. This is consistent with the consensus that proprio-
ception makes little contribution to information about each saccade
(Wang and Pan, 2013).

Proprioception might, however, contribute to perception in a
later period after the saccade ends. Previous experiments, in which
the sensory fibers from the eye into the brain were cut, concluded
that proprioception did not provide immediate information (Guth-
rie et al., 1983; Lewis et al., 2001), but could be used for longer-term
adjustments (Steinbach, 1987; Lewis et al., 2001). Consistent with
this longer-term role of proprioception, Poletti et al. (2013) devel-
oped a model that better predicted experimentally observed eye po-
sitions after a series of saccades when both proprioception and CD
were taken into account. In our experiments, we obtained the mon-
key’s report of eye direction soon after the saccade ended, but later
reports might have provided information that included a larger con-
tribution from the slowly developing proprioception signal (Xu et
al., 2011). One possibility is that the CD provides the ends of the
saccade vectors shown in Figure 1A, whereas the combination of CD
and proprioception might provide the start location of the next sac-
cade vector, thereby helping to eliminate any errors in perceived eye
position that might accumulate over several saccades.

The other source of a perceived saccade vector could be vision. In
previous experiments with partially paralyzed extraocular muscles in
humans (Matin et al., 1982), a deficit in localizing landmarks was
eliminated when switching from dark to light, a recovery referred to
as visual capture. Our muscimol inactivations were done in com-
plete darkness, with only galvanometer-controlled laser spots visible,
but when we went to a lighted environment, the deficit persisted or
even increased (Fig. 6). This increase might have resulted from the
separation of actual and perceived gaze direction, which one might
expect to be exacerbated in the light. In addition, our experiments
involve a quantitative test immediately after each saccade, whereas
the previous report (Matin et al., 1982) was a qualitative report over
time, not related specifically to saccades. Obviously we have investi-
gated only a tiny subset of visual contexts, but we see no indication
that visual context takes over from the CD.

Implications for the function of the thalamus
The circuit from brainstem to cortex that we have studied passes
through just a tiny fraction of the MD nucleus, which projects largely
to frontal cortex (Kievit and Kuypers, 1977; Goldman-Rakic and
Porrino, 1985). The fact that this limited region provides informa-
tion about impending saccadic eye movements suggests that other
larger regions of MD might carry information about impending
skeletal movements or other internal functions (Sherman and Guil-
lery, 2002). We have now shown that this information is used not
only for planning actions (Sommer and Wurtz, 2008) but for per-
ception as well. MD, as well as other thalamic regions, might well

convey information about internal states, which have now been
demonstrated at least for saccadic eye movements (Sommer and
Wurtz, 2008; Berman and Wurtz, 2011). Thus, although the projec-
tions from cerebral cortex down to thalamus and back have been
extensively considered (Sherman and Guillery, 2011), currently the
major functional evidence of thalamic input to cortex is for that
passing from subcortical areas via thalamus to cortex.

A CD role in schizophrenia?
Feinberg (1978) and others (Frith and Done, 1989; Ford et al., 2007)
have suggested that the inability of schizophrenic patients to dis-
criminate between their own actions and those of others might result
from a defective CD. The obvious question is whether this hypoth-
esis is consistent with the CD identified in the monkey. First, schizo-
phrenia has been associated with deficient activity in frontal cortex
(Weinberger and Berman, 1996), which is the target of the monkey
CD. Second, damage to the CD in monkeys produces deficits in tests
in the guidance of saccades (the double-step task; Sommer and
Wurtz, 2004b), and a similar deficit has been shown in schizophrenic
patients (Thakkar et al., 2015). Finally the deficit in perceptual local-
ization we now see in monkeys has also been observed in schizo-
phrenic patients (Rösler et al., 2015). It would be of considerable
interest if a brain signal in monkeys, studied to understand vision,
also provides clues about a devastating disease in humans.
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