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Laminar differences in decision-related neural
activity in dorsal premotor cortex
Chandramouli Chandrasekaran1, Diogo Peixoto 2,3, William T. Newsome2,4,5 & Krishna V. Shenoy1,2,4,5,6,7

Dorsal premotor cortex is implicated in somatomotor decisions. However, we do not

understand the temporal patterns and laminar organization of decision-related firing rates in

dorsal premotor cortex. We recorded neurons from dorsal premotor cortex of monkeys

performing a visual discrimination task with reaches as the behavioral report. We show that

these neurons can be organized along a bidirectional visuomotor continuum based on task-

related firing rates. “Increased” neurons at one end of the continuum increased their firing

rates ~150ms after stimulus onset and these firing rates covaried systematically with choice,

stimulus difficulty, and reaction time—characteristics of a candidate decision variable.

“Decreased” neurons at the other end of the continuum reduced their firing rate after sti-

mulus onset, while “perimovement” neurons at the center of the continuum responded only

~150ms before movement initiation. These neurons did not show decision variable-like

characteristics. “Increased” neurons were more prevalent in superficial layers of dorsal

premotor cortex; deeper layers contained more “decreased” and “perimovement” neurons.

These results suggest a laminar organization for decision-related responses in dorsal pre-

motor cortex.
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Imagine coming to a stoplight in your car. The sight of the
stoplight results in patterns of neural activity that lead you to
press the brakes to stop the car. This process of choosing and

performing appropriate actions based on sensory inputs is termed
perceptual decision-making and in this scenario involves the
somatomotor system of the brain1–5. Lesion experiments in
monkeys6, clinical case studies of human patients7, and physio-
logical studies in monkeys using reach-target selection8, 9 and
perceptual decision-making tasks10, 11 all suggest that somato-
motor decision-related signals are present in dorsal premotor
cortex (PMd)1. Despite these important studies, many questions
about neural circuit dynamics in PMd during somatomotor
decisions remain unresolved. In this study, we address two of
these questions.

First, we lack a detailed description of the temporal patterns of
firing rates (FRs) in PMd during perceptual decisions. An
understanding of the temporal patterns of FRs is an important
first step for building mechanistic models of decision-making12–15.
Classical examinations of motor structures including PMd using
task designs that involve instructed delays16–21 and recent studies
focused on establishing a role for PMd in reach target selection8

or perceptual decision-making10, 11 have established that FR
patterns demonstrate substantial temporal variation or “com-
plexity”22, consistent with other reports of heterogeneous, tem-
porally complex FRs in several brain regions during perceptual
decision-making tasks14, 23–27. By temporal variation, we mean
that PMd FRs exhibit mixed responses to the visual stimulus and
movement onset that can involve both increases and decreases in
FRs8, 28. One hypothesis proposed in studies of the frontal eye
field is that these types of FRs can be viewed as organized along a
visuomotor continuum29–35. Here, our first goal was to further
investigate the temporal variation in PMd FRs during perceptual
decisions and examine if they are also well described by a
visuomotor continuum29. In particular, we wanted to examine
how FR patterns of cells in different parts of the continuum
covary with sensory parameters (e.g., stimulus difficulty), beha-
vioral markers of task performance (e.g., reaction time (RT),
choice), and temporal events (e.g., stimulus onset, movement
onset) and thereby delineate putative decision-related neurons.
To elicit a broad range of decision-related FR patterns that we
wished to investigate, we used a variant of a recently reported RT
static visual checkerboard discrimination task11.

Our second goal was to ask whether putative decision-related
neurons tend to be anatomically localized, such that anatomically
informed neural network models can be created13–15, 30, 36–38.
Anatomical studies suggest that superficial layers of PMd receive
substantial corticocortical input from frontal association areas39,
and connectivity studies in the rodent motor cortex suggest a
prominent descending projection from superficial to deep
layers40. Therefore, we investigated the hypothesis that there are
differences in the FR dynamics in the superficial layers compared
to the deeper layers of PMd during the process of decision for-
mation. To study this question, we used multi-contact electrodes
that provide recordings across the different layers of the cortex.

We found that FR patterns in PMd demonstrated substantial
temporal variation during the decision-formation process. This
variation could be readily viewed along a systematic visuomotor
continuum9, 29, 33. This conclusion was supported by a variety of
analyses ranging from simple indices computed on a single
neuron basis to methods such as principal components and
K-means clustering that exploit covariance structure in the neural
population26. The activity of PMd neurons that increased their
FRs after visual stimulus onset had the strongest and earliest
covariation with stimulus difficulty, choice, and RT—consistent
with the characteristics of a candidate decision variable predicted
by decision-making models41–44. Finally, using relative depth

information we found that there are more putative decision-
related neurons in superficial layers of PMd, thus providing a
constraint for anatomically informed neural network models14, 30, 37.

Results
Monkeys discriminate visual checkerboard cues. Two trained
monkeys (T and O) discriminated the dominant color of a cen-
tral, static checkerboard cue composed of mixtures of red and
green squares and used an arm movement to report the decision
(Fig. 1a11). The use of a static checkerboard cue meant that the
sensory stimulus itself had no temporal dynamics, and all sensory
evidence was provided at the onset of the stimulus and did not
vary over time. Figure 1b depicts a trial timeline. The trial began
when the monkey touched the center target and fixated on the
cross. After a variable target viewing period, the red-green
checkerboard cue appeared. The task of the monkey was to make
an arm movement to the target (red vs. green) that matched the
dominant color of the checkerboard cue. We parameterized dif-
ficulty of the discrimination (Fig. 1c) by a color coherence mea-
sure (C) defined as the absolute difference in the number of red
and green squares normalized by the total number of squares in
the checkerboard (100×|R −G|/(R + G)). A corresponding signed
color coherence measure (SC) is defined as 100×(R −G)/(R + G).

We first examined the effects of changes in color coherence on
the behavior of the monkeys. On average across sessions,
decreases in color coherence (example stimuli shown in Fig. 1c)
resulted in more errors (Fig. 1d, fitting the proportion correct as a
function of coherence (C) using a psychometric function; average
R2, T: 0.99 (over 75 sessions), O: 0.99 (over 66 sessions), slope (β),
M± SD over sessions, T: 1.30± 0.16, O: 1.22± 0.16). In Fig. 1d,
the measured data points (mean across sessions) are shown as
gray circles with 2 × SEM. Black lines are drawn in between these
data points to guide the eye. Monkey T was more sensitive than
monkey O (thresholds (α) are computed on a per session basis at
81.6% correct (M ± SD): T, 10.77± 1.26%, O: 15.42± 1.87%,
unpaired t140= −17.65, p= 2.67e−37, two-tailed test, Wilcoxon
rank sum comparing median thresholds, p= 2.91e−23).

Decreases in color coherence also resulted in slower RTs
(Fig. 1e, using a regression to test if mean RT increases as loge
coherence decreases (harder stimulus difficulties) as in ref. 45;
average R2, T: 0.94, O: 0.65; slope of regression: M± SD over
sessions, T: −42.1± 8.1 ms/loge coherence (%), O: −8.6± 4.5 ms/
loge coherence (%)). Again in Fig. 1e, the measured data points
(mean across sessions) are shown in gray circles with 2 × SEM and
to guide the eye, black lines are drawn in between the points.
Monkey T had a larger range of RTs compared to monkey O
(comparing the RT range between easiest and hardest difficulties
(M± SD) estimated over sessions; T: 143± 32 ms and O: 52± 17
ms, Wilcoxon ranksum comparing median ranges of RT, p=
4.85e−24).

We also investigated the behavior of the monkeys by fitting the
RT distributions and accuracy using the drift diffusion (DDM)
and urgency gating models (UGM) developed to explain behavior
in two alternative forced choice tasks46–48 (Supplementary Note 1,
Supplementary Figs. 1, 2 and Supplementary Tables 1–4). We
performed this model-fitting analysis to identify if these candidate
computational frameworks could help us interpret decision-
related responses in PMd, and if the behavior was better
explained by the DDM, estimate decision times for the monkeys.
Quantitative modeling of how monkeys perform discrimination
of static stimuli such as the checkerboard used here is lacking47.
Both the UGM and the DDM provided reasonable fits. However,
neither model was completely sufficient to describe the RT and
accuracy of the monkeys (Supplementary Figs. 1, 2 and
Supplementary Note 1). The UGM with an intercept and slope
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term provided the best fit of all three models considered here10.
Our results here further highlight the increasing realization that
differentiating between these models of decision-making behavior
using purely statistical techniques is currently very difficult47–49—
explicit stimulus manipulations are necessary. Additional elabora-
tion of these models is likely needed to better describe the behavior
of these monkeys in this and likely other discrimination tasks.

PMd neurons are organized along a visuomotor continuum.
Having observed that the behavior of the monkeys in this task is
similar to other reports of monkeys performing decision-making
tasks3, 11, 45, 50, we next examined the temporal patterns of FRs of
neurons in caudal PMd during the period of decision formation
to delineate putative decision-related neurons (Fig. 1f, 546 units
in T, 450 units in O; single neurons and multi-units that

Center hold

250 – 400 ms

Targets

400–900 ms

Decision

Reaction time (ms)

f

Easy (C: 90%) Medium (C: 40%) Hard (C: 4%)

|R–G|

R+G
Color coherence (C) = × 100

P
er

ce
nt

 r
ep

or
te

d 
re

d

–100 0 100

0

50

100

Monkey T Monkey O

c

d

Signed color coherence (%)

Monkey T Monkey O

ba

1

16

Superficial

Deep

6

11

Threshold at
81.6% correct:
10.77 ± 1.26%

Threshold at
81.6% correct
15.42 ± 1.87%

410

460

520

570

Signed color coherence (%)

R
ea

ct
io

n 
tim

e 
(m

s)

(R–G)

(R+G)

Signed color
coherence (SC) = × 100

SC: +90%SC: –90% SC:+40%SC: –40% SC:+4%SC:–4%

410

460

520

570

–100 0 100–100 0 100

0

50

100

PMd

–100 0 100

e

–50 50 50–50

50–50 50–50

Fig. 1 Recording locations, techniques, task, and discrimination behavior. a An illustration of the setup for discrimination. We gently restrained the arm the
monkey was not using with a plastic tube and cloth sling. We tracked a reflective IR bead taped on the middle digit of the hand to mimic a touch screen and
to provide an estimate of instantaneous arm position and tracked eye position using an infrared reflective mirror placed in front of the monkey’s nose. b
Timeline of the discrimination task. c Examples of different stimulus ambiguities used in the experiment parameterized by the color coherence of the
checkerboard cue defined as (C= 100×|R −G|/(R + G)). The corresponding SC is defined as SC= 100×(R −G)/(R + G). Positive values of SC denote more
red than green squares and vice versa. d, e Average discrimination performance (d) and RT (e) over sessions of the two monkeys as a function of the SC of
the checkerboard cue. RT plotted here includes both correct and incorrect trials for each session and then averaged across sessions. Gray markers show
measured data points along with 2 × SEM estimated over sessions. The black line segments are drawn in between these measured data points to guide the
eye. For many data points in d, the error bars lie within the marker. X-axes in both d, e depict the SC in %. Y-axes depict the percent responded red in d and
RT in e. Also shown in d are discrimination thresholds (M± SD over sessions) estimated from a Weibull fit to the overall percent correct as a function of
coherence. The discrimination threshold is the color coherence level at which the monkey made 81.6% correct choices. 75 sessions for monkey T (128,989
trials) and 66 sessions for monkey O (108,344 trials) went into the averages. f Location of PMd along with an example recording from a 16 electrode, 150-
micron spacing U-probe. The brain in this figure is adapted by permission from Macmillan Publishers Ltd: Nature Reviews Neuroscience (Fig. 3 of ref. 75),
copyright 2004
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responded during any epoch in the task). Of the 996, 801 PMd
units reported here are single neurons (384 from O, 417 from T,
mean ISI violation (<=2ms)= 0.43%, ~0.13 additional spikes per
trial) and the remaining 195 units reported here are classified as
multi-units (129 from T, 66 from O, mean ISI violation= 3.36%,
~1.4 additional spikes per trial). We did not exclude multi-units
because they were often robustly modulated during the task and
we wanted all the power we could get for analysis of laminar
differences. Conclusions did not change when restricting the
analyses to just the isolated single neurons. The number of
neurons/units reported here is substantially larger than other
recent studies of neuronal responses in PMd during decision-
making tasks10, 11. We leverage this large physiological data set
recorded in PMd to attempt to address the two goals we proposed
in the introduction.

Qualitatively, electrophysiological characteristics and effects
reported here were similar in both monkeys. The main figures
report data pooled across both monkeys and also single and
multi-units for more clarity. Analyses are also shown in
Supplementary Figures for each monkey where appropriate to
emphasize the generality of our results.

Caudal PMd units did not typically modulate their FRs to
target onset in this task. Modest changes in FRs in response to

target onset might be either a result of the targets always being
shown at predictable spatial locations. Suppressive effects on FRs
may also occur when there is movement uncertainty due to the
presence of multiple targets9. Unlike the modest modulations
observed to target onset, visual checkerboard cue onset resulted in
a robust modulation of FRs of some PMd units. For example, the
unit in Fig. 2a (782 trials) increased its FR ~150–200 ms after
checkerboard cue onset. Moreover, for this unit, higher color
coherence stimuli were associated with a faster rate of divergence
of FRs as a function of choice and lower color coherence stimuli
resulted in a slower rate of divergence of FRs as a function of
choice. In contrast, the unit in Fig. 2b (1454 trials) decreased its
FR after checkerboard cue onset. The FRs of this unit only
modestly changed with coherence; FRs ultimately covaried with
the animal’s choice for this unit, but only for the last ~100 ms
before movement onset.

In contrast to FR modulation time-locked to checkerboard cue
onset for the units shown in Fig. 2a, b, FR modulations in
“perimovement” units appeared in the last ~150 ms before
movement onset and were clearly time-locked to the movement
(Fig. 2c, 655 trials). The response pattern of the “perimovement”
unit shown in Fig. 2c only modestly changed with color
coherence. These examples shown in Fig. 2a–c suggest that some
units increase or decrease in FR in response to the visual stimulus
and identification of the choice, whereas others are more tightly
associated with the movement initiation process. The single
examples suggest that FR patterns in PMd during the process of
decision formation span a bidirectional visuomotor continuum9,
29, with increased and decreased activity in response to visual
stimuli at opposite poles and perimovement activity in the
middle.
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Fig. 2 FRs in PMd demonstrate an organized relationship to different
elements of the decision-making process. a–c Three example units in PMd
during the decision task sorted by color coherence and arm movement
choice when aligned to checkerboard cue onset (labeled as “cue”, top panel)
or movement onset (bottom panel). Solid lines of different colors (—) depict
left reaches; dashed lines of varying colors (---) depict right reaches. The
colors ranging from purple to orange depict color coherence (high to low).
The black dashed lines depict the onset of the checkerboard cue (top panels)
or the onset of the arm movement (bottom panels). When aligned to
checkerboard cue onset, FR is plotted until the median RT for the color
coherence. When aligned to movement onset, the FR is plotted until the
negative of the median RT for the color coherence. Error bars denote
standard error of the mean (SEM) over trials. We estimated peristimulus
and perimovement FRs by convolving spike trains with 75ms causal
boxcars. Averages include all trials sorted according to the choice of the
monkey (left vs. right). Unit a: 782 trials, Unit b: 1454 trials, Unit c: 655
trials. Individual traces are averages of at least 30 trials. d–f FRs of the units
that are shown in a–c when sorted by RT. The colors ranging from purple to
orange depict RT bins (fast to slow, all color coherences combined). Line
conventions for left and right reach directions are as in a–c. FR traces, when
aligned to checkerboard cue onset and organized by RT, are shown until the
center point of the RT bin. The visuomotor index (see Fig. 3a, and
corresponding text), along with the label is shown for each unit along with
CI for the index. The index is significantly different from 0 for units in a, b
(CIs do not overlap with 0) but not c (CIs overlap with 0). The trials used in
d–f are same as those used for the plots in a–c except re-sorted according
to the various RT bins. In Fig. 2e, FR traces for the left reaches are
deliberately reduced in opacity to better highlight the structure in the FR
traces for right reaches and their organization with RT. FRs for left reaches
also have the same structure. Additional examples of unit responses in
PMd that increase, decrease, or are perimovement in nature are shown in
Fig. 4 and Supplementary Fig. 11a
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This proposal that PMd FRs lie along a bidirectional continuum
was again apparent when the FRs of units in Fig. 2a–c were re-
sorted and re-averaged as a function of RT (Fig. 2d–f). Figure 2d
shows the FR of the unit shown in Fig. 2a now organized by RT.
FRs of this unit when organized by RT again exhibited choice-
dependent modulation ~150–200 ms after checkerboard cue
onset. The longest RTs (500–1000 ms) are associated with FR
modulations up to 350–400ms before the onset of movement
(Fig. 2d, bottom panel, see arrow45). Similarly, Fig. 2e shows the
FRs of the unit in Fig. 2b now sorted by RT. FR of this unit again
decreased after checkerboard cue onset; the duration of this
decrease covaries with RT. The unit only recovered its FRs and
selectivity for choice just before (~100 ms) movement onset.
Finally, Fig. 2f shows the FRs of the perimovement unit in Fig. 2c
now organized by RT. FR modulations for this unit again
appeared only ~150 ms before movement initiation and regard-
less of RT they are tightly locked to movement initiation (bottom

panel of Fig. 2f, see arrow). We exploited this organization by RT
when aligned to movement onset to broadly categorize the units.
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Fig. 3 Units in PMd that enhance FRs after checkerboard cue onset covaries
strongest with the decision process. a Histogram of the visuomotor index
demonstrating broad unit categories in PMd. Significant positive numbers
reflect increased units (shaded red, n= 514 units), significant negative
numbers for decreased units (shaded green, n= 141 units). Intermediate
insignificant values of the visuomotor index reflect the perimovement
structure of these units (shaded blue, n= 341 units). The index is defined on
a per-unit basis and measured as the trial-by-trial correlation coefficient
between RT and average FR in the −600 to −200ms epoch before
movement onset. X-axes depict index; Y-axes the number of units. b
Average population level choice selective signal (|left—right|) in PMd for
the population of increased units (n= 514 units) as a function of the color
coherence aligned to checkerboard cue onset. All trials are included and
sorted by the choice of the monkey. The colors ranging from purple to
orange depict color coherence (high to low). X-axes depict time in ms;
Y-axes depict the FR in Hz. Shaded errors denote SEM over units. For each
unit, we also subtracted the absolute difference in baseline FR before
averaging. The gray shaded region highlights the 150–350ms epoch used to
estimate the slopes plotted in Fig. 3c. c Slope of the choice selectivity signal
(as shown in b) in the 150–350ms epoch (for e.g. demarcated by the
shaded gray region in b) after checkerboard cue onset for increased (514
units), decreased (141 units), and perimovement units (341 units) in PMd
for the seven different color coherence levels. Red color denotes increased
units. Blue and green colors denote the perimovement and decreased units.
Error bars are SEM estimated over units. We compared the slopes of these
curves to a slope estimated through shuffling across color coherences. d
Average population level choice selective signal (|left—right|) in PMd for
the increased units (n= 514 units) as a function of the RT aligned to
checkerboard cue onset. Different colored lines here depict different levels
of RT; purple colors depict fast RTs, orange colors depict slow RTs. X-axes
depict time in ms; Y-axes the FR in Hz. For each unit, we also subtracted the
absolute difference between left and right FRs during the hold period for
each unit before averaging across units. e The population response of
increased units (shown in red) begins to signal the eventual choice
~100–150ms after checkerboard cue onset regardless of RT. Perimovement
(shown in blue, 341 units) and decreased units (shown in green, 141 units)
signal choice closer to movement onset. Y-axes plot the discrimination time
defined as the first time at which the choice selective signal significantly
departed from the FR before the onset of the checkerboard cue (i.e., the
hold period) as estimated using a paired t-test that corrected for multiple
comparisons. X-axes depict different RT bins. The error bars on this time
estimate are calculated by bootstrapping FRs for each unit and then
estimating the latency using this bootstrapped FR distribution for the
subpopulation of units. Lines denote regression fits of the average latency
to the center of the RT bin. f Covariation with RT was observed within a
color coherence level for the increased units. For these units, the mean rate
of rise of the choice selective signal was faster for faster RTs even within
each level of color coherence (for every unit, RTs were split into fast and
slow RTs using the median RT). X-axes depict different levels of color
coherence. Y-axes the slope of the choice selective signals in the 150–350ms
after checkerboard cue onset as in c. Error bars denote SEM over units. g
When aligned to movement onset, for increased units (n= 514) the average
choice selective signal ~100ms before movement onset only modestly
covaries with color coherence. The colors ranging from purple to orange
depict color coherence (high to low). X-axes depict time in ms.
Y-axes the magnitude of the choice selectivity signal in Hz. Shaded errors
denote SEM. h By the time of movement onset, the average choice selective
signal in the −100ms to move onset for any of the various broad classes of
units in PMd does not strongly change depending on the color coherence of
the checkerboard cue. The slopes of the curves are not significantly
different from slopes estimated via shuffling. X-axes depict color coherence
in %. Y-axes depict the FR in the −100ms to 0ms before movement onset
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Increased PMd neurons show stronger decision-related activity.
To summarize the activity of the population of units distributed
along this continuum, we first developed an index to broadly
separate the units into “increased”, “decreased”, and “perimove-
ment” categories (Fig. 3a). The index was defined as the trial-by-
trial correlation coefficient between RT and time-averaged FR in
the −600 to −200ms epoch before movement onset, after sub-
traction of the baseline FR during the holding period (measured
in the 200 ms epoch before checkerboard cue onset). For com-
puting the correlation coefficient, both left and right reach
directions are included, and choice is not included as a factor. For
trials with RT less than 600 ms, we truncated the start of the
measurement window to coincide with the start of checkerboard
cue presentation when measured relative to movement onset. We
correlated the modified time-averaged FR to the RT across all
trials to estimate the index.

We labeled units with significantly positive indices as
“increased” (e.g., Fig. 2a, d, index (M± CI): 0.37± 0.08),
significantly negative indices as “decreased” (e.g., Fig. 2b, e,
index:−0.4± 0.12), and units with indices not significantly
different from zero as perimovement (e.g., Fig. 2c, f, index:
0.04± 0.2). The distribution of the index from negative to
positive values reflects the continuum of responses from
decreased to increased responses to checkerboard cue onset
(Fig. 3a, Supplementary Fig. 3a). The median visuomotor index is
positive and significantly different from zero, suggesting a slightly
greater presence of increased compared to decreased and
perimovement units (median= 0.065, two-tailed Wilcoxon sign-
rank vs. 0, p= 1.13e−57, Fig. 3a). As per the index and the criteria
we used, 514/996 units (51.6%) were categorized as increased,
141/996 (14.15%) as decreased, and the remaining 341/996
(34.25%) as perimovement. Increased, decreased, and perimove-
ment units were observed in both monkeys (Supplementary
Fig. 3c, d, median index for monkey T= 0.099, Wilcoxon
signrank p= 2.12e−22; median for monkey O= 0.045, Wilcoxon
signrank p= 1.56e−37).

We next used the visuomotor index to selectively average FRs
of PMd units and show that the population responses of the
increased units covary the strongest with color coherence, choice,
and RT. We also correlated this visuomotor index to various
metrics of interest such as the timing of choice selectivity and to
other metrics proposed in recent studies of visuomotor
continuums26, 33. Using these results, we contend that the FRs
of increased, but not decreased and perimovement units are
consistent with a candidate decision variable.

The first neural prediction made by computational models of
decision-making for neurons that covary with an evolving
decision is that on average the build-up of neural activity in
favor of a choice, as measured in plots of trial-averaged FR vs.
time, is faster for easier compared to harder color coherences45.
The FRs of increased units were the most consistent with this
prediction. For increased units, increases in color coherence were
accompanied by an increase in the rate at which the average
choice selective signal (defined as |left—right| averaged over units)
developed (Fig. 3b–c, Supplementary Fig. 3e, slope of FR curve
from 150–350 ms, M± SE: 50.16± 3.33 spks/s2/100% color
coherence, comparison to shuffled, sign test p= 1.22e−27). This
200 ms range over which we computed slopes is within the range
of decision times estimated in Supplementary Fig. 1d for both
monkeys, assuming that the DDM is the correct model to
describe the behavior.

The rate of the build-up of neural activity in favor of a choice
for the decreased and perimovement units also increased
modestly as a function of color coherence, suggesting that they
still contained vestiges of the decision-formation process (Fig. 3c,
M± SE, decreased: 24.73± 3.30 spks/s2/100% color coherence,

comparison to shuffled, sign test p= 2.72e−08; perimovement:
19.71± 1.86 spks/s2/100% color coherence, comparison to
shuffled, sign test p= 3.72e−15).

The dependence on color coherence was stronger for increased
units compared to the other two broad categories of units
(positive correlation between the visuomotor index and the
dependence of slopes on color coherence, Spearman’s r= 0.25,
p= 6.35e−16; comparison of slopes of lines in Fig. 3c,
bar plots shown in Supplementary Fig. 3f, g, Wilcoxon ranksum
p= 3.505e−04, increased vs. perimovement: Wilcoxon ranksum
p= 1.43e−09, decreased vs. perimovement: Wilcoxon
ranksum p= 0.36; permutation tests, 10,000 repeats: increased
vs. decreased and increased vs. perimovement: p= 2e−4;
decreased vs. perimovement: p= 0.21). Thus, increased units
demonstrate the strongest modulation of FRs with the stimulus
color coherence and choice. The order of these effects (increased
> decreased ~ perimovement) and the positive correlation
between the dependence on color coherence and the visuomotor
index was again present in both monkeys (Supplementary
Fig. 3g, monkey T: r= 0.36, p= 3.2e−18; monkey O: r= 0.23,
p= 1.02e−6).

Choice selective signals emerge earlier in increased neurons.
We next examined the latency of the population level choice
selectivity signal for each of the broad unit categories. This
latency which is termed 'discrimination time' was defined as the
first time at which the choice selective signal significantly
departed from the FR in the hold period before the onset of the
checkerboard cue as estimated using a paired t-test that corrected
for multiple comparisons34. Error bars on discrimination time
were obtained through bootstrapping. Population level choice
selectivity in increased units appeared ~100–150 ms after check-
erboard cue onset, and this discrimination time increased
only modestly with RT (mean slope of regression
M± SE: 0.2± 0.06 ms/1 ms of RT, Fig. 3d–e, Supplementary
Fig. 4a–c). Furthermore, discrimination times were earlier for the
increased compared to decreased and perimovement units
(bootstrapped time estimates do not overlap). Decreased
and perimovement units also exhibited a more pronounced
increase in discrimination time with RT (decreased:
M± SE= 0.53± 0.15ms/1ms of RT, perimovement: 0.4± 0.11ms/
1 ms of RT, Fig. 3e, Supplementary Fig. 4a–c). These trends were
observed separately in each monkey (Supplementary Fig. 4a, c)
and also when the analysis was performed on a neuron-by-
neuron basis (Supplementary Note 2, Supplementary Fig. 4d–f).

The differences between FR patterns for long vs. short RTs in
Fig. 3d could emerge entirely due to mixing responses to different
levels of visual stimulus difficulty. Long RTs are more likely to
come from harder color coherences and short RTs from easier
color coherences. Differences as a function of RT could just be an
artifact of this separation. However, this explanation did not hold
for our results. For increased units and for every color coherence
level, the slope of the choice selective signal increased faster for
short compared to long RTs (Fig. 3f, sign rank test comparing the
slope of the choice selective signal for fast vs. slow RTs; maximum
p-value= 9.21e−31; monkey T: 1.65e−19; monkey O:5.29e−13)
arguing against explanations which posit that observed effects of
RT are due to the spurious mixing of visual (i.e., sensory)
responses to different color coherences.

Choice selectivity does not depend on coherence at movement
onset. We next examined how FRs at the time of movement
initiation depended on coherence and RT. At the time of
movement onset, regardless of broad unit category, the magni-
tude of the average choice selective signal in the −100 ms to
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Fig. 4 Laminar differences in the time course of decision-related signals in PMd. a PSTHs from seven different units recorded in the same session sorted as
a function of RT and choice and ordered from superficial to deep electrodes. The FRs are aligned relative to checkerboard cue onset (left) or to movement
onset (right). The colors ranging from purple to orange depict different RT bins. Shaded errors denote SEM. Solid lines depict left reaches and dashed lines
depict right reaches. Peristimulus and perimovement FRs are estimated by convolving spike trains with 75ms causal boxcars. Averages include all trials
sorted according to the choice of the monkey (left vs. right). Also shown for each unit is the visuomotor index estimated for the unit along with confidence
intervals and the label associated with the unit based on the visuomotor index. The rough pattern that this single example and a similar example shown in
Supplementary Fig. 11 is that superficial electrodes have positive indices denoting increased units whereas the deeper electrodes are likely to have more
perimovement and decreased units. X-axes depict time in ms. Y-axes depict FR in Hz. PSTHs and PMTHs reflect FR averaged over more than 100 trials per
condition. >1800 trials were analyzed for these units. These trials were then separated according to the condition. b Visuomotor index as a function of
cortical depth for the session shown in Fig. 4a. X-axes depict depth in mm. Y-axes depict the index. Error bars denote SEM. Visuomotor index for each
electrode is estimated by averaging over all units recorded on that particular channel. c The visuomotor index estimated by pooling over sessions from both
monkeys T and O decreases as a function of depth (68 sessions, 554 units). X-axes depict depth in mm. Y-axes depict the index. Error bars denote SEM.
The line (shown in orange) is the fit of this average index vs. cortical depth using a cubic function (ax3 + bx2 + cx + d). x is a variable denoting cortical depth.
Reported p-value for the fit is obtained by a permutation test where we shuffled to remove the relationship between the index and cortical depth and
computed the fit. We repeated this shuffling 1000 times and fit the cubic function to estimate a surrogate distribution of R2 values. A simple linear
regression was also significant (R2= 0.61, p< .001). We chose higher order fits because of the non-monotonic nature of the change in the index as a
function of cortical depth. d Average choice selectivity as a function of cortical depth for the population of PMd neurons. X-axis depicts depth in mm. Y-axis
the discrimination latency in ms. Error bars denote SEM estimated over sessions. e Classifier accuracy for superficial (electrodes 1–8) and deep (9–16) as a
function of time for all RTs when aligned to checkerboard cue onset. The classification was performed on a session-by-session basis, and the number of
units used for superficial and deep electrodes were equalized by setting the number of units used for the superficial and deep classifiers to be the same. We
only used sessions where we had greater than 10 units recorded from the U-probes in this classification analysis. We used 50ms bins stepped by 2ms bins
and used a linear classifier
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movement epoch was only weakly modulated by color coherence/
RT (for instance in the PMTHs shown in Fig. 2d–f; M± SE,
sign-test to compare median slopes for the average FR in −100 ms
to move as a function of color coherence and the slopes for a
shuffled curve, increased: 0.30± 0.24 spks/s2/100% color coher-
ence, p< 0.1; decreased: 0.49± 0.33 spks/s2/100% color coher-
ence, p< .16; perimovement: 0.54± 0.25 spks/s2/100% color
coherence, p< 0.09; Fig. 3g, h, Supplementary Fig. 4g). These
results were again observed in both monkeys (Supplementary
Fig. 4j, sign test, monkey T: increased, p< .07, decreased: p< .14,
perimovement: 0.59; monkey O: increased, p< 0.51, decreased: p
< 0.67, perimovement: p< 0.37).

This observation that the magnitude of the choice selective
signal at the time of movement onset only changes weakly with
color coherence or RT is consistent with proposals of a
commitment state in the network prior to the initiation of the
choice10, 45, 51. In some contexts, additional analysis has been
used to argue for a threshold implemented by single neurons45,
perhaps mimicking the thresholds used in behavioral models. Our
analysis showing a lack of correlation between the magnitude of
the choice selective signal (which is the difference in FRs for
different reach directions) and coherence cannot be considered as
evidence for the rise-to-threshold mechanism in PMd for
decisions. Previous studies suggest that a rise-to-threshold
mechanism provides a poor explanation of FRs of PMd neurons
even in simple delayed-reach tasks that do not involve perceptual
decisions52.

Choice selectivity is distributed in a continuum in this PMd
neural population and is not well described as clusters of high and
low choice selectivity (Supplementary Note 3, Supplementary
Fig. 4h). One concern is that the visuomotor index we use to
partition and understand our large data set of neurons is too
simplistic and collapses over many key features of the data. To
ensure that increased, decreased, and perimovement units were
not a spurious artifact specific to the index that we developed
here, we also tested if our results were consistent when applying
other methods for describing a visuomotor continuum9, 33 as well
as a novel technique reported by Erlich and collaborators53 for
estimating a correlation between RT and neural responses
(Supplementary Note 4, Supplementary Figs. 5–9). These results
were also not explained as an effect of differences in the
kinematics of the eventual arm movement (e.g., speed) or eye
position (Supplementary Note 5, Supplementary Fig. 10). Finally,
the conclusions did not change even when we excluded the
multi-units and only analyzed the single neuron responses
(Supplementary Note 6, Supplementary Fig. 13).

PMd superficial layers show earlier choice selectivity. We next
addressed the second goal of the study. We asked the following
question. Are there differences between the FR dynamics of the
superficial layers of PMd and the deep layers during the process
of decision formation? Specifically, are the increased, decreased,
and perimovement units systematically or randomly distributed
as a function of cortical depth in PMd54, 55? Identifying how
decision-related response properties of neurons vary as a function
of anatomical and physiological properties (e.g., layer) is an
important first step for building and testing cortical circuit
models of decision-making14, 56, 57.

The laminar multi-contact electrodes allowed us to record
simultaneously from small populations of neurons and identify
their cortical depth. We used this technique and examined
PSTHS/PMTHs from single sessions to identify if there was any
rough organization as a function of cortical depth. Figure 4a and
Supplementary Fig. 11a show units from example sessions from
monkey T during this task. In both single session examples,

increased units were more prevalent in the superficial electrodes,
whereas the decreased and perimovement-related units were
more common in the deeper electrodes. For instance, in Fig. 4a,
for the units recorded from electrodes 1, 4, and 6, the index
(shown with confidence intervals in the figure) is significantly
positive and different from zero. In contrast, the units recorded
from electrodes 10 and 11 have significantly negative indices.
Finally, electrode 15 recorded a unit with an insignificant index,
suggesting a perimovement unit. Figure 4b shows the visuomotor
index for this session as a function of cortical depth. A similar
trend is observed for the examples in Supplementary Fig. 11.
Units recorded from superficial electrodes (1, 3, and 5) have
positive and significant indices, whereas the units recorded from
deeper electrodes (8, 11, 13, and 14) either have insignificant
perimovement indices or negative indices. This separation was
not perfect. Occasionally deeper electrodes recorded from units
that demonstrated increases in FR before movement onset. For
example, electrode 16 recorded from an increased unit.
Supplementary Fig. 11b plots the visuomotor index as a function
of the depth for this session. As the depth increases the
visuomotor index also appears to decrease for this session.

The single session examples indicate that units at different
cortical depths can have different FR modulations during
decision-making and thus a laminar organization. This indication
of differences in response profiles as a function of cortical depth
held in the population of recordings. As one moves from
superficial to deep electrodes, the index decreased as a function of
depth (Fig. 4c, a cubic regression between the index averaged over
68 sessions (24 in T, 44 in O) vs. cortical depth, r2= 0.87,
p< .001). At least, on average across both monkeys, the increased
units are more likely in superficial parts of PMd, whereas
decreased and perimovement units are found at relatively deeper
depths in PMd. Effects of cortical depth on the visuomotor index
were observed in both monkeys (Supplementary Fig. 11c). In
monkey O, the decrease in the visuomotor index as a function of
depth was somewhat less pronounced albeit still significant (cubic
fit, monkey T: r2= 0.86, p< .001; monkey O: r2= 0.67, p< .003)
and when pooled over both monkeys this effect remained
significant. The same results were observed even when we used
the more sophisticated correlation method developed in ref. 53

(correlation between the sign corrected correlation coefficient
estimated in ref. 53 and cortical depth, Spearman’s pooled
r= −0.83, p= 5.24e−5, monkey T: r= −0.45, p= 0.08, monkey O:
r= −0.81, p= 3.5e−4).

Given that the FRs of the increased units have the strongest
relationship to a decision variable, the preponderance of
increased units in superficial electrodes of PMd naturally resulted
in differences in discrimination time as a function of cortical
depth. Figure 4d shows the average time of significant choice
selectivity (computed over all RTs from 300–1000 ms when
aligned to checkerboard cue onset) as a function of cortical
depth. As cortical depth increases, the discrimination time also
increases (Spearman’s r= 0.77, p= 6.3e−04, T: r= 0.67,
p= 0.005, O: r= 0.64, p= 0.012, Supplementary Fig. 11d). These
trends for visuomotor index and discrimination time were not
observed in the posterior locations of our recording chamber
(likely M1, Supplementary Note 7, Supplementary Fig. 12a).

We finally used the simultaneously recorded neurons from the
U-probe recordings in PMd and performed a decoding analysis to
identify if single-trial population level choice selectivity emerged
earlier in the superficial compared to the deeper layers. We
separated the units into two groups, superficial (electrodes 1–8)
and deep (electrodes 9–16). We ensured that we restricted the
classification analysis to the same trials and also equalized the
number of units for both superficial and deep electrodes. We only
included sessions where we had more than 10 neurons/multi-
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units recorded for this classification analysis to give us sufficient
power and be confident in the classification results. This criterion
left us with 19 sessions in monkey T and 12 sessions in monkey
O. When pooled over all these sessions, average and median
classification accuracy increased earlier for the superficial
compared to the deep electrodes (Fig. 4e, latency for 55%
accuracy, ~15.57±4.8 ms earlier, p< 8e−4, bootstrap test vs. 0,
10,000 iterations). When examined individually in each monkey,
classification accuracy showed trends similar to the pooled
average although it was only significant in monkey T (superficial
vs. deep, Supplementary Fig. 12b, c, T: ~14.41 ms earlier, p= 3e
−4, O: ~15.23 ms earlier, p= 0.15).

Discussion
The motivation for our study was to address key unresolved
questions regarding the neural circuit dynamics in PMd under-
lying somatomotor decisions. We had two concrete goals: (1) to
investigate the temporal pattern of FRs in PMd during decisions
and use various parameters and predictions of computational
models of decision-making to identify putative decision-related
neurons, and (2) to investigate if these putative decision-related
neurons were anatomically localized as a function of cortical
depth. To achieve these goals, we used a visual RT discrimination
task and multi-electrode recordings to demonstrate that FR
dynamics of a diverse population of PMd units covary with
decision formation and movement initiation. At the highest level,
our results provide additional support for observations from
lesion and physiological studies in monkeys performing target
selection and perceptual decision-making tasks5, 6, 8–11 and
clinical examinations of stroke patients that suggested a role for
PMd in selecting appropriate actions based on sensory cues7.

We found that FR dynamics in PMd exhibit substantial var-
iation within the population during decision formation8–11. Our
first result shows that this variation can be summarized by
viewing neural responses as organized along a bidirectional
visuomotor continuum9, 29, 31, 33, 34, 58. We emphasize that we are
not just showing that PMd units can increase or decrease their FR
during somatomotor decision-making. By correlating response
profiles to behavioral parameters such as choice, RT, and stimulus
difficulty, our second result shows that a broad class of neurons
within this continuum exhibits properties consistent with a role
in the decision formation process. Specifically, increased units
signal choice earlier than the decreased and perimovement units
and are the most consistent with the predictions of computational
models such as the DDM29, 30, 45, 46, 59, 60 and the UGM10, 43, 44.

In contrast to the increased units, the perimovement units we
report only modulated their FRs in an all-or-none manner
starting approximately 150 ms before the initiation of movement.
These FR modulations appeared after decision-related modula-
tions in the increased units. This temporal order and differences
in degree of covariation with the decision-formation process is
reminiscent of FR profiles in multi-module neural network
models that can simulate both the temporal integration of sensory
inputs and threshold detection aspects of an RT task30, 36, 56. In
one such influential multi-module neural network model36,
neurons in the first module accumulate sensory evidence and
show FR profiles similar to those observed for the increased units
in our task. In contrast, the second module, which receives
connections from the first accumulation module, demonstrates
all-or-nothing changes in FR just prior to the initiation of the
movement. All-or-nothing changes in this module implement the
threshold for the initiation of the movement and the FRs of this
second all-or-nothing module resembles the FRs of the peri-
movement units we find in PMd. In the original study36, these
modules were considered as implemented in different brain areas

with lateral intraparietal area (LIP) acting as an accumulator and
the superior colliculus, which contains burst neurons that
demonstrate perimovement discharges, as the threshold detection
mechanism. Based on this neural network model36, one inter-
pretation of our results is that there are multiple computational
modules even within a single area, PMd, during decision-
making30, 56. How decreased units fit into this framework is
currently unclear. Training randomly connected recurrent neural
networks and then perturbing them may help provide additional
insight into the role of these different types of FR dynamics in
PMd during somatomotor decisions23, 37.

The decreased neurons had tonic levels of FRs that began to
reduce after the checkerboard cue onset and showed minimal
choice selectivity. FRs of these neurons were similar for left and
for right reaches and only diverged as a function of choice just
before movement onset. These FR characteristics share some
characteristics with fixation neurons documented in the frontal
eye fields35 and the superior colliculus61. Fixation neurons, like
the decreased neurons described here, reduce their activity before
the initiation of a saccade35. They also form a small proportion of
neurons described in FEF—an observation consistent with the
result that decreased neurons were the least common of the broad
categories (~15% of the neural population). Finally, fixation
neurons are thought to be colocalized with movement-related
neurons in layer 5 of the FEF—a result consistent with our report
here of finding these decreased and perimovement neurons lar-
gely in the deeper electrodes of the U-probes and thus the deeper
layers of PMd35.

Our primary analysis using indices that exploit features of the
FRs and showing that PMd neurons are organized along a
visuomotor continuum might be construed as supporting the
standard practice in neuroscience which uses either preselection
criteria45 or indices and metrics to divide neurons into sub-
categories9, 29, 62. This is not our intention. Like others25, 27, we
recognize and indeed show that in an almost randomly sampled
population of PMd neurons there is considerable variation in the
signals carried by single neurons during decision-making. For
instance, even within the broad category of increased units, there
are interesting temporal features in the neuronal FR patterns (as
seen in the clustering analysis shown in Supplementary Fig. 9).
Said differently, the FR of every increased neuron is not easily
described as a scaled version of a prototypical integrator (e.g.,
Fig. 4 and Supplementary Fig. 11). Across the entire PMd
population, the FRs of some units are tightly associated with the
visual stimulus, others more associated with movement, while yet
others occupy the continuum between these extremes9, 29, 33. The
visuomotor continuum we show here is one effort to provide
some organizational principles for this temporal variation in PMd
during a somatomotor decision.

How might one understand this variation and heterogeneity in
the PMd population? The initial approach that we (and others)
have used is to treat population activity in a brain region as a
dynamical system23, 25, 63. In this view, the focus is on a
population-level description using either supervised or unsu-
pervised dimensionality reduction techniques. These techniques
allow visualization and description of FR variance in lower
dimensions23, 25, 63. This dynamical systems view is a largely
agnostic approach, by which we mean that there are minimal
assumptions and ad hoc sorting of neurons into subcategories is
not performed. In a broad sense, the visuomotor continuum that
we used here is a handcrafted dimensionality reduction technique
that organizes FR variance along one axis. As we showed in the
results, this handcrafted axis was tightly related to the first
principal component, which explained nearly 50% of the var-
iance. We also explored other recent methods of characterizing
this neural population including the normalized latency and
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covariance metrics adopted in other studies of visuomotor
continuums33.

Future work that analyzes trial-averaged and single-trial tra-
jectories of these PMd FRs may provide additional insights into
the underlying computational mechanisms, and additional orga-
nizing principles to subsume this temporal variation23. In parallel,
we also expect that additional understanding of FR variation in
PMd (and other structures) will emerge from systematic reverse
engineering of the cortical circuit using techniques such as optical
imaging64, laminar recordings57, 64, cell-type identification9, 57,
optogenetic perturbation65, and the use of both conventional66, as
well as novel anatomical techniques67. This combined computa-
tional and experimental approach will hopefully provide an
understanding of perceptual decisions at multiple levels of
abstraction ranging from the single-neuron to the underlying
dynamical system in PMd.

We recognize that our and other demonstrations of decision-
related activity in PMd are correlational and cannot be used to
identify whether the decision computation itself emerges in
PMd10, 11. Additional causal experiments that involve inactiva-
tion or perturbation of PMd during a decision-making task are
necessary to resolve this question68 (Supplementary Note 8).

The second advance from our study was the observation that
FR dynamics of PMd units are roughly organized as a function of
cortical depth during perceptual decisions. The increased units,
which show the strongest decision variable characteristics, were
more likely in the superficial layers of PMd. The decreased and
perimovement units were more likely in the deeper layers in
PMd. Differences in FR dynamics in PMd as a function of cortical
depth are consistent with reports of cognitive signals appearing in
the superficial layers of PFC in monkeys performing visual54 and
working memory tasks55. The laminar separation of these broad
unit categories was not absolute. For instance, increased units
were also occasionally present in the deeper layers in PMd, a
result observed in other studies of primate and rodent motor
cortex. FR modulations are observed during the delay period of
an instructed delay task in layer 5 motor cortical neurons that
project to the spinal cord20, and neurons in layer 5 of the rat
motor cortex modulate their FRs during the hold, pre-movement,
movement, and post-movement phases of a delayed motor task57.

Our observation of an organization as a function of cortical
depth in PMd complements descriptions of a functional gradient
of responses parallel to the cortical surface8. In a reach target
selection task, neurons in the more rostral parts of PMd (pre-
PMd/rostral PMd, closer to the arcuate sulcus) appear to have
stronger covariation with the target selection process compared to
the most caudal portions of PMd that appear to have more
movement-related signals (closer to primary motor cortex)8. This
prior suggestion of a rostrocaudal organization in PMd along
with our results, which show a depth dependent organization,
provides additional evidence for an anatomically organized circuit
in PMd that contains signals related to somatomotor decisions.
Combining magnetic resonance imaging with dense electrode
recordings is a promising strategy to recover an “electro-
anatomical” map of this circuit in PMd and M169.

Differences in timing of choice selectivity observed in PMd as a
function of cortical depth may arise from differences in con-
nectivity between PMd and other cortical areas and connectivity
within PMd itself. Reciprocal connections are present between
PMd and prefrontal, parietal as well as premotor areas70 and
these projections from prefrontal and pre-arcuate areas are
thought to terminate in superficial layers of PMd39. Deeper layers
of PMd are also thought to be connected to subcortical structures
such as the spinal cord and striatal circuits71. Examinations of
laminar connectivity in rodent motor cortex40 also suggest a
prominent descending projection from L2/3→L5. Based on these

anatomical studies, our results, and insights from multi-module
computational models of decision-making36, 56, we propose a
summary schematic for decision-related dynamics in PMd
(Fig. 5). The framework we propose is that decision-related
activity will initially appear in the increased units either as a result
of anatomical inputs from other brain regions or as a result of the
circuit in premotor cortex. Activity in these increased units,
which are more likely in the superficial layers or other brain areas,
may in turn influence the dynamics in the decreased and peri-
movement units, which are more likely in the deeper layers and
perhaps involved in the decision threshold mechanism36. We
view this schematic as a starting point for further investigations
into circuit dynamics underlying decision-making13–15, 30, and
perhaps guide the design of the next generation of anatomically
guided recurrent neural network models36, 37, 56.

Methods
Subjects. Our experiments were conducted using two adult male macaque mon-
keys (Macaca mulatta; monkey T, 7 years, 14 kg; O, 11 years, 15.5 kg) trained to
reach to visual targets for a juice reward. Monkeys were housed in a social vivarium
with a normal day/night cycle. The protocols for our experiments were approved
by the Stanford University Institutional Animal Care and Use Committee. We
initially trained monkeys to come out of the cage and sit comfortably in a chair.
After initial training, we performed sterile surgeries during which monkeys were
implanted with head restraint holders (Crist Instruments, cylindrical head holder)
and standard recording cylinders (Crist Instruments, Hagerstown, MD). Cylinders
were centered over caudal PMd (+16, 15 stereotaxic coordinates) and placed sur-
face normal to the cortex. We covered the skull within the cylinder with a thin layer
of dental acrylic/palacos.

Apparatus. Monkeys sat in a customized chair (Crist Instruments, Snyder Chair)
with the head restrained via the surgical implant. The arm not used for reaching
was gently restrained using a tube and a cloth sling. Experiments were controlled
and data were collected under a custom computer control system (xPC target and
Psychophysics Toolbox). Stimuli were displayed on an Acer HN2741 computer
screen placed approximately 30 cm from the monkey. A photodetector (Thorlabs
PD360A) was used to record the onset of the visual stimulus at a 1 ms resolution.
Every session, we taped a small reflective hemispheral bead (11.5 mm, NDI Digital
passive spheres) to the middle digit of the right hand (left hand, monkey O). The
bead was taped 1 cm from the tips of the fingers, and the position of this bead was
tracked optically in the infrared (60 Hz, 0.35 mm root mean square accuracy;
Polaris system; Northern Digital). Eye position was tracked with an overhead
infrared camera (estimated accuracy of 1°, Iscan, Burlington, MA). To get a stable
eye image for the overhead infrared camera that acquires the eye image, an infrared
mirror transparent to visible light was positioned at a 45° angle (facing upward)
immediately in front of the nose. This mirror reflected the image of the eye in the
infrared range while letting visible light pass through. A visor placed around the
chair prevented the monkey from touching the infrared mirror, the juice tube or
bringing the bead to his mouth.

Layer I
Layer 2/3

Greater presence of 
choice-related signals

Layers
5/6

Superficial

Deep

Prefrontal
input from 
area 8 and
other 
structures

Projections
to spinal cord,
striatal circuits

Choice / Decision Related

Perimovement
/Decreased

Relatively weaker
choice-related signals, 
more likely to contain
perimovement cells and
cells that suppress their
responses.

Fig. 5 A schematic architecture for decision-making in PMd. The superficial
layers of PMd are thought to receive inputs from prefrontal and prearcuate
areas. The deeper layers of PMd are thought to project to subcortical and
spinal circuits. Differences in anatomical connectivity is one hypothesis for
why choice-related activity emerges earlier in the superficial compared to
the deeper electrodes
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Task structure. Experiments consisted of a sequence of trials, each of which lasted
a few seconds; successful trials resulted in a juice reward, unsuccessful trials in a
time-out from 2–4 s. Monkeys used their unrestrained arm (monkey T used his
right arm, monkey O his left arm) to reach to touch either red or green targets
based on the dominant color in a central, static checkerboard cue composed of
isoluminant red and green squares. For every trial, the monkey placed its unrest-
rained arm on a central target (diameter = 24 mm) and fixated on a small white
cross (diameter= 6 mm). After ~350–400 ms had elapsed, two isoluminant colored
targets appeared 100 mm to the right and left of the central target. The target
configuration was randomized so that colors were not always tied to reach direc-
tions. On some trials, the target configuration was red on the left and green on the
right; other trials had the opposite configuration. This manipulation allows us to
examine if PMd FRs also covary with the color of the target chosen. After an
additional hold period (varying from 400–900 ms), a static checkerboard cue (15 ×
15 grid of squares; 225 squares in total; each square 2.5 mm × 2.5 mm) composed of
isoluminant red and green squares appeared on the screen around the fixation
cross (example stimuli are shown in Fig. 1d). The monkeys reached to the target
whose color matched the dominant color in the central checkerboard cue. For
example, when there was more green than red in the central checkerboard cue, the
monkey had to choose the green target. To “choose” a target, the animals moved
their hand from the central hold point and stably held a target for a short duration
(minimum of 200 ms). The task was an RT paradigm, and thus the monkeys were
free to initiate their reach whenever they felt there was sufficient evidence accrued
to inform their choices. We did not impose a delayed feedback procedure in this
task. That is, if the correct target was chosen, a juice reward was provided to the
monkey immediately after the monkeys chose the target45.

We parameterized the checkerboard cue at several different levels from almost
fully red to almost fully green. We used 14 levels of red (ranging from 11 red
squares to 214 red squares) in the central checkerboard cue. Each level of red had a
complementary green level (e.g., 214 R, 11 G; and 214 G, 11 R squares). We defined
seven levels of color coherence (defined as C= 100×|R −G|/(R + G), 4–90%). The
corresponding signed coherence (SC) was estimated without taking the absolute
value of the difference (SC= 100×(R −G)/(R + G)). For monkey T, we used a
uniform distribution of hold period durations between the onset of the targets and
the onset of the checkerboard cue. Monkey O attempted to anticipate the
checkerboard cue onset. To minimize this anticipation we used an exponential hold
period duration (400–800 ms) between the onset of the targets and the onset of the
checkerboard cue to reduce predictability.

Training. We used the following operant conditioning protocol to train our ani-
mals. First, the animal was rewarded for arm movements toward the screen and
learnt to take pieces of fruit on the screen. Once the animal acquired the asso-
ciation between reaching and reward, the animal was conditioned to touch a
central target for a juice reward. The position, as well as the color of this target, was
then randomized as the monkey learned to touch targets at different locations on
the screen. We then adopted a design in which the monkey first held the central
hold for a brief period, and then a checkerboard cue, which was nearly 100% red or
100% green, appeared for 400–600 ms and finally the two targets appeared. The
monkey received a reward for making a reach to the color of the target that
matched the checkerboard cue. Two-target “Decision” blocks were interleaved with
single target blocks to reinforce the association between checkerboard color and the
correct target. After a couple of weeks of training with this interleaved paradigm,
the animal reliably reached to the target matching the color of the central check-
erboard cue. We then switched the paradigm around by adopting a design in which
the targets appeared before the checkerboard cue onset. We initially trained on
holding periods (where the monkeys view targets) from 300 to 1800 ms. We trained
the animal to maintain the hold on the center until the checkerboard cue appeared
by providing small amounts of juice. When the animal reliably avoided breaking
central hold during the holding period, we stopped providing small amounts of
juice. In subsequent weeks, we introduced more difficult checkerboard cues to the
animal while reducing the maximal holding period to 900 ms. We then encouraged
the animal to perform this discrimination as accurately and as fast as possible while
discouraging impulsivity by adopting timeouts.

Electrophysiological recordings. Stereotactic coordinates, known response
properties of PMd and M1, and neural responses to muscle palpation served as our
guides for electrophysiological recordings. We placed the chambers surface normal
to the cortex to align with the skull of the monkey and recordings were performed
perpendicular to the surface of the brain. Recordings were made anterior to the
central sulcus, lateral to the spur of the arcuate sulcus, and lateral to the precentral
dimple. For both monkeys, we confirmed our estimate of the upper and lower arm
representation by repeated palpation at a large number of sites to identify muscle
groups associated with the sites. Monkey T used his right arm (O used his left arm)
to perform tasks. Recordings were performed in PMd and M1 contralateral to the
arm used by the monkey.

A subset of the electrophysiological recording was performed using traditional
single electrode recording techniques. Briefly, we made small burr holes in the skull
using handheld drills. We then used a Narishige drive with a blunt guide tube
placed in firm contact with the dura. Recordings were obtained using FHC

electrodes to penetrate the overlying dura. Every effort was made to isolate single
units during the recordings with FHC electrodes.

We performed linear multi-contact electrode (U-probe) recordings in the same
manner as single electrode recordings with some minor modifications. We used a
slightly sharpened guide tube to provide more purchase on the dura. We also
periodically scraped away under anesthesia any overlying tissue on the Dura. Sharp
guide tubes and scraping away dura greatly facilitated penetration of the U-probe.
We typically penetrated the brain at very slow rates (~2–5 μm/s). Once we felt we
had a reasonable sample population of neurons, potentially spanning different
cortical layers, we stopped and waited for 45–60 min for the neuronal responses to
stabilize. The experiments then progressed as usual. We used 180-μm thick 16-
electrode U-probes with an inter-electrode spacing of 150 μm; electrode contacts
were ~100 Kohm in impedance.

We attempted to minimize the variability in U-probe placement on a session-
by-session basis so that we could average across sessions for the analyses in Fig. 4.
Our approach was to place the U-probe so that the most superficial electrodes
(electrodes 1, 2 on the 16 channel probe) were able to record multi-unit spiking
activity. Any further movement of the electrode upwards resulted in the spiking
activity disappearing and a change in the overall activity pattern of the electrode
(suppression of overall LFP amplitudes). Similarly, driving the electrodes deeper
resulted in multiphasic extracellular waveforms and also a change in auditory
markers which were characterized by decreases in overall signal intensity and
frequency content. Both markers suggested that the electrode entered white matter.
Recording yields and this careful electrode placement were in general better in
monkey T (average of ~16 units per session) than monkey O (average of ~9 units
per session). We utilized these physiological markers as a guide to place electrodes
and thus minimize variability in electrode placement on a session-by-session basis.
Importantly, the variability in placement would act against our findings of depth-
related differences in activity (Fig. 4). Random placement of U-probes on a day-to-
day basis would flatten out the average visuomotor index and dilute or entirely
remove significant differences in the discrimination time differences between
superficial and deep electrodes.

The technique necessitated a careful watch over the electrode while lowering to
ensure that it did not bend, break at the tip or excessively dimple the dura. We,
therefore, were unable to use a grid system to precisely localize the location of the
U-probes on different days and to provide a map of how laminar profiles change in
the rostrocaudal direction. However, we recorded a small subset of units in a more
posterior location in the recording chamber (putatively M1, n = 12 sessions, 95
units) that we also report in Supplementary Fig. 12a in this manuscript.

Description of neural populations included in our database. We report here the
activity of 996 units recorded in PMd of two monkeys while they performed the
task (546 units in T, 450 units in O; single neurons and multi-units which
responded during any epoch in the task). The majority of the units in the database
were well-isolated single neurons, and as per convention, we term them single
neurons. Some of these single neurons were collected using high impedance (i.e.,
small electrode contact area, >6MΩ) sharp FHC electrodes. When using these
electrodes, every attempt was made to isolate and track single neurons and to stably
record from them.

We also had excellent success recording from isolated single neurons from the
U-probes. The U-probes are low impedance electrodes (~100 kΩ) with a small
contact area and were thus excellent for isolation of single units. We used a
conservative threshold to maximize the number of clearly defined waveforms and
minimize contamination from spurious non-neuronal events. Online, we used the
hoops provided by the software client for our Cerebus system (BlackRock
MicroSystems) to delineate single neurons after the electrodes had been placed in
the cortex for at least half an hour to 45 min. Every time a spike was detected by the
threshold method, a 1.6 ms snippet was stored and used for subsequent evaluation
of the clusters as well as adjustments needed for spike sorting. Recordings from
some electrodes in the U-probes consisted of mixtures of 2 or more neurons well
separated from the noise and from one another. In a majority of these cases, the
waveforms were clearly separated, and these were labeled as single units. We
verified these separations visually by viewing the waveforms in a principal
component space using custom code written in MATLAB and adjusted the clusters
that were isolated online using the MatClust MATLAB-based clustering tool that
allows the drawing of polygons to label clusters or the Plexon Offline Sorter.
Finally, we had two other types of recordings that we labeled as multi-units. The
first category consisted of the multi neuron mixtures that were not separable using
a principal components method. The second rarer class consisted of recordings
with waveforms only weakly separated from the noise. Both of these types of units
were classed as multi-units. We included all of these different units in our analysis
here.

To reduce the subjectivity in our assessments we used the number of ISI
violations (after clustering and sorting) to distinguish between single and multi-
units. We labeled a unit as a single neuron if the percentage of ISI violations
(refractory period of <=2 ms) was less than 1.5% and a unit with ISI violations
exceeding 1.5% as a multi-unit. Using this criterion, 801 of the 996 PMd units
reported here are identified as single neurons (384 from O, 417 from T, mean ISI
violation = 0.43%, ~0.13 additional spikes per trial). Similarly, 195 out of 996 are
classified as multi-units (129 from T, 66 from O, mean ISI violation = 3.36%, ~1.4
additional spikes per trial).
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All main claims made in the paper were unchanged when only restricting the
analysis to single neurons (Supplementary Note 6, Supplementary Fig. 13).

General notes on physiological analyses. Electrophysiological characteristics
were similar in both monkeys, so we pooled data from both monkeys for more
power as well as clarity. PMd units were tuned to different reach directions even
when recordings were performed in the hemisphere contralateral to the arm. For
example, some units recorded in the left hemisphere would be tuned for reaches to
left targets; other units were tuned for reaches to right targets. We developed a
tuning measure by testing if the FR in the −150 ms to move onset +50 ms time
window was significantly different for left vs. right reaches. According to this
metric (555/996 units (55.72%) were tuned to reaches to the left, 441/996 (44.28%)
were tuned to reaches to the right). Thus, even within the same hemisphere, units
were almost equally likely to be tuned to left reach or right reaches (although there
is a slight tendency to be more tuned for left reaches overall). Tuning to both left
and right reaches was often present within the same U-probe penetration. We,
therefore, did not seek to place reach targets for each unit in the preferred and anti-
preferred directions. Instead, we fixed the spatial locations of the two targets to the
left and right of the central hand target and randomized the target color.

PMd units often switched their tuning preference across time within a trial. In
such conditions, as suggested previously26, we computed the mean absolute
difference between FR for left vs. right reaches and plotted it as a function of time.
This subtraction provided a “choice selectivity” signal that depends on color
coherence (or RT). This is the signal plotted in Fig. 3b, d, g when aligned to
checkerboard cue and movement onset. The FR in the hold period is subtracted
from the choice selectivity signal for each unit before averaging.

We also occasionally observed in some PMd units a covariation between the
hold period FR and overall RT. These effects will be the subject of another study
and will not be discussed in this manuscript.

Trials used in single and population unit PSTHs. For averaging, we included
both correct and incorrect trials and sorted them by the choice of the monkey.
However, we excluded a small proportion of change of mind trials (~2–3% of trials)
from averages. We chose to do this because, for the change of mind trials, the
monkey would initiate in one direction and then change the direction mid-reach.
The reaches were thus multiphasic in nature and did not possess a clear initial
reach direction making choice attribution for these trials ambiguous. Including
them in the averages inflated the variance of FR around movement onset. So we
excluded this small proportion of explicit change of mind trials from the averages
reported in the Figs. 2, 3, and 4 and the Supplementary Figures. We expect to
report the behavioral and neural correlates of explicit change of mind trials
elsewhere.

On average across all units, PSTHs/PMTHs rates were estimated using 1194
trials per unit (comprising all conditions and choices) for monkey T (5th and 95th
percentiles: 242, 2182 trials) and using 928 trials per unit for monkey O (5th and
95th percentiles: 400, 1644 trials).

For PSTH plots and the analyses shown in Figs. 2–4, trials were separated
according to color coherences (seven different color coherences) or by RT (using
different overlapping bins 325–425 ms, 350–450 ms … 500–1000 ms). The use of
these overlapping bins allows us to better visualize organization with RT. This gave
us several curves for each of the plots when sorted by RT.

General analysis notes. For PSTHs, we used large numbers of trials as well as
several units to compute our statistical tests (>100 units typically for comparisons)
and assumed normality because of the central limit theorem. To be confident that
potential non-Gaussian nature of the data did not impact our results, we compared
medians of these distributions and where appropriate used shuffling and permu-
tation to perform comparisons. No blinding or randomization of animals was
performed in this study. All tests were two-tailed unless noted.

Effects of coherence on accuracy and RT. We analyzed the behavior using two
different methods. Our first approach was to fit psychometric curves, which
describe how discrimination accuracy changed as a function of coherence. In the
same approach, to test if RT changed with coherence, we used a regression between
RT and log coherence as in ref. 45. Our second approach was to jointly fit both
accuracy and RT using a DDM, which provides descriptions of choice and RT
distributions42.

For the analysis of the behavior, we used the same 75 sessions for monkey T
(128,989 trials) and 66 sessions for monkey O (108,344 trials) from which we
report electrophysiological data. Fits to psychometric curves and RT regressions
were performed on a per-session basis and then averaged over sessions. The
behavior for an average session was estimated from ~1500 trials. RT was estimated
for each session by including both correct and incorrect trials for each SC.

Psychometric curves for accuracy. For every experiment, we estimated the
monkey’s sensitivity to the checkerboard cue by estimating the probability (p) of a
correct choice as a function of the color coherence of the checkerboard cue (C). We

fit this accuracy function using a Weibull cumulative distribution function:

pðcÞ ¼ 1� 0:5e�
c
αð Þγ :

The discrimination threshold α is the color coherence level at which the
monkey would make 81.6% correct choices. The second parameter, γ, describes the
slope of the psychometric function. The mean alpha parameter across sessions is
used as the threshold. We fit threshold and slope parameters on a session-by-
session basis and averaged the estimates. The mean and standard deviation of the
threshold estimates are reported in Fig. 1d. R2 values from the fit are provided in
the text.

RT vs. coherence. To examine if RT changed with coherence, we adopted the
procedure from ref. 45 and used a linear regression between RT and log coherence.

RT cð Þ ¼ Interceptþ aclogeðcÞ:

We fit this regression model and report the slope as well as the R2 values from
the fit. ac is the slope of the regression. We complemented this simple
characterization of how RT changed with coherence and fit both choice behavior
and RT using a DDM or UGM, which we describe in the following section
(Supplementary Note 1, Supplementary Figs. 1–2).

Fitting behavior using a DDM. We first fit the behavioral observations of dis-
crimination accuracy and RT with a DDM that proposes the integration of
momentary evidence (e.g., noisy spike trains in sensory areas in response to the red
squares of the checkerboard cue) to one of two predefined bounds (Supplementary
Fig. 1a). Even though our stimulus is a static checkerboard cue, the spike trains in
response to static stimuli are time varying in nature and DDMs have been used in
other tasks with static stimuli and shown to capture key features of the dis-
crimination behavior42.

A succinct modeling description is provided here; detailed descriptions of the
model are available elsewhere42. The DDM is mathematically equivalent to the
one-dimensional movement of a particle undergoing Brownian motion to one of
two absorbing boundaries. The model provides a quantitative account of both the
choice (which boundary was reached) and the decision time (when the boundary
was reached) on each trial. The DDM model uses the formulation of a putative
decision variable (V) that depends on the SC of the checkerboard cue according to
the stochastic differential equation:

dV ¼ μdtþ dW:

A decision occurs when V reaches a decision bound (A or 0, corresponding to a
red choice or a green choice). The quantity μdt is the momentary evidence (termed
drift rate) and is distributed as a random variable with a Gaussian distribution (N
(μ, 1)). The mean of this momentary evidence distribution (μ) is different for each
condition. dW refers to Gaussian noise which is added at each time step.

We did not want to make assumptions about how stimulus strength mapped to
the mean of the momentary evidence. Moreover, we wanted to fit full RT
distributions and not just the mean RTs because very different models can predict
the same mean RT42. For these reasons, we chose to use the formulation of the
DDM for the decision time with the following parameters: slope of the diffusion
process for each color coherence level (v), threshold separation (A), and starting
point (z)60. We also included variability in the drift rate (sv) but not the starting
point. Overall both monkeys showed very little red-green bias.

The diffusion model only provides an estimate of the decision time and does
not incorporate non-decision times, such as other sensory encoding and motor
preparation latencies. The common approach is to consider decision time and
other residual times as independent additive contributions to the total RT.
Therefore, mean RT for every condition is the sum of the mean decision time and
the non-decision time (t0). We also assumed trial-to-trial variability in this non-
decision time parameter (st0). This improved overall RT fits but tended to increase
the mean non-decision time (fits with this parameter often led to a 40–60 ms
increase in the mean non-decision time, and we report this number in the main
text). Our decision times are therefore better understood as a lower bound. We
chose to report fits with this parameter included in the main text because they
provided the best fits to the overall RT distribution as measured by the χ2 goodness
of fit. The goodness of fits for other comparison models that excluded these
parameters are shown in Supplementary Table 1. The parameters from the best fit
DDM are shown in Supplementary Tables 2 and 3.

Finally, non-decision times are often assumed to be equal for both choices.
However, this assumption may not apply if other cognitive factors are involved. For
example, if one of the response types occurs more frequently, or is perceived to be
more likely in a given situation, it might result in a faster motor response42.
Overall, the fits to the RT data shown in Supplementary Fig. 1b–c were better when
including the static parameter (d) which shifts the non-decision time for one choice
by this amount. This use of variable non-decision times for different responses is
often used in decision-making studies to explain RT.
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Model fits were performed using the fast-dm toolbox with minimization of the
χ2 criterion which is robust with large numbers of trials42. For input to the model,
we included all trials pooled over all sessions (correct as well as incorrect) and
labeled it with the choice the monkey made as well as RT (128,989 trials for T and
108,344 trials for O). The χ2 goodness of fit for the DDM from this best fit model
can be found in Supplementary Table 1. The parameters from this best fit model
are provided in Supplementary Table 2.

Plots of decision times in Supplementary Fig. 1d were generated by subtracting
the estimates of non-decision times from the mean and 95th percentiles of the RT
distributions. The 95th percentile of the RT distribution provides an upper bound
on the decision times used by the monkey and facilitates comparison to the data
from variable duration tasks. For our monkeys, approximately 35–40% of trials lie
between the mean and the 95th percentile of RTs.

Comparing fits from the UGM and the DDM. We also compared fits between a
DDM and an UGM44, 48, 49. For this comparison, we used a toolbox developed as
part of a recent study that investigated the differences between these two models47.
This toolbox is available on request from Dr. Guy Hawkins. The models being
compared here are a DDM with variability in drift rate44, 47 and an UGM that
incorporates variability in drift rate and an urgency signal44. The time constant for
the UGM was chosen to be 100 ms44. An extensive description of these models is
provided in ref. 47 and here we only briefly describe the models.

We used the same basic framework from refs. 44, 47 to implement our DDMs
and UGMs. The first variant of the UGM was implemented by an urgency function
that was linear in time (U(t)= b × t, b= 1) and included a low pass filter with a
time constant of 100 ms44, 47. Further details of model implementation are
provided in ref. 47. We assumed variability in the drift rate for both the DDM and
the UGM. Both models have equal numbers of estimated parameters, and thus
goodness of fit can be compared without any penalization for model complexity.
The parameters estimated for the UGM (DDM) and the parameters kept constant
are reported in the Supplementary Table 4 and replicated from ref. 47. We also
explored a second variant of the UGM that included an additional intercept term
(U(t) = a + b × t, with b= 1). The inclusion of this additional intercept parameter
allows the UGM to model fast RTs observed in discrimination tasks.

The models were implemented in a combination of R and C++. To ensure that
we were correctly performing the model fitting, we first fit the behavior of the
monkeys from Roitman and Shadlen45 and verified that the QMPE statistics72 were
near identical (small variations occur due to the random number generators in
different iterations) to the statistics reported for this data set in ref. 47. We then
applied this analysis to the behavioral data collected in this study.

Peristimulus/perimovement time histograms (PSTH/PMTH). For each unit,
we calculated mean FR over trials to define a PSTH/PMTH over time. Trials were
aligned to several events such as checkerboard cue onset, target onset, and
movement. Spike trains for each trial were binned in 1 ms bins, convolved with a
causal boxcar and averaged over trials depending on condition identities. For single
examples shown in Figs. 2, 4 and Supplementary Fig. 4, we used a 75 ms causal
boxcar. For population data, we convolved the spike trains with a 50 ms causal
boxcar. When aligned to checkerboard cue onset, for both single examples as well
as population FR plots, we removed spikes starting 100 ms before movement onset
until the end of the trial and assigned them to not a number (NaN). Similarly,
when aligned to movement onset, we used the RT and set all spikes before the onset
of the checkerboard to NaN. We then averaged across the trials and reported the
mean and standard error across trials (for single examples) and neurons (popu-
lation level).

Visuomotor index for separation into unit classes. We partitioned our unit
database into a continuum of unit classes by developing a visuomotor index based
on the observation that before movement onset there are systematic FR modula-
tions in some units that covary with RT. We exploited the existence/absence as well
as the direction (increases or decreases) of this main effect of RT to define the
index.

The index is estimated as the trial-by-trial correlation between the RT and time
averaged FR in the −600 to −200 ms epoch before movement onset. We only
included FR until 200 ms before movement based on two observations. First, most
perimovement units often began modulating their responses around that time.
Second, when using the regression analysis, the number of units with RT as a
significant predictor at −150 to −200 ms before movement onset began to approach
chance levels (Supplementary Fig. 10a).

Before computing this correlation coefficient, we first subtracted the hold period
FR (from the 200 ms epoch before checkerboard cue onset). Then for each trial, to
ensure that FRs before checkerboard cue onset do not bias the index, we set spikes
before the onset of the checkerboard relative to movement onset to be NaN. We
then averaged the FR (across time) from −600 to −200 ms for each trial and then
correlated this quantity to the RT. For n trials of one unit, we had n RTs and n
time-averaged FRs. Both the left and right choices were included in the
computation of the correlation. The correlation coefficient was significant if the
90% confidence intervals (p< .05, for each tail) estimated by bootstrapping did not
overlap with zero. Changing confidence intervals to 95% did not result in a
qualitative change in the results.

The perimovement units were defined as the ones with insignificant indices. We
were concerned that some of the decreased units, which had smaller values of the
index, could be mistakenly classified as perimovement units and vice versa. To
address this concern, we used the Bayes Factor method that provides the ratio of
the likelihood of two competing hypotheses or models73 and is typically interpreted
as evidence for one model over the other. In our case the ratio is between
classifying a unit as decreased (or increased, H1) vs. perimovement (H0)73. A large
value of Bayes Factor suggests that model H1 is more likely than the model H0 and
in our case would provide strong support that the unit is correctly classified as
increased or decreased. In contrast, a low Bayes Factor would suggest strong
evidence for H0 and support the classification of the unit as perimovement in
nature. We examined the Bayes Factors computed for the different broad unit
categories and found that the Bayes Factors for the units classified as
perimovement based on the visuomotor index were very low suggesting that they
were correctly classified (Supplementary Fig. 3b). The Bayes Factors computed for
perimovement units also had very little overlap with Bayes Factors for both the
decreased and increased units (Supplementary Fig. 3b)73. This suggests that there
was minimal contamination of the perimovement group by the decreased units and
vice versa.

Slope analyses. For every level of color coherence, we regressed the 150–350 ms
epoch of the boxcar smoothed choice selectivity signal (e.g., Fig. 3b) to time to
estimate the rate at which the choice selectivity increased in this epoch (plotted in
Fig. 3c for each color coherence level). Using 150–250 ms after checkerboard cue
onset (which would suggest an even shorter average decision time of 100 ms) did
not change our conclusions.

Population timing analyses. We identified the time at which the population
activity significantly changed as a function of the choice of the monkey by using a
paired t-test comparing responses during the epoch after checkerboard cue onset to
the responses of the same neurons during the hold period (−500 ms to 0 before
checkerboard cue onset). This latency for choice selectivity is termed discrimina-
tion time and is plotted in Fig. 3e. We chose a paired t-test for this analysis because
the decreased neurons did not have a significant choice latency with more stringent
measures. The discrimination time was identified as the first time point after
checkerboard cue onset for which at least 50 ms was significantly different from
hold period FR (paired t-test vs. hold period FR, p< .05 false discovery rate
corrected). When aligned to checkerboard cue onset FR from 100 ms before
movement onset onward were set to NaN. To derive error bars around this
estimate of the time at which significant choice selectivity emerged, we boot-
strapped trials for each unit to come up with 50 surrogate distributions of FRs for
each unit. We then reran the timing analyses and used the standard deviation of
the bootstrap distribution to estimate the error in our estimate of the
discrimination time. Alternative methods by bootstrapping over units yielded
similar results.

Estimate of the discrimination time for each single neuron. We also performed
the same analysis identifying the discrimination time on a neuron-by-neuron basis.
We used the 95th percentile of the bootstrap estimates of baseline FRs for each
neuron to identify the time at which the neuron demonstrated significant choice
selectivity. The FRs should be significantly different as a function of choice for at
least 50 ms after this first identified time to be included as an estimate of a time of
significant choice selectivity. The analysis was performed aligned to both check-
erboard cue onset and movement onset. Data are shown aligned to checkerboard
cue onset in Supplementary Fig. 4g–i.

We computed the slope of this discrimination latency vs. RT when aligned to
both checkerboard cue onset and movement onset and used this to perform the
analysis described in ref. 9 and in Supplementary Fig. 7b. The mean slopes aligned
to checkerboard cue onset and aligned to movement onset are shown in
Supplementary Fig. 7c, d, respectively.

Neural response latency (λ) and covariation with RT (β). We also used the
method developed in DiCarlo and Maunsell33 to characterize our neural popula-
tion. This method helps determine the response onset (termed Neuronal Latency or
NL, λ) and is thought to estimate where in the “processing chain” the neurons
might operate. Smaller values of λ suggest that the neuron is more sensory (visual
in our case) and larger values of λ signify that the neuron is closer to the motor
output.

The method also provides an estimate of the covariance between the neuronal
latency and the RT (β). β is unitless and ranges from near zero for neurons whose
FRs have no correlation with RT (neurons involved in the early stage of
information processing) to near unity for neurons with activity closely correlated
with the timing of the behavioral response (the RT). Note that λ and β do not
distinguish whether the neuron increased or decreased it FR after checkerboard cue
onset. Code and a Jupyter notebook explaining this technique are available at
https://github.com/mailchand/ephysutils.

Unsupervised clustering of PMd FRs. Another analysis we performed was
inspired by a recent study that used a clustering technique to suggest the presence
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of diversity in neural responses in LIP during a perceptual decision-making task26.
Using the tuning metric measured around movement onset (described above), we
first identified for each neuron a FR averaged over all trials in the preferred
direction and a FR over all trials for the non-preferred direction aligned to the
checkerboard cue onset. We included 100 ms before checkerboard cue onset and
600 ms after checkerboard cue onset in our averages. We then concatenated these
FRs and then performed a k-means clustering analysis.

To decide on k, the number of clusters to show, we used the gap statistic
method74. The gap statistic quantifies the change in within-cluster dispersion with
that expected under an appropriate reference null distribution74. The number of
clusters is chosen to be the minimal value of k that involves the largest separation
between the true distribution and the reference distribution. With very small
numbers of clusters, the difference between the within group dispersion and the
reference distribution is low. At some point, this difference increases and roughly
saturates. The first such value is a good indication of a reasonable clustering
solution for the data74.

Principal component analysis (PCA) of PMd FRs. We also used an alternative
unsupervised method, PCA to examine the FR variance recorded in our neural
population. The FRs of all units were first “softmax” normalized by dividing the FR
for each unit across all conditions by the range of the FR for the neuron across all
conditions for the unit. Softmax normalization reduced the bias induced by high
FR units. This ensures that each unit has roughly the same overall variability across
conditions. Dimensionality reduction was performed on a FR matrix of dimension
(units (n) ×∑ti), where n is the number of recorded units, and ti denotes the
number of time points for the ith condition over time. We performed PCA on this
space to reduce these dimensions to k ×∑ci × ti, where k represents the dimensions
across which the most neural variance was explained.

PCA makes few assumptions about the underlying structure of the data, simply
revealing dimensions that explain a large percentage of the variance. PCA does not
guarantee that the dimensions extracted are meaningful. However, often they can
align quite well with behavioral variables of interest as seen in Supplementary
Fig. 8. Other methods such as factor analysis can be used. However, they often
require additional assumptions about the data. Several studies have employed PCA
as a dimensionality reduction technique for trial-averaged data63. The RT nature of
the task precluded us from using techniques such as targeted dimensionality
reduction23.

Examination of loading matrices from principal components. Analysis of the
loading matrices from PCA provided us with additional credence to the claim that
there are broad unit populations in PMd that demonstrate a specific relationship to
the decision formation process. We tested if the distribution of loadings in this two-
dimensional space was consistent with a uniform random distribution by using a χ2

test that assumes an equal number of neurons in each octant or by using the more
sophisticated PAIRS (Projection Angle Index of Response Similarity) test devel-
oped in a recent study27.

The PAIRS test compares each neurons loading on the first two (or more)
principal components with its “nearest neighbors” in the principal component
space by computing the angle between the vectors. If there is a nonuniformity in
the loading in this space, then the distribution of angles would not be uniform, and
a median of this distribution is compared to the median from 10,000 simulated
data sets from a two-dimensional Gaussian distribution. The simulated data sets
are used to estimate a p-value for this statistic.

Estimating correlation between RT and neuronal responses. We also adopted
an analysis method developed for heterogeneous neural populations by Erlich and
collaborators53. This method measures the correlations between RT and neuronal
responses by using an alignment algorithm to find a temporal offset for each trial
that would best align that trial’s FR with the average over all the other trials.

The algorithm first computes a trial-averaged FR aligned to a marker of interest
(in our case movement onset). The FR of every trial is then cross-correlated with
the trial-averaged signal, and the location of the peak of the cross-correlation is
measured as the offset needed to align the trial to the average. The trial was then
shifted accordingly, and the trial-averaged FR was recomputed. This process was
then repeated until the variance of the trial-average signal converged, typically
within less than 10 iterations for a criterion of 1% variance. The final output of this
alignment procedure was an offset that was then correlated to RT.

When aligned to movement onset, the expectation is that the perimovement
units would require minimal shifts and would thus show the lowest correlation
between the offset time and RT. In contrast, the increased and decreased units
would show a larger degree of shift, and this would emerge as a significant
correlation. Because the analysis was performed aligned to movement onset, longer
RT trials would require a positive shift (to match the average). The shorter RT trials
would need a negative shift resulting in a significant positive correlation between
RT and offsets estimated from the algorithm.

One limitation of this metric is that it does not provide any indication of
whether the neuron was decreasing its FR during the decision-formation process or
increasing its FR. To estimate the direction of FR change, we examined the FR in
the 100 ms epoch before movement onset and compared it to the FR in a reference

epoch (−800 to −700 ms before movement onset). If the perimovement period FR
was lower than the reference epoch FR, we multiplied the sign of the correlation
coefficient estimate from the offset method by −1. We then correlated this modified
coefficient to the visuomotor index we proposed.

Classification analysis. We also examined if the superficial layers (electrodes 1–8)
of PMd signaled choice earlier than the deeper layers (electrodes 9–16) by using
linear classifiers. A separate naïve Bayes classifier (from classify in MATLAB) with
10-fold cross-validation (over trials) was used for the superficial and the deep
layers. For classification analysis, we only included sessions where we had more
than 10 units recorded for this classification analysis to give us sufficient power and
be confident in the classification results. This criterion left us with 19 sessions in
monkey T and 12 sessions in monkey O. To reduce the bias in the classification
results we equalized the number of units for each classifier to be the same. When
either the superficial or deep had more units, we randomly selected from the greater
of the two pools, a number of units that was equal to the number of units in the
other pool. We repeated this selection 10 times and then averaged over both folds
(10 folds) and selections. All RTs from 300 to 1000 ms were included in this
analysis. Input to the classifier was 50ms boxcar spike counts and retrained on each
time point. We chose a 2 ms spacing between adjacent time points for the classifier.

To estimate the reduction in discrimination time for the superficial compared to
the deep layers, we used a threshold of 55% accuracy and estimated the first time at
which the accuracy increased above this value for the superficial and deep layers.
We then defined the benefit as tDeep—tSuperficial and used it as our estimate of the
discrimination time delay between the superficial vs. deep layers. We also estimated
through bootstrapping (10,000 repeats) by randomly drawing with replacement
from this population of sessions and obtained a distribution of these delays. We
report the mean of this randomly sampled distribution as our estimate of the
reduction in discrimination time. To estimate if this reduction in discrimination
time was significant, we used the bootstrapped distribution and estimated the
fraction of delays that were lower than 0 and report this as the p-value for the
reduction in discrimination time.

Control: regression analysis. We assumed that FR at each time point is a linear
combination of several predictors such as RT, reach direction choice, the color of
the target chosen, color coherence, interaction terms between these predictors, as
well as several potential nuisance variables related to the arm and eye movements.
The regression equation for the ith trial when aligned to movement onset was as
follows:

ri tð Þ ¼ β0 þ βcoh ´ cohi þ βchoice ´ choicei
þβcolor ´ChosenColori þ βRT ´RTi

þβhandX ´XhandX;i tð Þ þ βhandY ´XhandY;i tð Þ
þβEyeX ´ EyeXi tð Þ þ βEyeY ´ EyeYi tð Þ
þβspeed ´ Hand Speedið Þ
þβRT ´ coherence ´ RTi ´ cohið Þ
þβRT ´ choice ´ RTi ´Choiceið Þ:

The different predictors were first Z-scored and then input into the regression.
The predictor variables are defined as follows:

β0 � Intercept term

cohi � Coherence on the ith trial

Choicei � Choice of themonkey on the ith trial L;Rð Þð�1; 1Þ
ChosenColori � The color of the target touched by the

monkey on the ith trial ð�1; 1Þ
RTi � Reaction time for the trial

XHandX;i tð Þ �Hand position in X for ith trial and as a function of time

XHandY;i tð Þ �Hand position in Y for ith trial and as a function of time

XEyeX;i tð Þ � Eye position in X for ith trial and as a function of time

XEyeY;i tð Þ � Eye position in Y for ith trial and as a function of time

Hand Speedi � Speed of the reach on the ith trial

We used 95% confidence intervals at each time point to estimate if the betas for
predictor variables were significantly different from chance. We used this to
generate plots of the number of significant units as a function of time aligned to
movement onset (Supplementary Fig. 10a, b).

Code availability. All analyses were performed using custom code written in
MATLAB to process spike trains and perform statistical analyses. Code used in this
paper is available on request. Some of this code is already available in github
repositories for which links are provided in the paper.
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Data availability. All data examined in the paper are available from us on request.
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