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Abstract 

 The frontal eye field (FEF) is involved in selecting visual targets for eye movements.  

To understand how populations of FEF neurons interact during target selection, we 

recorded activity from multiple neurons simultaneously while macaques performed two 

versions of a visual search task.  We used a multivariate analysis in a point process 

statistical framework to estimate the instantaneous firing rate and compare interactions 

among neurons between tasks.  We found that FEF neurons were engaged in more 

interactions during easier visual search tasks as compared to harder search tasks.  In 

particular, eye-movement-related neurons were involved in more interactions than 

visual-related neurons.  In addition, our analysis revealed a decrease in the variability of 

spiking activity in the FEF beginning about 100 ms prior to saccade onset.  The 

minimum in response variability occurred about 20 ms earlier for the easier search task 

compared to the harder one.  This difference is positively correlated with the difference 

in saccade reaction times for the two tasks.  These findings demonstrate that a 

multivariate analysis can provide a measure of neuronal interactions and characterize 

the spiking activity of FEF neurons in the context of a population of neurons. 
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Introduction 

Neuronal activity in the primate frontal eye field (FEF) reflects visual target selection 

and eye movement commands (Thompson et al. 1996; Thompson et al. 1997; Bichot 

and Schall 1999; Schall and Thompson 1999; Murthy et al. 2001).  Information from the 

visual system converges on the FEF (Schall et al. 1995b), and is integrated into eye 

movement commands via inputs to oculomotor structures (Hanes and Schall 1996, 

Sommer and Wurtz 1998; Sommer and Wurtz 2001; Helminski and Segraves 2003).  

Three functional classes of neurons have been described in the FEF: visual-related, 

visual-and-movement-related, and movement-related (Bruce and Goldberg 1985; 

Segraves and Goldberg 1987; Schall 1991; Schall and Hanes 1993; Schall et al. 1995a; 

Schall and Thompson 1999).  How these classes of neurons in the FEF interact to 

contribute to target selection remains unknown.  To address how such visual-to-motor 

integration occurs, we analyzed the activity of FEF neurons recorded during a visual 

search task, emphasizing interactions that occurred among simultaneously recorded 

neurons.  We compared neuronal interactions associated with hard and easy visual 

search tasks.  A hard task was defined as one with a high degree of similarity between 

the target of the search and the distractor stimuli to be ignored.  An easy task was 

defined as one with a low degree of target-distractor similarity (Duncan and Humphreys 

1989). 

 Recent developments in multivariate point process modeling of neural responses have 

provided an analytical framework to characterize neural activity in the context of 

interactions between simultaneously recorded neurons (Brown et al. 2002; Okatan et al. 

2005; Truccolo et al. 2005).  This analysis models the instantaneous firing rate of a 

neuron using its own spiking history and that of other simultaneously recorded neurons 

as covariates in the model.  The significance of each covariate provides an estimate of 

its contribution to the response of the modeled neuron.  If the multivariate model’s 
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estimate of instantaneous firing rate is significantly improved by including covariates 

representing the activity of other neurons, it is evidence of interactions among neurons in 

the recorded ensemble.  Such interactions may be direct synaptic connections between 

neurons or may be mediated polysynaptically or by shared input.  Compared to 

conventional univariate estimates of neuronal activity, such as the peristimulus time 

histogram (PSTH), the multivariate approach can distinguish between a neuron’s 

response and its response in the context of interactions in a population of neurons.  

Furthermore, point process modeling of neural activity preserves spike timing 

information which is distorted by measures that average over time-interval windows 

(e.g., PSTH).  Traditional approaches for analysis of interactions between neurons, such 

as the covariogram and joint peristimulus time histogram (Aertsen et al. 1989; Brody 

1999b; Brody 1999a; Constantinidis et al. 2001), are limited to pairwise comparisons and 

do not provide adequate measures of ensemble interactions.  The multivariate point 

process model estimates the instantaneous firing rate of a neuron in real time without 

limits on ensemble size.  Nonetheless, it can extract the same interactions as pairwise 

measures. 

 We demonstrate that the multivariate approach can accurately model spiking activity in 

the FEF and characterize interactions among simultaneously recorded neurons while 

monkeys perform a visual search task.  To better understand how neuronal interactions 

in the FEF contribute to target selection, we addressed the following questions: (1) Do 

interactions among FEF neurons differ for hard and easy search?  (2) Are there 

differences in interactions between the three classes of FEF neurons?  (3) Are 

interactions of movement-related neurons associated with saccade onset times? 

 

Methods 

Behavioral task and recording 
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Activity of FEF neurons was recorded in macaques performing a visual search task in 

which they were required to saccade to a singleton target defined by color (Sato et al. 

2001).  Each trial began with the monkey fixating a central spot for approximately 600 

ms.  A target was then presented at one of eight iso-eccentric locations equally spaced 

around the fixation spot (see inset, Figure 1A).  The other seven locations contained 

distractor stimuli.  Monkeys were given a juice reward for making a saccade to the target 

location and holding their gaze on the target for approximately 400 ms.  There were two 

levels of task difficulty, “hard” and “easy,” determined by the degree of target-distractor 

similarity.  The hard task contained a green target among yellow-green distractors.  The 

easy task contained a green target among red distractors.  Recordings were made 

simultaneously from 2-4 tungsten electrodes placed in the rostral bank of the arcuate 

sulcus.  A neural ensemble was defined as a set of simultaneously recorded neurons 

with overlapping receptive fields.  Our data set consisted of 91 neurons in 29 ensembles 

from one monkey (Macaca mulatta) and 21 neurons in 7 ensembles from a second 

monkey (Macaca radiata).  Of the 36 ensembles, 15 contained 2 neurons, 10 contained 

3 neurons, 6 contained 4 neurons, 4 contained 5 neurons, and 1 contained 8 neurons.  

Spikes were sorted offline using principal components analysis (Plexon, Inc.).  Because 

data from each monkey were collected during the same behavioral tasks and were 

similar, we pooled data from both monkeys. 

 Monkeys were trained on a memory-guided saccade task to distinguish visual- from 

movement-related activity (Hikosaka and Wurtz 1983; Bruce and Goldberg 1985).  The 

target was flashed alone for 80 ms.  The monkey was required to maintain fixation for 

400-1000 ms after the target offset.  When the fixation spot disappeared, the monkey 

was rewarded for a saccade to the remembered location of the target.  The movement-

related neurons analyzed here had significantly greater responses in the 100 ms leading 

up to the saccade than in the 100 ms after the target flash.  Visual- and visual-and-
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movement-related neurons had greater responses in the 100 ms after the target flash 

than in the 100 ms before the target flash. 

 Each monkey was surgically implanted with a head post, a scleral eye coil, and a 

recording chamber.  Surgery was conducted under aseptic conditions with isofluorane 

anesthesia (see Schall et al. 1995a).  Antibiotics and analgesics were administered 

postoperatively.  All experimental procedures were performed in accordance with the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals and 

approved by the Vanderbilt Institutional Animal Care and Use Committee. 

 

FIGURE 1 HERE 

 

Data analysis 

 To assess simultaneously the interactions of several neurons, we used a point process 

multivariate analysis (Okatan et al. 2005; Truccolo et al. 2005).  The point process 

framework can provide for comparisons of arbitrarily large ensembles of simultaneously 

recorded neurons that pairwise measures cannot.  We constructed a statistical model of 

the firing rate of a neuron by incorporating its firing history and the firing history of other 

neurons in its ensemble from stimulus onset to saccade onset (5315 correct hard search 

trials, 7414 correct easy search trials).  We used a modified version of the generalized 

linear model (GLM) approach recently applied by Truccolo et al. (2005).  The 

modification was necessary because the fitted GLMs for the hard and easy tasks may be 

different.  Therefore, unless they are nested, comparing such models statistically is 

intractable.  We modified the GLM in the following way so that the data for both the hard 

and the easy tasks (for a particular neuron) were combined in a single GLM. 

 Using the theory of point processes, we represented recorded spike trains as sets of 

discrete event times.  We modeled the instantaneous firing rate (conditional intensity 
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function) of a neuron as a combination of terms of covariates (Truccolo et al. 2005).  The 

conditional intensity function (λt) is more informative of the instantaneous firing rate than 

univariate measures (e.g., PSTH) because its estimate is derived in the context of 

interacting neurons.  We predicted the firing of a neuron using its firing history 

(autoregressive process) and the firing history of other neurons recorded simultaneously 

(crossregressive process).  We concatenated data from all correct trials for each neuron 

and used a generalized linear model (GLM) to predict the firing rate of a neuron as 

 

log(λt) = (µx1 + φx2) + Σi=1
Q (αix1 + βix2)δNt-i + ΣcΣj=1

R (η(c)
jx1 + ν(c)

jx2)δN(c)
t-j,

where λt is the firing rate at time t, µ is a baseline term associated with the hard search 

condition, φ is a baseline term associated with the easy search condition, {αi} is the set 

of hard search autoregressive (AR) parameters, {βi} is the set of easy search AR 

parameters, {ηj} is the set of hard search crossregressive (CR) parameters (one for each 

neuron in the ensemble at each lag), {νj} is the set of easy search CR parameters, and 

δN(c)
t-k is the spike count in the kth ms prior to the current time t, for neuron c in the 

ensemble.  Q and R are the autoregressive and crossregressive lags of the model, 

respectively.  The indicator variables x1 and x2 combine the parameters associated with 

each task into a single model.  x1 is 0 for easy search trials and 1 for hard search trials.  

x2 is 1 for easy search trials and 0 for hard search trials.  Because of constraints on the 

length of the recordings (relative to the firing rate) we set Q = R = 30.  This constraint 

was not of consequence to our analysis because the parameter fits stabilized well before 

lags of 30 ms.  In the GLM above, the AR parameters describe the timing of the modeled 

neuron’s dependence on its firing history and the CR ones describe the timing of 

interactions between neurons.  To compare models of hard and easy visual search trials, 

x1 and x2 terms were merged to create a separate GLM for each task. 
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We fit the GLM using an iteratively reweighed least squares algorithm (McCullagh and 

Nelder 1989).  This algorithm provides a robust maximum likelihood estimate of model 

parameters.  If the assumptions of the GLM are met, then the fitted model’s residuals 

should have a normal distribution around mean 0 and constant variance with no 

autocorrelations (McCullagh and Nelder 1989; Truccolo et al. 2005).  Thus, we 

examined the residuals of each of our model fits. 

 To compare the fit of nested models, we used likelihood ratio tests.  For each neuron, 

we compared the model deviance (D = -2 log L) for AR-only models and for AR-CR 

models for hard and easy search trials separately.  This deviance comes from a χ2

distribution.  Thus, we can test the hypothesis that adding CR terms to an AR model 

does not improve the GLM fits (McCullagh and Nelder 1989).  If the likelihood ratio is 

large, the modeled neuron’s response depends heavily on the ensemble neurons’ 

responses.  We measured variability in λt across neurons using a standardized measure 

of variability, the coefficient of variation (sd/mean).  All analyses were performed in R (R 

Development Core Team 2006). 

 

Model fits 

 To demonstrate that the GLM accurately accounted for the firing of FEF neurons, we 

compared the conditional intensity functions (λt, instantaneous firing rates) against the 

observed spike trains.  Figure 2A shows the modeled intensity (black curve) and the 

observed spike train (gray vertical lines) for one example neuron over the course of 300 

ms.  The model covariates are the neuron’s spiking history and the history of a second 

neuron in the ensemble.  The modeled rate closely follows the observed spike times.  

Note that the magnitude of the intensity increases with the frequency of spikes.  The 

brief (1 ms) decrease in the intensity following a spike likely corresponds to the neuron’s 

absolute refractory period (Truccolo et al. 2005).  This decrease is evident in Figure 2B, 
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which depicts the spike-triggered average intensity for the neuron in Figure 2A.  We also 

examined the Pearson residuals for each model.  If the Pearson residuals were 

distributed normally with mean 0 and variance 1, then the firing left unexplained by the 

model was insignificant (McCullagh and Nelder 1989).  For the model in Figure 2, which 

was representative of the model fits of FEF neurons in our sample, the mean of the 

Pearson residuals was 6.08 · 10−4, the variance was 0.892, and they were distributed 

normally.  Models for all neurons had normally distributed Pearson residuals (Shapiro-

Wilk test, p < 0.05). 

 

FIGURE 2 HERE 

 

Simulation and interpretation of parameters 

 A simulation was performed to test whether the GLM analysis extracted the same 

interactions that standard measures of pairwise interactions do.  Figures 3A and B 

illustrate a comparison of the GLM fitting results for a simulated pair of spike trains with a 

standard measure of interactions between pairs of neurons, the covariogram (Brody 

1999a).  The CR parameter values in Figure 3B match the lags of high correlation 

between the pair of simulated spike trains in Figure 3A.  Significant parameters (by Wald 

Z test, p = 0.05) corresponded to interactions between the covariate and the target 

neuron at that lag, though not necessarily “monosynaptically.”  Positive parameter 

values corresponded to high probability that the covariate neuron excited the modeled 

neuron.  Negative values corresponded to high probability of inhibition.  Nonsignificant 

parameters (gray points) corresponded to low probability that the covariate interacted 

with the modeled neuron at those lags. 

 Figures 3C and D show boxplots of parameter values at each time lag for all hard and 

easy models for all FEF recordings.  Both AR and CR parameter values were stable past 
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15 ms, making it unnecessary to use a history of greater than 30 ms.  The neurons’ own 

history-dependence (AR parameters) typically included about 10 ms and was inhibitory 

(negative parameter values).  This likely corresponded to effects of absolute and relative 

refractory periods (Truccolo et al. 2005).  Neurons’ dependence on ensemble neurons’ 

history (CR parameters) was, overall, relatively uniform except for at a lag of 1 ms.  

Baseline rates differed by less than one spike per second between hard and easy tasks. 

 

FIGURE 3 HERE 

 

There were no significant differences between AR or CR parameters between hard 

and easy tasks.  Figures 3C and D display the overall pattern of history dependence on 

a neuron’s firing. 

 

Results 

Activity of 112 neurons was recorded in the FEF of two macaques performing two 

versions of a saccade-to-oddball visual search task (see inset, Figure 1A).  These 

neurons were recorded in 36 ensembles.  An ensemble was defined as a set of 

simultaneously recorded neurons with overlapping receptive fields.  Ensemble sizes 

ranged from two to eight neurons. 

 Because both monkeys showed similar differences in performance for the easy and 

hard search tasks, these data were pooled.  The easy and hard search tasks resulted in 

significant differences in percent correct (hard task = 71.6%; easy task = 96.6%; 

Wilcoxon rank sum test, p < 10−15) and mean saccade reaction time (hard task = 237 ms; 

easy task = 196 ms; p < 10−15).  Figure 1A shows the densities of saccade reaction times 

(RT) for the hard and easy search tasks.  In addition to the significant difference in the 

mean RT (44.3 ms) for the two tasks, the variability of saccade RT was greater for the 
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hard search task (sd = 65.3 ms) than the easy search task (sd = 41.2 ms).  The mean 

difference in reaction time (hard minus easy) within each session was 44.4 ± 3.6 ms 

(mean ± se), with a minimum of 15.4 ms (Figure 1B). 

 

Do interactions among FEF neurons differ for hard and easy search? 

We asked whether the amount of interactions among neurons in the FEF was affected 

by the difficulty of the visual search task.  To measure interactions between neurons, we 

used a point process multivariate analysis to model the instantaneous firing rate of each 

neuron for each task (hard and easy) taking into account the firing history of all neurons 

in the recorded ensemble (see Methods).  The model estimated the conditional intensity 

function (instantaneous firing rate) of the neuron with respect to the covariates 

(autoregressive, AR, and crossregressive, CR) when a saccade was made to a target 

located within the receptive field.  We computed the likelihood ratios of models for each 

neuron for each task by subtracting the deviance of the AR-CR model from the deviance 

of the AR model.  Large likelihood ratios indicated that including ensemble neurons in 

the model of a neuron greatly improved the prediction of the firing of that neuron.  

Because the likelihood ratio is distributed as χ2, it is an ideal measure of the degree to 

which addition of CR covariates improved the estimate of the firing rate (McCullagh and 

Nelder 1989). 

 We found that for 63.7% of easy task models and 51.6% of hard task models, χ2 p-

values were less than 0.05, indicating that the inclusion of CR covariates improved the 

prediction of firing rate in the majority of models.  We then compared the likelihood ratios 

of the two pairs of models (hard versus easy) to determine under which task the addition 

of ensemble responses (CR covariates) improved the model the most.  The model that 

benefited the most from addition of CR covariates was judged to convey more 

interactions.  Figure 4A is a histogram of the difference between likelihood ratios for 
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each neuron (easy minus hard).  The histogram is shifted significantly to the right of zero 

(paired Wilcoxon rank sum test, p = 3.05 · 10−3).  Thus, we could better predict the firing 

of neurons in the easy task than the hard task when including the firing history of other 

neurons recorded simultaneously, indicating that neurons interacted more with each 

other during easy visual search.  Simulations revealed that, regardless of visual search 

task, adding randomly firing simulated neurons to models of FEF neurons did not 

improve those model fits.  Therefore, improvements to models of FEF neurons by adding 

CR covariates were due to neuronal interactions, whether monosynaptic, polysynaptic, 

or via shared input.  There was no significant correlation (p = 0.490) between RT 

difference (hard minus easy) and likelihood ratio difference (easy minus hard), possibly 

due to low variability in RTs. 

 

FIGURE 4 HERE 

 

We cannot completely rule out that differences in interactions were not due to 

differences in trial lengths or spike counts between hard and easy trials.  This seems 

unlikely, however, for two reasons: First, the average firing rate difference between hard 

and easy trials was less than one spike per second.  Second, an analysis in which we 

equated for trial length yielded similar results.  In this analysis, we removed data from 

the end of the spike train for each trial to equate with the length of the spike train of the 

shortest trial in each session.  Before equating for trial length, 63.7% of neurons in the 

easy task and 51.6% in the hard task showed improved fits upon addition of CR 

covariates, a difference of 12.1%.  After equating for trial length, the number of neurons 

that showed improved fits decreased due to loss of data, but the same trend remained: 

31.9% of neurons in the easy task and 20.9% in the hard task showed improved fits 

upon addition of CR covariates, a difference of 11.0%.  Thus, despite discarding a 
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considerable amount of data to equate for trial length, we found that neurons exhibited 

more interactions during easy trials than during hard trials. 

 

Are there differences in interactions between the three classes of FEF neurons? 

We classified each neuron as visual-related, movement-related, or visual-and-

movement-related.  There were 46 visual-related neurons, 16 movement-related 

neurons, 49 visual-and-movement-related neurons, and one that was unclassified.  

Figure 5 shows the responses of representative neurons of each class from our sample 

of recordings.  The model for each showed improved fit upon addition of CR covariates.  

Each peristimulus time histogram (PSTH) in this figure illustrates the average firing rate 

of the neuron when the target was presented in the neuron’s receptive field.  Visual-

related neurons had clear responses about 50 ms after target onset (Figure 5A), visual-

and-movement-related neurons had similar visual latencies and increased firing leading 

up to saccades (Figure 5B), and movement-related neurons fired at baseline until about 

60 ms before saccades (Figure 5C).  The difference in visual-and-movement- and 

movement-related responses during the hard and easy tasks correlated with the 

difference in mean RT between the hard (gray arrowhead) and easy (black arrowhead) 

tasks. 

 

FIGURE 5 HERE 

 

We tested whether there were systematic differences in interactions based on neuron 

class.  Figure 4B shows likelihood ratio differences (easy minus hard) by neuron class.  

There were no significant differences in the distributions of likelihood ratio differences 

between visual- and movement-related neurons (Wilcoxon rank sum test, p = 0.203), 

visual- and visual-and-movement-related neurons (p = 1.00), and visual-and-movement- 
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and movement-related neurons (p = 0.329).  Figures 4C and D show likelihood ratios for 

easy and hard tasks split by neuron class.  We found that the likelihood ratios were 

significantly larger for movement-related neurons (white bars) than for visual-related 

neurons (black bars) for both hard (Figure 4D; p = 1.90 · 10−3) and easy tasks (Figure 

4C; p = 2.18 · 10−5).  Likewise, the ratios were larger for visual-and-movement-related 

neurons (gray bars) than for visual-related neurons for both tasks (hard: p = 6.34 · 10−12;

easy: p = 7.36 · 10−11).  This indicates that movement- and visual-and-movement-related 

neurons were engaged in greater interactions than the visual-related neurons.  

Likelihood ratios were significantly larger for the easy task than the hard task for visual-

related neurons (paired Wilcoxon rank sum test, p = 0.0425) and movement-related 

neurons (p = 0.0443) and approached significance for visual-and-movement-related 

neurons (p = 0.0990).  This indicates that the model better predicted the firing of neurons 

in the easy task upon addition of CR covariates than the hard task and that addition of 

CR covariates significantly improved firing predictions.  The percent of neurons of each 

class with improved fits upon addition of CR covariates was larger for neurons with 

movement-related activity than for neurons with only visual-related activity.  For the easy 

task, 48.0% of visual-related neurons, 87.5% of movement-related neurons, and 63.3% 

of visual-and-movement-related neurons showed improved fits.  For the hard task, 

32.0% of visual-related neurons, 56.3% of movement-related neurons, and 59.2% of 

visual-and-movement-related neurons showed improved fits.  There were no differences 

in mean firing rate between neurons that showed improved fits and those that did not for 

each neuron class (Wilcoxon rank sum test, p > 0.287). 

 

Are interactions among FEF neurons time-locked to saccade onset? 

Because movement-related neurons in the FEF characteristically increase their firing 

leading up to saccades (Hanes and Schall 1996; see example Figure 5C), we analyzed 
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the conditional intensity functions (λt, instantaneous firing rates) for movement-related 

neurons to determine if the timing of interactions reflected the decision of the monkeys to 

move their eyes.  To observe the neuronal responses around saccades, we modeled the 

intensity of these neurons from target onset to 50 ms after the saccade.  Figure 6 shows 

the mean intensity (λt) for the 16 movement-related neurons during the hard task (Figure 

6A) and during the easy task (Figure 6B).  The gray curves show the mean intensities of 

AR models during the 100 ms leading up to saccades for the hard task, the black curves 

the mean intensities of AR-CR models. 

 

FIGURE 6 HERE 

 

Figures 6C and D show the difference between AR-CR and AR models of mean 

intensities for hard trials (C) and easy trials (D).  For both hard and easy tasks, addition 

of CR covariates increased λt leading up to saccades, relative to λt for AR models.  Thus, 

interactions between neurons statistically accounted for a significant portion of the 

presaccadic activity in movement-related neurons.  Figures 6E and F show the 

normalized mean PSTH (gray curve) and intensity function (black curve) for hard trials 

(E) and easy trials (F).  A comparison of the intensity functions and PSTHs shows that 

the AR-CR models accurately describe both the magnitude and the dynamics of the 

PSTHs for the two search tasks.  The intensity functions are shifted about 30 ms to the 

right of the PSTHs, reflecting the integration of 30 ms of firing history into the estimate of 

the intensities. 

 To further explore the effect of ensemble interactions on the activity of movement-

related neurons, we compared the variability of the conditional intensity functions for 

each search task.  The coefficient of variation (CV, sd/mean) is a measure of 

standardized variability frequently used in neuroscience and may be interpreted as a 
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“noise-to-signal” ratio (Stein and Matthews 1965; de Ruyter van Steveninck et al. 1997; 

Stevens and Zador 1998; Feng and Brown 1999).  We used the CV to measure changes 

in instantaneous firing rate of movement-related neurons that occurred just before 

saccades.  Decreases in the CV over time reflected less variability (or noise) in the 

system. 

 Figure 7 shows the CV of the mean intensity function for the movement-related 

neurons for the hard (gray curves) and easy (black curves) tasks for AR-CR models 

(Figure 7A) and AR models (Figure 7B).  For both hard and easy tasks, the CV 

decreased leading up to saccades in the AR-CR models until just before saccades, at 

which point the CV increased.  Thus, addition of CR covariates decreased standardized 

variability (CV) leading up to saccades. 

 

FIGURE 7 HERE 

 

Remarkably, there was a clear difference between the time at which the CV began to 

increase preceding saccades for hard and easy tasks.  We fit smoothing splines to each 

curve to estimate the time at which each curve attained its minimum.  In the AR-CR 

models, the CV started increasing 28 ms before saccades for the easy task and 7 ms for 

the hard task.  This difference suggests that the movement-related neurons responded 

with the least variability about 20 ms earlier in the easy task, despite the fact that we 

aligned intensities on saccade times.  The difference in minimum CV times between 

easy and hard search was closer for AR-CR models (Figure 7A) than for AR models 

(Figure 7B).  Presumably, this was due to poorer fits of AR models.  It is important to 

note that, although intensities were shifted to the right of PSTHs, the timing results in 

Figure 7 compare identical measures to each other (i.e., intensity to intensity and PSTH 
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to PSTH).  Thus, the differences in time course of the CV between the hard and easy 

tasks reflect the dynamics of the conditional intensity functions. 

 We compared the results using the intensity function to a standard model of the firing 

rate, the PSTH.  Figure 7C shows the CV of the PSTHs of movement-related neurons.  

Similar to the results obtained from the intensity functions (Figures 7A and B), the PSTH 

CV decreased leading up to saccades and increased 5-10 ms before saccades.  

However, there was no difference between time of increase for hard and easy tasks.  It 

is important to keep in mind that comparing changes in the PSTH between hard and 

easy tasks cannot reveal the same information as the intensity can, because the latter 

measures changes in the system in the context of interacting neurons.  Thus, the 

intensity function is a better measure of instantaneous firing rate than the PSTH to 

measure time of response variability in the FEF. 

 

Discussion 

An outstanding problem in neuroscience is determining how populations of neurons 

interact to produce behavior.  We have recorded simultaneous activity from multiple 

frontal eye field (FEF) neurons while monkeys performed two versions of a visual search 

task, one hard and one easy, defined by similarity between the target and distractors. 

 The present results indicate that easier visual search tasks are associated with greater 

interactions among populations of FEF neurons.  This is seemingly counterintuitive.  

After all, why should neurons interact more during a task that seemingly requires fewer 

resources to solve?  The average firing rates are not significantly different between the 

two conditions, so there must be a difference in the structure of the spike trains.  There 

are at least two potential explanations.  (1) During hard tasks, FEF neurons fire less 

randomly, requiring fewer interactions to accomplish the same goals (target selection 

and saccade preparation).  (2) FEF neurons fire more randomly during hard tasks, 
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requiring more information from other neurons.  We measured the coefficient of variation 

(CV) of the interspike intervals during hard and easy tasks.  We found no significant 

difference between the two (p = 0.255), although there was a trend toward larger CV 

during the easy task.  Further studies are required to determine whether FEF neurons’ 

firing patterns differ between tasks. 

 Hanes and Schall (1996) determined that single movement-related neurons in the FEF 

could reliably predict saccade reaction time.  This finding leads to the question of how 

movement-related neurons integrate visual information.  It is possible that interactions 

between the three neuron classes in the FEF fully predict the timing of saccades.  

Simultaneous recordings from the FEF and other prefrontal areas (e.g., area 46) or 

parietal areas (e.g., lateral intraparietal cortex) would address this issue.  In concert with 

a point process analysis, such an experiment would describe the timing of interactions 

between areas and determine how neurons in other cortical areas interact with FEF 

neurons to decide to move the eyes. 

 We propose that the timing of changes in the intensity function of movement-related 

neurons reveals the time at which networks of neurons decide to initiate a saccade.  For 

models that include ensemble activity, the CV decreases until just before saccades, 

which coincides with the period of time when information about the decision to saccade 

accumulates.  The CV is a second-order measure.  As such, it reflects changes in noise 

in the system.  Thus, it provides an estimate of the time between the saccade decision 

time of FEF movement-related neurons and execution of the saccade.  Because the CV 

reflects noise in the system, remarkably, this also suggests that the noise in the system 

actually decreases as the firing rate of these neurons increases leading up to saccades 

(until the increase in CV just prior to saccades).  Therefore, we show not only that 

movement-related neurons have activity sufficient to trigger a saccade (Hanes and 
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Schall 1996), but show that their presaccadic activity reflects a decrease in firing 

variability. 

 The difference in time of increase of CV between hard and easy tasks has important 

implications for when the decision to make a saccade occurs.  In our experiments, the 

neurons spent 20 ms longer reaching their minimum in response variability in the hard 

task than in the easy one.  This may correspond to earlier decision times in the easy 

task than in the hard one.  Therefore, it appears that the decision to move the eyes is 

mediated by the movement-related neurons.  The larger likelihood ratios for movement-

related neurons versus visual-related neurons suggest that the movement-related 

neurons receive greater interactions from other FEF neurons.  This agrees with models 

of visual search in the FEF, which assert that projections from visual-related neurons to 

movement-related neurons transform information about visual stimuli into a saccade 

execution plan (Thompson et al. 1996). 

 How does the estimate of 20 ms difference in time of minimum response variability 

correspond to differences in saccade reaction time (RT)?  The mean RT difference 

between the hard and easy tasks was 44.3 ms.  The CV during the 100 ms after target 

onset did not decrease for visual-related neurons (data not shown).  This may be due to 

the location of presynaptic neurons connecting with these visual-related neurons.  If, as 

the anatomy suggests (Schall et al. 1995b), visual-related neurons receive synaptic 

connections from visually-responsive neurons in the parietal, temporal, and occipital 

cortices, then we would not have observed visual-related FEF neurons in the context of 

those interactions.  Simultaneous recording from the FEF and cortical areas that project 

to the FEF would address this issue.  Such an experiment would address whether 

sensorimotor integration occurs in a single bottom-up volley or is the result of continued 

flow of information between neurons with sensory responses and those with motor 

responses (Riehle et al. 1997; Woodman et al. 2007). 
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We have shown that accounting for ensemble activity is a powerful method of 

modeling the firing rate of a neuron.  There are several ways to measure activity of 

single neurons, however.  A continuous function best represents the firing of a neuron if 

it accounts for the synaptic input to the neuron (a network property) and approximates 

the instantaneous firing rate of the neuron.  The intensity function has two advantages 

over other measures of neuronal firing, such as the peristimulus time histogram (PSTH).  

First, it accounts for network activity (the crossregressive covariates) and second, it 

approximates instantaneous firing rate better than the PSTH (Truccolo et al. 2005).  We 

have shown that using the intensity function to describe the firing of FEF neurons 

reveals the time course of activity leading to the decision to saccade more sensitively 

than the PSTH. 

 While the point process model can account for a large number of influences on a 

neuron’s firing, it is not a mechanistic model.  It cannot, therefore, distinguish between 

neurons that are synaptically connected and neurons that share common input.  This 

limitation is shared by other common techniques such as the covariogram and joint 

peristimulus time histogram.  A challenge for future studies of neuronal interactions is to 

include knowledge about anatomical connections and biophysical properties of neurons 

in mechanistic models of networks of neurons. 

 We postulate that the distinction between easy and hard tasks, as detected by our 

results (e.g., difference in lag between minimum CV and saccade) is continuous, rather 

than dichotomous.  Theoretically, there must exist a minimal set of neurons that are 

required to complete a given visual search task and a latest time prior to saccade that 

the decision is made.  Our results show that easier visual search tasks are associated 

with greater interactions among populations of FEF neurons and may result in earlier 

saccade decision times.
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Figure legends 

Figure 1: 

Behavioral task and performance.  A, The upper histogram shows the density of 

saccade reaction times (RTs) for the hard task (gray dashed line denotes mean).  The 

lower histogram shows the density of RTs for the easy task (black dashed line denotes 

mean).  The hard search task consisted of a green target among yellow-green 

distractors.  The easy task consisted of a green target among red distractors.  Data are 

pooled across all sessions for both monkeys.  B, Histogram of session-by-session RT 

differences (hard minus easy). 

 

Figure 2: 

Example model fit.  A, Spike train and modeled intensity for one FEF neuron over 300 

ms.  Gray vertical lines denote spike times.  The black curve is the modeled conditional 

intensity.  B, Spike-triggered average intensity for the neuron in A over the course of the 

entire recording. 

 

Figure 3: 

Model interpretation.  A, Covariogram between a pair of simulated neurons.  Dashed 

lines indicate significance.  B, CR parameter values with standard errors (from Wald Z

test) from the GLM fit for the same pair.  The gray points are not significantly different 

from 0.  C, AR parameter values significantly different from 0 for hard and easy search 

models.  The filled point is the mean, the horizontal bar is the median, the box delimits 

the interquartile range, and the whiskers extend to the point no more than 1.5 times the 

interquartile range.  Outliers are not shown in the figure but are included in the analyses.  

D, The same for CR parameters. 
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Figure 4: 

Likelihood ratio analysis.  A, Histogram of likelihood ratio (LR) differences (easy minus 

hard) for each neuron).  B, Histogram of LR differences split by neuron class (black: 

visual-related neurons; gray: visual-and-movement-related neurons; white: movement-

related neurons).  C, Histogram of LRs in easy task models split by neuron class.  D, 

Histogram of LRs in hard task models split by neuron class. 

 

Figure 5: 

Example neurons of each class.  A, PSTH for a visual-related neuron for the hard (gray) 

and easy (black) tasks aligned to array onset.  B, The same for a visual-and-movement-

related neuron.  C, The same for a movement-related neuron.  Bin size is 3 ms.  The 

black arrowhead denotes the mean saccade reaction time during the recording session 

for the easy task, the gray arrowhead for the hard task. 

 

Figure 6: 

Mean instantaneous firing rate of movement-related neurons prior to saccade.  A, The 

black curve is the mean intensity function for the 16 movement-related neurons during 

the hard search task, averaged over all trials for AR-CR models.  The gray curve is the 

same for AR models.  The curves are aligned to each trial's saccade.  B, The same for 

AR-CR models (black) and AR models (gray) for the easy task.  C, The difference 

between AR-CR and AR intensities for the hard task, i.e., the difference between the 

black and gray curves in A.  D, The difference between AR-CR and AR intensities for the 

easy task.  E, Comparison of intensities and PSTHs.  Normalized mean intensity 

function (black curve) and PSTH (gray curve, 1 ms bins) for the hard task.  F, The same 

for the easy task. 
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Figure 7: 

Coefficient of variation of intensities and PSTHs.  A, The gray curve is the coefficient of 

variation of the mean intensity functions for the movement-related neurons during the 

hard task, the black curve during the easy task, averaged over all trials for AR-CR 

models.  The dashed curves are smoothing splines, used to estimate the minima of the 

curves.  Arrowheads denote these minima.  B, The same for AR models.  C, The gray 

curve is the coefficient of variation of the mean PSTH during the hard task, the black 

curve during the easy task. 
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Figure 1. Behavioral task and performance. A, The upper histogram shows the density of 
saccade reaction times (RTs) for the hard task (gray dashed line denotes mean). The 

lower histogram shows the density of RTs for the easy task (black dashed line denotes 
mean). The hard search task consisted of a green target among yellow-green distractors. 
The easy task consisted of a green target among red distractors. Data are pooled across 
all sessions for both monkeys. B, Histogram of session-by-session RT differences (hard 

minus easy). 
88x51mm (600 x 600 DPI)  
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Figure 2. Example model fit. A, Spike train and modeled intensity for one FEF neuron over 
300 ms. Gray vertical lines denote spike times. The black curve is the modeled conditional 
intensity. B, Spike-triggered average intensity for the neuron in A over the course of the 

entire recording. 
177x311mm (600 x 600 DPI)  
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Figure 3. Model interpretation. A, Covariogram between a pair of simulated neurons. 
Dashed lines indicate significance. B, CR parameter values with standard errors (from 
Wald Z test) from the GLM fit for the same pair. The gray points are not significantly 

different from 0. C, AR parameter values significantly different from 0 for hard and easy 
search models. The filled point is the mean, the horizontal bar is the median, the box 

delimits the interquartile range, and the whiskers extend to the point no more than 1.5 
times the interquartile range. Outliers are not shown in the figure but are included in the 

analyses. D, The same for CR parameters. 
120x109mm (600 x 600 DPI)  
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Figure 4. Likelihood ratio analysis. A, Histogram of likelihood ratio (LR) differences (easy 
minus hard) for each neuron). B, Histogram of LR differences split by neuron class (black: 
visual-related neurons; gray: visual-and-movement-related neurons; white: movement-

related neurons). C, Histogram of LRs in easy task models split by neuron class. D, 
Histogram of LRs in hard task models split by neuron class. 
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Figure 5. Example neurons of each class. A, PSTH for a visual-related neuron for the hard 
(gray) and easy (black) tasks aligned to array onset. B, The same for a visual-and-

movement-related neuron. C, The same for a movement-related neuron. Bin size is 3 ms. 
The black arrowhead denotes the mean saccade reaction time during the recording 

session for the easy task, the gray arrowhead for the hard task. 
69x177mm (1200 x 1200 DPI)  
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Figure 6. Mean instantaneous firing rate of movement-related neurons prior to saccade. 
A, The black curve is the mean intensity function for the 16 movement-related neurons 

during the hard search task, averaged over all trials for AR-CR models. The gray curve is 
the same for AR models. The curves are aligned to each trial's saccade. B, The same for 

AR-CR models (black) and AR models (gray) for the easy task. C, The difference between 
AR-CR and AR intensities for the hard task, i.e., the difference between the black and gray 

curves in A. D, The difference between AR-CR and AR intensities for the easy task. E, 
Comparison of intensities and PSTHs. Normalized mean intensity function (black curve) 

and PSTH (gray curve, 1 ms bins) for the hard task. F, The same for the easy task. 
139x177mm (600 x 600 DPI)  
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Figure 7. Coefficient of variation of intensities and PSTHs. A, The gray curve is the 
coefficient of variation of the mean intensity functions for the movement-related neurons 
during the hard task, the black curve during the easy task, averaged over all trials for AR-
CR models. The dashed curves are smoothing splines, used to estimate the minima of the 
curves. Arrowheads denote these minima. B, The same for AR models. C, The gray curve 

is the coefficient of variation of the mean PSTH during the hard task, the black curve 
during the easy task. 
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