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Prefrontal cortex is anatomically situated at the center of a complex 
array of projections that link it to other cortical association areas, 
one of which is the posterior parietal cortex1–4. Understanding what 
information is conveyed by the physiological signals prefrontal cortex 
transmits to other cortical areas is likely to hold the key to understand-
ing the function of prefrontal cortex, as these signals are the primary 
mechanism by which this area can influence distributed information 
processing and behavior. At present we know relatively little about the 
nature of the behavioral information that is coded and transmitted by 
prefrontal output signals and hence what role prefrontal output may 
play in shaping computations that take place in the numerous cortical 
association areas that receive prefrontal input. We approached that 
question by simultaneously recording the activity of small groups 
of neurons in regions of the dorsolateral prefrontal and posterior 
parietal cortex that are anatomically interconnected3 and that are 
jointly engaged to process visuospatial information5,6. Perhaps as a 
consequence of the corticocortical pathways that link them, neurons 
in prefrontal and parietal cortex exhibit parallel changes in firing 
rate in relation to behavioral events and therefore encode very simi-
lar types of behavioral information. For example, neurons located in 
both prefrontal and parietal cortex cooperatively sustain distributed 
representations of space to support working memory7,8, motor plan-
ning9,10 and attention11 while jointly encoding more abstract cogni-
tive variables as well, such as number12,13, proportion14, length15, 
spatial category16,17 and rule-dependent spatial category18. That 
suggests that neural representations generated by either prefrontal 
or parietal cortex are mediated by patterns of neural activity that are 
distributed between them, raising the question of the neural basis of 

localized function in cortical association networks, if it is not localized 
patterns of neural activity.

One possibility is cortical areas that are linked together in the same 
distributed network generate distinct neural signals that are rapidly 
transmitted to other areas along corticocortical pathways. In that case, 
neural signals of local and remote origin would intermingle within 
each cortical area. Determining the direction in which signals are 
transmitted between cortical areas could provide insight into where 
distributed signals originate in cortical networks, potentially reveal-
ing the unique functional contribution made by each participating 
area. Toward that end, we recorded neural activity in parietal and 
prefrontal cortex simultaneously and used pattern classification to 
decode spatial category from firing rates in a sequence of 50-ms  
time bins. This produced a time series of posterior probabilities  
quantifying the strengths of category representation in the two areas. 
We then investigated whether the time series in one cortical area 
could be used to predict the other (at a given lag). If so, we could 
infer that information about categories had been transmitted between 
cortical areas. We provide evidence that physiological signals encod-
ing rule-dependent categories are transmitted selectively in a top-
down direction from prefrontal to parietal neurons. This identifies 
a neural mechanism by which prefrontal output could rapidly adapt 
computations performed by distributed cortical networks to changing 
environmental demands.

RESULTS
We trained two monkeys to perform a rule-based spatial categoriza-
tion task18 (Fig. 1). In this task, monkeys viewed a spot visual stimulus 
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(the sample) and then a line serving as a category boundary. The task 
was to categorize the sample on the basis of its spatial relationship to 
the boundary. When the boundary was vertical, monkeys assigned 
sample stimuli to the spatial categories ‘left’ and ‘right’. Alternatively, 
when the boundary was horizontal, monkeys reassigned the same 
sample stimuli to the categories ‘above’ and ‘below’. Changing the ori-
entation of the category boundary over trials imposed different rules 
by which samples were assigned to categories, placing categorization 
under executive control.

Monkeys selected choices that accurately matched the spatial cat-
egory of the sample according to the rule in force (Supplementary  
Fig. 1). Both monkeys responded with greater accuracy and faster 
reaction times when assigning sample positions to horizontal cat-
egories than to vertical categories (Fig. 1e), suggesting that vertical 
categorization was more difficult. Differences in behavioral perform-
ance as a function of the categorization rule applied were significant 
for both response accuracy and reaction time (Fig. 1).

Network representation of rule-dependent categories
Neural signals reflecting the spatial category of the sample as a func-
tion of the categorization rule provided a neurophysiological correlate 
of executive control over a spatial cognitive process. Rule-dependent 
and category-selective neural activity was distributed to neurons in 
both prefrontal and posterior parietal cortex. This included popula-
tions of neurons in both cortical areas with activity differentiating the 
categories ‘above’ and ‘below’ under the vertical but not the horizontal 
categorization rule, as well as neurons with activity differentiating 

the categories ‘left’ and ‘right’ in a similarly rule-dependent fashion 
(Supplementary Fig. 2). Neural signals encoding rule-dependent 
categories did not encode the spatial position of the sample stimulus 
or the orientation of the category boundary (because the signal was a 
joint function of the two randomly associated task variables and was 
therefore dissociated from either of them considered individually). 
Rule-dependent category signals emerged after the presentation of 
the rule cue (Supplementary Fig. 2), when enough information had 
been provided in the trial to assign the sample to a rule-dependent 
category unambiguously.

To quantify the information about spatial categories that could be 
decoded from the pattern of activity in prefrontal and parietal neu-
ronal populations, we applied pattern classification to firing rates 
in the two cortical areas measured in a sequence of 50-ms time bins 
throughout the trial. To compare decoding accuracy between corti-
cal areas, we accumulated counts of accurate and erroneous category 
decoding (on a per-bin and per-trial basis) over the interval from 
the onset of the rule cue to the onset of the first choice stimulus and 
then tested the resulting distributions of dichotomous data using the 
z-test of proportions. The accuracy of decoding vertical categories 
was significantly greater when based on activity patterns in prefrontal 
cortex than in parietal cortex, both when decoding was based on the 
activity of neural ensembles (groups of neurons recorded simultane-
ously; Fig. 1f; P < 10−8, z = 6.41, n = 23,088) and neural populations 
(accumulating significant neurons across recording sessions; Fig. 1g; 
P < 10−15, z = 8.15, n = 3,224). Decoding the horizontal category of 
the sample on horizontal rule trials was, in contrast, significantly 

Figure 1 Dynamic spatial categorization 
task, behavioral performance and network 
representation of spatial categories.  
(a) Stimulus sequence on a trial employing 
the horizontal (left-right) categorization rule. 
(b) Stimulus sequence on a trial employing 
the vertical (above-below) categorization rule. 
(c,d) Division of the circular sample array into 
horizontal categories under the horizontal rule 
(c) and vertical categories under the vertical  
rule (d). Sample stimuli were 0.25–0.5° 
in diameter and were presented at 13° 
eccentricity. (e) Proportion correct performance 
(black) and mean reaction time (gray) of  
monkey 1 (solid lines) and monkey 2 (dashed 
lines) under the horizontal and vertical 
categorization rules (error bars, ± s.e.m.). 
Response accuracy was significantly lower for 
vertical relative to horizontal categorization, 
both in monkey 1 (z-test of proportions;  
n = 2,506 trials, z = 7.48, P < 0.0001)  
and monkey 2 (n = 8,988 trials, z = 11.67,  
P < 0.0001). Responses were also significantly 
slower for vertical relative to horizontal 
categorization, in both monkey 1 (2-tailed 
unpaired t-test; n = 1,037 trials, t = 2.04,  
P < 0.05) and monkey 2 (n = 3,536 trials,  
t = 6.67, P < 0.0001). (f–i) Accuracy of 
decoding spatial categories on the basis of  
the activity of neuronal ensembles (f,h) or 
neuronal populations (g,i) in prefrontal cortex 
(PFC; black) and posterior parietal cortex (PAR; gray). S, sample presentation; R, rule cue presentation, C, choice. Black filled circles indicate time bins 
for which the proportion of correctly decoded trials in prefrontal cortex significantly exceeded that in parietal cortex (z-test of proportions, P < 0.05;  
n = 888, 124, 1,294, 190 observations per bin for f–i). Gray filled circles indicate the converse. (f,g) Accuracy of decoding vertical categories on the 
basis of the activity of neural ensembles (f; n = 5 parietal and prefrontal ensembles, 74 trials per ensemble) or neural populations (g; n = 14 prefrontal 
and 18 parietal neurons, 74 trials). (h,i) Accuracy of decoding horizontal categories on the basis of the activity of neural ensembles (h; n = 6 ensembles 
in each area, 74 trials per ensemble) or neural populations (i; n = 16 prefrontal and 15 parietal neurons, 74 trials).
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more accurate when based on neuronal activity patterns in parietal 
than prefrontal cortex, both at the ensemble level (Fig. 1h; P < 0.02, 
z = 2.79, n = 33,644) and at the population level (Fig. 1i; P < 0.03, 
z = 1.98, n = 4,940). However, the differences in decoding accuracy 
between cortical areas were smaller in this case (compare Fig. 1h,i 
to Fig. 1f,g).

We also compared the strength of vertical and horizontal cat-
egory signals within each cortical area. Vertical decoding accuracy 
was significantly greater than horizontal decoding accuracy, both 
when based on neuronal activity in parietal cortex (Supplementary  
Fig. 3a,b; ensembles: P < 10−10, z = 6.70, n = 28,340; population:  
P < 0.02, z = 2.26, n = 4,056) and in prefrontal cortex (Supplementary 
Fig. 3c,d; ensembles: P < 10−50, z = 15.00, n = 28,392; population:  
P < 10−35, z = 12.54, n = 4,108). These results are evidence that the 
cortical representation of vertical categories was stronger than the 
cortical representation of horizontal categories.

Measuring signal transmission between cortical areas
To determine whether neural signals encoding rule-dependent  
spatial categories were transmitted between prefrontal and parietal 
neurons during the trial, we evaluated whether rapid fluctuations in 
the strength of these signals were correlated between cortical areas 
over time. To measure the strength of category signals, we used the 
time series of posterior probabilities provided by the decoding analy-
sis (as greater posterior probabilities correspond to more certain cat-
egory membership based on neuronal activity). We then determined 
whether the time series of posterior probabilities in the two cortical 
areas were significantly correlated at different lags.

To illustrate the analytical approach, we consider hypothetical 
ensembles in prefrontal and parietal cortex, each of which contains 
two category-selective neurons (Fig. 2). The activity state of each 
ensemble can be represented by a point in a corresponding two-
dimensional rate space (with the firing rate of one neuron along the 
horizontal axis and the other along the vertical). The evolving pattern 
of activity in each ensemble is captured by the sequence of firing rate 
measurements in the two neurons, comprising a trajectory through 
the rate space (Fig. 2a,b). The correct spatial category for this example 
trial, as based on the visual stimuli presented, is ‘below’. As the firing 
rates of neurons 1 and 2 fluctuate over time, the pattern of ensemble 
activity in each time bin of this trial gets closer to (or farther from) 
the mean pattern of activity associated the category ‘below’ in the 
training data. (Activity on training trials is used to define the mean 

and covariance of activity patterns associated with each category in 
the analysis.) Distances in the rate space (Fig. 2a,b) are converted 
to posterior probabilities (Fig. 2c,d) under the assumption that the 
distribution of activity patterns is multivariate Gaussian within each 
category (shorter distances in the rate space corresponding to greater 
probabilities of category membership). Note that for simplicity we 
illustrate the mean activity patterns for categories (Fig. 2a,b) as 
remaining fixed over bins. In the transmission analysis we adopted, 
we recomputed the mean and covariance of activity patterns associ-
ated with spatial categories within each time bin.

We evaluated whether the time series of posterior probabilities in 
the two cortical areas were correlated at different lags. For that pur-
pose, we regressed the time series of posterior probabilities in one 
cortical area on the posterior probability time series in the other, 
keeping the two time series in temporal register (lag 0) or shifting 
one time series relative to the other by a variable number of time 
bins (lags 1 to 8). Before performing the regression analysis, we ‘pre- 
whitened’ the posterior probability time series to make them station-
ary over time and eliminate autocorrelation (Supplementary Figs. 4 
and 5). This is advantageous because computing the cross correla-
tion of time series that themselves contain strong time trends or are 
strongly autocorrelated can inflate estimates of cross-correlation19–21. 
After pre-whitening, we slid a 500-ms window (10 bins) through the 
trial in 50-ms time steps, aggregated values over trials and ensembles 
at each time step such that we maintained the pairing of data in parietal 
and prefrontal cortex to simultaneously recorded neurons in the two 
areas, and performed the regression using the posterior probability 
values in the window at each time step. This produced a time-varying  
estimate of signal transmission between cortical areas throughout the 
trial. We used the F-statistic associated with the regression at each 
time step to index the strength of the relationship.

Top-down transmission of rule-dependent category signals
We applied this analytical approach to separately evaluate the direc-
tional transmission of signals encoding vertical and horizontal catego-
ries at a lag of 1 time bin between the decoding data in the two cortical 
areas and found that vertical category signals were selectively trans-
mitted in a top-down direction from prefrontal to posterior parietal 
neurons (Fig. 3a). The F-statistic associated with top-down transmis-
sion first exceeded the significance threshold (Fig. 3a) approximately 
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Figure 2 The transmission analysis applied to hypothetical ensembles 
containing two category-selective neurons in prefrontal and parietal 
cortex. (a,b) Each open circle (numbered) illustrates the activity state 
of the prefrontal (a) and parietal (b) ensemble in a single 50-ms time 
bin as a point in a two-dimensional rate space, with the firing rates 
observed in neurons 1 and 2 plotted along the vertical and horizontal 
axes. Arrows connecting successive open circles illustrate the trajectory 
of each ensemble through its rate space over a short time span. Black 
filled circles indicate the mean firing rate observed in neurons 1 and 2 
on ‘above’ and ‘below’ spatial category trials in the training data. Gray 
shading around each black circle represents the modeled Gaussian 
density of two-neuron activity patterns within each spatial category. 
Dashed lines (A–D) indicate distances in the rate space between activity 
patterns observed in each time bin on a single trial and the mean activity 
pattern based on the training data associated with the correct category 
for this trial (the correct category is ‘below’). (c,d) Posterior probabilities 
associated with decoding the correct spatial category (‘below’ on this 
trial) on the basis of the activity pattern in each time bin in the prefrontal 
ensemble (c) and the parietal ensemble (d). A–D associate posterior 
probabilities with corresponding distances in the rate space in a,b.
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250 ms after the onset of the rule cue in the trial, when neural activity 
in both cortical areas started to exhibit differential activity as a func-
tion of the rule-dependent spatial category of the sample stimulus 
(Supplementary Fig. 2). Transmission of vertical category signals 
in the bottom-up direction, from parietal to prefrontal neurons, was 
significantly weaker (Fig. 3a). There was little evidence of significant 
transmission of horizontal category signals between prefrontal and 
parietal cortex in either direction (Fig. 3b), perhaps as a result of the 
significantly weaker neural signals encoding horizontal categories 
in this network (Supplementary Fig. 3; the proportion of correctly 
decoded vertical and horizontal category trials differed significantly, 
P < 0.05, z-test of proportions).

We found that our ability to detect network transmission using 
this method depended on the simultaneity of neural recording, as 
one would predict if our analysis captured physiological interaction 
between cortical areas in real time. We performed a bootstrap analy-
sis in which we shuffled trials to break the simultaneity of neural 
activity in prefrontal and parietal cortex. In the shuffling, we kept 
the posterior probability time series intact, did not disrupt the rela-
tion between neural activity and spatial category, and maintained the 
grouping of neurons into simultaneously recorded ensembles. We 
found that breaking the simultaneity of activity in the two cortical 
areas was sufficient to destroy detected network transmission between 
them. Namely, the significance of top-down transmission as reflected 
by the time course of F-statistics obtained using the original data  
(Fig. 4a) far exceeded the 95th percentile of the bootstrap distribution 

of F-statistics derived from the trial shuffled data (Fig. 4a; note the 
close approximation of the 95th percentile of the bootstrap distribu-
tion to the significance threshold for the F-statistic). This indicates 
that the temporal covariation in category signals that we observed 
did not reflect common activation of parietal and prefrontal neurons 
by the visual stimuli in the task, because in that case trial-shuffling 
would be predicted to have little effect.

To further confirm that interactions between cortical areas reflected 
transmission of category signals specifically and not merely coactiva-
tion of the two areas, we repeated the transmission analysis using the 
mean activity in each ensemble (averaged over neurons). In this analy-
sis, we used the mean ensemble firing rate instead of the posterior 
probability associated with the correct spatial category in each time 
bin. We detected no evidence of significant transmission in this case 
(Fig. 4a–d). This provides some insight into the aspect of neuronal 
activation that supported signal transmission. Namely, the pattern of 
activity over neurons within an ensemble, and not just the overall level 
of activity within the ensemble, had to be evaluated to detect signal 
transmission between cortical areas. Taking the average ensemble rate 
as a proxy for more global measures of neural activity within a small 
volume of cortex (such as the local field potential or blood oxygen 
level–dependent signal), the implication is that resolving the informa-
tion communicated between prefrontal cortex and connected areas 
requires resolving activity at the level of single neurons.

The pattern of top-down transmission of vertical category signals 
was robust when we relaxed our inclusion criterion to include more 
ensembles and neurons (Supplementary Fig. 6). We further investi-
gated the potential influence of signals encoding the spatial position of 
the sample (rather than its spatial category) on the transmission results 
we obtained. First, we quantified the effect of sample position on cat-
egory-selective activity. If category neurons were systematically tuned 
to the retinocentric locations of sample stimuli, one would predict that 

Figure 3 Lag 1 transmission of category signals between prefrontal and 
parietal neurons. Red and blue functions plot the time-varying F-statistic 
obtained by regressing the residual posterior probabilities within a sliding 
window in one cortical area on the corresponding probabilities in the 
other area shifted earlier by one 50-ms time bin. The dashed horizontal 
line indicates significance for the F-statistic (P < 0.05). (a) Top-down 
(red) and bottom-up (blue) transmission of vertical category signals. 
Black circles mark time bins in which the difference between top-down 
and bottom-up F values was significant (P < 0.05) in a permutation 
test randomly shuffling neurons across cortical areas and repeating the 
analysis. Ensembles containing at least two vertical category-selective 
neurons in parietal and prefrontal cortex were included (n = 10 ensembles, 32 neurons; parietal: 5 ensembles, 18 neurons; prefrontal: 5 ensembles,  
14 neurons). Regression results at each point are based on 4,440 observations (posterior probabilities). Black and gray functions plot the mean 
posterior probability associated with the correct category when decoding was based on the activity of the prefrontal ensembles (PFC; black line) and 
parietal ensembles (PAR, gray line) included in the transmission analysis. R, duration of the rule cue. (b) Top-down and bottom-up transmission of 
neural signals encoding horizontal categories (n = 12 ensembles, 31 neurons; parietal: 6 ensembles, 15 neurons; prefrontal: 6 ensembles, 16 neurons). 
Regression results at each point are based on 5,250 observations (posterior probabilities).
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differences in their firing rate for sample positions that were next to one 
another would be smaller than for sample positions that were farther 
apart, within each neuron’s preferred category. This was not the case 
(Supplementary Fig. 7). Next, we examined the influence on verti-
cal category signal transmission of including, or excluding, category-
selective neurons that also exhibited selectivity for sample position 
earlier in the trial. Top-down transmission of vertical category signals 
was not augmented by the inclusion of category-selective neurons in 
which activity also varied significantly as a function sample position 
(Supplementary Fig. 8). This is evidence that the transmission of cat-
egory signals between prefrontal and parietal neurons was not strongly 
influenced by signals encoding the spatial position of the sample.

We also evaluated the transmission of neural signals encoding the 
categorization rule and the spatial position of the sample. We found 
evidence that rule signals were transmitted in a top-down direction 
from prefrontal to parietal neurons (Supplementary Fig. 9b), as based 
on the activity of neurons that varied as a function of the rule only and 
not spatial category. Evaluating neural signals encoding the position 
of the sample in parietal and prefrontal cortex, we found evidence that 
position signals covaried strongly and significantly between cortical 
areas at lag 0 (Supplementary Fig. 9c), an effect that peaked in the 
delay period following the offset of the sample stimulus. (Our analysis 
had limited ability to resolve transmission earlier in the trial, during 
the cue period, when feedforward transmission might be expected, 
because data had to be aggregated over a sequence of bins longer than 
the cue period before transmission could be detected.)

Transmission involves negative feedback
The transmission analysis revealed that vertical category signals 
in one cortical area could either drive or suppress vertical category 
signals in the other. When we evaluated top-down transmission of 
vertical category signals at a lag of 1 time bin, the resulting regres-
sion coefficients were positive (Fig. 5). This provided evidence that 
prefrontal vertical category signals drove parietal vertical category 
signals, in the sense that lagged changes in the reliability of category 
representation in the two areas were in the same direction, with pre-
frontal cortex leading.

When we evaluated bottom-up transmission of vertical category 
signals at lag 1, we found the converse. In this case, the resulting 
regression coefficients were predominantly negative, and stronger 
category signals in parietal cortex predicted weaker category signals in 
prefrontal cortex 1 time bin later (Fig. 5). This suggests that top-down 
signal transmission from prefrontal cortex to target cortical areas may 
operate under the control of negative feedback.

Transmission is temporally focused and varies with behavior
We repeated the transmission analysis evaluating interactions between 
cortical areas at a broader range of temporal lags, from 0 to 8 time 
bins (0 to 400 ms). The time course of F-statistics associated with 
top-down transmission far exceeded the threshold for significance 
at lags 1 and 3 (Fig. 6a), but it remained very near that threshold at 
other lags, providing the strongest evidence for top-down interactions  
occurring at 50 and 150 ms. When we evaluated the magnitude and 

Figure 5 Sign of top-down and bottom-up 
interactions at lag 1. Top-down (black) and 
bottom-up (gray) transmission of vertical category  
signals between ensembles containing a minimum 
of two vertical category-selective neurons in both 
prefrontal and parietal cortex (sample sizes are 
as described in the legend of Fig. 3). R, rule 
cue duration. (a,b) F-statistics were divided into 
separate time courses on the basis of whether the 
sign of the associated regression coefficient was 
positive (a) or negative (b) at each time step.  
(c) Magnitude and sign of the regression 
coefficient associated with top-down (black) and bottom-up (gray) transmission of vertical category signals at each time step. Significance of regression 
coefficients was evaluated in a permutation test shuffling posterior probabilities within ensembles across trials to break the simultaneity of recording  
(500 iterations). We evaluated the significance at P < 0.05 (two-tailed). Asterisks indicate time bins in which the regression coefficient was significantly 
greater than the 97.5th percentile of the distribution of coefficients from the shuffled data. Circles indicate values lower than the 2.5th percentile.
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Figure 6 Significance and sign of transmission as a function of the  
lag between the posterior probability time series associated with  
vertical category representation in prefrontal and parietal cortex.  
(a) Time courses plot of the F-statistic associated with top-down 
transmission of vertical category signals at different lags (ranging  
from 0 to 6 time bins, 50 ms each), with earlier prefrontal values 
predicting later parietal values. R, rule cue duration. (b) The sign  
and magnitude of the corresponding mean significant regression 
coefficients associated with top-down transmission as a function of  
the lag (0–8 time bins) between prefrontal and parietal time series. 
Coefficients were averaged over the rule and subsequent delay periods 
(open circles indicate coefficients at each time point contributing to the 
average). Asterisks indicate mean coefficients that were significantly 
different from 0 (sign test, P < 0.05). Lags without bars indicate the 
failure to detect significant transmission at those lags (as reflected by  
the absence of significant F-statistics in the transmission time courses). 
(c,d) F-statistic time courses (c) and mean regression coefficients  
(d) associated with bottom-up transmission of vertical category signals. 
Transmission analyses were based on ensembles containing a minimum 
of two vertical category-selective neurons (sample characteristics are as 
described in the legend of Fig. 3).
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sign of the regression coefficients associated with transmission as a 
function of lag, we found that the sign of top-down interactions flipped 
from a significantly positive mean regression coefficient at lag 1  
(Fig. 6b; sign test, P < 10−5) to a significantly negative mean coef-
ficient at lag 3 (Fig. 6b; sign test, P < 0.001). The inversion in the sign 
from earlier positive to later negative top-down effects could sharpen 
the interaction between cortical areas in time, effectively increasing 
the temporal resolution of transmission. Bottom-up interactions were 
comparatively weak (Fig. 6c), and the mean regression coefficient was 
negative over a broader time range—specifically, lag 1 (Fig. 6d; sign 
test, P < 0.01) and lag 4 (sign test, P < 0.001).

We investigated whether the strength of vertical category signal 
transmission varied as a function of behavioral performance. Rather 
than comparing signal transmission on correct and error trials, as 
relatively few error trials were available, we divided successfully 
performed vertical categorization trials into two groups differenti-
ated on the basis of whether monkeys had earned a comparatively 
large or small proportion of reward under the vertical categori-
zation rule in the recent past. (Trials were split into high and low 
recent reward groups on the basis of whether the number of rewards 
earned under the vertical categorization rule in the past ten trials 
was above or below the median value over all trials). Recent reward 
provided a behavioral metric analogous in some respects to local 
fractional income, a parameter that influences neural signals in the 
lateral intraparietal area during a decision-making task22. Top-down 
transmission of vertical category signals was significantly more reli-
able on high in comparison to low recent reward trials (Fig. 7a). 
We did not see evidence of bottom-up transmission in this analysis  
(Fig. 7b; most likely because of the reduction in statistical power 
associated with dividing the trials available for each analysis in half). 
The residual posterior probability time series obtained by fitting an 
ARIMA (autoregressive, integrative, moving average) model to the 
decoding data on high and low recent reward trials essentially over-
lapped (Supplementary Fig. 10). It was not likely, therefore, that 
differences in the reliability of vertical category signal transmission 
on high and low recent reward trials could be attributed to differences 
in the strength of neural signals encoding vertical categories under 
the two reward conditions.

DISCUSSION
We obtained evidence that neural signals encoding rule-dependent 
spatial categories, and therefore reflecting the executive control of a 
cognitive process, were selectively transmitted in a top-down direc-
tion from prefrontal to parietal neurons. Transmission was directional 
and selective for the nature of the transmitted information, depended 

on simultaneously recorded neural activity in the two areas, occurred 
at a restricted time scale and was modulated as a function of behavior. 
These data effectively translate the information content of a physi-
ological signal transmitted from prefrontal to parietal neurons during 
cognitive processing.

Several lines of evidence argue that our results captured real-time 
transmission of category information between cortical areas. First, 
transmission was abolished in trial-shuffled data, even though the 
shuffling procedure kept the underlying time series of category sig-
nals intact and only disrupted their simultaneity across cortical areas. 
Second, the transmission analysis was performed on the residual 
posterior probability time series after fitting an ARIMA model. This 
substantially reduced time trends and autocorrelation, producing 
a time series that essentially fluctuated around a zero mean, effec-
tively attenuating signal transients driven by external events. Third, 
we did not detect transmission when the analysis was based on the 
mean ensemble activity rather than the information about categories 
encoded by the pattern of ensemble activity. Fourth, top-down and 
bottom-up transmission exhibited opposite signs of influence, which 
would not be predicted if transmission simply reflected coactivation 
of parietal and prefrontal neurons. Fifth, interactions between cat-
egory signals in prefrontal and parietal cortex were significant at lag 
1 but not lag 0, providing evidence that one cortical area drove the 
other, rather than both being driven by common input.

The observations that top-down transmission and bottom-up  
transmission of vertical category signals involved positive and nega-
tive interactions, respectively, which took place at nearly the same 
time during the trial, suggested to us that top-down control in pre-
frontal networks might operate under negative feedback control. 
Parietal and prefrontal cortices are linked by reciprocal excitatory 
projections3. Negative feedback from parietal cortex (possibly medi-
ated through inhibitory interneurons) could moderate the strength  
of prefrontal output. This could balance top-down and bottom-up 
interactions in the network and prevent prefrontal output from 
dominating network dynamics to a point where bottom-up process-
ing could no longer influence network activity. Additionally, we 
found that top-down transmission flipped from a positive influence 
at shorter lags to a negative influence at longer ones (Fig. 6). That 
dynamic could serve to focus the influence of transmitted signals in 
time, effectively increasing the temporal resolution of the interaction 
between cortical areas.

Our further finding that top-down transmission was modulated in 
strength as a function of recent reward history suggests that reward-
driven dynamics may flexibly weight distributed signals encoding 
cognitive strategies, in addition to signals encoding stimuli23,24 or 

Figure 7 Network transmission of vertical category signals is modulated 
by behavioral performance. Data show influence of recent reward on the 
strength of vertical category signal transmission. For each trial under the 
vertical categorization rule, we computed the proportion of the previous 
ten trials that had been rewarded under the vertical categorization rule. 
We then divided trials into high and low recent reward groups on the basis 
of whether the proportion of recent reward on the vertical rule was above 
or below the median value over all trials (0.4). R, rule cue duration.  
(a) Time courses (with shading) compare F-statistics associated with 
top-down transmission of vertical category signals on high recent reward 
trials (thick line) and low recent reward trials (dashed line). Filled black 
circles indicate time bins in which the difference between reward conditions was significant (P < 0.05) in a permutation test repeating the transmission 
analysis after randomly shuffling trials across reward condition (100 iterations). Black (PFC) and gray (PAR) time courses illustrate the mean posterior 
probability obtained from ensemble decoding in prefrontal and parietal cortex on high recent reward and low recent reward trials. (b) Time courses  
(with shading) illustrate F-statistics associated with bottom-up transmission of vertical category signals on high recent reward trials and low recent 
reward trials (conventions as in a). Transmission analyses were based on ensembles containing a minimum of two vertical category-selective neurons 
(sample sizes are as described in the legend of Fig. 3).
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planned actions22,25,26. That could frame executive control as an  
additional instance of biased competition27, or a decision process22, 
adjudicating between neural representations of different rules or  
cognitive strategies in addition to alternative stimuli or actions.

We found that network transmission was strongly biased, favoring 
vertical over horizontal category signals. There are several possible 
accounts. One account could relate to an observation made consist-
ently across laboratories and experiments that parietal neurons (and, 
given their physiological similarity, potentially prefrontal neurons as 
well) often represent the various conditions of cognitive tasks in a 
strongly biased manner, such that a disproportionately large fraction 
of neurons are most strongly activated for the same single condition 
out of the several making up the experimental design28. The bias in 
top-down transmission favoring vertical category signals could, for 
example, reflect the strong bias of the underlying neural representa-
tions in favor of neurons encoding vertical categories in both cortical 
areas, but particularly in prefrontal cortex. Behavioral performance 
was significantly worse for vertical categorization than horizontal cat-
egorization in both monkeys. This suggests that vertical categorization 
was more difficult, potentially requiring greater top-down executive 
control. Both monkeys were trained on horizontal categorization first 
and had more experience with it, so horizontal categorization may 
have been more automatic or habitual. Prefrontal network dynamics 
may therefore vary as a function of executive demand, with top-down 
control being greatest when executive demand is high. That is sug-
gested by the finding that category signals can be stronger and earlier 
in parietal cortex relative to prefrontal cortex in categorization tasks 
that do not change the categorization rule16 (although see ref. 17).  
That prefrontal network dynamics are adaptive to task demands  
has been directly demonstrated in a study comparing parietal and 
prefrontal dynamics during top-down and bottom-up attention11.

An analysis of the relative timing and strength of distributed signals 
shared across connected cortical areas can provide indirect evidence 
of how information flows between them during cognitive processing. 
Such differences in the timing and strength of signals distributed 
across parietal and prefrontal cortex are observed in various cognitive 
tasks11,12,16–18. However, differences in signal timing and strength do 
not demonstrate the transmission of a identified signal from one area 
to another, or quantify the information content of the transmitted 
signal. Likewise, studies of functional connectivity29 or neural syn-
chrony11,30,31 measure covariation in neural activity between areas. 
Although these interactions can vary informatively as a function of 
task demand11 and can be related to functionally distinct groups of 
neurons31, covariation in neural activity does not necessarily equate to 
covariation in coded information. Other studies have examined how 
reversible inactivation of prefrontal cortex affects neural activity in 
parietal cortex and vice versa32. However, inactivating a cortical area 
suppresses all of the neural signals in it, and it is not clear therefore 
which subset of signals is transmitted to distant targets to mediate 
remote effects during inactivation. Finally, antidromic stimulation 
studies have characterized the nature of prefrontal output signals by 
identifying which prefrontal neurons project an axon to a target struc-
ture33. However, this approach does not measure the physiological 
effect of signal transmission in the identified pathway or quantify its 
impact on information processing in the target structure.

Our results identify a specific neural signal related to the executive 
control of cognition that is transmitted from prefrontal to parietal cor-
tex. These results are the first, to our knowledge, to effectively decode 
the cognitive information that is conveyed by a signal transmitted 
from one cortical area to another. Rather than reflecting a monolithic 
computational strategy equally applied across all rule-based behaviors,  

prefrontal output is strongest (Fig. 3) when rule conditions are most 
demanding (Fig. 1e) and is dynamically regulated as a function of 
recent reward history (Fig. 7), as monkeys flexibly adapt their cogni-
tive processing to changing environmental conditions.

Prefrontal cortex receives and sends information along a complex 
network of projections that link it to other cortical association areas, 
via direct corticocortical projections3,5 and transthalamic pathways34. 
The communication and exchange of neural activity along these path-
ways is likely to distribute the neural representation of each cognitive 
or task variable across multiple cortical areas, creating subpopulations 
of neurons in each area with activity that exhibits essentially the same 
relationship to behavior. That is supported by the frequent observa-
tion that activity patterns in prefrontal cortex and connected areas 
often differ more in degree than in kind11,12,16–18, as we found in the 
current study (Supplementary Figs. 2 and 3), and it is often difficult 
to differentiate the functions of prefrontal cortex from connected 
cortical areas in the basis of the types of information coded by activity 
in each area. Analyzing how distributed neural signals are transmit-
ted between prefrontal and parietal neurons could uncover the flow 
of information through prefrontal networks to discern how the final 
distributed pattern of activity came about. That could disambiguate 
the functional contributions of each area. We adopted that approach 
in this study to provide evidence that neural signals encoding rule-
dependent spatial categories were preferentially transmitted in a  
top-down direction from prefrontal to parietal neurons. This pro-
vides insight into the neural mechanism by which prefrontal output 
could exert executive control over distributed cognitive processing 
in cortical networks.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.

AcknowledgmentS
We thank A. Georgopoulos for fundamental intellectual contributions to, and 
longstanding support of, this work. We thank P. Goldman-Rakic for critical  
insights into the network basis of prefrontal cortex function that strongly 
influenced this study. We thank D. Evans and D. Boeff for excellent technical 
assistance. We thank J. Ortiz and S. Te Nelson for assistance in training of 
nonhuman primates. Supported by the US National Institutes of Health (grant 
R01 MH077779 and R24MH069675), the Department of Veterans Affairs and 
the American Legion Brain Sciences Chair. R.K. Blackman was supported by 
US National Institutes of Health grant T32 GM008244. The views and opinions 
expressed in this work are those of the authors solely and not those of the  
United States Federal Government.

AUtHoR contRIBUtIonS
D.A.C. and M.V.C. analyzed the data and wrote the manuscript. S.J.G., R.K.B., 
S.S., S.R.S. and A.W.M. edited the manuscript. S.J.G. and M.V.C. designed the 
experiment, and S.R.S. and A.W.M. contributed to experimental design. S.J.G. 
trained the monkeys and collected the neural data. R.K.B., M.V.C. and S.S. assisted 
in neuronal data collection. 

comPetIng FInAncIAl InteReStS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/
reprints/index.html.

1. Medalla, M. & Barbas, H. Diversity of laminar connections linking periarcuate and 
lateral intraparietal areas depends on cortical structure. Eur. J. Neurosci. 23, 
161–179 (2006).

2. Schwartz, M.L. & Goldman-Rakic, P.S. Callosal and intrahemispheric connectivity 
of the prefrontal association cortex in rhesus monkey: relation between intraparietal 
and principal sulcal cortex. J. Comp. Neurol. 226, 403–420 (1984).

http://www.nature.com/doifinder/10.1038/nn.3509
http://www.nature.com/doifinder/10.1038/nn.3509
http://www.nature.com/doifinder/10.1038/nn.3509
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html


©
20

13
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

�  advance online publication nature neurOSCIenCe

a r t I C l e S

3. Cavada, C. & Goldman-Rakic, P.S. Posterior parietal cortex in rhesus monkey: II. 
Evidence for segregated corticocortical networks linking sensory and limbic areas 
with the frontal lobe. J. Comp. Neurol. 287, 422–445 (1989).

4. Andersen, R.A., Asanuma, C., Essick, G. & Siegel, R.M. Corticocortical connections 
of anatomically and physiologically defined subdivisions within the inferior parietal 
lobule. J. Comp. Neurol. 296, 65–113 (1990).

5. Goldman-Rakic, P.S. Circuitry of primate prefrontal cortex and regulation of behavior 
by representational memory. in. Handbook of Physiology: The Nervous System: 
Higher Functions of the Brain (eds. Mountcastle, V.B., Plum, F. & Geiger, S.R.) 
373–417 (Am. Physiol. Soc., Bethesda, Maryland, USA, 1987).

6. Andersen, R.A. & Cui, H. Intention, action planning, and decision making in parietal-
frontal circuits. Neuron 63, 568–583 (2009).

7. Qi, X.L. et al. Comparison of neural activity related to working memory in primate 
dorsolateral prefrontal and posterior parietal cortex. Front Syst. Neurosci 4, 12 
(2010).

8. Chafee, M.V. & Goldman-Rakic, P.S. Matching patterns of activity in primate 
prefrontal area 8a and parietal area 7ip neurons during a spatial working memory 
task. J. Neurophysiol. 79, 2919–2940 (1998).

9. Funahashi, S., Chafee, M.V. & Goldman-Rakic, P.S. Prefrontal neuronal activity in 
rhesus monkeys performing a delayed anti-saccade task. Nature 365, 753–756 
(1993).

10. Gnadt, J.W. & Andersen, R.A. Memory related motor planning activity in posterior 
parietal cortex of macaque. Exp. Brain Res. 70, 216–220 (1988).

11. Buschman, T.J. & Miller, E.K. Top-down versus bottom-up control of attention  
in the prefrontal and posterior parietal cortices. Science 315, 1860–1862 
(2007).

12. Nieder, A. & Miller, E.K. A parieto-frontal network for visual numerical information 
in the monkey. Proc. Natl. Acad. Sci. USA 101, 7457–7462 (2004).

13. Nieder, A., Freedman, D.J. & Miller, E.K. Representation of the quantity of visual 
items in the primate prefrontal cortex. Science 297, 1708–1711 (2002).

14. Vallentin, D. & Nieder, A. Representations of visual proportions in the primate 
posterior parietal and prefrontal cortices. Eur. J. Neurosci. 32, 1380–1387 
(2010).

15. Tudusciuc, O. & Nieder, A. Contributions of primate prefrontal and posterior parietal 
cortices to length and numerosity representation. J. Neurophysiol. 101, 2984–2994 
(2009).

16. Swaminathan, S.K. & Freedman, D.J. Preferential encoding of visual categories in 
parietal cortex compared with prefrontal cortex. Nat. Neurosci. 15, 315–320 
(2012).

17. Merchant, H., Crowe, D.A., Robertson, M.S., Fortes, A.F. & Georgopoulos, A.P. 
Top-down spatial categorization signal from prefrontal to posterior parietal cortex 
in the primate. Front Syst. Neurosci 5, 69 (2011).

18. Goodwin, S.J., Blackman, R.K., Sakellaridi, S. & Chafee, M.V. Executive control 
over cognition: stronger and earlier rule-based modulation of spatial category signals 
in prefrontal cortex relative to parietal cortex. J. Neurosci. 32, 3499–3515 
(2012).

19. Box, G.E.P., Jenkins, G.M. & Reinsel, G.C. Time Series Analysis: Forecasting and 
Control (Prentice-Hall, Upper Saddle River, New Jersey, USA, 1994).

20. Granger, C.W.J. & Newbold, P. Forecasting Economic Time Series (Academic,  
New York, 1977).

21. Christova, P., Lewis, S.M., Jerde, T.A., Lynch, J.K. & Georgopoulos, A.P. True 
associations between resting fMRI time series based on innovations. J. Neural Eng. 
8, 046025 (2011).

22. Sugrue, L.P., Corrado, G.S. & Newsome, W.T. Matching behavior and the 
representation of value in the parietal cortex. Science 304, 1782–1787 (2004).

23. Gottlieb, J. & Balan, P. Attention as a decision in information space. Trends Cogn. 
Sci. 14, 240–248 (2010).

24. Peck, C.J., Jangraw, D.C., Suzuki, M., Efem, R. & Gottlieb, J. Reward modulates 
attention independently of action value in posterior parietal cortex. J. Neurosci. 29, 
11182–11191 (2009).

25. Platt, M.L. & Glimcher, P.W. Neural correlates of decision variables in parietal 
cortex. Nature 400, 233–238 (1999).

26. Barraclough, D.J., Conroy, M.L. & Lee, D. Prefrontal cortex and decision making in 
a mixed-strategy game. Nat. Neurosci. 7, 404–410 (2004).

27. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention.  
Annu. Rev. Neurosci. 18, 193–222 (1995).

28. Fitzgerald, J.K. et al. Biased associative representations in parietal cortex.  
Neuron 77, 180–191 (2013).

29. Nee, D.E. & Brown, J.W. Dissociable frontal-striatal and frontal-parietal networks 
involved in updating hierarchical contexts in working memory. Cereb. Cortex 23, 
2146–2158 (2013).

30. Gregoriou, G.G., Gotts, S.J., Zhou, H. & Desimone, R. High-frequency, long-range 
coupling between prefrontal and visual cortex during attention. Science 324, 
1207–1210 (2009).

31. Gregoriou, G.G., Gotts, S.J. & Desimone, R. Cell-type-specific synchronization of 
neural activity in FEF with V4 during attention. Neuron 73, 581–594 (2012).

32. Chafee, M.V. & Goldman-Rakic, P.S. Inactivation of parietal and prefrontal cortex 
reveals interdependence of neural activity during memory-guided saccades.  
J. Neurophysiol. 83, 1550–1566 (2000).

33. Ferraina, S., Pare, M. & Wurtz, R.H. Comparison of cortico-cortical and cortico-
collicular signals for the generation of saccadic eye movements. J. Neurophysiol. 
87, 845–858 (2002).

34. Sherman, S.M. & Guillery, R.W. Distinct functions for direct and transthalamic 
corticocortical connections. J. Neurophysiol. 106, 1068–1077 (2011).



©
20

13
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

nature neurOSCIenCedoi:10.1038/nn.3509

ONLINE METhODS
Behavioral paradigm. We developed a DYnamic Spatial Categorization (DYSC) 
task that required monkeys to flexibly categorize the same set of visual stimuli 
according to alternative grouping criteria, or categorization rules18 (Fig. 1). Trials 
began with the presentation of a gaze fixation target at the center of the display. 
Monkeys had to maintain gaze within 2.5° of this target throughout the trial. 
After an initial fixation period, a circular sample stimulus (0.25–0.5° diameter) 
was presented for 400 ms at an eccentricity of 13° (Fig. 1a,b; ‘Sample’). The sam-
ple position was selected pseudorandomly from a circular array of positions  
(Fig. 1c,d). A delay period (Fig. 1a,b; ‘Delay 1’; 900 ms) followed the offset of the 
sample, after which a rule cue was presented (Fig. 1a,b; ‘Rule cue’; 400 ms). The 
rule cue was a line that bisected the sample array in either a vertical or horizontal 
orientation and served as a category boundary. When the rule cue was a verti-
cal line, it instructed the horizontal categorization rule and divided the circular 
sample array into the spatial categories ‘left’ and ‘right’ on opposite sides of the 
boundary (Fig. 1a,c). In this case, the horizontal coordinate of the sample posi-
tion was critical to computing the spatial category it belonged to, whereas the 
vertical coordinate was irrelevant to category membership. When the rule cue 
was a horizontal line, it instructed the vertical (‘above’ or ‘below’) categorization 
rule, requiring monkeys to reassign the same set of sample positions to a new set 
of spatial categories (Fig. 1b,d). In this case, the vertical coordinate of the sample 
position determined category membership whereas the horizontal coordinate was 
irrelevant. In the data included in this report, monkey 1 performed the DYSC task 
while the categorization rule was randomized over trials. Monkey 2 performed 
the DYSC task in blocks of random length from 7 to 12 trials. After the rule 
cue disappeared, a second delay period followed (Fig. 1a,b; ‘Delay 2’; 900 ms). 
Following the second delay, two choice stimuli (circular, 0.25–0.5° diameter) 
appeared sequentially (Fig. 1a,b; ‘Choice 1’, ‘Choice 2’; 700 ms each). One choice 
was located in the same spatial category as the sample (the match), by virtue of 
being on the same side of the category boundary as the sample on that trial. The 
other choice was located in the opposite spatial category (the nonmatch). The 
order of choice presentation (match and nonmatch) was randomized over trials 
(the boundary was not visible during the choice sequence). Monkeys responded 
by controlling when they depressed a single response key (a pedal with their 
foot) in relation to the randomized choice sequence. The outcome of the trial 
(correct or incorrect) was dictated by the timing of the motor response relative 
to the choice sequence; movement direction did not vary. If the choice stimulus 
that was visible at the time of the motor response matched the spatial category 
of the sample, defined by the sample location and the orientation of the rule cue, 
the monkey was rewarded with a drop of juice.

neuronal database. We conducted neural recording in Brodmann’s area 7a in 
posterior parietal cortex and areas 46 and 9 in dorsolateral prefrontal cortex in 
two male rhesus macaque monkeys (Macaca mulatta; 5–8 kg). We simultane-
ously recorded the spiking activity of small ensembles of prefrontal and posterior 
parietal neurons consisting of ~15–25 individually isolated cells in each cortical 
area using two 16-electrode Eckhorn Microdrive matrices, one positioned over 
each cortical area (Thomas Recording, Giessen, Germany). The electrodes con-
trolled by each matrix could be advanced through the dura and into the brain 
independently under computer control to isolate the action potentials of dis-
tinct sets of simultaneously recorded neurons (ensembles). We typically recorded 
the electrical activity of 2–3 neural ensembles per day. The waveforms of single 
neurons were isolated online by two operators working in parallel. Additional 
details of surgery and neural recording have been reported previously18. The 
results reported in this study are based on the electrical activity of 1,360 iso-
lated cortical neurons, including 666 neurons in parietal cortex and 694 cells 
in prefrontal cortex. We did not perform a priori power analyses to determine 
sample size. (Little prior information was available on which to base an estimate 
of effect sizes relating to transmission of task-related signals between cortical 
areas.) Rather, we obtained as large a sample of neurons as was practically feasible 
given technical constraints of acute single neuron recording and the necessity 
of isolating task-related activity in two cortical areas concurrently. All neurons 
encountered and isolated were recorded without preselection (i.e., blindly). By 
necessity, transmission analyses were performed on neurons identified as car-
rying specific task-related signals in a prior ANOVA (below), so experimenters 
were not blinded with respect to neuronal type after this stage in the analysis. All 
surgical and animal care procedures conformed to the Principles of Laboratory 

Animal Care of the NIH and protocols approved by the Animal Care and Use 
Committees of the University of Minnesota and the Minneapolis Veterans Affairs 
Medical Center.

AncoVA-based selection of simultaneously recorded neurons for transmis-
sion analysis.  To quantify the transmission of information between cortical 
areas, we first applied analysis of covariance (ANCOVA) to identify the subsets 
of neurons within each ensemble that exhibited activity varying significantly 
as a function of rule-dependent spatial category. The dependent variable in the 
ANCOVA was the firing rate of each neuron averaged over the ‘Rule cue’ and 
following ‘Delay 2’ task periods (Fig. 1a,b). The factors in the ANCOVA were 
horizontal category (left or right), vertical category (above or below) and the 
categorization rule (horizontal or vertical), along with the interactions between 
rule and both horizontal and vertical category. For this analysis, we coded the 
horizontal and vertical categories of the sample stimulus each trial as a function 
of the sample’s location in the stimulus array regardless of the rule in force. We 
included the firing rate averaged over the preceding Sample and Delay 1 periods 
(Fig. 1) for each trial as a covariate in the analysis. This allowed us to evaluate 
the influence of rule-dependent category on firing rate apart from any carryover 
influence of the position of the sample stimulus. To conduct the transmission 
analysis, we selected neurons that exhibited rule-dependent, category-selective 
activity, as indicated by a significant interaction between the categorization rule 
and either the horizontal or vertical category factors (P < 0.05).

Supplementary Figure 4a illustrates two groups of simultaneously recorded 
neurons in parietal and prefrontal cortex, subsets of which have activity relating 
significantly to vertical categories (colored circles). We defined a neural ensemble 
to be a group of simultaneously recorded neurons within a cortical area with 
category-selective activity under the same categorization rule. For example, an 
ensemble might consist of 3 prefrontal neurons each of which was preferentially 
activated to represent the vertical categories ‘above’ and ‘below’, or 2 parietal 
neurons both of which were preferentially activated to represent the horizontal 
categories ‘left’ or ‘right’. We evaluated transmission between neural ensembles 
in prefrontal and parietal cortex that (i) were recorded simultaneously in the 
two cortical areas and (ii) contained a minimum number neurons with activity 
significantly related to vertical categories in both cortical areas or to horizontal 
categories in both cortical areas. Restricting the analysis to ensembles containing 
a minimum number of cells with activity encoding spatial categories along the 
same spatial axis (horizontal or vertical) involved a tradeoff between the mini-
mum numbers of category-selective neurons each ensemble had to contain to 
be included and the number of ensembles available for analysis. We performed 
the analysis requiring that simultaneously recorded ensembles in prefrontal and 
parietal cortex both contain a minimum of either 1 or 2 significantly category-
selective neurons with activity relating to spatial categories along the same spatial 
axis (horizontal or vertical). Due to the constraints of random sampling, the 
number of ensembles containing larger numbers of simultaneously recorded 
neurons encoding the same sets of spatial categories was limited.

The main results of this paper are based on application of the more stringent 
criterion (minimum of 2 significant neurons simultaneously recorded in each of 
the two areas), which yielded a total of 22 simultaneously recorded ensembles 
containing 63 task-related neurons. Transmission analysis of vertical category sig-
nals was based on decoding obtained from 32 vertical category-selective neurons. 
These neurons were simultaneously recorded in 5 parietal ensembles (containing 
18 significant neurons) and 5 prefrontal ensembles (containing 14 significant 
neurons). Transmission analysis of horizontal category signals was based on the 
activity of 31 neurons, segregated into 6 parietal ensembles (15 neurons) and  
6 prefrontal ensembles (16 neurons). However, we relaxed the inclusion crite-
ria and repeated the transmission analyses requiring that ensembles include a 
minimum 1 significant category-selective neuron along the same spatial axis 
(horizontal or vertical) in both cortical areas. Using this criterion, results of the 
transmission analysis were based on 52 neuronal ensembles containing a total 
of 108 neurons. For vertical categories, the analysis was based on 15 parietal 
ensembles (35 neurons) and 15 prefrontal ensembles (27 neurons). For horizon-
tal categories, the analysis was based on 11 parietal ensembles (23 neurons) and  
11 prefrontal ensembles (23 neurons).

decoding rule-dependent categories from ensemble activity in prefrontal and 
parietal cortex. To characterize the transmission of cognitive signals between 
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prefrontal and parietal neurons, we first applied a pattern classification analysis to 
decode spatial category from the pattern of firing rates observed in neural ensem-
bles (Fig. 2 and Supplementary Fig. 4). To capture temporal variation in category 
signals over the course of the trial, we applied the decoding analysis to ensemble 
activity patterns measured in a sequence of 50-ms time bins. At each time step, 
the output of the decoding algorithm provided the posterior probabilities that 
the sample stimulus belonged to each of the two alternative spatial categories 
possible under the current rule on the basis of the pattern of firing rates over 
neurons observed. The posterior probability quantifies the confidence of each 
category assignment on the basis of neural activity and therefore indicates the 
strength with which neural activity patterns encode categories. For the transmis-
sion analysis, we used the posterior probabilities associated with the correct spa-
tial category each trial, as defined by the sample and rule cue shown. In addition, 
we restricted the analysis to the half of the trials in the set for which the category 
preference of the neurons being analyzed was relevant to the behavioral choice 
the monkeys had to make. For example, when decoding the vertical categories 
‘above’ and ‘below’, we selected neurons with activity significantly influenced by 
the interaction between rule and vertical category and then used their activity to 
decode the vertical category of the sample on trials when the vertical categoriza-
tion rule was in force.

To perform the decoding analysis, we constructed an ensemble rate vector 
capturing a snapshot of activity within a short, 150-ms time window. The ensem-
ble rate vector within the time window was constructed by concatenating the  
firing rate of each significant category-selective neuron in the ensemble meas-
ured within 3 consecutive 50-ms time bins. We then advanced this 150-ms  
window through the trial in 50-ms steps and decoded category at each time step 
to produce a decoding time course of posterior probabilities. This time course 
measured rapid variation in signal strength over time (Figs. 1f–i and 2 and 
Supplementary Fig. 4b).

We applied a linear discriminant pattern classification algorithm (the  
‘classify’ function in the Matlab Statistical Toolbox; MathWorks, Natick, MA) 
to compute the posterior probabilities associated with each spatial category.  
We performed this analysis using fivefold cross-validation. At each time point, we 
trained the classifier using 4/5 of trials (the training set). Using the training data, 
we computed the mean and covariance of the ensemble activity vectors associated 
with each of the two alternative categories under the current categorization rule. 
These values provided the free parameters of classification functions modeling 
the distribution of activity patterns associated with each category as a multivari-
ate Gaussian distribution. We then used the classification functions to decode 
spatial categories from the ensemble rate vectors observed on the remaining 1/5 
of trials (the test set). For each time bin in each test trial, the classification func-
tions computed the distance between the ensemble rate vector and the means 
of the two Gaussian distributions in the rate space that were associated with 
the two spatial categories in the training data (Fig. 2a,b). The functions then 
converted these distances to posterior probabilities that the sample belonged 
to each category based on the activity pattern observed (Fig. 2c,d). We used 
the classification functions defined by neuronal activity within a single time bin 
to classify trials on the basis of activity in that same time bin. We retrained the 
classifier to perform the classification in each subsequent time bin. We classified 
successive one-fifths of trials, using the remaining trials as training data, until all 
trials were classified. The time series of posterior probabilities captured variation 
in the strength of signals encoding rule-dependent categories during individual 
trials in each cortical area (Fig. 2c,d and Supplementary Fig. 4b), enabling us 
to evaluate correlation in these signals over time (below).

We evaluated whether differences in decoding accuracy in parietal and pre-
frontal cortex were significant using the z-test of proportions applied to counts 
of accurate and inaccurate decoding of spatial category over trials in individual 
time bins, or accumulated over the time bins between the onset of the rule cue 
and first choice stimulus.

ARImA preprocessing of decoding time series. We then sought to determine 
whether short-term fluctuations in the time series of posterior probabilities in 
one cortical area preceded and predicted lagged fluctuations in the time series 
in the other cortical area, providing evidence that a neural signal specifically 
encoding rule-dependent categories had been transmitted (directly or indirectly) 
from parietal to prefrontal cortex. Estimates of cross-correlation between any two 
time series are biased and inflated in the case that the times series are themselves 

autocorrelated or nonstationary19–21. In this case, the internal regularity of the 
time series increases the degree to which they appear to be interdependent. To 
obtain estimates of interaction between cortical areas that were relatively free of 
these concerns, we applied a transformation developed by Box, Jenkins, Granger 
and others19,20 to the posterior probability time series, in order to remove their 
autocorrelation and make then stationary. For that purpose, we fit an ARIMA 
(autoregressive, integrative, moving average) model (of order 10, 2, 2) to the 
time series of posterior probabilities in each cortical area, using the ‘armax’ func-
tion of the System Identification Toolbox in Matlab. ARIMA models are linear 
models that predict each value in a time series as a weighted sum of prior values 
and also prior errors in prediction, after differencing the time series to improve 
stationarity. Models of order 10, 2, 2 first difference the time series twice, then 
fit regression coefficients to the 10 prior values of the series and the 2 prior 
errors in estimation that provide the best estimate of each value in the series. 
The order of the ARIMA model employed was selected on the basis of prelimi-
nary testing because this order effectively eliminated autocorrelation in the data 
(Supplementary Fig. 5).

linear regression analysis of preprocessed decoding time series to detect  
network transmission. We then applied a regression analysis to evaluate whether 
the residual posterior probability time series capturing rapid fluctuations in the 
strength of category signals significantly covaried in prefrontal and parietal cortex 
(Supplementary Fig. 4d). To evaluate top-down transmission, we regressed the 
posterior probability in each time bin of the parietal series onto the posterior 
probability bin in the prefrontal series shifted earlier by a variable lag of from 0 to 
8 time bins (Supplementary Fig. 4d, left; the analysis at lag 1 is shown predicting 
each value of the parietal time series at time t as a function of the value of the 
prefrontal time series at time t – 1). To evaluate bottom-up transmission, we did 
the converse, regressing the posterior probability in each time bin in the prefron-
tal series onto the probability in a previous time bin in the parietal series shifted 
earlier by a variable lag of from 0 to 8 time bins (Supplementary Fig. 4d; right 
shows an example at lag 1). To evaluate changes in the strength of transmission 
over time, we advanced a sliding 500-ms window (consisting of 10 consecutive 
50-ms bins) in 50-ms steps through the posterior probability time series in the 
two cortical areas, accumulated the posterior probabilities within the window 
over trials and ensembles and then performed the regression analysis on these 
accumulated data at each time step. The resulting time series of the F-statistic 
associated with the sliding window regression provided a time-resolved measure 
of signal transmission between the two cortical areas. We plotted the F-statistic 
at each time step at the leading edge of this sliding window. In order to compare 
transmission and decoding results directly, the decoding time courses in Figure 3  
were likewise averaged within a sliding window of 10 successive bins.

Bootstrap test of significance of transmission results. Transmission of cat-
egory signals reflecting real-time physiological interaction between prefrontal 
and parietal cortex should only be detected in the case that the neural activ-
ity used for the analysis was recorded simultaneously in the two cortical areas.  
It was therefore important to show that transmission was not detected between 
prefrontal and parietal cortex when the analysis was based on neural signals 
recorded at different times in the two areas. To make that determination, we 
repeated the transmission analysis after shuffling trials in a bootstrap procedure 
in which we kept the residual posterior probability time series produced by the 
decoding and ARIMA steps intact. In the shuffling, we also kept neurons grouped 
into the same simultaneously recorded ensembles within each area that we had 
in the original analysis. Finally, we constrained the shuffling so that the spatial 
category associated with each posterior probability time series did not change 
as a consequence of the shuffling. Thus, trial shuffling broke the simultaneity of 
neural activity in prefrontal and parietal cortex but did not otherwise modify 
the posterior probability time series entered in the transmission analysis. The 
results of the transmission analysis after the trial-shuffling procedure estimated 
the degree of detected transmission that could be attributed to spurious factors, 
such as parallel entrainment of population activity in prefrontal and parietal 
cortex to behavioral events. We performed the regression analysis after shuf-
fling posterior probabilities over trials in each time bin 500 times, generating 
a distribution of F-statistics and regression coefficients corresponding to the 
null hypothesis that the detected transmission reflected spurious factors, rather 
than actual signal transmission between simultaneously recorded neurons.  
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We considered transmission between prefrontal and parietal cortex to be signifi-
cant at a given time bin if the F-statistic or regression coefficient derived from the 
original neural data recorded simultaneously in the two cortical areas exceeded 
the 95th percentile of the bootstrap distribution of the same statistic derived from 
the trial shuffled data in that bin.

In addition, we tested the significance of the difference between top-down and 
bottom-up transmission of category signals by shuffling posterior probability 
time series across cortical areas (100 iterations) and repeating the transmission 
analysis. Differences between the strength of top-down and bottom-up signal 
transmission were considered significant if the difference in the associated  
F-statistics derived from the original data exceeded the 95th percentile of the 
differences in F-statistics associated with top-down and bottom-up transmission 
in the bootstrap distribution.

modulation of transmission by reward history. We investigated whether trans-
mission of category signals varied as a function of behavioral performance. We 
did not undertake a comparison of category signal transmission between cortical  

areas on error and correct trials because few error trials were available, and the 
difference in statistical power to detect transmission between areas would con-
found interpretation of the outcome of the analysis. Rather, we compared the 
strength of category signal transmission between two groups of trials of equal 
size, differentiated on the basis on whether a given categorization rule had been 
rewarded with relatively high or low frequency within the last 10 trials. For each 
trial, we counted the number of trials within the last 10 trials that were rewarded 
under a given categorization rule. We divided trials into high recent reward and 
low recent reward groups on the basis of whether the number of rewards earned 
under a given categorization rule within the previous 10 trials was above or below 
the median value of rewards for this rule, over all trials. We then performed 
the lagged regression separately using high and low recent reward trial subsets  
(Fig. 7) and a larger sliding window of 1,000 ms (20 bins). We evaluated whether 
differences between transmission on high and low recent reward trials was signifi-
cant by determining whether the difference in F-statistics associated with the two 
reward conditions in each time bin exceeded the 95th percentile of differences 
obtained in a bootstrap distribution after shuffling trials across reward status.
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