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A central tenet of neuroscience is that the remarkable computational 
abilities of our brains arise as a result of populations of interconnected 
neurons. Indeed, we find ourselves at an exciting moment in the  
history of neuroscience, as the field is experiencing rapid growth in 
the quantity and complexity of the recorded neural activity. Many 
groups have begun to adopt multi-electrode1 and optical2 recording 
technologies that can monitor the activity of many neurons simulta-
neously in cortex and, in some cases, in deeper structures. Ongoing 
development of recording technologies promises to increase the 
number of simultaneously recorded neurons by orders of magnitude3. 
At the same time, massive increases in computational power and algo-
rithmic development have enabled advanced multivariate analyses of 
neural population activity, where the neurons may be recorded either 
sequentially or simultaneously.

These technological advances have enabled researchers to recon-
sider the types of scientific questions that are being posed and how 
neural activity is analyzed, even with classical behavioral tasks and 
in brain areas that have been studied for decades. Indeed, many stud-
ies of neural systems are undergoing a paradigm shift from single-
neuron to population-level hypotheses and analyses. We begin this 
review by discussing three scientific motivations for considering a 
neural population jointly, rather than on a single-neuron basis: single- 
trial hypotheses requiring statistical power, hypotheses of popula-
tion response structure and exploratory analyses of large data sets. 

Critically, we show that there are settings in which data fundamentally 
cannot be understood on a single-neuron basis, whether as a result 
of neural spiking variability or a hypothesis about neural mechanism 
that depends on how the responses of multiple neurons covary.

The object of this review is to focus on one class of statistical methods,  
dimensionality reduction, which is well-suited for analyzing neu-
ral population activity. Dimensionality reduction methods produce  
low-dimensional representations of high-dimensional data, where 
the representation is chosen to preserve or highlight some feature of 
interest in the data. These methods have begun to reveal tantalizing 
evidence of the neural mechanisms underlying various phenomena, 
including the selection and integration of sensory input during deci-
sion-making in prefrontal cortex4, the ability of premotor cortex to 
prepare movements without executing them5, and odor discrimina-
tion in the olfactory system6. Dimensionality reduction has also been 
fruitfully applied to population recordings in other studies of deci-
sion-making7–9, the motor system10–12 and the olfactory system13,14, 
as well as in working memory15,16, visual attention17, the auditory 
system18, rule learning19, speech20 and more. We introduce dimen-
sionality reduction and bring together previous studies that have used 
these methods to address each of the three scientific motivations for 
population analyses. Because the use of dimensionality reduction  
is still relatively new in systems neuroscience, we then present  
methodological details and practical considerations.

Much of this work in neuroscience has developed in the last  
decade: as presciently noted by Brown et al.21, “the future challenge  
is to design methods that truly allow neuroscientists to perform  
multivariate analyses of multiple spike train data”. Dimensionality 
reduction is one important way in which many researchers have 
answered and will continue to answer this challenge.

Scientific motivation of population analyses
The growth in scale and resolution of recording technologies  
brings with it challenges for the analysis of neural activity. Consider 
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simultaneously. A key question is what scientific insight can be gained by studying a population of recorded neurons beyond 
studying each neuron individually. Here, we examine three important motivations for population studies: single-trial hypotheses 
requiring statistical power, hypotheses of population response structure and exploratory analyses of large data sets. Many 
recent studies have adopted dimensionality reduction to analyze these populations and to find features that are not apparent 
at the level of individual neurons. We describe the dimensionality reduction methods commonly applied to population activity 
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and computational researchers who seek to understand the role dimensionality reduction has had and can have in systems 
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a didactic example of action potentials from multiple simulated 
neurons ‘recorded’ across multiple experimental trials of multiple 
experimental conditions (Fig. 1a). As the number of neurons, trials 
and conditions grows, it becomes increasingly challenging to extract 
meaningful structure from these spike trains. Indeed, the classic 
approach of averaging spike trains across putatively similar trials and 
smoothing across time (Fig. 1b) may still yield responses that are  
difficult to interpret. Despite this apparent complexity, there is also 
great scientific opportunity in studying a population of neurons 
together; here we discuss these scientific motivations.

Single-trial statistical power. If the neural activity is not a direct 
function of externally measurable or controllable variables (for 
example, if activity is more a reflection of internal processing than 
stimulus drive or measurable behavior), the time course of neural 
responses may differ substantially on nominally identical trials.  
One suspects this to be especially true of cognitively demanding 
tasks that involve attention, decision-making and more. In this  
setting, averaging responses across trials may obscure the neural  
time course of interest, and single-trial analyses are therefore  
essential. By recording the response of a single neuron, it is usually 
difficult to identify the moment-by-moment fluctuations of these 
types of internal cognitive processes. However, if multiple neurons 
are recorded simultaneously, one can leverage statistical power across 
neurons to extract a succinct summary of the population activity on 
individual experimental trials12,22–24.

For example, consider a decision-making task in which the subject 
might abruptly change his/her mind or vacillate between possible 
choices on individual trials25,26. If these switches occur at different 
times on different trials, the act of trial averaging will obscure the 
switching times of each trial. At worst, trial averaging can mislead 
scientific interpretation: in this example, abrupt, but temporally vari-
able, switches appear as a slow transition when averaged, suggestive of 
a different neural mechanism. Population recordings critically address 
this shortcoming of trial averaging: one can consider multiple neurons 
on a single trial, rather than a single neuron on multiple trials, to gain 
the statistical power necessary to extract de-noised single-trial neural 
time courses. These time courses can then be related to the subject’s 
behavior on a trial-by-trial basis, potentially leading to new insights 
about the neural basis of decision-making7,9,24,26. Below, we will show 

that dimensionality reduction methods are a natural choice for this 
statistical analysis, as used in the above studies.

Population response structure. Population analyses are necessary in 
settings in which there may be neural mechanisms that involve coor-
dination of responses across neurons. These mechanisms exist only 
at the level of the population and not at the level of single neurons, 
such that single-neuron responses can appear hopelessly confusing 
or, worse, can mislead the search for the true biological mechanism27. 
Indeed, recordings in higher level brain areas16, as well as areas closer 
to sensory inputs28 and motor outputs29, have yielded highly hetero-
geneous and complex single-neuron responses, both across neurons 
and across experimental conditions. In some cases, single-neuron 
responses may bear no obvious moment-by-moment relationship with 
the sensory input or motor output that can be externally measured. 
Classically, such heterogeneity has been considered to be a result of 
biological noise or other confounds, and often researchers study only 
neurons that ‘make sense’ in terms of externally measurable quanti-
ties. However, this single-neuron complexity may be the realization 
of a coherent and testable neural mechanism that exists only at the 
level of the population.

To make this concept concrete, consider a hypothetical neural  
circuit as a dynamical system, in the sense that the activity of its  
constituent neurons changes over time30. Just as the motion of a 
bouncing ball is governed by Newton’s laws, the activity in this neural 
circuit is governed by dynamical rules (for example, point attractors, 
line attractors or oscillations). Although single-neuron responses 
certainly express aspects of these dynamical rules, the critical con-
ceptual point is that neither the single-neuron responses in isolation 
nor the true mechanism can be understood without the population 
of neurons. By analyzing the recorded neurons together, one can 
test for the presence or absence of a neural mechanism, be that a 
dynamical process or some other type of population activity structure. 
Dimensionality reduction is a key statistical tool for forming and 
evaluating hypotheses about population activity structure4–6,11,16.

Exploratory data analysis. Studying a population of neurons together 
facilitates data-driven hypothesis generation. There is a subtle, but 
important, difference between this and the previous motivation. 
Population response structure is concerned with mechanisms that 
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Figure 1 Motivation for population analyses and dimensionality reduction. (a) Enabled by the growth in scale and resolution of neural recording technologies, 
a typical experiment yields a collection of many trials (sets of panels from left to right), many experimental conditions (different colored panels shown in 
depth) and many neurons (rows of each panel, shown as spike rasters). Scrutinizing these data qualitatively and quantitatively presents many challenges, 
both for basic understanding and for testing hypotheses. (b) Neural responses are often averaged across trials (within a given condition) and smoothed into a 
peristimulus time histogram. Even these trial-averaged views can be difficult to interpret, as the number of conditions and recorded neurons grows. Notably, 
this challenge can be present even in data with simple structure: each of these simulated neurons have Poisson spiking with an underlying firing rate that is 
a windowed linear mixture of three Gaussian pulses. Each neuron has different mixture coefficients, baseline and amplitude. Dimensionality reduction is one 
class of statistical methods that can extract simple structure from these seemingly complex data.
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exist at the population level and are not interpretable as single-neuron  
hypotheses or mechanisms. On the other hand, exploratory data 
analysis involves visualizing a large amount of data, which can help 
to generate hypotheses regarding either single neurons or the popu-
lation. When the neurons show heterogeneous response properties, 
it can be challenging to interpret all responses simultaneously and 
cohesively (Fig. 1). Consideration of the population as a whole pro-
vides a way in which all of the data (across neurons, conditions, trials 
and time) can be interpreted together. This step provides an initial 
assessment of the salient features of the data and can guide subsequent 
analyses. Furthermore, visualization is an efficient way to perform 
sanity checks on large data sets (for example, to see that neural activity 
is more similar across trials of the same experimental condition than 
across trials of different conditions, or to check for recording stability 
across an experimental session), which facilitates rapid iteration of 
the experimental design. Dimensionality reduction, by giving a low-
dimensional summary of the high-dimensional population activity, is 
a natural approach for performing exploratory data analysis.

Intuition behind dimensionality reduction
Dimensionality reduction is typically applied in settings in which 
there are D measured variables, but one suspects that these vari-
ables covary according to a smaller number of explanatory variables 
K (where K < D). Dimensionality reduction methods discover and 
extract these K explanatory variables from the high-dimensional 
data according to an objective that is specific to each method. These 
explanatory variables are often termed latent variables because they 
are not directly observed. Typically, any data variance not captured 
by the latent variables is considered to be noise. In this light, dimen-
sionality reduction is like many statistical methods: it provides a par-
simonious description of statistical features of interest and discards 
some aspects of the data as noise.

In the case of neural population activity, D usually corresponds 
to the number of recorded neurons. Because the recorded neu-
rons belong to a common underlying network, the responses of the 
recorded neurons are likely not independent of each other. Thus, 
fewer latent variables may be needed to explain the population activ-
ity than the number of recorded neurons. The latent variables can be 
thought of as common input or, more generally, as the collective role 
of unobserved neurons in the same network as the recorded neurons. 
Furthermore, many dimensionality reduction methods take the view 
that the time series of action potentials emitted by a single neuron can 
be represented by an underlying, time-varying firing rate, from which 
the action potentials are generated in a stochastic manner31–33. This 
is a prevalent view in neuroscience, whether it is stated implicitly (for 
example, averaging spike trains across trials to estimate a time-vary-
ing firing rate) or explicitly (for example, statistical models of spike 
trains34). Previous studies have suggested that the stochastic compo-
nent tends to be Poisson-like35, and we refer to it as spiking variability.  

The goal of dimensionality reduction is to characterize how the fir-
ing rates of different neurons covary while discarding the spiking 
variability as noise. Thus, each of the D neurons can be thought of 
as providing a different, noisy view of an underlying, shared neural 
process, as captured by the K latent variables. The latent variables 
define a K-dimensional space that represents shared activity patterns 
that are prominent in the population response.

To illustrate, consider the case of D = 3 neurons. We first define a 
high-dimensional space in which each axis represents the firing rate of 
a neuron (r1, r2, and r3; Fig. 2). In this framework, each vector [r1, r2, r3]  
of population activity corresponds to a point in this space. We can 
then ask what low-dimensional (K < D) space explains these data well. 
In Figure 2, the points lie on a plane (shaded gray, K = 2) and trace out 
a trajectory over time. Each time point t corresponds to a single point 
in the high-dimensional firing rate space [r1(t), r2(t), r3(t)]. Note that 
time is not plotted on any of the axes; each axis represents the firing 
rate of one neuron, and time evolves implicitly across the trajectory.

There are two complementary ways to think about the relationship 
between the latent variables and the population activity for linear 
dimensionality reduction. First, the population activity can be recon-
structed by taking a weighted combination of the latent variables, 
where the weights are determined by the dimensionality reduction 
method (Fig. 2). Each latent variable time course (s1(t) and s2(t)) can 
be thought of as a temporal basis function: a characteristic pattern of 
covarying activity shared by different neurons. The first and second 
columns of the weight matrix specify the s1 and s2 axes in the three-
dimensional space, respectively (Fig. 2). Thus, one can think of each 
weight as specifying how much of each temporal basis pattern to use 
when reconstructing the response of each neuron. Second, the latent 
variables can be considered low-dimensional readouts or descriptions 
of the high-dimensional population activity (in [s1, s2] space; Fig. 2).  
Each latent variable can be obtained simply by taking a weighted 
combination of the activity of different neurons.

In general, the points in [r1, r2, r3] space will not lie exactly in a 
plane. In this case, dimensionality reduction attempts to find latent 
variables that can reconstruct the population activity as well as pos-
sible. The reconstructed activity can be interpreted as the de-noised 
firing rate for each neuron.

Scientific studies using dimensionality reduction
Having established the intuition of dimensionality reduction, we dis-
cuss the uses of these methods in the neuroscience literature and the 
insights they have revealed, organized by the three scientific motiva-
tions for analyzing neural populations.

Single-trial statistical power. A growing body of work has leveraged 
statistical power across multiple neurons to characterize the popula-
tion activity on individual experimental trials. A prominent example 
is the study of visual attention, which likely varies from moment to 
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moment despite the best efforts of the experimenters. To study the 
neural mechanisms underlying visual attention, one group17 recorded 
from a population of neurons in monkey area V4 during a change-
detection task. They then established a single-trial measure of attention 
by projecting the population activity onto a one-dimensional ‘attention 
axis’ (Fig. 3a), which is dimensionality reduction onto a line (K = 1). 
The attention axis was defined by the mean response of each neuron 
in each attention condition. Notably, the authors found that the pro-
jection onto the attention axis predicted behavioral performance on a 
trial-by-trial basis (Fig. 3a), an effect that was not possible to see at the 
level of individual neurons. The key to this finding was the projection, 
which leveraged statistical power across the entire recorded population 
to estimate an underlying attentional state on a single-trial basis.

There are several other key experimental contexts in which 
dimensionality reduction has been applied to population activity to 
reveal single-trial neural phenomena, including studies of decision- 
making9,24,26, rule learning19, motor planning36 and stimulus  
localization22. In these studies, dimensionality reduction was  
performed using the population responses alone, without referencing  
the subject’s behavior. The behavior was then used to validate the 
extracted latent variables on a single-trial basis. A similar approach 
can be used to study how population activity differs on trials with 
aberrant behavior (that is, error trials)7,9,10.

Dimensionality reduction is also valuable for studying spontaneous 
activity, where no notion of a repeatable trial exists and must therefore 
be analyzed on a single-trial basis. By definition, spontaneous activity 
involves fluctuations of the population activity that are not directly 

controlled by the experimenter. To characterize spontaneous activity, 
dimensionality reduction can be applied to extract a low-dimensional  
network state at each moment in time18,37–39. This facilitates the  
comparison of spontaneous activity to population activity during 
sensation10,18 and action10,37.

Population response structure. Another key use of dimensionality reduc-
tion is to test scientific hypotheses that are sensible only at the level of the 
population. Population structure hypotheses have been actively pursued 
in several different systems, including the prefrontal cortex4,8,15,16,40, the 
motor system5,11,41–43 and the olfactory system6,13,14,28,44–48. A common 
theme across these systems is that, although neural responses may appear 
hopelessly complex at the level of individual neurons, simpler organizing 
principles exist at the level of the population.

In the prefrontal cortex, one study4 examined the representation 
of both relevant and irrelevant stimulus information in a decision-
making task, which comprised 72 different experimental conditions 
involving the motion and color of dots on a screen (Fig. 3b). During 
this task, the authors recorded over 1,000 neurons in the prefrontal 
cortex, yielding a large database of responses that could not be easily 
summarized or understood, a prototypical example of single-neuron 
complexity. Given the lack of simple interpretation at the level of indi-
vidual neurons, they asked whether the confounding single-neuron 
responses could be understood as views of a simple dynamical proc-
ess at the population level. A dimensionality reduction method was 
designed to identify shared latent variables, each of which explained 
an external covariate (the subject’s choice, dot motion, dot color  
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Figure 3 Examples of scientific studies using 
dimensionality reduction. (a) Single-trial 
statistical power, visual attention. Left, a didactic 
example of projecting the responses of two 
neurons onto the attention axis (green; units, 
spike counts). For a V4 population (right), the  
normalized position (that is, projection) along  
this attention axis was predictive of behavior on 
single trials: the farther the projection was to  
the upper right of the attention axis, the more  
likely the animal was of correctly detecting right 
changes and the less likely the animal was of 
correctly detecting left changes. Adapted with  
permission from ref. 17. (b) Population response 
structure, decision-making. The population  
activity recorded in prefrontal cortex was 
projected onto three axes (units, spikes per s): 
the axis of evidence integration (choice axis),  
the relevant stimulus axis (motion axis) and the 
irrelevant stimulus axis (color axis). Each trace 
corresponds to responses averaged across trials  
of the same dot motion (gray traces) or dot color 
(blue traces). Despite the apparent complexity  
of single-neuron responses, the population 
activity shows orderly structure across different 
conditions of dot motion and color and suggests  
a network mechanism for gating and integration 
of information in prefrontal cortex. Adapted  
with permission from ref. 4. (c) Population 
response structure, motor system. The population activity recorded in motor cortex was projected onto a plane (units, spikes per s) where simple (rotational) 
dynamics are best captured; different traces are different experimental conditions (arm reaches shown with the same color in the inset). Dots denote the 
preparatory (pre-movement) neural activity, suggesting a mechanistic explanation for single neuron complexity: preparatory responses set the initial state  
of a population-level dynamical system that runs through movement. Adapted with permission from ref. 11. (d) Exploratory data analysis, brain-wide.  
The population activity recorded throughout the brain of larval zebrafish was projected onto its principal components for visualization purposes (the same 
data is shown at left plotted in three and two dimensions, units of ∆F/F). Four phases of response were identified (labeled α, β, γ and δ), which were then 
connected back to distinct neural structures. Right, axial views during each phase, where green dots indicate active neurons with magenta confidence 
intervals (caudal-rostral is left-right). Adapted with permission from ref. 50.
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or task context). Notably, the low-dimensional representation was 
a simple projection of the population activity, and not a decoded 
estimate of these covariates. Applying this method to experimental 
data, the authors found that the population activity was consistent 
with a low-dimensional dynamical process involving a line attractor 
(Fig. 3b), which could not have been identified by examining single 
neurons in isolation. Furthermore, they found that the population 
activity surprisingly carried both relevant and irrelevant stimulus 
information, and that ‘gating’ could be implicitly achieved by a rea-
dout mechanism along task-dependent directions in the population 
space, an inherently population-level concept. Their use of dimen-
sionality reduction also provided a bridge between population record-
ings and network theory49, in which both the experimental data and 
the model indicated a similar dynamical process for information gat-
ing. The mechanism also predicted that the dynamical process would 
have a different orientation in the population space for different task 
contexts, which can be tested experimentally to validate or invalidate 
this mechanism. This connection between experiment and theory was 
enabled by the judicious use of dimensionality reduction to examine 
population response structure.

In the motor system, another group11 studied reach preparation 
and execution by recording hundreds of neurons in the primary 
motor cortex during a task with 108 different experimental condi-
tions (Fig. 3c). As in the previous example4, the heterogeneity of 
the single-neuron responses was difficult to interpret. By applying 
dimensionality reduction, they found a coherent mechanism at the 
level of the population: preparatory activity sets the initial state of 
a dynamical process, which unfolds as the movement is executed. 
This dynamical structure cannot be understood with single-neuron 
responses alone, and population analysis was required to reveal this 
lawful coordination between two phases of the task (Fig. 3c). This 
structure further predicted a lack of correlation in neuronal tuning 
between the preparatory and execution-related phases of the task at 
the level of single neurons, as had been previously observed29. More 
recently, dimensionality reduction was used to show that popula-
tion-level mechanisms similar to the readout directions for relevant 
information underlie the implicit gating of movement in the motor 
system during preparatory periods5.

Finally, the responses of neurons in the olfactory system to dif-
ferent odors have also been considered through the lens of popula-
tion response structure28. Here, diverse time courses across neurons 
and odor stimuli have confounded attempts to understand the 
basic encoding of these odors. This task becomes increasingly dif-
ficult as the number of neurons and stimulus conditions increases. 
Dimensionality reduction has been applied to the activity of approxi-
mately 100 of the 800 neurons in the locust antennal lobe, and the 
population activity traces out loops that are organized by stimulus 
condition. In particular, the orientation of the loop is related to the 
odor identity, and the size of the loop is related to the odor concentra-
tion44. These results have been extended in important ways to eluci-
date the temporal dynamics of this encoding6, encoding of upstream 
olfactory receptor neurons48, temporally structured odor stimuli45, 
rapid temporal fluctuations of odors47, coding of overlapping odors13, 
coding of mixtures of odors14 and more.

Exploratory data analysis. Dimensionality reduction is also a useful 
tool for exploratory data analysis on large neural data sets. A telling 
example comes from optical recordings throughout the entire brain 
of a larval zebrafish at cellular resolution during motor adaptation50. 
The quantity of recorded data in this setup and similar3 is stagger-
ing: upwards of one terabyte of recorded activity per hour from over 

80,000 neurons51. To visualize and begin to understand this data, 
the authors applied dimensionality reduction to reveal four distinct 
types of neural dynamics (Fig. 3d). They then connected this insight 
back to the neural architecture and found that each of these dynami-
cal regimes corresponded to single neurons in distinct brain areas, 
suggesting a new role for each of these regions. Thus, dimensional-
ity reduction allowed the formation of a new hypothesis about the 
response properties of single neurons.

Even when recording from a more modest number of neurons, 
there is a need for methods to visualize the population activity in a 
concise fashion. Dimensionality reduction has been used for data 
visualization and hypothesis generation in various brain areas, includ-
ing the motor cortex36,42,52,53, hippocampus54, frontal cortex55, audi-
tory cortex56, prefrontal cortex57, striatal cortex58 and the olfactory 
system59. Although most of these studies proceeded to test hypotheses 
using the raw neural activity (without dimensionality reduction), the 
use of dimensionality reduction was vital for generating the hypoth-
eses in the first place and guiding subsequent analyses60. The interplay 
between hypothesis generation and data analysis, as facilitated by 
dimensionality reduction, may become increasingly essential as the 
size of neural data sets grows.

Selecting a dimensionality reduction method
As the previous section illustrates, there are many dimensionality 
reduction methods, each differing in the statistical structure it pre-
serves and discards. Although many methods have deep similarities61, 
as with any statistical technique, the choice of method can have sig-
nificant bearing on the scientific interpretations that can be made. For 
this reason, and because the use of dimensionality reduction is still 
relatively new in systems neuroscience, the following two sections are 
presented to introduce new users to these methods, to help existing 
users with method choice and interpretation, and to describe poten-
tial pitfalls of each choice. We describe the dimensionality reduction 
methods that are most commonly applied to neural activity (Table 1) 
and provide guidance for their appropriate use. Although the descrip-
tions below focus on electrical recordings of spike trains, these meth-
ods can be applied equally well to fluorescence measurements from 
optical imaging7,9,50 and other types of neural signals.

Basic covariance methods. Principal component analysis (PCA) and 
factor analysis (FA) are two of the most basic and well-used dimen-
sionality reduction methods. For illustrative purposes, consider the 
case of D = 2 neurons and K = 1 latent variables (Fig. 4a). We begin by 
forming high-dimensional vectors of raw or processed (for example, 
trial averaged) spike counts. Each data vector corresponds to a dot 
in Figure 4a. PCA identifies an ordered set of orthogonal directions 
that captures the greatest variance in the data. The direction of great-
est variance is denoted by s1. The orthogonal s2 axis (not shown) is 
the direction that captures the least variance. The data can then be 

Table 1 Overview of dimensionality reduction methods commonly 
applied to neural population responses

Method
Analysis  
objective

Temporal  
smoothing

Explicit  
noise model

Representative uses  
in neuroscience (refs.)

PCA Covariance No No 6,29,50
FA Covariance No Yes 10,43,100
LDS/GPFA Dynamics Yes Yes 12,71,72
NLDS Dynamics Yes Yes 77,78
LDA Classification No No 9,19,56
Demixed Regression No Yes/No 4,16
Isomap/LLE Manifold 

discovery
No No 14,44,58
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projected onto the s1 axis, forming a one-dimensional data set that 
best preserves the data covariance (Fig. 4a).

Although capturing the largest amount of variance may be desir-
able in some scenarios, a caveat is that the low-dimensional space 
identified by PCA captures variance of all types, including firing 
rate variability and spiking variability. Because spiking variability 
can obscure the interpretation of the latent variables, PCA is usually 
applied to trial-averaged (and, in some cases, temporally smoothed) 
spike counts, where the averaging removes much of the spiking vari-
ability in advance. If one seeks to analyze raw spike counts, FA can be 
used to better separate changes in firing rate from spiking variability. 
FA identifies a low-dimensional space that preserves variance that is 
shared across neurons (considered to be firing rate variability) while 
discarding variance that is independent to each neuron (considered 
to be spiking variability)10. FA can be seen as PCA with the addition 
of an explicit noise model that allows FA to discard the independent 
variance for each neuron.

Time series methods. If the data form a time series, one can leverage  
the sequential nature of the data to provide further de-noising  
and to characterize the temporal dynamics of the population  
activity. Although there have been many important developments 
of time series methods tailored for multi-neuronal spike trains  
(see refs. 62–67 for examples), we focus on a subset of these  
methods that identify low-dimensional structure in an unsupervised 
fashion (that is, where some or all of the predictors of neural activity 
are not directly observed).

There are several dimensionality reduction methods available 
for time series: hidden Markov models (HMM)22–24,26,68–70, kernel 
smoothing followed by a static dimensionality reduction method, 
Gaussian process factor analysis (GPFA)12, latent linear dynami-
cal systems (LDS)71–76 and latent nonlinear dynamical systems 
(NLDS)77,78. All of these methods return low-dimensional, latent 
neural trajectories that capture the shared variability across neurons 
for each high-dimensional time series. An HMM is applied in settings 
where the population activity is believed to jump between discrete 
states, whereas all of the other methods identify smooth changes in 
firing rates over time (where the degree of smoothness is determined 
by the data). A common way to characterize trial-averaged responses 
across a population of neurons is to average across trials and tempo-
rally smooth each neuron’s response, and to then apply PCA. This 
yields a neural trajectory for each experimental condition and facili-
tates the comparison of population activity across conditions4,6,11. 
In contrast, HMM, GPFA, LDS and NLDS are typically applied to 
single-trial population activity. This yields single-trial neural trajec-
tories, which facilitate the comparison of population activity across 

trials10, and a low-dimensional dynamics model, which characterizes 
how the population activity evolves over time. These methods are 
particularly appropriate for single-trial population activity because 
they have explicit noise models (akin to FA).

As a cautionary note, when interpreting the neural trajectories, it 
is important to understand the steps and assumptions involved in 
extracting them from the high-dimensional population activity. For 
methods with an explicit dynamics model, its parameters are first fit 
to a set of (training) trials. Then, a low-dimensional trajectory can 
be extracted by making a statistical tradeoff between the dynamics 
model and the noisy (test) data. Thus, a particular low-dimensional 
trajectory may be as much a reflection of the dynamics model as of 
the data. For example, the dynamics model in GPFA is stationary and 
encourages the trajectories to be smooth, whereas that in LDS and 
NLDS is generally nonstationary and encourages the trajectories to 
follow particular dynamical motifs. For this reason, we recommend a 
simple first approach such as PCA on smoothed, trial-averaged data 
or GPFA on single-trial data, which can then guide the choice of a 
directed dynamics model, such as LDS or NLDS. In all cases, the 
extracted trajectories should be interpreted with caution in the con-
text of the type of structure encouraged by the dynamics model.

If one seeks trajectories that are a projection of the data (that does 
not require a statistical tradeoff with a dynamics model), one can use 
an orthogonal projection (akin to PCA) to extract low-dimensional 
trajectories after having identified the low-dimensional space using 
a method that involves a dynamics model. The extracted trajectories 
are then simply a projection of the data and have not been constrained 
by a dynamics model, with the tradeoff that one gives up de-noising 
of the trajectories that would be provided by the dynamics model. 
Such a method was developed to investigate the rotational structure 
of neural population dynamics11.

Methods with dependent variables. In many experimental settings, 
each data point in the high-dimensional firing rate space has an asso-
ciated label of one or more dependent variables. These dependent 
variables may correspond to experimental parameters (for example, 
stimulus identity), the subject’s behavior (for example, decision iden-
tity) or a time index. A possible objective of dimensionality reduc-
tion is to project the data such that differences in these dependent 
variables are preserved, in contrast with all of the methods described 
above that discover structure in the population activity in an unsu-
pervised fashion. If each data point belongs to one of G groups (for 
example, experimental conditions), then linear discriminant analysis 
(LDA) can be used to find a low-dimensional projection in which the 
G groups are well separated9,19,56. LDA identifies an ordered set of  
G − 1 directions in which the between-group variance is maximized 
relative to the within-group variance. Consider an example with  
D = 2 neurons and G = 2 groups (Fig. 4b, top). When the data points 
are projected onto the s1 axis, the two groups are well separated.
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Figure 4 Conceptual illustration of PCA, LDA and demixed dimensionality 
reduction for two neurons (D = 2). (a) PCA finds the direction (s1 axis) that 
captures the greatest variance in the data (black dots, top), shown by the 
projection onto the s1 axis (bottom). (b) LDA finds the direction (s1 axis)  
that best separates the two groups of points (black and while dots, top).  
The separation can be seen in the projection onto the s1 axis (bottom).  
(c) Demixed dimensionality reduction (using the method described in ref. 16)  
finds the direction that explains the variance in dot color (s1 axis, top) and 
an orthogonal direction (s2 axis, not shown) that explains the variance in 
dot size. The organization in dot color can be seen in the projection onto 
the s1 axis (bottom). Note that these illustrations were created using the 
same data points (dots), and it is the use of different methods (which exploit 
different data features, such as group membership in (b) or color and size in 
(c)) that produce different directions s1 across the top panels and different 
projections across the bottom panels. 
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If there are multiple dependent variables for each data point (for 
example, stimulus identity and decision identity), one might seek to 
‘demix’ the effects of the different dependent variables, such that each 
projection axis (that is, latent variable) captures the variance of a single 
dependent variable. This is often helpful for orienting the user in the 
low-dimensional space by assigning meaning to the projection axes 
in terms of externally measurable variables. There are three closely 
related methods that have been used in the neuroscience literature, 
which we collectively call demixed dimensionality reduction: a vari-
ant of linear regression4, a difference of covariances approach16 and 
a probabilistic extension57. Consider an example with D = 2 neurons 
and two attributes (dot size and dot color) for each data point (Fig. 4c).  
Applying demixed dimensionality reduction to these data yields a 
direction s1, which optimally explains the variance in dot color, and 
an orthogonal direction s2 (not shown), which explains the variance 
in dot size. The organization in dot color can be seen when the data 
points are projected onto s1. A similar organization in dot size could 
be seen by projecting the data onto the orthogonal s2 axis. Note that 
the two attributes vary along orthogonal axes (Fig. 4c), although this 
need not be the case in real data. Methodologically, the variant of 
linear regression should be used when the dependent variables take 
on a continuum of values (rather than a few discrete values), whereas 
the difference of covariances approach should be used when there 
is no obvious ordering of the values of the dependent variables (for 
example, different stimulus categories).

Nonlinear dimensionality reduction methods. Most of the meth-
ods presented thus far define a linear relationship between the latent 
and observed variables (Figs. 2 and 4). In general, the data may lie 
on a low-dimensional, nonlinear manifold in the high-dimensional 
space. Depending on the form of the nonlinearity, a linear method 
may require more latent variables than the number of true dimen-
sions in the data. Two of the most prominent methods to identify 
nonlinear manifolds are Isomap79 and locally linear embedding 
(LLE)13,14,44,45,58,80. As with linear methods, the low-dimensional 
embeddings produced by nonlinear methods should be interpreted 
with care. Several nonlinear methods use local neighborhoods to esti-
mate the structure of the manifold. Because population responses 
typically do not evenly explore the high-dimensional space (a problem 
that grows exponentially with the number of neurons), local neigh-
borhoods might include only temporally adjacent points along the 
same trajectory. As a result, differences between trajectories can be  
magnified in the low-dimensional embedding and should be interpreted 
accordingly. To obtain more even sampling of the high-dimensional  
space, it will be necessary to substantially increase the richness  
and diversity of standard task paradigms (for example, the presented 
stimuli or elicited behavior). Furthermore, nonlinear dimensionality 
reduction methods are often fragile in the presence of noise81, which 
limits their use in single-trial population analyses. These caveats sug-
gest linear dimensionality reduction as a sensible starting point for 
most analyses. Before proceeding to nonlinear methods, one should 
ensure that there is a dense enough sampling of the high-dimensional 
space such that that local neighborhoods involve data points from 
different trajectories (or experimental conditions), and that, in the 
case of single-trial analyses, the nonlinear method is robust to the 
Poisson-like spiking variability of neurons.

Practical use
Depending on the scientific question being asked, one should first 
select an appropriate dimensionality reduction method using the 
guidelines described above. One can then perform the necessary 

data preprocessing (for example, take spike counts, average across 
trials and/or smooth across time) and apply the selected method to 
the population activity. This latter step includes finding the latent 
dimensionality, estimating the model parameters (if applicable), and 
projecting the high-dimensional data into the low-dimensional space 
(akin to Fig. 2). This yields a low-dimensional representation of the 
population activity. This section provides practical guidelines for pre-
processing the data, estimating and interpreting the latent dimen-
sionality, running the selected dimensionality reduction method, and 
visualizing the low-dimensional projections. We point out caveats 
and potential pitfalls specific to the analysis of population activity, 
as well as more general pitfalls pertaining to the analysis of high-
dimensional data.

Data preprocessing. The data should be preprocessed to ensure sen-
sible inputs for dimensionality reduction. A few typical pitfalls exist. 
First, one should ensure that the neurons do not covary as a result of 
trivial (that is, non-biological) reasons, which can seriously confound 
any dimensionality reduction method. Examples include electrical 
cross-coupling between electrodes, which induces positive correlation 
between neurons12, and artificially splitting the response of a single 
neuron into two (whether as a result of neuron proximity in opti-
cal recordings or of spike sorting with electrode recordings), which 
induces negative correlation between the neurons. Second, neurons 
with low mean firing rates (for example, less than one spike per second) 
should typically be excluded, as nearly zero variance for any neuron can 
lead to numerical instability with some methods. Third, for PCA, one 
may consider normalizing (that is, z scoring) the activity of each neu-
ron, as PCA can be dominated by neurons with the highest modulation 
depths. This is less of a concern for most of the other dimensionality 
reduction methods, where the latent variables are invariant to the scale 
of each neuron’s activity61. Following these considerations, the data can 
be preprocessed by taking binned spike counts, averaging across trials 
and/or kernel smoothing across time33.

Estimating and interpreting dimensionality. Many dimensionality 
reduction methods require a choice of dimensionality (K) for the 
low-dimensional projection. Dimensionality can be thought of as the 
number of directions explored by the population activity in the high-
dimensional firing rate space (Fig. 2). Scientifically, dimensionality is 
a complexity measure of the population activity and may be suggestive 
of underlying circuit mechanisms. For example, low dimensional-
ity might suggest that only a small number of common drivers are 
responsible for the population activity. On the other hand, a higher 
dimensionality may provide an advantage for downstream neurons 
reading out information from the recorded population15,82.

The most basic approach to estimating dimensionality is to choose a 
cutoff value for the variance explained by the low-dimensional projec-
tion and to choose K such that the cutoff is exceeded. Given that the 
cutoff value is often arbitrary, cross-validation may be preferred to 
ask how many dimensions generalize to explaining held-out data. For 
probabilistic methods (such as FA, GPFA, LDS and NLDS), one can 
identify the dimensionality that maximizes the cross-validated data 
likelihood. Alternatively, for all linear methods and some nonlinear 
methods, a cross-validated leave-neuron-out prediction error can be 
computed in the place of data likelihood12. Another approach is to 
evaluate the number of binary classifications that can be implemented 
by a linear classifier15. In general, the estimated dimensionality can 
be influenced by the choice of estimation method, by the number of 
neurons included, by the richness of the experimental setting and by 
the number of data points in a given data set. These considerations 
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suggest it is safer to make relative, rather than absolute, statements 
about dimensionality.

Computational runtime. Although a detailed analysis of the compu-
tational runtime for each method is beyond the scope of this review, we 
will discuss a few rules of thumb. For the linear methods, there are two 
steps: estimating the model parameters and then projecting the data 
into the low-dimensional space. For estimating the model parameters, 
methods (such as PCA and LDA) that require only a single matrix 
decomposition tend to be faster than methods (such as FA, GPFA, 
LDS and NLDS) that use an iterative algorithm (such as expectation-
maximization) or subspace identification methods75,76,83. Methods 
that involve a dynamics model (such as GPFA, LDS and NLDS) tend to 
require more computation than those that do not (such as FA). Relative 
to estimating the model parameters, the second step of projecting the 
data into the low-dimensional space tends to be fast for all linear meth-
ods. To estimate the latent dimensionality, cross-validation tends to be 
highly computationally demanding because it requires that the model 
parameters be fit m × n times, where m is the number of cross-validation  
folds and n is the number of candidate latent dimensionalities. As 
the number of recorded neurons continues to grow, computational 
efficiency will become an increasingly important consideration in the 
use of dimensionality reduction for neuroscience.

Visualization. Ideally, one would like to visualize the extracted latent 
variables directly in the K-dimensional space. If K ≤ 3, standard plot-
ting can be used. For larger K, one possibility is to visualize a small 
number of two-dimensional projections, which may miss salient 
features or provide a misleading impression of the latent variables, 
though tools for rapid visualization exist to help address this limita-
tion60 (software available at http://bit.ly/1l7MTdB).

Potential pitfalls when analyzing high-dimensional data. When 
analyzing multivariate data, it is important to bear in mind that intui-
tion from two- or three-dimensional space may not hold in higher 
dimensional spaces. For example, one may ask whether two differ-
ent low-dimensional spaces have a similar orientation in the high-
dimensional space, as assessed by comparing angles between vectors 
in the high-dimensional space. With increasing dimensionality, two 
randomly chosen vectors will become increasingly orthogonal. Thus, 
the assessment of orthogonality should be performed relative to the 
chance distribution of angles rather than an intuitive expectation from 
lower dimensional spaces. As a second example, the ability of LDA to 
separate two classes of training data improves as the data dimension-
ality increases (for a fixed number of data points). With high enough 
dimensionality, any fixed number of data points can be separated 
arbitrarily well. These two examples emphasize that caution is needed 
when analyzing high-dimensional data; many other examples have 
appeared in the literature84.

Broader connections
We have focused on data contexts in which dimensionality reduction 
is an appropriate analytical approach. However, dimensionality reduc-
tion is by no means the only method available for analyzing neural 
population activity. For decades, studies have considered how the 
activity of pairs of neurons covaries21,85,86. Moving to larger popula-
tions, studies have characterized population activity using regression-
based generalized linear models (GLMs), spike word distributions and 
decoding approaches. Here we describe these related methods, their 
connection to dimensionality reduction and the contexts in which 
they can be a more appropriate choice.

First, as the name implies, a GLM is a generalization of the conven-
tional linear-Gaussian relationship between explanatory variables and 
population activity87. A GLM can model a spike train directly using a 
Poisson count distribution or a point-process distribution. It can be 
used in settings in which the explanatory variables are observed64,66 
or unobserved (that is, latent)71,72,74–77. The former is a generali-
zation of linear regression, whereas the latter is a generalization of 
linear dimensionality reduction. Thus, the choice of whether to use 
a GLM (rather than a more conventional linear-Gaussian model) is 
separate from the choice of whether to perform dimensionality reduc-
tion. It is also possible to use a GLM in settings in which there are 
both observed and unobserved explanatory variables72,88,89. GLM are 
widely used in the regression setting to explain the firing of a neu-
ron in terms of the recent history of the entire recorded population 
and the stimulus. This approach is appropriate in settings in which 
one believes that most (or all) of the relevant explanatory variables 
are observed and can provide insight into stimulus dependence and 
functional connectivity. In contrast, dimensionality reduction (with 
or without GLM) should be used if the relevant explanatory variables 
are unobserved (for example, as a result of common input or unob-
served neurons in the network)74 to address questions about collective 
population dynamics and variability.

Second, a non-parametric approach for characterizing population 
activity is to measure the probability of observing every possible 
spike count vector (termed spike word)90,91. This yields a discrete 
probability distribution, which can then be compared across exper-
imental conditions using information theoretic measures92. This 
method captures higher order correlations across neurons and pre-
serves the precise timing of spikes relative to many dimensionality 
reduction methods that are based on second-order statistics and the 
assumption of an underlying firing rate32. Whether it is necessary 
to take into account higher order correlations90,91 and precise spike 
times93 depends on the particular brain region or scientific question 
being studied. Because the number of possible spike words grows 
exponentially with the number of neurons, spike word analyses are 
often limited to a few tens of neurons and require large amounts 
of data.

Third, dimensionality reduction methods are closely related to 
population decoding methods. Similar to dimensionality reduction, 
decoding reduces the high-dimensional population activity to a smaller 
number of variables. Some prominent examples include decoding sen-
sory stimuli66,94, physical location62, arm movements65,95,96, working 
memory97, object information98 and more. The key distinction is that 
decoding seeks to predict external variables, whereas dimensionality 
reduction produces low-dimensional representations (latent variables) 
of the neural activity itself. The fact that decoding performance tends 
to increase with the number of neurons indicates that a population 
of neurons can provide more information about either an external or 
internal variable, compared with a single neuron99.

DIScuSSIOn
One of the major pursuits of science is to explain complex phenomena 
in simple terms. Systems neuroscience is no exception, and decades 
of research have attempted to find simplicity at the level of individual 
neurons. Standard analysis procedures include constructing simple 
parametric tuning curves and response fields, analyzing only a select 
subset of the recorded neurons, and creating population averages by 
averaging across neurons and trials. Recently, studies have begun to 
embrace single-neuron heterogeneity and seek simplicity at the level 
of the population4,11,15,16, as enabled by dimensionality reduction. 
This approach has already provided new insight about how network 
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dynamics give rise to sensory, cognitive and motor function. With 
the ever-growing interest in studying cognitive and other internal 
brain processes, along with the continued development and adoption 
of large-scale recording technologies, dimensionality reduction and 
related methods may become increasingly essential.

ACkNowlEDgMENTS
We are grateful to the authors and publishers of the works highlighted  
in Figure 3 for permission to reuse portions of their figures. We thank  
C. Chandrasekaran, A. Miri, W. Newsome, B. Raman, and the members of the 
laboratories of A. Batista, S. Chase and M. Churchland for helpful discussion 
during the preparation of this manuscript. This work was supported by the 
Grossman Center for the Statistics of Mind (J.P.C.), the Simons Foundation  
(SCGB-325171 and SCGB-325233 to J.P.C.), the Gatsby Charitable Foundation 
(J.P.C.) and the US National Institutes of Health National Institute of  
Child Health and Human Development (R01-HD-071686 to B.M.Y.).

CoMPETINg FINANCIAl INTERESTS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/
reprints/index.html.

1. Kipke, D.R. et al. Advanced neurotechnologies for chronic neural interfaces: new 
horizons and clinical opportunities. J. Neurosci. 28, 11830–11838 (2008).

2. Kerr, J.N. & Denk, W. Imaging in vivo: watching the brain in action. Nat. Rev. 
Neurosci. 9, 195–205 (2008).

3. Ahrens, M.B. et al. Whole-brain functional imaging at cellular resolution using 
light-sheet microscopy. Nat. Methods 10, 413–420 (2013).

4. Mante, V. et al. Context-dependent computation by recurrent dynamics in 
prefrontal cortex. Nature 503, 78–84 (2013).

5. Kaufman, M.T. et al. Cortical activity in the null space: permitting preparation 
without movement. Nat. Neurosci. 17, 440–448 (2014).

6. Mazor, O. & Laurent, G. Transient dynamics versus fixed points in odor 
representations by locust antennal lobe projection neurons. Neuron 48, 661–673 
(2005).

7. Harvey, D.C. et al. Choice-specific sequences in parietal cortex during a virtual-
navigation decision task. Nature 484, 62–68 (2012).

8. Stokes, M.G. et al. Dynamic coding for cognitive control in prefrontal cortex. 
Neuron 78, 364–375 (2013).

9. Briggman, K.L., Abarbanel, H.D.I. & Kristan, W.B. Jr. Optical imaging of neuronal 
populations during decision-making. Science 307, 896–901 (2005).

10. Churchland, M.M. et al. Stimulus onset quenches neural variability: a widespread 
cortical phenomenon. Nat. Neurosci. 13, 369–378 (2010).

11. Churchland, M.M. et al. Neural population dynamics during reaching. Nature 
487, 51–56 (2012).

12. Yu, B.M. et al. Gaussian-process factor analysis for low-dimensional single-trial 
analysis of neural population activity. J. Neurophysiol. 102, 614–635 (2009).

13. Broome, B.M. et al. Encoding and decoding of overlapping odor sequences. 
Neuron 51, 467–482 (2006).

14. Saha, D. et al. A spatiotemporal coding mechanism for background-invariant odor 
recognition. Nat. Neurosci. 16, 1830–1839 (2013).

15. Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. 
Nature 497, 585–590 (2013).

16. Machens, C.K. et al. Functional, but not anatomical, separation of ‘what’ and 
‘when’ in prefrontal cortex. J. Neurosci. 30, 350–360 (2010).

17. Cohen, M.R. & Maunsell, J.H.R. A neuronal population measure of attention 
predicts behavioral performance on individual trials. J. Neurosci. 30,  
15241–15253 (2010).

18. Luczak, A. et al. Spontaneous events outline the realm of possible sensory 
responses in neocortical populations. Neuron 62, 413–425 (2009).

19. Durstewitz, D. et al. Abrupt transitions between prefrontal neural ensemble states 
accompany behavioral transitions during rule learning. Neuron 66, 438–448 
(2010).

20. Bouchard, K.E. et al. Functional organization of human sensorimotor cortex for 
speech articulation. Nature 495, 327–332 (2013).

21. Brown, E.N. et al. Multiple neural spike train data analysis: state-of-the-art and 
future challenges. Nat. Neurosci. 7, 456–461 (2004).

22. Seidemann, E., Meilijson, I., Abeles, M., Bergman, H. & Vaadia, E. Simultaneously 
recorded single units in the frontal cortex go through sequences of discrete and 
stable states in monkeys performing a delayed localization task. J. Neurosci. 16, 
752–768 (1996).

23. Jones, L.M. et al. Natural stimuli evoke dynamic sequences of states in sensory 
cortical ensembles. Proc. Natl. Acad. Sci. USA 104, 18772–18777 (2007).

24. Ponce-Alvarez, A. et al. Dynamics of cortical neuronal ensembles transit from decision 
making to storage for later report. J. Neurosci. 32, 11956–11969 (2012).

25. Horwitz, G.D. & Newsome, W.T. Target selection for saccadic eye movements: 
prelude activity in the superior colliculus during a direction-discrimination task. 
J. Neurophysiol. 86, 2543–2558 (2001).

26. Bollimunta, A., Totten, D. & Ditterich, J. Neural dynamics of choice: single-trial 
analysis of decision-related activity in parietal cortex. J. Neurosci. 32,  
12684–12701 (2012).

27. Sanger, T.D. & Kalaska, J.F. Crouching tiger, hidden dimensions. Nat. Neurosci. 
17, 338–340 (2014).

28. Laurent, G. Olfactory network dynamics and the coding of multidimensional 
signals. Nat. Rev. Neurosci. 3, 884–895 (2002).

29. Churchland, M.M. et al. Cortical preparatory activity: representation of movement 
or first cog in a dynamical machine? Neuron 68, 387–400 (2010).

30. Vogels, T.P. et al. Neural network dynamics. Annu. Rev. Neurosci. 28, 357–376 
(2005).

31. Nawrot, M.P. et al. Measurement of variability dynamics in cortical spike trains. 
J. Neurosci. Methods 169, 374–390 (2008).

32. Churchland, M.M. & Abbott, L.F. Two layers of neural variability. Nat. Neurosci. 
15, 1472–1474 (2012).

33. Cunningham, J.P. et al. Methods for estimating neural firing rates, and their 
application to brain-machine interfaces. Neural Netw. 22, 1235–1246  
(2009).

34. Cox, D.R. & Isham, V. Point Processes (Chapman and Hall, London, 1980).
35. Tolhurst, D.J., Movshon, J.A. & Dean, A.F. The statistical reliability of signals in 

single neurons in cat and monkey visual cortex. Vision Res. 23, 775–785 
(1983).

36. Afshar, A. et al. Single-trial neural correlates of arm movement preparation. 
Neuron 71, 555–564 (2011).

37. Levi, R. et al. The role of sensory network dynamics in generating a motor program. 
J. Neurosci. 25, 9807–9815 (2005).

38. Sasaki, T., Matsuki, N. & Ikegaya, Y. Metastability of active ca3 networks.  
J. Neurosci. 27, 517–528 (2007).

39. Ecker, A.S. et al. State dependence of noise correlations in macaque primary 
visual cortex. Neuron 82, 235–248 (2014).

40. Jun, J.K. et al. Heterogenous population coding of a short-term memory and 
decision task. J. Neurosci. 30, 916–929 (2010).

41. Shenoy, K.V. et al. Cortical control of arm movements: a dynamical systems 
perspective. Annu. Rev. Neurosci. 36, 337–359 (2013).

42. Ames, K.C. et al. Neural dynamics of reaching following incorrect or absent motor 
preparation. Neuron 81, 438–451 (2014).

43. Sadtler, P.T. et al. Neural constraints on learning. Nature (in the press).
44. Stopfer, M., Jayaraman, V. & Laurent, G. Intensity versus identity coding in an 

olfactory system. Neuron 39, 991–1004 (2003).
45. Brown, S.L. et al. Encoding a temporally structured stimulus with a temporally 

structured neural representation. Nat. Neurosci. 8, 1568–1576 (2005).
46. Bathellier, B. et al. Dynamic ensemble odor coding in the mammalian olfactory 

bulb: sensory information at different timescales. Neuron 57, 586–598 
(2008).

47. Geffen, M.N. et al. Neural encoding of rapidly fluctuating odors. Neuron 61, 
570–586 (2009).

48. Raman, B., Joseph, J., Tang, J. & Stopfer, M. Temporally diverse firing patterns 
in olfactory receptor neurons underlie spatiotemporal neural codes for odors.  
J. Neurosci. 30, 1994–2006 (2010).

49. Sussillo, D. & Abbott, L.F. Generating coherent patterns of activity from chaotic 
neural networks. Neuron 63, 544–557 (2009).

50. Ahrens, M.B. et al. Brain-wide neuronal dynamics during motor adaptation in 
zebrafish. Nature 485, 471–477 (2012).

51. Freeman, J. et al. Mapping brain activity at scale with cluster computing. Nat. 
Methods doi:10.1038/nmeth.3041 (27 July 2014).

52. Nicolelis, M.A., Baccala, L.A., Lin, R.C. & Chapin, J.K. Sensorimotor encoding 
by synchronous neural ensemble activity at multiple levels of the somatosensory 
system. Science 268, 1353–1358 (1995).

53. Paz, R., Natan, C., Boraud, T., Bergman, H. & Vaadia, E. Emerging patterns of 
neuronal responses in supplementary and primary motor areas during sensorimotor 
adaptation. J. Neurosci. 25, 10941–10951 (2005).

54. Lin, L. et al. Identification of network-level coding units for real-time representation 
of episodic experiences in the hippocampus. Proc. Natl. Acad. Sci. USA 102, 
6125–6130 (2005).

55. Narayanan, N.S. et al. Delay activity in rodent frontal cortex during a simple 
reaction time task. J. Neurophysiol. 101, 2859–2871 (2009).

56. Bartho, P. et al. Population coding of tone stimuli in auditory cortex: dynamic 
rate vector analysis. Eur. J. Neurosci. 30, 1767–1778 (2009).

57. Brendel, W. et al. Demixed principal component analysis. in Adv. Neural Inf. 
Process. Syst. 24, 2654–2662 (2011).

58. Carrillo-Reid, L. et al. Encoding network states by striatal cell assemblies.  
J. Neurophysiol. 99, 1435–1450 (2008).

59. Hallem, E.A. & Carlson, J.R. Coding of odors by a receptor repertoire. Cell 125, 
143–160 (2006).

60. Cowley, B.R. et al. Datahigh: graphical user interface for visualizing and interacting 
with high-dimensional neural activity. J. Neural Eng. 10, 066012 (2013).

61. Roweis, S. & Ghahramani, Z. A unifying review of linear gaussian models. Neural 
Comput. 11, 305–345 (1999).

62. Brown, E.N. et al. A statistical paradigm for neural spike train decoding applied 
to position prediction from ensemble firing patterns of rat hippocampal place 
cells. J. Neurosci. 18, 7411–7425 (1998).

63. Eden, U.T. et al. Dynamic analysis of neural encoding by point process adaptive 
filtering. Neural Comput. 16, 971–998 (2004).

http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html
http://dx.doi.org/10.1038/nmeth.3041


©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

�0  advance online publication nature neuroscience

r e v i e w

64. Truccolo, W. et al. A point process framework for relating neural spiking activity 
to spiking history, neural ensemble, and extrinsic covariate effects. J. Neurophysiol. 
93, 1074–1089 (2005).

65. Wu, W. et al. Bayesian population decoding of motor cortical activity using a 
kalman filter. Neural Comput. 18, 80–118 (2006).

66. Pillow, J.W. et al. Spatio-temporal correlations and visual signaling in a complete 
neuronal population. Nature 454, 995–999 (2008).

67. Shimazaki, H. et al. State-space analysis of time-varying higher-order spike 
correlation for multiple neural spike train data. PLOS Comput. Biol. 8, e1002385 
(2012).

68. Abeles, M. et al. Cortical activity flips among quasi-stationary states. Proc. Natl. 
Acad. Sci. USA 92, 8616–8620 (1995).

69. Danoczy, M. & Hahnloser, R. Efficient estimation of hidden state dynamics from 
spike trains. in Adv. Neural Inf. Process. Syst. 18, 227–234 (2006).

70. Kemere, C. et al. Detecting neural-state transitions using hidden markov models 
for motor cortical prostheses. J. Neurophysiol. 100, 2441–2452 (2008).

71. Smith, A.C. & Brown, E.N. Estimating a state-space model from point process 
observations. Neural Comput. 15, 965–991 (2003).

72. Kulkarni, J.E. & Paninski, L. Common-input models for multiple neural spike-train 
data. Network 18, 375–407 (2007).

73. Paninski, L. et al. A new look at state-space models for neural data. J. Comput. 
Neurosci. 29, 107–126 (2010).

74. Macke, J.H. et al. Empirical models of spiking in neural populations. Adv. Neural 
Inf. Process. Syst. 24, 1350–1358 (2011).

75. Buesing, L., Macke, J. & Sahani, M. Spectral learning of linear dynamics from 
generalized-linear observations with application to neural population data.  
Adv. Neural Inf. Process. Syst. 25, 1691–1699 (2012).

76. Pfau, D. et al. Robust learning of low-dimensional dynamics from large neural 
ensembles. Adv. Neural Inf. Process. Syst. 26, 2391–2399 (2013).

77. Yu, B.M. et al. Extracting dynamical structure embedded in neural activity.  
Adv. Neural Inf. Process. Syst. 18, 1545–1552 (2006).

78. Petreska, B. et al. Dynamical segmentation of single trials from population neural 
data. Adv. Neural Inf. Process. Syst. 24, 756–764 (2011).

79. Tenenbaum, J.B. et al. A global geometric framework for nonlinear dimensionality 
reduction. Science 290, 2319–2323 (2000).

80. Roweis, S.T. & Saul, L.K. Nonlinear dimensionality reduction by locally linear 
embedding. Science 290, 2323–2326 (2000).

81. Boots, B. & Gordon, G. Two-manifold problems with applications to nonlinear 
system identification. in Proceedings of the 29th International Conference  
on Machine Learning (eds. Langford, J. & Pineau, J.) 623–630 (Omnipress,  
New York, 2012).

82. Salinas, E. & Abbott, L.F. Vector reconstruction from firing rates. J. Comput. 
Neurosci. 1, 89–107 (1994).

83. Overschee, P.V. & Moor, B.D. Subspace Identification For Linear Systems: Theory, 
Implementation, Applications (Kluwer Academic Publishers, 1996).

84. Diaconis, P. & Freedman, D. Asymptotics of graphical projection pursuit.  
Ann. Stat. 12, 793–815 (1984).

85. Gerstein, G.L. & Perkel, D.H. Simultaneously recorded trains of action potentials: 
analysis and functional interpretation. Science 164, 828–830 (1969).

86. Cohen, M.R. & Kohn, A. Measuring and interpreting neuronal correlations.  
Nat. Neurosci. 14, 811–819 (2011).

87. McCullagh, P. & Nelder, J.A. Generalized Linear Models, vol. 37 (Chapman and 
Hall, 1998).

88. Lawhern, V. et al. Population decoding of motor cortical activity using a generalized 
linear model with hidden states. J. Neurosci. Methods 189, 267–280 (2010).

89. Vidne, M. et al. Modeling the impact of common noise inputs on the network 
activity of retinal ganglion cells. J. Comput. Neurosci. 33, 97–121 (2012).

90. Shlens, J. et al. The structure of multi-neuron firing patterns in primate retina. 
J. Neurosci. 26, 8254–8266 (2006).

91. Schneidman, E. et al. Weak pairwise correlations imply strongly correlated network 
states in a neural population. Nature 440, 1007–1012 (2006).

92. Berkes, P. et al. Spontaneous cortical activity reveals hallmarks of an optimal 
internal model of the environment. Science 331, 83–87 (2011).

93. Kumar, A., Rotter, S. & Aertsen, A. Spiking activity propagation in neuronal 
networks: reconciling different perspectives on neural coding. Nat. Rev. Neurosci. 
11, 615–627 (2010).

94. Stanley, G.B., Li, F.F. & Dan, Y. Reconstruction of natural scenes from ensemble 
responses in the lateral geniculate nucleus. J. Neurosci. 19, 8036–8042 
(1999).

95. Georgopoulos, A.P., Schwartz, A.B. & Kettner, R.E. Neuronal population coding 
of movement direction. Science 233, 1416–1419 (1986).

96. Gilja, V. et al. A high-performance neural prosthesis enabled by control algorithm 
design. Nat. Neurosci. 15, 1752–1757 (2012).

97. Baeg, E.H. et al. Dynamics of population code for working memory in the prefrontal 
cortex. Neuron 40, 177–188 (2003).

98. Hung, C.P. et al. Fast readout of object identity from macaque inferior temporal 
cortex. Science 310, 863–866 (2005).

99. Quiroga, R.Q. & Panzeri, S. Extracting information from neuronal populations: in 
formation theory and decoding approaches. Nat. Rev. Neurosci. 10, 173–185 
(2009).

100. Santhanam, G. et al. Factor-analysis methods for higher-performance neural 
prostheses. J. Neurophysiol. 102, 1315–1330 (2009).


	Button 2: 
	Page 1: Off



