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ABSTRACT 

Flexible and fast sensorimotor routing, based on relevant environmental context, is a central component of 
executive control, with prefrontal cortex (PFC) thought of as playing a critical role and the midbrain 
superior colliculus (SC) more traditionally viewed as the output of cortical flexible routing. Here, using a 
rat task in which subjects switch rapidly between task contexts that demand changes in sensorimotor 
mappings, we report that silencing of the SC during a delay period, during which task context is encoded in 
SC activity, impaired choice accuracy. But inactivations during the subsequent choice period, during which 
the subject selects their motor response, did not. Furthermore, a defined subset of SC neurons encoded task 
context more strongly than PFC neurons, and encoded the subject’s motor output choice faster than PFC 
neurons or other SC neurons. These data suggest cognitive and decision-making roles for the SC. We used 
computational methods to identify different SC circuit architectures that could account for these results. 
We found numerous, highly varied SC model circuits that matched our experimental data, including 
circuits without inhibitory connections between units representing opposite decision outputs. But all 
successful model circuits had inhibitory connections between units on the same side of the brain 
representing opposite contexts. This anatomical feature appears to be a key experimental prediction for 
models in which the SC plays a decision-making role during executive control.  
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INTRODUCTION 
Many biological circuits are complex enough that even high-throughput experiments provide data that constrain 
only a fraction of the characteristics that fully define the circuit. An often-used computational approach to this 
problem is to build complete models in which values of the unknown characteristics are chosen or fit such that the 
model matches its postulated function and known experimental data. These chosen values then constitute 
hypotheses, or predictions that can guide further experiments1. However, even simple circuits can have many 
different configurations that produce the same data, referred to as having many different “solutions”2–5 or 
“sloppiness”6. For circuits with many parameters, exhaustive searches for configurations that are also solutions, 
the approach taken in some cases2–4, is impossible, because  the number of possible configurations grows 
exponentially with the number of parameters.  

     We were confronted with this problem when exploring a 12-parameter circuit model of the SC to account for 
experiments that we report below. These experiments suggested an unexpected cognitive role for the SC during a 
rat executive control task. To overcome this problem of high dimensionality, we reconfigured the search for 
circuit solutions as a minimization problem, and used modern algorithmic differentiation methods, which render 
almost effortless the computation of first- and second-order derivatives of arbitrarily complex models7. This 
approach allowed us to find a wide variety of SC models that were compatible with our data. Comparing across 
varied solutions allows identifying features that are common to all the solutions, which then constitute key 
predictions for the entire class of models in the parameter space being explored. In the case of this study of the 
SC, we expected that inhibitory connections between units representing opposite decision outputs would be 
necessary8,9. But this was not the case: many solutions did not have that feature. In contrast, all solutions found 
had inhibitory connections between units encoding opposite task contexts on each side of the brain, suggesting 
that anatomical characteristic as an unexpected but key experimental prediction.   

RESULTS 

A subset of task-encoding neurons linked to decisions 
We used a recently-developed behavior that demonstrates that rats can exert executive control to perform rapid 
task switching10. On each trial of this behavior, rats are first presented with an auditory cue indicating a task 
context in effect for the current trial (labelled ‘Pro’ or ‘Anti’), followed by a short memory delay period, and 
finally a choice period during which a visual stimulus to one side is turned on and rats are required to either orient 
toward (‘Pro’) or away (‘Anti’) from it (Fig. 1a,b). The choice period is when task context information must be 
combined with the sensory stimulus in order to produce the correct sensorimotor transformation. Rats can flexibly 
switch between these two task contexts from one trial to the next10, and display multiple behavioral asymmetries 
between Pro and Anti responses (Extended Data Fig. 1), similar to those observed in the primate pro/antisaccade 
paradigm11–13. These asymmetries indicate the Pro task as a stimulus-driven, prepotent task, while the Anti task is 
more cognitively demanding10. Pharmacological inactivations of the SC and the PFC impair rats’ ability to 
perform the Anti task but not the easier prepotent Pro task10. 

Here, to investigate neural representations in SC and PFC, we recorded well-isolated single units in the 
intermediate and deep layers of the SC (193 neurons; Methods and Extended Data Fig. 2), and in the prelimbic 
region of the medial PFC (331 neurons; Extended Data Fig, 3d-f), from 7 rats performing the ProAnti task-
switching behavior. Individual neurons in the SC and PFC displayed firing rates that depended on, and therefore 
encoded, task context (Pro or Anti) as well as the subsequent motor choice (Left or Right; Fig. 1c). Similar to 
observations in prefrontal cortex during cognitive tasks14–16, the encoding in SC appeared to be highly 
heterogeneous across different neurons, and multiplexed across the whole trial (Fig. 1d and Extended Data Fig. 3; 
17–19). To evaluate the amount of task context information in SC versus PFC populations we used a cross-validated 
linear decoding approach (Methods; 20). Although both populations contained above-chance task information 
throughout the trial duration, decoding for whether a trial was Pro or Anti was significantly more accurate in the 
SC than in the PFC for equally-sized populations (p<0.01, Fig. 1e, left; n=193), even after controlling for firing 
rate differences between the two areas (Extended Data Fig. 4a). The stronger task information in the SC could 
only be matched when the number of neurons in a simulated PFC population was 5 times larger than the SC 
population (Extended Data Fig. 4b).  
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Figure 1 | SC and PFC populations contain task and choice information during rapid sensorimotor task switching.  a, 
Rules for the Pro and Anti task contexts. In the Pro task, rats should orient toward a lateralized stimulus (left or right) for 
reward; in the Anti task, rats should orient away from the stimulus for reward. Trained rats can switch between these two 
known task contexts from one trial to the next.  b, Rats nose poke in the center port to initiate each trial and keep fixation 
during the task cue (Pro or Anti sound) and delay periods. After the delay, the animal is allowed to withdraw from the center 
port, and a lateralized light (left or right) is turned on to indicate the stimulus location. Rats then poke into one of the side 
pokes for reward. c, Peri-stimulus time histogram (PSTH) for 3 example SC neurons on Pro-Go-Right (green solid), Pro-Go-
Left (green dashed), Anti-Go-Right (orange solid), and Anti-Go-Left (orange dashed) trials. PSTHs are aligned to stimulus 
onset. Top, task (red) and choice (blue) selectivity as a function of time for each neuron. d, Information encoding matrix of the 
SC population. Each row of the matrix represents the d’ of a single neuron as a function of time. The intensity of the color 
represents how “informative” a neuron is, and the RGB values are associated with different types of information (Pro/Anti, 
red; choice, blue; mixed, purple). Neurons are sorted by the timing of their peak Pro/Anti d’. d’ that are not significant (n.s.) 
are set to 0. e, Evolution of classification performance over time in the SC (solid) and PFC (dashed) population. Left, mean 
and s.e.m. performance for linear classification of correct Pro versus Anti trials. Spikes are aligned to stimulus onset, and 
counted over windows of 250 ms with 25-ms shifts between neighboring windows. Note that performance is plotted over the 
right edge of the window (causal). Right, classification performance to linearly separate Go-Left versus Go-Right trials, similar 
to the left panel.  
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In addition, left versus right choice information appeared significantly earlier in the SC than in the PFC 
(latency difference = 191 ± 23 ms; p<0.01, Fig. 1e, right). This choice information latency difference is not a 
result of firing rate differences between the two populations (Extended Data Fig. 4a), and cannot be reduced by 
increasing the number of PFC neurons in a pseudo-population (Extended Data Fig. 4c). These results argue 
against a model in which the decision is first computed in PFC and then relayed to SC. Instead, they suggest a 
critical role of SC across all stages of the ProAnti behavior. 

A closer examination of SC neurons revealed subpopulations with distinct activity patterns (Fig. 2). For each 
SC neuron, we computed the temporal profile of significant task selectivity (Pro vs Anti), and ranked neurons by 
the time of their peak selectivity (Fig. 2a). One group of SC neurons (which we labelled “cue neurons”, cyan) 
differentiated between Pro and Anti trials most strongly during the auditory cue, whereas another subpopulation 
maintained task selectivity most strongly when the auditory cue was no longer present (“delay/choice neurons”, 
yellow). The representation of task context by cue neurons was progressively weakened after the end of the cue, 
and it did not differentiate between correct and error trials (Fig. 2b, top), consistent with a purely sensory signal 
with little direct relationship to behavior. 

In contrast, three lines of evidence suggest that the delay/choice neurons play a key role in behavior. First, 
their task information slowly ramped up throughout the cue presentation and the delay to peak at the time when 
rats were required to make a motor choice (Fig. 2b, bottom, solid line). Second, this representation was entirely 
disrupted on error trials (Fig. 2b, bottom, dashed line), indicating a strong correlation with behavior. Third, these 
neurons contained a very early representation of the correct choice, significantly faster than the SC cue neurons or 
the PFC neurons (Fig. 2c, delay-choice neurons = 84 ± 19 ms, cue neurons = 196 ± 38 ms, PFC neurons = 290 ± 
34 ms, p<0.01). Thus, the SC delay/choice neurons contain a performance-dependent task context signal (Pro vs 
Anti) that could be used for correct routing of the upcoming target stimulus information (Left vs Right side light), 
so as to produce the correct context-dependent orienting choice.  

Figure 2 | Distinct roles of SC subpopulations. 
a, Timing of significant Pro/Anti selectivity (d’) for 
all SC neurons, sorted by peak d’. Significance 
threshold was determined by shuffled data. We 
separated SC neurons into two groups based on 
the timing of their Pro/Anti selectivity. “Cue 
neurons” (cyan, n=29) differentiated between Pro 
and Anti trials most strongly during the auditory 
cue; “delay/choice neurons” maintained task 
selectivity most strongly when the auditory cue 
was no longer present (yellow, n=45). b, 
Performance of task decoding on correct versus 
error trials. Linear classifiers trained on correct 
trials were tested for separate correct trials (solid) 
or error trials (dashed). The representation of 
task context by delay/choice neurons was 
disrupted on error trials whereas such 
information in the cue neurons did not 
differentiate between correct and error trials. c, 
Choice decoding performance of SC 
subpopulations and PFC neurons (n=29 to match 
number of cue neurons, see Methods). Choice 
information emerged first in SC delay/choice 
neurons. Shaded areas (vertical error bars) 
indicate s.e.m. of decoding accuracy for each 
population across time. Horizontal error bars 
represent s.e.m. of the timing of reaching 0.65 
decoding accuracy for each population.  
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We therefore focused on the SC delay/choice neurons to examine how task and choice signals were 
multiplexed (Fig. 3). In our behavior, the sensorimotor transformation occurs immediately after the visual target 
onset, when animals apply the non-spatial task context (Pro or Anti) to guide spatial orienting responses (which 
we will describe as either ipsi- or contralateral to the recorded side). In contrast to the heterogeneity initially 
observed in the entire SC population (Fig. 1d and Extended Data Fig. 3), focusing on the subset of delay/choice 
neurons during this critical time window revealed a systematic relationship between each neuron’s task selectivity 
and choice selectivity (Fig. 3 and Extended Data Fig. 5). Most neurons that fired more in trials with contralateral 
orienting responses also fired more during Pro task trials (Fig. 3a). Conversely, most Ipsi-preferring neurons were 
also Anti-preferring (Fig. 3b). This suggests the existence of two broad groups of neurons during the choice 
period.  We refer to these two groups of neurons as Pro/Contra-preferring neurons and Anti/Ipsi-preferring 
neurons.  

Figure 3 | A relationship between task and 
choice encoding around stimulus onset, 
suggesting two groups of neurons. a, 
Neurons selected as having a significantly 
greater firing rate on trials when the animal’s 
choice is to orient Contralaterally (n = 17). Left 
top shows one neuron per row, with the color 
indicating the strength of firing rate difference 
between Contra- and Ipsi-orienting trials, as a 
function time relative to the visual stimulus 
onset. Left bottom shows firing rate difference 
(Contra-Ipsi) averaged over these neurons. 
Right panels are the same neurons as in the 
left panels, with each row corresponding to 
the same neuron as the one on the left, but 
now analyzed for Pro - Anti selectivity and 
firing rate. Contra-preferring neurons tend to 
be Pro-preferring neurons. b, as in panel a, but 
showing significantly Ipsi-preferring neurons (n 
= 10). These tend to also be Anti-preferring.  
 

 

 
 

 
SC activity is necessary during the task-encoding delay period. 
Since different behavioral epochs of the task require very different computations, we selectively probed the 
requirement of SC activity during separate epochs21–23 using bilateral optogenetic inactivation of SC neurons, 
mediated by virally-expressed eNpHR3.0, a light-activated chloride pump (Fig. 4a, b and Extended Data Fig. 2c, 
Methods).  

Optogenetic inactivation that covered the entire trial period (3 s) of a randomly selected 25% of trials resulted 
in a selective Anti impairment in those trials (Fig. 4c and Extended Data Fig. 6a; permutation test p<10-3 across 
animals or across all trials). This replicates previous pharmacological inactivation results where SC activity was 
suppressed during the entire session10. Turning to temporally-specific inactivations, we found that bilateral SC 
inactivation during the task cue period did not result in any behavioral deficit (Fig. 4d, left), consistent with a 
sensory representation role for cue neurons not required for correct performance (Fig. 2b). In contrast, bilateral 
SC inactivation during the delay epoch significantly increased error rates on Anti trials (Fig. 4d, middle; 
bootstrapped p<0.001), demonstrating for the first time, that SC delay-period activity is required for maintaining 
non-spatial information, here a task context. Finally, given the strong and early choice signal in the SC, we were 
surprised to find that bilateral choice period inactivation did not have any effect on choice accuracy (Fig. 4d, 
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right; p>0.05), although we did observe that correct Anti responses were slightly slowed down after choice period 
SC inactivation (22.5 ± 15.3 ms, p<0.05; Extended Data Fig. 6b).  

 

Figure 4 | SC delay activity is required for the Anti task. a, Experimental design for bilateral SC optogenetic inactivation. 
Left, a schematic that indicates virus infection and laser stimulation in the SC on both hemispheres. Right, an example of the 
optical fiber implant. The taper of each fiber is chemically sharpened to be approximately 2 mm long for stronger and more 
unified light delivery. The distance between the two fibers are constructed to be exactly 3.6 mm to target bilateral SC. b, 
Physiological confirmation of optogenetic inactivation effect in an anesthetized animal. Left: acute extracellular recording of 
spontaneous activity in the SC expressing eNpHR3.0. Laser illumination period (8 s) is marked by the light green bar. Right: 
spike activity aligned to laser onset and laser offset over multiple trials. Note that the onset and offset of the inhibitory effect 
are on the scale of tens of milliseconds. c, Effect of full-trial inactivation of bilateral SC. Mean Pro (green) and Anti (orange) 
error rate increase due to SC inactivation for all individual rats (n=9, left) and across all trials (Pro=662 trials, Anti=615 trials, 
right). Left, each data point represents the mean effect across sessions for a single rat. Right, means and s.e.m. across trials 
(concatenated across all 60 sessions). d, Effect of sub-trial inactivations of bilateral SC on Pro and Anti error rate (mean and 
s.e.m. across trials from 102 sessions). Statistical comparison between Pro and Anti effects were computed using a 
permutation test, shuffled 5000 times. N.S. p>0.05; *p < 0.05; ***p < 0.001. Note that all types of inactivations were randomly 
interleaved for each session. 

Many model collicular circuits consistent with the experimental data. 
Could neural circuitry between Pro/Contra and Anti/Ipsi neurons within the SC lead to the pattern of results seen 
in our optogenetic experiments (Fig. 4d)? Or would choice formation circuitry external to the SC be necessary to 
explain the lack of an inactivation effect during the choice period (Fig. 4d, right)? To address these questions, we 
explored computational models in which the SC was represented by two groups of neurons, Pro/Contra and 
Anti/Ipsi neurons, on each side of the brain (Fig. 5a). Since unilateral SC stimulation drives contralateral 
orienting motions24–26, we took the Pro/Contra neurons as driving the motor output, with the final choice 
determined by which of the two Pro/Contra units had the greater activity27. The model had free parameters 
describing the sign and strength of connections between the units (Fig. 5a), magnitude of a noise parameter, 
degree of silencing induced by optogenetic inactivation, and others (Methods), for a total of 12 free parameters. 
Connections between the two sides of the SC can be both excitatory and inhibitory28,29, so we made no 
assumptions as to connection signs. A set of parameter values that successfully reproduced the experimental data 
would constitute a hypothesis regarding SC circuitry, and its connectivity parameters would constitute anatomical 
predictions that followed from that hypothesis. Guided by our intuitions, we found one such set of parameter 
values. But we quickly found that our intuitions provided only a limited understanding of the range of dynamics 
possible, even for this simplified 4-dimensional model, and intuition alone was not sufficient to answer whether 
the predictions that followed from this set of parameters were necessary or incidental. We therefore turned to 
automated methods for a more complete search of the space of solutions. We wrote down a scalar cost function of 
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the parameters, J, such that J would be low if the following conditions were met and would be high otherwise 
(Methods): 

1.   Choice period inactivation had no effect on choice accuracy (Fig. 4d, right). 

2.   Delay period inactivation impaired accuracy on Anti trials but not Pro trials (Fig. 4d, middle). 

3.   During control trials (no inactivation) the fraction of correct Pro trials was higher than on Anti trials10. 

We then optimized J starting from many different random parameter values. The optimizations that produced 
low values of J had final parameter values that we refer to as solutions. 18,500 initial random seeds, none of 
which were themselves solutions, produced 354 solutions. We clustered the dynamics (activity as a function of 
time for the four units in the model) produced by those 354 solutions into 7 groups (Methods), and found the 2D 
linear projections of the dynamics that best separated those clusters (Fig. 5b). The solutions represented disjoint 
sets of a wide variety of very different dynamics and parameter values (Extended Data Fig. 7). We conclude that 
collicular circuitry involving Pro/Contra and Anti/Ipsi neurons is sufficient, in a broad variety of configurations, 
to reproduce a lack of a choice effect during choice period silencing but impairment of Anti trials during delay 
period silencing. 

 

Figure 5 | Model and experimental data consistent with its predictions. a. Schematic of SC model, showing four units, 
each representing a population of SC delay/choice neurons. All connections are bidirectional. b. Projection of model 
solutions onto the 2D space that maximally explains variance in model dynamics across the set of model solutions. Individual 
dots are unique model solutions, color coding reflects the output of clustering on the model solutions. c. Histogram of 
horizontal weights in model solutions, showing a wide variety of values of mixed sign. d. Histogram of vertical weights in 
model solutions, showing a wide variety, but almost entirely negative. e. Scatter plot of horizontal weights against diagonal 
weight. Equality line added for reference. f. Trial-by-trial noise correlation between pairs of simultaneously recorded neurons 
on one side of the SC, calculated for within-group pairs of neurons (Contra/Contra or Ipsi/Ipsi, upper histogram) and 
between-group pairs (Contra/Ipsi). Noise correlation distribution for within-group pairs was significantly shifted above 0 
(mean = 0.082 ± 0.02; p<0.01), whereas the between-group distribution was significantly shifted below 0 (mean = -0.052 ± 
0.02; p<0.05), consistent with negative vW as predicted by the model. Arrows indicate the mean values. 
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Decision-making neural dynamics are often postulated as being driven by mutual inhibition8,9. We therefore 
expected inhibitory connections between the two Pro/Contra units, whose mutual competition determines the 
decision output, as a necessary feature in all solutions (hW<0 in Fig. 5a). However, this intuition proved to be 
incorrect (Fig. 5c). In contrast, two features were observed across all solutions. First, the connection between 
opposite task units on opposite sides of the brain (dW) was always slightly more positive than the connection 
between units representing the same task but opposite choices (hW), even across disjoint sets of solutions with 
widely varying values of the individual parameters hW and dW (Fig. 5e). Second, all but one solution found had 
inhibitory connections between units representing opposite tasks on the same side of the brain (vW<0; Fig. 5d), 
and that sole solution had a very weak connection. We therefore predict that there should be inhibitory 
connections between Anti/Ipsi and Pro/Contra neurons on the same side of the brain. This prediction is consistent 
with negative noise correlations between those pairs of neurons that we observed experimentally (Fig. 5f).  

The computational searches thus proved critical to identifying reliable experimental predictions. Initial 
predictions guided by intuition were shown to be irrelevant (Fig. 5c) and other, unexpected predictions were 
shown to be robust (Fig. 5d,e). 
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DISCUSSION 
Understanding the neural mechanisms of cognition provides a critical foundation for better assessment and 
potential treatment of psychiatric disorders. Motivated by seminal studies where patients with prefrontal cortex 
(PFC) lesions30,31 or schizophrenia32,33 failed to perform the antisaccade task, decades of primate research have 
focused on the PFC as the key neural substrate underlying executive functions, especially inhibitory control of 
downstream motor areas11,34,35. Meanwhile, evidence against the cortical inhibition model36,37 or evidence for an 
inhibitory role of the human superior colliculus (SC) during antisaccades38 were largely overlooked until 
recently39,40.  

Our analysis of prefrontal and midbrain activity during flexible sensorimotor routing provides three lines of 
evidence for an extended executive control network that includes the SC. First, SC neurons contain stronger task 
context information and earlier decision information than PFC neurons (Figs. 1,2). Second, although agnostic 
about the origin of task context representation, we show that the task context information within the SC is 
causally required for context-based behavioral flexibility (Fig. 4). Finally, our computational models demonstrate 
that fast sensorimotor routing can be achieved through control of nonlinear dynamics within a collicular circuit 
(Figs. 3,5). As proposed circuit models in biology grow in complexity, solution degeneracy overtakes human 
intuition5,6. Using computational approaches to search the space of solutions becomes necessary for identifying 
reliable model predictions and thus critical if models are to usefully guide experiments (Fig. 5). By examining 
common features across distributions of successful yet varied solutions, we identified inhibition between 
competing task context representations to be an essential component of a collicular circuit model of executive 
control. Together, our experimental and modeling work suggest that cognitive functions that are normally 
associated with PFC circuit14,15,41 could be equally attributed to the midbrain SC42,43. These results call for a 
broadening of focus in basic and clinical studies of executive functions to include interconnected cortical and 
subcortical areas39,44,45. 
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METHODS 

Subjects. Nineteen adult male Long-Evans rats (Taconic) were used for the experiments presented in this study. 
Of these, 7 rats were used for electrophysiology recordings, and 12 rats were implanted with optical fibers for the 
optogenetic inactivation and YFP control experiments. Animal use procedures were approved by the Princeton 
University Institutional Animal Care and Use Committee and carried out in accordance with NIH standards.  

Behavior. Rats were trained on the ProAnti task-switching behavior10. Each trial began with an LED turning on 
in the center port, instructing the rats to nose poke there to initiate a trial. They were required to keep their noses 
in the center port until the center LED offset (nose fixation). Broken fixation trials were ignored in all analyses. 
During the first 1 s of nose fixation, a Pro or Anti sound was played (clearly distinguishable FM modulated 
sounds) to indicate the current task, followed by a 500-ms silent delay when rats had to remember the current task 
while maintaining nose fixation. The center LED was then turned off, allowing the animal to withdraw from the 
center port. The withdrawal would trigger either a left or right LED to turn on as the target stimulus, which 
remained on until rats poked into one of the side ports. Response time (RT) is defined as the time from target 
onset until side poke. On a Pro trial, rats were rewarded for orienting towards the side LED; on an Anti trial, rats 
were rewarded for orienting away from the side LED and into the port without light. A correct choice was 
rewarded by 24 µl of water; and an incorrect choice resulted in a loud sound, no reward, and a short time-out. To 
ensure that all sub-trial optogenetic inactivation conditions have the same duration for laser stimulation (750 ms), 
all rats implanted with optical fibers were trained on a modified version of the behavior where the task cue period 
and the delay period both lasted 750 ms instead of the 1-s cue period and the 500-ms delay period as in the 
original design. 

In all recording and inactivation sessions, rats performed alternating blocks of Pro and Anti trials, where block 
switches occurred within single sessions, after a minimum of 15 trials per block, and when a local estimate of 
performance (over the last ten trials in this block) reached a threshold of 70% correct. Detailed training 
procedures and codes can be found in a previous report10. 

Recordings. Rats were implanted with custom-made movable microdrives and recordings were made with 
platinum-iridium tetrodes46. To target the prelimbic (PL) area of PFC (+3.2 anteroposterior [AP] mm, ±0.75 
mediolateral [ML] mm from bregma), tetrodes were initially positioned at ~1.5 mm below brain surface and were 
advanced daily during recording sessions to sample different neurons. To target the intermediate and deep layers 
of the SC (-6.8 AP mm, ±1.8 ML mm), tetrodes were initially positioned at ~3 mm below brain surface and 
advanced daily. Electrode placements were confirmed with histology. Four rats had both PL and SC implants 
(same hemisphere), 2 rats had a PL implant only, and 1 rat had an SC implant only. The choice of recording area 
and hemisphere side was assigned randomly for each rat.  

Analysis of neural data. Spike sorting was done manually using SpikeSort3D (Neuralynx), and only isolated 
single units were included in the following analyses. In order to perform analyses on the neural population, we 
only analyzed neurons recorded for a sufficient number of trials. More specifically, we only analyzed neurons for 
which we had collected responses during at least 25 correct trials for each of the four possible task conditions 
(Pro-Right, Pro-Left, Anti-Right, Anti-Left). This resulted in the analysis of 193 neurons (out of 215) in SC, and 
291 neurons (out of 331) in PFC. The response of each neuron was quantified by counting the number of spikes in 
250ms-wide bins. In all analyses, the response was aligned to the time when the target stimulus appeared (i.e. the 
time of withdrawal from the center port). The temporal gap between the fixation offset and target stimulus onset 
was controlled by animals and thus variable on each trial. On average, rats withdrew from the center port 127 ms 
after fixation offset. Therefore, in all figures, we indicate the start of the delay period (end of task cue 
presentation) 0.627 s before target stimulus onset (500 ms delay + 127 ms), and the start of task cue presentation 
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at 1.627 s before target onset (1 s of task cue presentation before the delay). Unless otherwise noted, in all figures 
the time scale is causal, i.e. the value at time 0 refers to the neural activity in a time bin between -250 ms and 0 
ms. 

Quantification of single neuron selectivity. The amount of information encoded by a single neuron about a task 
variable was measured at each time point using d’, defined as the difference in the number of spikes fired in 
response to two generic task conditions (here named as A and B), normalized by the square root of the pooled 
variance:𝑑" = $%&$'

(%
)*('

)

)

 , where 𝜇, indicates the mean spike count in response to condition A, 𝜇- indicates the mean 

spike count in response to condition B, 𝜎/, indicates the variance across trials of the spike count in response to 
condition A, and 𝜎/- indicates the variance across trials of the spike count in response to condition B.  

Information about the task rule (Pro/Anti d’) was computed by comparing the responses during Pro trials and 
the responses during Anti trials (with positive d’ indicating Pro-preference). Information about the rat’s choice 
(Choice d’) was computed by comparing the responses during trials that resulted in an orienting movement 
contralateral to the recorded neuron, and trials that resulted in an ipsilateral orienting movement (with positive d’ 
indicating Contra-preference; Extended Data Figure 3).  

The threshold above which a d’ value was considered significantly different than 0 was computed based on the 
pairwise t-test between the two conditions, using a p-value of 0.05. In Figure 2a, d’ significance at each time point 
was computed using a shuffling procedure to correct for multiple comparisons, where the d’ at each time point 
was recomputed 100 times after randomly shuffling the labels of Pro and Anti trials, and the 95th percentile of the 
resulting overall distribution of shuffled d’s was used as the significance threshold. 

Single neuron selectivity about the task rule was used to define two distinct classes of neurons (Fig. 2a). “Cue 
neurons” were defined as those with peak Pro/Anti d’ at a time while the task cue was still being presented. 
“Delay/Choice neurons” were defined as those with peak Pro/Anti d’ at times after the task cue was no longer 
present. Neurons whose Pro/Anti d’ was never significantly higher than 0 were excluded from both groups. 

Within the class of “Delay/choice neurons”, we used single neuron selectivity about the choice in the first time 
bin after stimulus presentation (i.e. from 0 to 250 ms) to further subdivide these cells into two groups (Fig. 3). 
“Contra neurons” had a significantly higher response to contralateral stimulus, whereas “Ipsi neurons” had a 
significantly higher response to an ipsilateral stimulus. 

Population-level decoding analysis. To determine the amount of task-relevant information available in the SC 
and PFC neural populations at each time point, we performed a series of cross-validated linear classification 
analyses20. For each analysis, we considered the spike count responses of a population of N neurons to a task 
condition as a population "response vector" x, and we randomly assigned 60% of the recorded trials (30 trials) as 
the training set, and the remaining 40% of the trials (20 trials) as the test set. The training set was used to compute 
the linear hyperplane that would optimally separate the population response vectors corresponding to two 
different task conditions (e.g. Pro trials vs Anti trials). This linear readout can also be written as 𝑓 𝒙 = 𝒘3𝒙 + 𝑏 
where w is the N-dimensional vector of weights applied to each of the neurons, and b is a scalar threshold.  The 
classification of a test response vector x was then assigned depending on the sign of f(x) , and the performance 
was computed as the fraction of correct classifications over 500 resampling iterations. Because some of the 
neurons were recorded in different sessions, trials were always shuffled on each iteration to destroy any artificial 
trial-by-trial correlations. The hyperplane and threshold were computed using a Support Vector Machine 
algorithm using the LIBSVM library ( https://www.csie.ntu.edu.tw/~cjlin/libsvm).  

When comparing the classification performances for neural populations with different numbers of neurons, we 
randomly resampled identical numbers of neurons without replacement on each iteration. Because the overall 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/245613doi: bioRxiv preprint first posted online Jan. 9, 2018; 

http://dx.doi.org/10.1101/245613
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
  
	
  

12	
  

average firing rate was higher in SC than in PFC, we tested whether matching firing rates was sufficient to 
explain the classification result (Extended Figure 4a), by removing single spikes at random from the SC dataset 
until the average firing rates were matched, and by performing again the classification analysis on the equalized 
SC population. To produce an estimate of the number of PFC neurons necessary to match performances in SC 
(Extended Figure 4b), we adopted an analytical approach to estimate classification performances based on the 
distribution of d’ in a neural population47. More specifically, we quantified the Normalized Euclidean Distance 
(NED) between two conditions in a neural population as the square root of the sum of the squared d’s across all 
neurons: 𝑁𝐸𝐷 = 𝑑′/. This quantity can be used to estimate linear classification performances, under the 

Gaussian assumption, as48: 𝑃𝑒𝑟𝑓 = 1 − 𝐻 @ABB∙DEF
/

, where H is the complementary error function, and 𝑘HII is 

an efficiency factor that accounts for the inability of the classifier to extract all the available information (e.g. due 
to limited training data). Before applying this formula, d’s had to be corrected for their intrinsic positive bias49. 
Because the NED grows with the square root of the total number of neurons in a population, we could then 
estimate the classification performance for a neural population of arbitrary size M as: 𝑃𝑒𝑟𝑓D = 1 −

𝐻 @ABB∙DEF∙ J
/∙ D

, where N indicates the actual size of the population for which NED was computed. Using the 

same approach, we also tested how measurements of latency in the rise of classification performance (see below) 
depended on the total number of neurons in a neural population (Extended Figure 4c). 

When classification analyses were used to compare performances during correct and error trials (Fig. 2b), we 
always trained the classifier using correct trials, and we tested the classifier using either correct or error trials. The 
number of trials used for testing was limited by the neuron with the fewest number of error trials per condition (9 
trials). 

To compute the latency of the rise in choice classification performance for different neural populations (Fig. 
2c), we evaluated the average time after the appearance of the target stimulus necessary for the population readout 
to reach a fixed threshold (correct performance >65%)47. More specifically, on each iteration of the resampling 
procedure we computed the classification performances for each time point, we smoothed the resulting curve by 
averaging the value for 5 neighboring time points, and we noted the time point where the curve crossed the 
performance threshold. We computed the mean and the standard error of the latency as the mean and standard 
deviation of these values.  

To compute the significance of differences in the magnitude (or latency) of population performances, we 
adopted a bootstrap approach based on our resampling procedure50. More specifically, we first evaluated the 
average performance (or latency) across all iterations for the two populations, and we then computed the p-value 
as the fraction of iterations in which, by chance, the value for the population with the lower average was above the 
value for the population with the higher average.  

Optical fiber construction, virus injection and fiber implantation. Chemically sharpened optical fibers 
(50/125 um LC-LC duplex fiber cable, http://www.fibercables.com) were prepared as previously described22. To 
ensure the distance between the two optical fibers was the distance between bilateral SC (3.6 mm), we inserted 
two metal cannulae into a plastic template and guided the optical fibers through the cannulae, which were 3.6 mm 
apart (Fig. 4a). 

Basic virus injection techniques were identical to those described previously22. At the targeted coordinates 
(SC, -6.8 AP mm, ±1.8 ML mm from bregma), two injections of 9.2 nl AAV virus (AAV5-CaMKIIα-eYFP-
eNpHR3.0 for inactivations, 9 rats; AAV5-CaMKIIα-eYFP for controls, 3 rats) were made every 100 um in depth 
starting 3.5 mm below brain surface for 1.5 mm. Four additional injection tracts were completed, one 500 um 
anterior, posterior, medial, and lateral from the central tract. A total of 1.5 µl of virus was injected over the course 
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of 30 minutes. Chemically sharpened bilateral SC fiber implant was lowered down the central injection track, 
with the tip of each fiber positioned at 4.4 mm below brain surface to target the center of SC’s intermediate and 
deep layers. Training was resumed 5 days post-surgery. Virus expression was allowed to develop for 8 weeks 
before behavioral testing began. 

Optogenetic inactivation and analysis. For each inactivation session, animals’ implants were connected to a 1m 
patch cable connected to a fiber rotary joint (Princetel) mounted above the behavioral chamber. A 200 mW 532 
nm laser (OEM Laser Systems) was then connected to deliver constant light at 25 mW per site, with a < 5 mW 
difference between the left and right SC. Laser illumination occurred on 25% randomly chosen trials in each 
behavioral session. Different optogenetic conditions (3-s full-trial inactivation, 750-ms task cue, 750-ms delay, or 
750-ms choice period inactivation) were randomly interleaved for all sessions to control for behavioral 
fluctuations across days. 

Behavioral changes due to optogenetic inactivation were quantified as the performance difference between 
inactivation (laser) trials and control (no-laser) trials from the same sessions. These results are then compared to 
YFP control data. For each session, we calculated the baseline error rate or RT for Pro and Anti control trials and 
subtracted that mean value from the performance on individual inactivation trials. After obtaining the normalized 
changes in performance due to inactivation for individual sessions, we concatenated trials across all sessions and 
all rats, and computed the mean and s.e.m. across trials. Nonparametric bootstrap procedures or permutation tests 
were used to compute significance values (shuffled 5000 times). All rats were included in the full-trial 
inactivation analyses. For sub-trial inactivation analyses, we only included the rats (8/9) that had significant full-
trial effects.  

Acute characterization of optogenetic effects. To measure the effects of optogenetic inactivation on neural 
activity, acute recordings of infected SC neurons were performed in anesthetized rats (Fig. 4b). An etched fiber 
optic and sharp tungsten electrode (0.5 or 1.0 MΩ) were independently advanced to the center of the infected area. 
For each neuron tested, baseline neural activity was recorded for 2 s, followed by 8 s of laser stimulation at 25 
mW, and another 2 s of post-stimulation recording, repeated for >10 times. We observed that the onset and offset 
of optogenetic inactivation of neural activity was within 50 ms of laser onset and offset (Fig. 4b).  

Model setup. Our model consists of four dynamical units, each unit had an external(𝑉M) and internal (𝑈M) 
variable. The relationship between the internal and external variables is given by: 

𝑉M 𝑡 = 0.5 ∙ 𝑡𝑎𝑛ℎ (𝑈M 𝑡 − 𝜃 /𝛽 + 0.5) ∙ 𝜂 𝑡  

Here 𝜂(𝑡) is the optogenetic inactivation fraction, which tells us the fraction of this unit’s output that is silenced 
by optogenetic inactivation in a time-dependent fashion (1 = no optogenetic inactivation). 	
  𝛽 = 0.5 controls the 
slope of the input-output relationship, and 𝜃 = 0.05 controls the midpoint of the input-output function. The 
internal variables had dynamical equations: 

𝜏 ∙ 𝑑𝑈M/𝑑𝑡 = −𝑈M + 𝑊 ∙ 𝑉M + 𝑖𝑛𝑝𝑢𝑡 + 𝜎 ∙ 𝑑𝑊	
  
Where W is the network weight matrix, input is the external input into the network, 𝜏 = 0.09	
  𝑠 is a fixed time 
constant for each unit, and 𝜎 ∙ 𝑑𝑊 is gaussian noise with amplitude given by the parameter 𝜎. W was 
parameterized by four parameters that controlled the self-weights sW, the horizontal weights hW  between the two 
Pro units and between the two Anti units, the vertical weights vW between the two right units and between the two 
left units, and the diagonal weights dW between Pro-R/Anti-L and between Pro-L/Anti-R. The external input into 
the network was given by: 

𝑖𝑛𝑝𝑢𝑡 = 𝐸cdefgheg + 𝐸ijd&kMhf + 𝐸jlmH + 𝐸cndMcH&oHjMdp + 𝐸mMqng	
  
𝐸cdefgheg	
  is constant excitation to all units. Parameter 𝐸ijd&kMhf is constant excitation to both Pro units, but not to 
the Anti units.  𝐸jlmH	
  is the rule input, which is only active during the rule and delay periods, and not during the 
choice period. On Anti trials, the two Anti units get rule input 𝐸,egM&jlmH	
   and on Pro trials, the two Pro units get 
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rule input  𝐸ijd&jlmH. Parameter 	
  𝐸cndMcH&oHjMdp	
  is excitation to all units only during the target period when a light 
cue is presented and animals are free to choose. Parameter 𝐸cndMcH&oHjMdp	
  is excitation to both units on the side (L 
vs R) activated by the light cue, when the cue is active. Each trial was simulated numerically used the forward-
euler method with time step dt=0.024s, which we found to balance accuracy and computational speed. The 
duration of each trial was rule + delay period = 1.2s, target period = 0.3s, post_target_period =0.3s. Individual 
trials of the same trial type are differentiated by the noise samples generated by the additive gaussian noise 
process.  

Model cost function. 

The cost function has two terms 𝐶 = 𝐶s	
   + 𝐶/, 	
  𝐶s penalizes model performance that deviates from the target 
performance, 𝐶/	
  penalizes weak model choices where the output units are close together. Below we will describe 
𝐶s	
  and 𝐶/	
  respectively. 

𝐶s	
  Term: To read out the models choice on a given trial, we could ask if 𝑉ijd&t 	
  > 𝑉ijd&v	
  . However, this creates 
a discontinuity in the cost function if a small change in a parameter causes the decision to flip. In order to use 
powerful optimization tools like automatic differentiation, we wanted the cost function to be fully differentiable. 
Therefore, each model choice was recast as the probability of a choice by passing the unit outputs through a tanh() 
function with a sensitivity given by a fixed parameter 𝜃s. For a Pro trial, the probability of a correct choice was 
given by: HitP =0.5 ∗ (1 + 𝑡𝑎𝑛ℎ((𝑉ijd&t − 𝑉ijd&v)/𝜃s)), and for an anti trial: HitA = 	
  0.5 ∗ (1 +
𝑡𝑎𝑛ℎ((𝑉ijd&v − 𝑉ijd&t)/𝜃s)).  For each trial type, 𝑖, we defined a target hit percentage, and penalized the 
difference between the target hit percentage and the average hit percentage from the model across all trials. The 

overall cost from this first term was the sum across trial types.  𝐶s	
   = 	
   ℎ𝚤𝑡𝑃M − 𝑇𝑎𝑟𝑔𝑒𝑡𝐻𝑖𝑡𝑃M
/

M .  

𝐶/Term: The tanh() makes the cost function differentiable, but encourages the model to reach the target hit 
percentage on every trial, rather than making strong choices on each trial, some right and some wrong, that 
average to the target hit percentage. To prevent this degenerate solution, we introduced a second cost term that 
penalizes weak choices where the activation of the two Pro units are close. For a Pro trial: 𝐶/ =

−𝛽c 𝑡𝑎𝑛ℎ 𝑉ijd&t − 𝑉ijd&v /𝜃/
/
, and for an Anti trial: 𝐶/ = −𝛽c 𝑡𝑎𝑛ℎ 𝑉ijd&v − 𝑉ijd&t /𝜃/

/
. 𝜃/ is a 

fixed parameter that controls the sensitivity of this term, and 𝛽c	
  is a fixed parameter controlling the strength of 
this term. We used the fixed parameter values  𝜃s = 0.05, 	
  𝜃/ = 0.15, 	
  𝛽c = 0.001. 

Model Optimization. 

We initialized many different model solutions with random parameter values, and a random seed for the random 
number generator to generate unique noise for each model solution. For each initialization we minimized the cost 
function using constrained parabolic minimization.  

Constrained Parabolic Minimization: The minimization starts by creating a local search radius, which restricts the 
scope of the search on each step. At each step, the algorithm approximates the cost function locally using the 
hessian matrix, and gradient vector, which defines a 12 dimensional parabolic surface. The minimization takes a 
step in the direction that minimizes the cost on this parabola subject to the constraint that the step length equals 
the search radius. If the resulting step would increase the cost function the step is not taken, the search radius is 
reduced, and another step is attempted. As the search radius becomes smaller, this method converges to gradient 
descent.  

Two Stage Optimization: For each parameter initialization, an initial minimization was done using 50 
trials/condition. If this initial minimization passed a set of criteria then a further minimization was done using 
1600 trials/condition. The initial criteria were used to prevent long optimizations on model solutions that were 
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performing very badly. The initial criteria were that performance on Pro trials was greater than Anti trials, and 
Anti performance on delay-period opto trials was worse than control or choice-period opto trials. The final 
minimization terminated after 1000 iterations, or when a step in parameter space reduced the cost function by less 
than 1e-12. When the minimization ended, if the final cost was below a threshold of -0.0002 we accepted the final 
parameter values as a model solution. We ended up with 𝑁 = 354 unique model solutions.  

Model analysis. To examine the space of model solutions, we clustered each model solution based on the 
dynamics of their simulated units. We simulated 200 trials for each model solution for each trial type (total 6 = 
Pro/Anti x control/delay-period opto/choice-period opto). Then, we computed the average trajectory for each unit 
in the model on correct and incorrect trials for each trial type. The average trajectories were concatenated into a 
model response vector (length M = 4 units x hit/miss x Pro/Anti x control/delay/choice opto x T timesteps). We 
created response matrix (R) of response vectors for all model solutions. (Size N x M). We used the Singular Value 
Decomposition to factor 𝑅 = 𝑈 ∗ 𝑆 ∗ 𝑉′. The orthonormal matrices U and 𝑉′ are the directions of greatest 
variance in R across model solutions (U), and across time points (V’). The column space of U gives us the weights 
for each model solution onto the set of temporal basis vectors in the row space of V’. We clustered model 
solutions by looking at the leading columns of U, which explain the most variance across model solutions. To 
determine the correct number of clusters, we considered the reduced subspace formed by the 3 leading columns of 
U (accounting for 68% of the variance), and we measured the Bayes Information Criterion (BIC) associated with 
fitting different numbers of Gaussian Mixtures51. The number of clusters with lowest BIC was associated with 7 
clusters, and this number was used to perform a k-means clustering, using k-means++ for the initialization of the 
cluster centers52. 
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Figure 1 

  

Figure 1 | SC and PFC populations contain task and choice information during rapid sensorimotor task switching.  a, 
Rules for the Pro and Anti task contexts. In the Pro task, rats should orient toward a lateralized stimulus (left or right) for 
reward; in the Anti task, rats should orient away from the stimulus for reward. Trained rats can switch between these two 
known task contexts from one trial to the next.  b, Rats nose poke in the center port to initiate each trial and keep fixation 
during the task cue (Pro or Anti sound) and delay periods. After the delay, the animal is allowed to withdraw from the center 
port, and a lateralized light (left or right) is turned on to indicate the stimulus location. Rats then poke into one of the side 
pokes for reward. c, Peri-stimulus time histogram (PSTH) for 3 example SC neurons on Pro-Go-Right (green solid), Pro-Go-
Left (green dashed), Anti-Go-Right (orange solid), and Anti-Go-Left (orange dashed) trials. PSTHs are aligned to stimulus 
onset. Top, task (red) and choice (blue) selectivity as a function of time for each neuron. d, Information encoding matrix of the 
SC population. Each row of the matrix represents the d’ of a single neuron as a function of time. The intensity of the color 
represents how “informative” a neuron is, and the RGB values are associated with different types of information (Pro/Anti, 
red; choice, blue; mixed, purple). Neurons are sorted by the timing of their peak Pro/Anti d’. d’ that are not significant (n.s.) 
are set to 0. e, Evolution of classification performance over time in the SC (solid) and PFC (dashed) population. Left, mean 
and s.e.m. performance for linear classification of correct Pro versus Anti trials. Spikes are aligned to stimulus onset, and 
counted over windows of 250 ms with 25-ms shifts between neighboring windows. Note that performance is plotted over the 
right edge of the window (causal). Right, classification performance to linearly separate Go-Left versus Go-Right trials, similar 
to the left panel.  

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/245613doi: bioRxiv preprint first posted online Jan. 9, 2018; 

http://dx.doi.org/10.1101/245613
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
  
	
  

21	
  

Figure 2 

 

Figure 2 | Distinct roles of SC subpopulations. a, Timing of significant Pro/Anti selectivity (d’) for all SC neurons, sorted by 
peak d’. Significance threshold was determined by shuffled data. We separated SC neurons into two groups based on the 
timing of their Pro/Anti selectivity. “Cue neurons” (cyan, n=29) differentiated between Pro and Anti trials most strongly during 
the auditory cue; “delay/choice neurons” maintained task selectivity most strongly when the auditory cue was no longer 
present (yellow, n=45). b, Performance of task decoding on correct versus error trials. Linear classifiers trained on correct 
trials were tested for separate correct trials (solid) or error trials (dashed). The representation of task context by delay/choice 
neurons was disrupted on error trials whereas such information in the cue neurons did not differentiate between correct and 
error trials. c, Choice decoding performance of SC subpopulations and PFC neurons (n=29 to match number of cue neurons, 
see Methods). Choice information emerged first in SC delay/choice neurons. Shaded areas (vertical error bars) indicate s.e.m. 
of decoding accuracy for each population across time. Horizontal error bars represent s.e.m. of the timing of reaching 0.65 
decoding accuracy for each population.  
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Figure 3 

 

Figure 3 | A relationship between task and choice encoding around stimulus onset, suggesting two groups of 
neurons. a, Neurons selected as having a significantly greater firing rate on trials when the animal’s choice is to orient 
Contralaterally (n = 17). Left top shows one neuron per row, with the color indicating the strength of firing rate difference 
between Contra- and Ipsi-orienting trials, as a function time relative to the visual stimulus onset. Left bottom shows firing rate 
difference (Contra-Ipsi) averaged over these neurons. Right panels are the same neurons as in the left panels, with each row 
corresponding to the same neuron as the one on the left, but now analyzed for Pro - Anti selectivity and firing rate. Contra-
preferring neurons tend to be Pro-preferring neurons. b, as in panel a, but showing significantly Ipsi-preferring neurons (n = 
10). These tend to also be Anti-preferring.  
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Figure 4 

 

Figure 4 | SC delay activity is required for the Anti task. a, Experimental design for bilateral SC optogenetic inactivation. 
Left, a schematic that indicates virus infection and laser stimulation in the SC on both hemispheres. Right, an example of the 
optical fiber implant. The taper of each fiber is chemically sharpened to be approximately 2 mm long for stronger and more 
unified light delivery. The distance between the two fibers are constructed to be exactly 3.6 mm to target bilateral SC. b, 
Physiological confirmation of optogenetic inactivation effect in an anesthetized animal. Left: acute extracellular recording of 
spontaneous activity in the SC expressing eNpHR3.0. Laser illumination period (8 s) is marked by the light green bar. Right: 
spike activity aligned to laser onset and laser offset over multiple trials. Note that the onset and offset of the inhibitory effect 
are on the scale of tens of milliseconds. c, Effect of full-trial inactivation of bilateral SC. Mean Pro (green) and Anti (orange) 
error rate increase due to SC inactivation for all individual rats (n=9, left) and across all trials (Pro=662 trials, Anti=615 trials, 
right). Left, each data point represents the mean effect across sessions for a single rat. Right, means and s.e.m. across trials 
(concatenated across all 60 sessions). d, Effect of sub-trial inactivations of bilateral SC on Pro and Anti error rate (mean and 
s.e.m. across trials from 102 sessions). Statistical comparison between Pro and Anti effects were computed using a 
permutation test, shuffled 5000 times. N.S. p>0.05; *p < 0.05; ***p < 0.001. Note that all types of inactivations were randomly 
interleaved for each session. 
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Figure 4 | SC activity is required for the Anti task. a, Experimental design for bilateral SC optogenetic 
inactivation. Left, a schematic that indicates virus infection and laser stimulation in the SC on both hemispheres. 
Right, an example of the optical fiber implant. The taper of each fiber is chemically sharpened to be approximately 2 
mm long for stronger and more unified light delivery. The distance between the two fibers are constructed to be 
exactly 3.6 mm to target bilateral SC. b, Physiological confirmation of optogenetic inactivation effect in an 
anesthetized animal. Left: acute extracellular recording of spontaneous activity in the SC expressing eNpHR3.0. 
Laser illumination period (8 s) is marked by the light green bar. Right: spike activity aligned to laser onset and laser 
offset over multiple trials. Note that the onset and offset of the inhibitory effect are on the scale of tens of 
milliseconds. c, Effect of full-trial inactivation of bilateral SC. Mean Pro (green) and Anti (orange) error rate increase 
due to SC inactivation for all individual rats (left) and across all trials (right). YFP control data are plotted in in gray. 
Left, each data point represents the mean effect across sessions for a single rat. Right, means and 95% confidence 
intervals across trials (concatenated across all sessions). d, Effect of sub-trial inactivations of bilateral SC on Pro 
and Anti error rate (means and 95% confidence intervals). All paired statistics shown here are computed using a 
permutation test, shuffled 5,000 times. N.S. p > 0.05; **p < 0.01; ***p < 0.001.
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Figure 5 

 

Figure 5 | Model and experimental data consistent with its predictions. a. Schematic of SC model, showing four units, 
each representing a population of SC delay/choice neurons. All connections are bidirectional. b. Projection of model 
solutions onto the 2D space that maximally explains variance in model dynamics across the set of model solutions. Individual 
dots are unique model solutions, color coding reflects the output of clustering on the model solutions. c. Histogram of 
horizontal weights in model solutions, showing a wide variety of values of mixed sign. d. Histogram of vertical weights in 
model solutions, showing a wide variety, but almost entirely negative. e. Scatter plot of horizontal weights against diagonal 
weight. Equality line added for reference. f. Trial-by-trial noise correlation between pairs of simultaneously recorded neurons 
on one side of the SC, calculated for within-group pairs of neurons (Contra/Contra or Ipsi/Ipsi, upper histogram) and 
between-group pairs (Contra/Ipsi). Noise correlation distribution for within-group pairs was significantly shifted above 0 
(mean = 0.082 ± 0.02; p<0.01), whereas the between-group distribution was significantly shifted below 0 (mean = -0.052 ± 
0.02; p<0.05), consistent with negative vW as predicted by the model. Arrows indicate the mean values. 
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Extended Data Figure 1  
 

  
Extended Data Figure 1 | Post-surgery performance for implanted rats. Asymmetries between Pro and Anti response 
time (RT), accuracy, and task switch cost observed in implanted rats replicate those found in freely moving rats in 10. a, 
Normalized RT distributions of an example rat. Histograms of Pro and Anti RTs are shown here for hits (top) and errors 
(bottom). Each curve is normalized to have a total area of 1. Median RTs for Pro and Anti hits and errors are indicated by 
vertical bars; 95% confidence intervals across trials for each trial type are indicated by horizontal bars. b, RT summary of 16 
individual rats (7 for neural recordings and 9 for optogenetic inactivation experiments). Left: median RTs for Anti hits and Pro 
hits for all rats. Right: RT difference between Pro and Anti, hits and errors, averaged across all rats. For each rat, the 
difference between median RTs of paired conditions was calculated. White bar shows the mean and SEM across rats for Anti 
hit RTs minus Pro hit RTs. Green bar shows Pro hit RTs minus Pro error RTs. Orange bar shows Anti hit RTs minus Anti error 
RTs. c, Pro and Anti performance for individual rats. Means and SEMs of Pro and Anti performance are computed over 
sessions for each rat and plotted against each other. Average Pro (green) and Anti (orange) performance across rats was 
plotted in the upper left corner. d, Switch cost asymmetry. Left: percent correct as a function of trial number relative to a task 
block switch for one example rat. Each data point is the mean and SEM across trials for Pro and Anti accuracy on three trials 
before and after the switch. Right: average accuracy switch cost for Pro trials and Anti trials across rats. **p < 0.01; ***p < 
0.001. 

Extended Data Figure 1 | Post-surgery performance for implanted rats 
a-b, RT differences on Pro and Anti trials. a, Normalized RT distributions of an example rat. 
Histograms of Pro and Anti RTs are shown here for hits (top) and errors (bottom). Each curve 
is normalized to have a total area of 1. Median RTs for Pro and Anti hits and errors are 
indicated by vertical bars; 95% confidence intervals across trials for each trial type are 
indicated by horizontal bars. b, RT summary of 16 individual rats (7 for neural recordings and 
9 for optogenetic inactivation experiments). Left: median RTs for Anti hits and Pro hits for all 
rats. Right: RT difference between Pro and Anti, hits and errors, averaged across all rats. For 
each rat, the difference between median RTs of paired conditions was calculated. White bar 
shows the mean and SEM across rats for Anti hit RTs minus Pro hit RTs. Green bar shows Pro 
hit RTs minus Pro error RTs. Orange bar shows Anti hit RTs minus Anti error RTs. 
c, Pro and Anti performance for individual rats. Means and SEMs of Pro and Anti performance 
are computed over sessions for each rat and plotted against each other. Average Pro (green) 
and Anti (orange) performance across rats was plotted in the upper left corner. 
d, Switch cost asymmetry. Left: percent correct as a function of trial number relative to a task 
block switch for one example rat. Each data point is the mean and SEM across trials for Pro 
and Anti accuracy on three trials before and after the switch. Right: average accuracy switch 
cost for Pro trials and Anti trials across rats. 
**p < 0.01; ***p < 0.001.
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Extended Data Figure 2  

 

Extended Data Figure 2 | Histology for tetrode and optical fiber implantation. a, Histology for 5 rats with left or right SC 
tetrode implants. Gray diamonds indicate the final location of the tetrode tips. Lines indicate the tetrode tracks. b, Histology 
for 6 rats with left or right mPFC tetrode implants, similar to a. Seven rats were implanted with tetrode drives all together: 4/7 
rats with both SC and mPFC drives; 2/7 rat with only mPFC drives; 1/7 rat with only SC drive. c, Histology for 9 rats with 
bilateral SC AAV virus infection and optical fiber implants. Left: example of AAV5-CaMKIIα-eYFP-eNpHR3.0 infection. Green 
fluorescence indicates the infection coverage. Yellow circle indicates the estimated spread of light stimulation based on 
previous acute recording experiments (Hanks et al., 2015). Right: green diamonds indicate the tips of etched optical fibers for 
all animals. 

Extended Data Figure 2 | Histology for tetrode and optical fiber implantation. 
a, Histology for 5 rats with left or right SC tetrode implants. Gray diamonds indicate the final location 
of the tetrode tips. Lines indicate the tetrode tacks.  
b, Histology for 6 rats with left or right mPFC tetrode implants, similar to a. Seven rats were 
implanted with tetrode drives all together: 4/7 rats with both SC and mPFC drives; 2/7 rat with only 
mPFC drives; 1/7 rat with only SC drive. 
c, Histology for 9 rats with bilateral SC AAV virus infection and optical fiber implants. Left: example of 
AAV5-CaMKIIα-eYFP-eNpHR3.0 infection. Green fluorescence indicates the infection coverage. 
Yellow circle indicates the estimated spread of light stimulation based on previous acute recording 
experiments (Hanks et al., 2015). Right: green diamonds indicate the tips of etched optical fibers for 
all animals.
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Extended Data Figure 3 

 

Extended Data Figure 3 | Heterogeneity of neural responses in SC and PFC. a, Matrix of Pro/Anti selectivity for the SC 
population. Each row of the matrix represents the Pro/Anti signed d’ of a single neuron as a function of time. Neurons are 
sorted by the timing of their peak Pro/Anti absolute |d’|. b, Peri-stimulus time histograms (PSTHs) for 3 example SC neurons 
(same conventions as in Fig. 1c). Top, Pro/Anti signed d’ and Choice signed d’ as a function of time for each neuron. c, 
Matrix of Choice selectivity for the SC population. Neurons are sorted as in panel a. The absolute values of the d’ shown in 
panel a and panel c are combined in Fig. 1d. d, e, f, same as panels a, b, c for the PFC population. 
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Extended Data Figure 4 

 

Extended Data Figure 4
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Extended Data Figure 4 | Controls for the comparison of population performances in SC and PFC. a, Pro/Anti (red, left) 
and Choice (blue, right) classification performances in SC (solid line) , PFC (dashed line), and SC after matching the average 
firing rate by randomly removing spikes (dash-dot line). Pro/Anti performances in SC are still significantly higher than PFC 
after matching firing rates (p<0.05). Latency of the rise in choice classification is still shorter in SC after matching firing rates 
(p<0.01). b, Estimated Pro/Anti classification performances for different number of neurons in SC (red) and PFC (black) (see 
Methods). Performances of 193 SC neurons can be matched by approximately 1000 PFC neurons  c, Estimated latency of 
choice performances in PFC (blue, left) and in SC (red, right) for different numbers of neurons (see Methods). SC latency 
cannot be matched by PFC even when considering a population of 1000 neurons. 
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Extended Data Figure 5 

 

Extended Data Figure 5 | Relationship between task (Pro/Anti) and choice (Contra/Ipsi) d’ across the SC population. a, 
For each SC neuron, the signed Pro/Anti d’ computed at the time of peak Pro/Anti selectivity was plotted against the signed 
Choice d’ computed at the time of peak Choice selectivity. No correlation is observed (r = 0.06). b, For SC Delay/Choice 
neurons, the signed Pro/Anti d’ was plotted against the signed Choice d’, both computed within the first time bin after 
stimulus appearance (0-250 ms). The two are significantly correlated (r = 0.52), due to the prevalence of Pro/Contra and 
Anti/Ipsi units.  c, Correlation between Pro/Anti d’ and Choice d’ for the whole SC population computed at all time points. 
The correlation is significantly different than 0 only at times shortly after the appearance of the target stimulus. 
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Extended Data Figure 6 
 

 

Extended Data Figure 6 | Effect of bilateral SC inactivation and YFP control. a, Effect of full-trial and sub-trial 
inactivations of bilateral SC on Pro (green) and Anti (orange) error rate (mean and s.e.m.) compared to YFP controls (gray). All 
paired statistics shown here are computed using a permutation test, shuffled 5000 times. b, Effect of full-trial and sub-trial 
inactivations of bilateral SC on response time (RT). For each behavioral session, a median RT on non-stimulated control trials 
is calculated and subtracted from the RTs on inactivation trials, and these normalized RT changes due to inactivation are 
plotted here. Each curve is normalized to have a total area of 1. Vertical bars show the median RT changes for correct Pro 
and Anti trials; 95% confidence intervals across trials for each trial type are indicated by horizontal bars. A shift to the right 
indicates slowing due to inactivation and a shift to the left indicates speeding. N.S. p>0.05; *p<0.05; **p < 0.01; ***p < 0.001.  
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Extended Data Figure 6 | Effect of bilateral SC inactivation and YFP control. a, Effect of full-trial and sub-trial inactivations of 
bilateral SC on Pro (green) and Anti (orange) error rate (mean and s.e.m.) compared to YFP controls (gray). All paired statistics 
shown here are computed using a permutation test, shuffled 5000 times. b, Effect of full-trial and sub-trial inactivations of bilateral SC 
on response time (RT). For each behavioral session, a median RT on non-stimulated control trials is calculated and subtracted from 
the RTs on inactivation trials, and these normalized RT changes due to inactivation are plotted here. Each curve is normalized to have 
a total area of 1. Vertical bars show the median RT changes for correct Pro and Anti trials; 95% confidence intervals across trials for 
each trial type are indicated by horizontal bars. A shift to the right indicates slowing due to inactivation and a shift to the left indicates 
speeding. N.S. p>0.05; *p<0.05; **p < 0.01; ***p < 0.001. 
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Extended Data Figure 7 
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Extended Data Figure 7 | Parameters and dynamics of each cluster of model solutions. a, Mean and standard deviation 
of each parameter for each of the 7 clusters of model solutions as reported in the main text. Color scheme consistent with 
main figure. b, Schematic of model showing color scheme used for dynamics of each unit in panels c-i. c-i, For each cluster, 
the four columns are:  Pro control trials, Anti control trials, Anti trials with delay period inactivation, Anti trials with choice 
period inactivation. Top row: average PSTHs across all model solutions in cluster. 2nd row: 10 example trials from one model 
solution picked at random from each cluster. 3rd row: choice encoding index is Pro_right - Pro_left. Black line is index for 
average PSTH, grey lines are index for example trials. 4th row: rule encoding index is 0.5*(Pro_right + Pro_left) - 
0.5*(Anti_right + Anti_left). 
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