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Blindfold learning of an accurate neural metric
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The brain has no direct access to physical stimuli but only to the
spiking activity evoked in sensory organs. It is unclear how the
brain can learn representations of the stimuli based on those
noisy, correlated responses alone. Here we show how to build an
accurate distance map of responses solely from the structure of
the population activity of retinal ganglion cells. We introduce the
Temporal Restricted Boltzmann Machine to learn the spatiotem-
poral structure of the population activity and use this model to
define a distance between spike trains. We show that this met-
ric outperforms existing neural distances at discriminating pairs
of stimuli that are barely distinguishable. The proposed method
provides a generic and biologically plausible way to learn to asso-
ciate similar stimuli based on their spiking responses, without any
other knowledge of these stimuli.

sensory discrimination | retina | neural metric | Restricted Boltzmann
Machines | neural activity population models

Amajor challenge in neuroscience is to understand how the
brain processes sensory stimuli. In particular, the brain must

learn to group some stimuli in the same category and to dis-
criminate others. Strikingly, this feat is achieved while the brain
has only access to the noisy responses evoked in sensory organs
but never to the stimulus itself. For example, the brain only
receives the retinal responses to visual stimuli and is able to
associate together responses corresponding to the same stimu-
lus, while teasing apart the ones coming from distinguishable
stimuli. How nervous systems can achieve such discrimination
is still unclear. One strategy to solve this problem could be to
learn either a decoding model to reconstruct the stimulus from
the neural responses (1, 2) or an encoding model and invert it
to find stimuli that can be distinguished (3). However, in both
cases, this requires access to a lot of pairs of stimuli and evoked
responses. Clearly, the brain is not guaranteed to have access to
such data and may only access the neural response without know-
ing the corresponding stimulus.

Neural metrics (4), which define a distance between pairs of
spike trains, have been proposed to solve this issue. In general,
spike trains evoked by the same stimulus should be close by,
while spike trains corresponding to very different stimuli should
be far away. Using a given metric, one can associate together
responses evoked by similar stimuli, without any information
about the stimuli themselves (5, 6). The quality of this classifica-
tion relies on the metric being well adapted to the task at hand,
and different metrics are not expected to perform equally well.

Multiple metrics based on different features of the neural
response have been proposed, mostly for single cells (7–12) and
exceptionally for populations (13). These metrics do not use infor-
mation about the correlative structure of the population response
and often require tuning parameters to optimize performance,
which requires external knowledge of the stimulus. In addition, a
precise quantification of the performance of these different met-
rics at discriminating barely distinguishable stimuli is lacking.

Here we present an approach to learn a spike train metric with
high discrimination capacity from the statistical structure of the
population activity itself. We applied the method to the retina, a
sensory system characterized by noisy, nonlinear (14), and corre-
lated (15, 16) responses. We first introduce a statistical model of
retinal responses, the Temporal Restricted Boltzmann Machine
(TRBM), which allows us to learn an accurate description of
spatiotemporal correlations in a population of 60 ganglion cells

of the rat retina, stimulated by a randomly moving bar. We then
use this model to derive a metric on neural responses. Using
closed-loop experiments, where stimuli are tuned to be hardly
distinguishable from each other, we show that this neural met-
ric outperforms classical metrics at stimulus discrimination tasks.
This high discrimination capacity is achieved despite the neural
metric being trained with no information about the stimulus. We
therefore suggest a general and biologically realistic method for
the brain to learn to efficiently discriminate stimuli solely based
on the output of sensory organs.

Results
Modeling Synchronous Population Activity with RBMs. We analyzed
previously published ex vivo recordings from rat retinal ganglion
cells (17). A population of 60 cells was stimulated with a moving
bar and recorded with a multielectrode array (Fig. 1). Responses
were binarized in 20 ms time bins, with value σit = 1 if neuron i
spiked during a given time bin t , and 0 otherwise (Fig. 1). We first
aimed to describe the collective statistics of spikes and silences in
the retinal population, with no regard for the sequence of stimuli
that evoked them.

We modeled synchronous correlations between neurons using
RBMs (18, 19), which have previously been applied to retinal
(20)∗ and cortical (21) populations. They give the probability of
same-time spikewords (σi) = (σit)i at any t as:

P [(σi)] =
1
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[1]

Significance

To understand how neural signals code sensory stimuli, most
approaches require knowing both the true stimulus and the
neural response. The brain, however, only has access to the neu-
ral signals put out by sensory organs. How can it learn to relate
neural responses to sensory stimuli, especially for responses to
which it has never been exposed? Here we show how to solve
this problem by building a metric on neural responses such that
responses to the same stimulus are close. Although the metric is
built with no access to the stimulus, it outperforms all existing
metrics in fine discrimination tasks, suggesting a way the brain
could make sense of its sensory output.
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Fig. 1. Experimental setup. A rat retina is stimulated with a moving bar.
Retinal ganglion cells (in green) are recorded with a multielectrode array.
To model the response, spike trains are binarized in 20 ms time bins.

RBMs do not have direct interactions between neurons. Rather,
their correlations are explained by interactions with binary latent
variables, hj , called hidden units (Fig. 2A). When a hidden unit
takes a value of 1, it induces collective changes in the excitabil-
ity of subpopulations of cells. Although it is tempting to think
of hidden units as nonvisible neurons, they are only effective
variables and usually do not correspond to actual neurons; hid-
den units can in fact reflect multiple causes of correlations, such
as direct input from neighboring cells, or common input from
intermediate layers and the stimulus. Their number can be var-
ied: The more hidden units, the more complex structures can be
reproduced by the model, but the more parameters need to be
estimated.

We learned an RBM with 20 hidden units to model the
responses of the retinal population responding to a randomly
moving bar. The model was inferred on a training set (80%
of responses) using persistent contrastive divergence (SI Text)
and its predictions compared with a testing set (20% remaining
responses). The RBM predicted well each neuron’s firing rate
(Fig. 2B) as well as correlations between pairs of neurons (Fig.
2D). In addition, the RBM predicted higher order correlations
accurately, such as the distribution of the total number of spikes
in the population (Fig. 2C). By contrast, a model of independent
neurons (zero hidden units) underestimated the probability of
events with few or many spikes by an order of magnitude. The
model performance, measured by either the fraction of variance
explained of pairwise correlations (Fig. 2E) or by the model log-
likelihood (Fig. 2F), quickly saturated with the number of hidden
units, with 15 units already providing near optimal performance.

TRBMs for Population Spike Trains. The RBM performs well at
modeling neural responses within 20 ms time bins, but correla-
tions between neurons often span longer time scales. To evalu-
ate the importance of these longer term correlations, we plotted
the distribution of the number of spikes in the population in a
100 ms time window (using the testing set) and compared it to
the prediction from the RBM, where the response of the popula-
tion was generated in each of the five 20-ms bins independently
(Fig. 3C). Although the RBM performed better than a model
of independent neurons, it still underestimated the probability
of large numbers of spikes by an order of magnitude, indicating
that correlations over longer scales than 20 ms play an important
role in shaping the collective response statistics.

To account for these temporal correlations, we introduced the
TRBM. This model generalizes the RBM by allowing for inter-
actions between neurons and hidden units across different time
bins (Fig. 3A and SI Text):

P [(σit)] =
1

Z

∑
(hjt′ )

e
∑

it aiσit +
∑

jt′ bj hjt′ +
∑

ijtt′ Wji,t′ − tσithjt′ [2]

Because we want to describe the stationary distribution of spike
trains regardless of the stimulus, absolute time is irrelevant, and
the model is invariant to time translations: Connections between
a hidden unit and a neuron only depend on the relative delay
t ′− t between them. This property is similar to convolutional
networks used in image processing but here in time instead
of space.

We trained a TRBM with 10 hidden units per time bin, each
connected to neurons across five consecutive time bins, on the
same training set as before using persistent contrastive diver-
gence (SI Text; see Fig. S4 for the inferred W couplings between
hidden units and neurons) and compared predictions to the test-
ing set. Like the RBM, the TRBM could predict individual neu-
ron firing rates (Fig. 3B) and synchronous pairwise correlations
(Fig. 3D). In addition, the TRBM could also predict temporal
correlations ignored by the RBM. In particular, it reproduced
accurately the distribution of the total number of spikes in a
100 ms time window, which the RBM did not (Fig. 3C). We also
tested if the TRBM could predict correlations between the spik-
ing activity of pairs of neurons in two time bins separated by a
given delay. To do so, we computed the total variance of pair-
wise correlations for each delay and estimated the fraction of
it that could be explained by the TRBM (Fig. 3E and SI Text).
Even though direct connections between neurons and hidden
units were limited to 80 ms, the TRBM could explain a substan-
tial amount of correlations even for large delays, up to 150 ms
where correlations vanish.
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Fig. 2. The RBM model predicts accurately response statistics within sin-
gle 20 ms time bins. (A) The RBM models the probability of binarized
responses in single time bins. There are no direct interactions between neu-
rons (gray circles). Instead, neurons interact with hidden units (white cir-
cles). (B) Single cell firing rate. Each dot represents the spiking frequency
of a neuron in the testing set (not used for learning) versus RBM model
prediction. (C) Distribution of the total number of spikes in the popula-
tion during a time bin in the testing set (black) versus the prediction of a
model of independent neurons (gray) or by the RBM (dotted red). Shaded
area shows SE in data. (D) Pairwise correlations. Each dot represents the
Pearson correlation for a pair of neurons in the testing set versus RBM
prediction. (E) Fraction of the variance of correlations explained by RBM
models, for different numbers of hidden units, in the training and test-
ing sets. (F) Mean model log-likelihood in-sample (dashed line) and out-
of-sample (full line) as a function of the number of hidden units. The
small difference between training and testing sets suggests that there is no
overfitting. indep, independent.
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Fig. 3. The TRBM model predicts accurate response statistics across multi-
ple time bins. (A) The TRBM’s structure is similar to the RBM’s, but neurons
and hidden units are connected across multiple time bins. The interaction
between neurons and hidden units only depends on the delay between
them: In this schematic, interactions with the same color are equal. For sim-
plicity, the model represented here only has interactions for delay 0 and
1 time bins. In general, there can be interactions with larger time delays.
(B) Single cell firing rates; same as Fig. 2B but for the TRBM model. (C) Dis-
tribution of the number of spikes in the population during a 100 ms time
window (five consecutive time bins), in the testing set (black), predicted by a
model of independent time bins and independent neurons (gray), a model
with independent RBMs in each time bin (dotted red), or a TRBM (dotted
green). Shaded area shows SE in data. (D) Pairwise correlation. Same as
Fig. 2D but for the TRBM model. (E) Cross-correlation. Black line shows the
variance in cross-correlations between neurons with different time delays.
Red and green lines show variance explained by RBM and TRBM, respec-
tively. (F) Fraction of the variance of cross-correlations between neurons
with delays up to 140 ms explained by TRBM models, as a function of
the number of hidden units, in the training and the testing sets. (G) Same
as F but varying the maximum connection delay between hidden and
visible units. indep, independent.

Similarly to the RBM, we found that increasing the number
of hidden units only marginally improved performance (as mea-
sured by the fraction of explained variance of pairwise correla-
tions) beyond 10 units per time bin (Fig. 3F). We also varied the
maximum connection delay between neurons and hidden units
from 20 ms to 120 ms. Performance quickly saturated at a con-
nection delay of around 60 ms (Fig. 3G). In the following, we will

consider a TRBM with 10 hidden units and connection delay of
80 ms, unless mentioned otherwise.

A Neural Metric Based on Response Statistics. The hidden units of
the TRBM can be considered as a way to compress the vari-
ability present in the neural activity and extract its most rele-
vant dimensions. We asked whether these hidden units could be
used to define a neural metric that would follow the structure
of the population code, allowing for efficient discrimination and
classification properties.

To this end, we designed neural metrics derived from the RBM
and TRBM based on the difference between the hidden unit
states. Take two responses, σ = (σi) and σ′= (σ′i), of the retina
and define ∆h = (∆hj ) as the difference of mean value of the
hidden units conditioned on the two responses, ∆hj = 〈hj 〉σ −
〈hj 〉σ′ (SI Text). Then the RBM metric is defined as:

dRBM =∆hᵀWCWᵀ∆h, [3]

where C = 〈σσᵀ〉− 〈σ〉〈σᵀ〉 is the covariance matrix of the
response and W = (Wji) is the matrix of couplings between neu-
rons and hidden units. This definition can readily be generalized
to the TRBM by adding time indices (SI Text). Note that this
metric differs from the standard Euclidian distance in the space
of hidden units, ∆hᵀ∆h: It has a nontrivial kernel WCWᵀ, which
modulates the contribution of each hidden unit by its impact
on neural activity. We will see later that this kernel improves
discrimination capabilities. Note that this metric was defined
without any information about the stimulus and solely from the
knowledge of the activity. We next aimed to test how well this
metric can discriminate pairs of stimuli.

Distinguishing Close Stimuli. To evaluate the capacity of a neural
metric to finely resolve stimuli based on the sensory response, we
introduce a measure of discriminability between the responses to
two distinct stimuli based on neural metrics.

The response to a given stimulus is intrinsically noisy. Two rep-
etitions of the same stimulus (let us call it reference stimulus) will
give rise to two distinct responses, Rref and R′ref. The response
Rpert to a perturbation of the reference stimulus may thus be hard
to tease apart from another response to the reference stimulus,
because of this noise (Fig. 4A). Given a neural metric d(R,R′),
it is natural to define the discriminability of a perturbation as
the probability for the response Rpert to be further apart from a
response to the reference, R′′ref, than would two responses to the
reference, Rref and R′ref, from each other:

Discr =P(d(R′′ref,Rpert)> d(Rref,R
′
ref)). [4]

If a perturbation is perfectly discriminable (Fig. 4A, Left), dis-
tances between reference and perturbation are well separated
from distances within responses to the reference, and the dis-
criminability will approach 1. Conversely, for perturbations too
small to be discriminated, the two distributions greatly overlap
(Fig. 4A, Right), and the discriminability is close to 0.5 corre-
sponding to chance.

To finely assess the capacity of neural metrics to perform dis-
crimination tasks, we need to study perturbations that lie between
these two extremes, where discrimination is neither easy nor
impossible. To find this soft spot, we performed closed-loop
experiments where at each step the discriminability of a pertur-
bation was analyzed to generate the perturbation at the next step
(Fig. 4B; see ref. 17 for more details). We first recorded multiple
responses to a reference stimulus, a 0.9 s snippet of bar trajectory
described earlier (Fig. S1 A and B). We then recorded responses to
many perturbations of this stimulus (Fig. 4C). For a given “shape”
of the perturbation (i.e., normalized difference of bar position
between reference and perturbation as a function of time; Fig.
S1C), we adapted the perturbation size online and searched for
the smallest perturbations that were still discriminable (SI Text).
If a perturbation had high discriminability (as defined by a linear
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Fig. 4. Online adaptation of perturbations. (A) Discriminating with metrics.
Stimulus discrimination is evaluated by comparing the distance of responses
within the same reference stimulus (blue dots) and between the reference
and a perturbation (red dots). Discrimability is defined as the probability
that a within-stimulus distance (blue distribution) is lower than an across-
stimuli distance (red distribution). (B) Closed-loop experiment. At each step,
the rat retina was stimulated with a perturbation of a reference stimulus.
Retinal ganglion cell responses were recorded extracellularly with a multi-
electrode array. Electrode signals were high pass-filtered, and spikes were
detected by threshold crossing. We computed the discriminability of the
population response and adapted the amplitude of the next perturbation.
(C) The stimulus consisted of repetitions of a reference stimulus (here the
trajectory of a bar, in blue) and of perturbations of this reference stimulus of
different shapes and amplitudes (see Fig. S1). Purple and red trajectories are
perturbations with the same shape, at small and large amplitude. (D) Exam-
ple population response. Each spike is represented by a dot. Red rectangle,
duration of the perturbation; shaded rectangle, duration of responses for
which the discriminability was measured.

discrimination task on the thresholded values of the raw multi-
electrode array output, independently of any metric; see SI Text),
at the next step we tested a perturbation with a smaller ampli-
tude. Conversely, if a perturbation had low discriminability, we
then tested a larger perturbation. Perturbations lasted 320 ms, and
responses were analyzed over 300 ms with a delay (Fig. 4D).

Thanks to this method, we could explore the space of possible
perturbations efficiently, exploring multiple directions (shapes)
of the perturbation space simultaneously, and obtained a range
of responses to pairs of stimuli that are challenging but not
impossible to discriminate. This method allowed us to bench-
mark different metrics.

TRBM Metric Outperforms Other Neural Metrics at Fine Discrim-
ination Tasks. We measured the discriminability (Eq. 4) of a
perturbation at different amplitudes, using the RBM and TRBM

metrics (Fig. 5A and SI Text). As expected, the discriminability
increased with the perturbation amplitude, with small pertur-
bations being hardly discriminable from the reference stimulus
(discriminability close to 0.5) and large perturbations almost per-
fectly discriminable (discriminability close to 1). Since this met-
ric is based on the hidden states, it means that hidden states
are informative about the stimulus. The much better perfor-
mance of the TRBM, especially for small and medium pertur-
bations, emphasizes the importance of temporal correlations in
shaping the metric. For comparison, we computed the discrim-
inability of the same perturbation for the Victor–Purpura met-
ric (7) (SI Text), one of the first proposed neural metrics that
has often been used in the literature to estimate the sensitivity
of neural systems (22–24). This metric depends on a time scale
parameter, which we optimized to maximize the mean discrim-
inability of all recorded responses. Even with this optimization,
the Victor–Purpura metric discriminated perturbations less well
than either the RBM or TRBM metrics. Note that this opti-
mization of the Victor–Purpura metric requires accessing pairs
of stimulus responses, while the RBM and TRBM metrics never
accessed this information. Despite this advantage given to the
Victor-Purpura metric, it is still outperformed by the RBM and
TRBM metrics.

To see if this better performance of our TRBM metrics held
for other stimuli, we compared the discrimination capacity of
the RBM and TRBM metrics with the Victor–Purpura metric
for two different reference stimuli and 16 perturbation shapes
for each (Fig. S1). For each reference stimulus and perturba-
tion shape, we separated responses in batches of low, medium,
and high discriminability, based on a linear discrimination task
independent of any metric (SI Text, E. Linear Discriminability).
We computed the mean discriminability of each response batch,
for the RBM, TRBM, and Victor–Purpura metrics (Fig. 5 B and
C). While responses in the low discriminability batch were poorly
separated by all three metrics, a large majority of responses with
medium and high discriminability had larger discriminability for
the RBM metric, and even larger for the TRBM metric (Fig. 5 B
and C), confirming the importance of temporal correlations.

We then compared the RBM and TRBM metrics to other neu-
ral metrics from the literature: van Rossum, angular, interspike
interval (ISI), nearest neighbor, event synchronization, spike syn-
chronization, and SPIKE metrics (definitions in SI Text), as well
as the simple Hamming distance on the binarized responses.
Metrics with free parameters were optimized to maximize their
mean discriminability. Again, this optimization required access-
ing pairs of stimulus responses, while RBM and TRBM did not
have access to this. For each metric, we computed the mean dis-
criminability in each batch (low, medium, or high discriminabil-
ity) across all reference stimuli and perturbation shapes (Fig. 5C
and Fig. S3). Responses from the low-discriminability batch were
hard to distinguish, and only five metrics did significantly better
than chance (p< 0.05 for unpaired t test, Fig. S3): RBM, spike
synchronization, SPIKE, and Angular and TRBM metrics. The
TRBM metric discriminated responses the best and was signifi-
cantly better than the second best, the SPIKE metric (p = 0.014,
paired t test). For the medium- and high-discriminability batches,
the RBM and TRBM metrics greatly outperformed all other
metrics. Strikingly, in the medium-discriminability group, the
improvement of discriminability above chance level was 30%
higher for the RBM metric, and 94% for the TRBM metric, than
for the Angular metric, the most discriminating metric from the
literature.

This performance was little affected by the number of hid-
den units in the RBM and TRBM. The mean discriminability
increases and eventually saturates with the number of hidden
units (Fig. S2), indicating that the metric was not sensitive to
that precise number, provided that it is large enough. By con-
trast, the TRBM-based metric using the unweighted Euclidian
distance between the mean values of the hidden units degraded
quickly with the number of units (dashed lines in Fig. S2). This
worse performance may be explained by the fact that some
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Fig. 5. RBM and TRBM metrics outperform classical metrics at discriminat-
ing responses. (A) Mean discriminability of responses to different ampli-
tudes of an example perturbation shape, for the optimized Victor Pur-
pura metric or the RBM and TRBM metrics. (B) Each point represents the
mean discriminability for responses with low, medium, or high linear dis-
criminability (SI Text), for one reference trajectory and one perturbation
shape, for the Victor Purpura or TRBM metric. (C) Mean discriminability of
responses with medium linear discriminability, across all reference stimuli
and perturbation shapes. Stars on top of bars show significant difference
in mean discriminability (paired t test, *P < 0.05, **P < 0.01, and ***P <

0.001). Error bars show standard errors in all three subpanels. Neighb,
Neighbor.

hidden units have little or redundant impact on the activity but
are counted with equal weight in the standard Euclidian distance.
This stresses the importance of accounting for the impact of hid-
den units on the activity through a distance kernel as in Eq. 3.
We studied how the amount of data used for training the TRBM
affected performance. We found that the TRBM metric reached
near-saturating discriminability with as little as 40 s of activity
and already outperformed other metrics with just 10 s of data
(Fig. S6). We also checked that our conclusions were not affected
by the choice of bin size (5, 10, or 40 ms).

Discussion
metric, the most discriminating metric fromWe have introduced a
general method for building a metric from the neural responses of
sensory organs, which outperforms all previously defined metrics
at discriminating stimuli. Importantly, this TRBM metric is based
on a statistical model of the activity that is trained in an unsuper-
vised way, meaning that no knowledge of the stimulus is used. A
previous approach used “semantic” metrics to cluster responses
(3), but it required first learning a stimulus–response dictionary,
which is impractical for the brain. By contrast, the TRBM met-
ric emerges from the structure of the neural activity and does
not use stimulus information, suggesting a realistic strategy for
the brain to learn to discriminate stimuli. Many neural metrics
require tuning parameters to maximize performance—a super-
vised task that uses stimulus information. Even after this opti-
mization, the TRBM metric outperforms all metrics we found in
the literature. This better performance can be explained by the
TRBM’s much larger number of parameters (3,070 in our exam-
ple; see SI Text). However, this model complexity does not cause
damaging overfitting, and near-optimal performance is achieved

when training from just tens of seconds of activity (Fig. S6). Multi-
neuron, many-parameter generalizations of existing metrics (13)
could potentially achieve similar performance as the TRBM if
properly trained, but it is not clear how to do it without super-
vision, especially on continuous stimulus ensembles where clus-
tering (the archetypical unsupervised task) is not well-defined.
Thus, the main advance of the TRBM metric over previous ones
is its ability to be trained on any stimulus with no supervision.
We checked explicitly that adding some degree of supervision to
the TRBM did not improve discriminability: We optimized two
directions of the TRBM parameter space (global rescalings of
the couplings or of the hidden unit biases) and found little or no
improvement (Fig. S7).

Although we have motivated the TRBM for defining a metric,
statistical models of population activity deserve attention in their
own right. In this regard, the TRBM provides an alternative to
existing approaches that is both accurate and tractable. The spik-
ing responses of retinal ganglion cells at a given time are strongly
correlated (16, 25), and various strategies have been proposed
to model their collective, synchronous (same time bin) activity.
Central to this effort are Ising models (16, 26–29), also known as
Boltzmann machines (30). These models are often hard to learn
in practice and sometimes require additional terms (31, 32) or
nonlinearities (33) to explain third- and higher order statistics
such as the distribution of the total number of spikes. In Fig. S5
we show that an Ising model trained on our data indeed predicts
higher order statistics worse than the RBM (see SI Text). It also
is unclear how to exploit the structure of Ising models to derive
a metric.

As an alternative to Ising models, RBMs were applied to
the correlated activity in cortical microcolumns (21) and in the
retina (20).† Our results confirm their ability to describe the
synchronous collective activity in the retina, including pairwise
correlations and the distribution of total numbers of spikes. Pre-
vious work also showed that the hidden units of a variant of the
RBM conveyed information about the stimulus, although this
was only made possible by the small number of used stimuli (34).
All these models ignore correlations between spikes in different
time bins, which play an important role as we have shown here.
Maximum entropy models were generalized to account for cor-
relations across time, but they were either practically intractable
for large populations (35, 36) or only focused on the total num-
ber of spikes (37). The TRBM can reproduce pairwise and higher
order correlations with high accuracy across different time bins,
with a reasonable amount of parameters and relative compu-
tational ease. We therefore expect the TRBM to be useful in
describing the stimulus-independent activity of neural popula-
tions in a variety of contexts (38–41).

Also using latent variables, a Hidden Markov Model was pro-
posed to describe retinal activity (42), but it relied on a unique
categorical variable, allowing for lower combinatorial diversity
than the hidden units of our TRBM. Continuous latent variables
have also been proposed to account for neural correlations in
cortical networks (43), and it could be interesting to apply such
models to the retina, although their training requires complex
computational techniques. Our approach of using unsupervised
learning (TRBM training) to inform a supervised task (stimulus
discrimination) is reminiscent of the technique of unsupervised
“pretraining” (44) used in machine learning when only a few
examples are available. The link to machine learning suggests
considering “deep” extensions of the RBM, with several layers
of hidden variables (45), from which more general metrics could
be derived. Deep (artificial) neural networks achieve higher dis-
crimination power than RBMs when dealing with natural scenes
and could lead to better metrics in our case as well.

The TRBM was trained on responses to the random motion of
a bar and is specific to that stimulus ensemble. For instance, we

†Schwab DJ, Simmons KD, Prentice JS, Balasubramanian V, Computational and Systems
Neuroscience (Cosyne) 2013, February 28-March 3, 2013, Salt Lake City.
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checked that a TRBM metric trained on random checkerboards
did worse than other metrics at discriminating bar trajectories.
The brain may thus have to store several metrics for different
stimulus ensembles or constantly relearn the metric depending
on the visual stimulus. We have shown that this could be done
within tens of seconds (Fig. S6), which is the typical adaptation
time scale in the retina (46).

While neural metrics may not be explicitly estimated by the
brain, our TRBM metrics have a natural biological implemen-
tation that suggests how a downstream population could dis-
criminate responses to different stimuli. Hidden units could be
implemented by a population of downstream neurons, with a
simple response function: a weighted sum followed by a non-
linearity (see SI Text). This is reminiscent of a neuron summing
responses from upstream cells, weighted by synapses’ strengths,
with delays to account for time lags. Indeed, it was shown that
networks of spiking neurons can learn their synaptic weights to
approximate RBMs (47). One can simplify our TRBM metric
by linearizing the dependence of the hidden units as a func-
tion of activity (SI Text). Doing so leads to a metric that read-
ily generalizes to continuous times, where the binning of time
disappears. The metric is then simply given by a sum over pairs
of spikes, with coefficients depending on the identity of the
spiking neurons and the delay between them. We showed that
this simplified “continuous” TRBM performs almost as well as

the full TRBM metric (Fig. S3). The continuous TRBM met-
ric could be implemented by simple summation of spikes with
delays.

In summary, the TRBM provides insights into biologically
possible representations of the stimulus with high discrimina-
tion capabilities, without the need for any supervised training. It
would be interesting to compare the discrimination ability at the
level of neural activity such as allowed by the TRBM with per-
ceptual performance (48). However, since the relation between
retinal activity and perception is indirect and affected by down-
stream processing (49), this issue is probably best tackled in cor-
tical areas. None of the properties of the TRBM and its derived
metric are expected to be specific to the retina, and our method
could be readily applied to other sensory neural circuits.

Methods
Data sources and mathematical methods are presented in SI Text. Code is
freely available at github.com/ChrisGll/RBM TRBM.
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