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Human cognition is characterized by flexibility, the ability to select not only which action but which cognitive process to engage to best
achieve the current behavioral objective. The ability to tailor information processing in the brain to rules, goals, or context is typically
referred to as executive control, and although there is consensus that prefrontal cortex is importantly involved, at present we have an
incomplete understanding of how computational flexibility is implemented at the level of prefrontal neurons and networks. To better
understand the neural mechanisms of computational flexibility, we simultaneously recorded the electrical activity of groups of single
neurons within prefrontal and posterior parietal cortex of monkeys performing a task that required executive control of spatial cognitive
processing. In this task, monkeys applied different spatial categorization rules to reassign the same set of visual stimuli to alternative
categories on a trial-by-trial basis. We found that single neurons were activated to represent spatially defined categories in a manner that
was rule dependent, providing a physiological signature of a cognitive process that was implemented under executive control. We found
also that neural signals coding rule-dependent categories were distributed between the parietal and prefrontal cortex— however, not
equally. Rule-dependent category signals were stronger, more powerfully modulated by the rule, and earlier to emerge in prefrontal
cortex relative to parietal cortex. This suggests that prefrontal cortex may initiate the switch in neural representation at a network level
that is important for computational flexibility.

Introduction
Human cognition is only partly dictated by incoming sensory
information at each moment, proceeding along a course that is
also determined by internal state variables, such as rules, goals, or
objectives. The capacity to modify computation according to in-
ternal context is often referred to as executive control, and while
existing evidence indicates that prefrontal cortex is essential for
this capability in both monkeys and humans (Goldman-Rakic,
1987; Wallis et al., 2001; Miller et al., 2002; Nakahara et al., 2002;
Genovesio et al., 2005; Mansouri et al., 2006; Stoet and Snyder,
2009), we have an incomplete understanding of the neural mech-

anisms that exert executive control over cognitive processing at
the level of prefrontal neurons and networks.

To characterize the neural mechanisms involved in computa-
tional flexibility and executive control over spatial cognitive pro-
cessing at the network level, we simultaneously recorded neural
activity in prefrontal and parietal cortex of monkeys as they as-
signed the same set of visual stimuli to alternative spatial catego-
ries on the basis of alternative categorization rules (Ashby and
Maddox, 2005). In our task, monkeys applied different criteria to
flexibly regroup the same set of stimulus positions into alterna-
tive spatial categories, placing categorization as a cognitive pro-
cess under executive control. (Spatial categories each consisted of
a set of spatial positions grouped together by virtue of sharing a
common spatial relationship to a visual stimulus serving as a
category boundary.) Based on evidence that parietal neurons en-
code relative spatial position (Chafee et al., 2005, 2007; Crowe et
al., 2008), we predicted that parietal neurons would encode spa-
tial categories defined on the basis of relative position, and that
the prefrontal-parietal network would be engaged to implement
executive control over categorization when the spatial relation-
ship that defined categories changed over trials.

In this experiment, we recorded from area 7a in the posterior
parietal cortex and area 46 in the dorsolateral prefrontal cortex—
areas that share direct corticocortical projections (Cavada and
Goldman-Rakic, 1989) and contain neurons that exhibit nearly
identical patterns of activity during spatial cognitive tasks
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(Chafee and Goldman-Rakic, 1998, 2000). Neural signals associ-
ated with a variety of other cognitive processes are similarly dis-
tributed between prefrontal cortex and interconnected cortical
areas (Freedman et al., 2003; Nieder and Miller, 2004; Muham-
mad et al., 2006), raising the question what unique contribution
prefrontal cortex makes to distributed information processing in
cortical networks. One possibility is that prefrontal cortex gener-
ates neural signals that become rapidly communicated to other
cortical areas, in which case detecting the unique function of the
prefrontal cortex at the single-neuron level might require finding
which among several distributed signals are strongest or emerge
first in prefrontal neurons. In the context of a rule-based catego-
rization task, we found that neural signals representing the cate-
gory of the stimulus as a function of the rule applied were
stronger, earlier, and more powerfully modulated by the rule in

prefrontal cortex relative to parietal cortex, suggesting that pre-
frontal cortex may lead in the executive control of the spatial
cognitive processing required.

Materials and Methods
Animals. We trained two male macaque monkeys (5–8 kg) to perform the
dynamic spatial categorization (DYSC) task (described below). After reach-
ing a stable criterion level of performance (performing !80% of trials cor-
rectly), the monkeys underwent aseptic surgery under gas anesthesia
(isoflurane, 1–2%) to place recording chambers (7 and 13 mm inner diam-
eter in monkeys 1 and 2, respectively) above craniotomies overlying the
dorsolateral prefrontal cortex and posterior parietal cortex in the left cerebral
hemisphere, as well as to fix titanium screws and posts to the skull to restrain
head position as necessary for neural recording. The prefrontal chamber was
centered over Brodmann’s area 46 in the principal sulcus. The parietal cham-
ber was centered over area 7a in the inferior parietal lobule (Fig. 1D,E). We

Figure 1. Event sequence of the DYSC task and locations of neural recording in parietal (PAR) and prefrontal (PFC) cortex. Each trial, we presented a small circular sample stimulus and a line serving
as a boundary cue. We varied the order of presentation of these stimuli, using either a sample– boundary sequence or a boundary–sample sequence. A, Categorizing stimuli according to the
left/right (LR) rule under the sample– boundary sequence. Trials began with the presentation of a central gaze fixation target (gaze fixation was required throughout the trial until the response was
made). A sample stimulus was presented at one of 8 or 12 randomly selected locations for 400 ms, followed by a 900 ms delay period (delay 1). The LR rule was instructed by the presentation of the
boundary cue in a vertical orientation for 400 ms, followed by a 900 ms delay period (delay 2). The monkey was required to determine the spatial category of the sample position stored in working
memory by evaluating its spatial relationship to the boundary cue. The sample on this trial belongs to the spatial category “right.” After delay 2, two choice stimuli were sequentially presented for
700 ms each in random order, one in the opposite spatial category as the sample (choice 1; “left”) and one in the same spatial category (choice 2; “right”). The DYSC task is a delayed category
match-to-sample design. The monkey was rewarded (with a drop of juice) if it pressed the response key during the period of time that the matching choice was visible (located in the same spatial
category as the sample; choice 2 on this trial). B, Categorizing stimuli according to the above/below (AB) rule under the sample– boundary sequence. The boundary cue is presented in a horizontal
orientation instructing the AB rule on this trial, and choice 1 matches the spatial category of the sample (“above”). C, Categorizing stimuli according the LR rule under the boundary–sample sequence.
In this case, the sample stimulus is assigned to a category based on a boundary cue stored in working memory. D, E, Locations of neural recordings in parietal and prefrontal cortex of monkeys 1 and
2 relative to positions of the principal sulcus (PS), central sulcus (CS), and intraparietal sulcus (IPS) as reconstructed from structural MRI images. The perspective is a top-down view of the left cerebral
hemisphere. Anterior (Ant), posterior (Post), medial (Med), and lateral (Lat) directions are as indicated by the arrows. The larger open circles indicate inner diameter of recording chambers over
parietal and prefrontal cortex. The smaller filled circles within each cortical area indicate regions sampled by electrode penetrations during neural recording. F, Eight-position sample array. G,
Twelve-position sample array.
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administered analgesia for several days postoperatively (Buprenex; 0.05
mg/kg bid, i.m.). After monkeys recovered from surgery, we started neural
recording during DYSC task performance. All surgical and animal care pro-
cedures conformed to the Principles of Laboratory Animal Care of the NIH
and protocols approved by the Animal Care and Use Committees of the
Minneapolis Veterans Affairs Medical Center and the University of
Minnesota.

Dynamic spatial categorization task. The DYSC task (Fig. 1) required
monkeys to determine whether a small circle (the sample stimulus) was
located to one side of a line (the boundary cue) or the other, and to press
a response key when a choice stimulus appeared on the same side of the
boundary cue later in the trial. The boundary cue (Fig. 1 A, boundary
cue) constituted a category boundary that divided space into two regions,
each containing a set of points grouped into a category by virtue of
bearing the same spatial relationship to the boundary. (For example
when the boundary cue was vertical, all points to the left of the boundary
constituted one spatial category; all points to the right another.)

Each trial, we presented first a sample stimulus followed after a delay
by the category boundary (Fig. 1 A, B, sample– boundary sequence), or
we presented the two stimuli in reverse order, first the category boundary
followed by the sample stimulus (Fig. 1C, boundary–sample sequence).
Presenting the two stimuli at different times separated by an intervening
delay ensured that the two stimuli were never simultaneously visible, and
could not therefore jointly influence the receptive fields of visual neu-
rons. Sample stimuli were small circles (0.25– 0.5° diameter; either white
or yellow), and boundary cues were blue lines (13 or 21.5° in length),
backprojected by an LCD projector (NEC MT820) onto an otherwise
dark translucent screen located 65 cm in front of the monkey. The loca-
tion of the sample was selected randomly from a circular array of either 8
or 12 positions located on an imaginary circle at an eccentricity of 13°
from the fixation target (Fig. 1 F, G; monkey 1 performed the task with
both 8- and 12-position arrays; monkey 2 performed the task with the
8-position array). We located sample positions in the arrays so that they
did not fall on the boundary cue when presented in either the vertical
(Fig. 1 A, boundary cue) or horizontal (Fig. 1 B, boundary cue) orienta-
tions (to ensure that each position in the sample array had a defined
spatial category for both boundary orientations).

Monkeys initiated the trial by directing their gaze straight ahead to-
ward a fixation target (0.25° red circle) presented directly in front of them
(Fig. 1 A–C, fix). If the monkey’s gaze deviated by !2.5° from the fixation
target at any point during the trial, the trial was terminated without
reward. After 500 ms of central fixation, we presented the first visual
stimulus in the sequence, either the sample stimulus (Fig. 1 A, B, sample),
or the boundary cue (Fig. 1C, boundary cue). We presented the boundary
cue either in a vertical (Fig. 1 A, C) or horizontal (Fig. 1 B) orientation
each trial (always centered on and passing through the gaze fixation
target). After the disappearance of the first stimulus in the sequence, a
delay period of 400 or 900 ms followed (Fig. 1 A–C; delay 1). At the end of
delay 1, the second stimulus was presented for 400 ms— either the
boundary cue (Fig. 1 A, B) or the sample stimulus (Fig. 1C), depending
on the stimulus sequence used. An important aspect of the task design
was that the rule-dependent category of the sample stimulus was only
defined after the second stimulus was presented in either stimulus se-
quence. After the offset of the second stimulus, a second delay period
followed (Fig. 1A–C; delay 2; 400 or 900 ms). At the end of delay 2, we
presented two choice stimuli (small circles) one at a time for 700 ms each
in random order. One choice was always a match (located on the same
side of the boundary cue and therefore belonging to the same spatial
category as the sample), and the other choice was always a nonmatch
(located on the other side of the boundary cue and belonging to the
opposite spatial category). If the monkeys pressed the response key dur-
ing the period of time that that matching choice stimulus was visible (Fig.
1 A–C; response; boxes with thicker outlines), we terminated the trial and
delivered a liquid reward (0.1– 0.2 ml of sweetened water). If the monkey
pressed the response key when the nonmatch choice was visible, we
terminated the trial without reward. The direction of the required motor
response did not vary over trials, so that neural signals varying with the
spatial features of the task were not likely to reflect motor plans of varying
direction. Furthermore, the timing of the motor response was unpredict-

able in advance of the choice sequence because the order of choices
(match and nonmatch) was randomized over trials. Monkeys performed
sets of trials consisting of 12 or 15 repetitions of each sample position
under each of the two boundary orientations.

On trials in which the boundary cue was vertical (Fig. 1 A, C, boundary
cue), it instructed the LR (left/right) categorization rule, and monkeys
were required to determine whether the sample stimulus was located to
the left or right of the category boundary. On trials in which the category
boundary was horizontal (Fig. 1 B, boundary cue), it instructed the AB
(above/below) rule, and monkeys were required to determine whether
the sample stimulus was located above or below the category boundary.
Changing the boundary orientation over trials therefore required reclas-
sifying the circular stimulus array into orthogonal sets of spatial catego-
ries. The boundary cue served to instruct a categorization rule in the
sense that its orientation dictated which of two independently varying
dimensions of the sample stimulus (horizontal or vertical position) was
relevant to category membership and which grouping criterion to apply
to that dimension to determine the spatial category. When the boundary
cue was vertical, the position of the sample along the horizontal axis was
relevant to category membership and its vertical position was irrelevant.
When the boundary cue was horizontal, the converse was true. We varied
boundary orientation either randomly over trials, or in blocks of random
length (between 7 and 12 trials).

Choice stimuli were placed at the same eccentricity as sample stimuli
(13° from the fixation target). For the boundary–sample data in monkey
1, we selected match and nonmatch choice positions from the same
stimulus array used to position samples (Fig. 1 F, G), with the constraint
that the two choices on each trial were located at equal distances from the
active boundary. For the remaining data (the sample– boundary data in
monkeys 1 and 2), we more fully randomized the position of choice
stimuli, placing them at randomly selected angles on either side of the
active category boundary, with the constraint that match and nonmatch
choices fell at equal distances from the boundary, and the angles of choice
stimuli were !30° from the active category boundary. For example, to
select a position for a choice stimulus to the left of the LR boundary, we
selected an angle at random between 120 and 240°. We then placed the
right choice on the opposite side of the boundary, at one of the two angles
(again selected at random) that would place the right choice at the same
distance from the category boundary as the left choice. Therefore, it was
not possible to predict the location of one choice from the position of the
other with certainty.

Neural recording. We recorded neural activity in prefrontal and poste-
rior parietal cortex simultaneously using two 16 electrode Eckhorn mi-
crodrives (Thomas Recording). Electrodes were 70-!m-outer diameter
glass-coated platinum iridium fibers (impedance, 1–2 M"), advanced
independently under computer control into the brain. The electrical
signal from each electrode was amplified (gain of 2500) and bandpass
filtered (cutoff frequencies of 0.5 Hz and 5 kHz). The waveforms of the
action potentials of individual neurons were isolated on-line using a
combination of time-amplitude window discriminators (Bak Electron-
ics) and waveform discriminators (Alpha Omega Engineering). The tim-
ing of spike occurrence was stored to disk with 40 !s resolution (DAP
5200a Data Acquisition Processor; Microstar Laboratories). We typically
isolated the action potentials of 15–25 parietal neurons and 15–25 pre-
frontal neurons concurrently, and recorded the activity of these neuronal
ensembles as monkeys performed the DYSC task.

Data analysis. We applied ANOVA and linear regression to evaluate
the influence of sample position, rule, and spatial category on the firing
rate of single neurons. We in addition used pattern classification analysis
to decode sample position, rule, and spatial category from patterns of
population activity in parietal and prefrontal cortex. We performed the
regression and decoding analyses using neural firing rates measured in
successive time bins. This produced a time course of regression coeffi-
cients or decoding accuracy that allowed us to quantify variation in the
representation of position, rule, and category by both single neurons and
populations in parietal and prefrontal cortex.

ANOVA/ANCOVA. We used different analyses to isolate neural sig-
nals coding position, rule, and category on sample– boundary and
boundary–sample trials (different approaches were required to isolate
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position and category signals depending on the order in which sample
and boundary cue were presented).

In the sample– boundary data, we presented the sample stimulus first.
The spatial category of the sample was defined later in the trial when the
boundary cue appeared (because the category was a joint function of
stimulus position and boundary orientation). To identify neural activity
that varied as a function of sample position (the first visual stimulus
presented in this data set), we performed a one-way ANOVA on firing
rates in the sample stimulus and subsequent delay period using sample
position as the single factor. To identify neural activity that varied as a
function of spatial category and rule (both defined when the second
stimulus, the boundary cue, appeared), we performed a three-way
ANCOVA on firing rates during the boundary cue and subsequent delay
period. The three factors in this analysis were boundary orientation (LR
or AB), horizontal sample category (left or right), and vertical sample
category (above or below). We defined both the horizontal and vertical
category of the sample stimulus based on its location within the left, right,
upper, or lower halves of the circular stimulus array (regardless of the
orientation of the boundary cue). To factor out a potential influence of
the spatial location of the preceding sample stimulus on neural activity,
we included the firing rate of each neuron during the preceding sample
and delay periods (when spatial position was defined but category was
not) as a covariate in the analysis. Neural signals significantly influenced
by the interaction between rule and category reflected rule-dependent
category-selective activity and were of particular interest for their rele-
vance to executive control of cognitive processing.

On boundary–sample trials, we presented the boundary cue instruct-
ing the categorization rule first, followed by the sample stimulus. The
spatial position and spatial category of the sample were therefore simul-
taneously defined by the presentation of the sample stimulus. To identify
neural activity that varied as a function of the boundary cue, we per-
formed a one-way ANOVA on firing rates in the boundary cue and
following delay periods using the orientation of the boundary cue as the
single factor. We performed two separate ANOVAs on firing rate mea-
sured during the sample stimulus and subsequent delay period that
tested for a significant influence of horizontal and vertical categories,
respectively. Each analysis was a three-way design in which the three
factors were rule, category, and within-category position. In the analysis
evaluating the influence of horizontal category, the category factor had
two levels (left and right), and the within-category position factor had
four or six levels corresponding to the vertical position of the sample in
the 8- or 12-sample position arrays (Fig. 1 F, G). In the analysis evaluating
the influence of vertical category, the category factor had two levels
(above or below), and the within-category position factor had again four
or six levels reflecting the horizontal position of the sample depending on
the sample array used. We defined category-selective neurons in this
dataset as those having firing rates that varied significantly across but not
within spatial category, in either the horizontal or vertical analyses. Rule-
dependent category neurons were those in which the interaction between
rule (boundary orientation) and category was additionally significant.
Neurons coding sample position were identified as neurons with activity
varying as a function of within-category position that did not meet the
above criteria for category selectivity.

Decoding analysis. We also performed a pattern classification analysis
(Klecka, 1980; Johnson and Wichern, 1998; Crowe et al., 2010) to decode
task-defined behavioral variables from patterns of neural activity in pa-
rietal and prefrontal cortex. To obtain a measure of physiological signal
strength and timing that was representative of the cortical areas of inter-
est, we performed the decoding analysis at the population level aggregat-
ing neurons over recording sessions. We matched the activity of neurons
recorded at different times based on the trial repetition of each stimulus
condition. We then used the pattern of firing rates over the neurons in
the population on each trial repetition to decode the position of the
sample stimulus, the orientation of the boundary cue, the spatial category
of the sample, and the rule-dependent spatial category of the sample. We
first performed the ANOVA/ANCOVA on the activity of single neurons
as described above, and then ranked neurons according to the signifi-
cance of the decoded variable on firing rate. We then compared decoding
results when using the most significant 70 neurons, the most significant

200 neurons, or all significant neurons ( p ! 0.05) in parietal and
prefrontal cortex to decode each task variable. Comparing decoding
accuracy across cortical areas using all significant neurons evaluated
differences in neural representation that could potentially involve differ-
ences in the numbers of recruited neurons. Comparing decoding accu-
racy across cortical areas using equal numbers of the most significant
neurons held the size of the populations compared constant [removing
the number of neurons as a potential factor responsible for differences
in decoding accuracy (Averbeck et al., 2003)]. This evaluated differences
in neural representation based on the neurons with the strongest signals in
each cortical area.

We performed each decoding analysis in a time-resolved manner, us-
ing firing rates measured within a sliding window of three or five consec-
utive 50 ms time bins, advanced in 50 ms steps throughout the trial. At
each time step, we measured the firing rate of each neuron within the
short sequence of three or five 50 ms time bins, and concatenated these
rate measurements over neurons in the population to yield a population
rate vector that captured the distribution of firing rates over the popula-
tion during a short span of time (150 –250 ms).

We used fivefold cross-validation in the decoding analysis so that the
neural data we used to decode each behavioral variable never directly
contributed to the parameters of the classification functions we applied.
This prevented overfitting the classification functions to noise in the
sample data and helped to ensure that the classification was robust. We
trained the classifier using neural activity on four-fifths of the trials, and
then decoded behavioral variables using neural activity on the remaining
one-fifth of trials, iterating the analysis (classifying successive one-fifth of
the trials) until all trials were classified.

Each trial repetition in the decoding analysis was represented by a
vector of firing rates capturing the activity pattern in the population.
Training the classifier consisted of computing the mean population ac-
tivity vector associated with each level of the decoded variable in the
training data (defining the population activity patterns on left and right
trials, for example, when decoding horizontal category), as well as com-
puting the covariance matrix between neurons. We then computed the
Euclidean distance between the population activity vector on each test
trial and the various mean activity vectors derived from the training data,
and converted these distances to posterior probabilities under the as-
sumption that the distribution of vectors in each group was multivariate
normal. We classified each test trial to the value of the decoded variable
associated with the greatest posterior probability, using the “classify”
function in the MATLAB statistical toolbox (MathWorks) to compute
the posterior probabilities. The proportion of trials in which the decod-
ing analysis returned the correct value of the behavioral variable given the
stimuli displayed each trial, based only on the activity patterns observed,
provided a metric that quantified the strength with which population
activity coded each behavioral variable. We decoded horizontal categories
(left and right) using the subset of trials performed under the LR rule, and we
decoded vertical categories (above and below) using the subset of trials per-
formed under the AB rule. We then averaged the results obtained when
decoding horizontal and vertical categories.

Decoding rule-dependent categories on error trials. To evaluate whether
neural signals coding rule-dependent category related to successful per-
formance, we compared the accuracy of decoding on correct and error
trials. We restricted the populations used to neurons that had been re-
corded in experiments containing a minimum of 30 errors (this provided
an acceptable trade-off between the numbers of neurons available and
the numbers of error trials analyzed). We then ranked neurons according
the significance of the influence of the interaction between rule and
category on firing rate, and selected the top 50 neurons in each cortical
area and monkey (one-half with preferences for horizontal categories,
one-half with preferences for vertical categories) to include in the popu-
lation. To maximize the sensitivity of the analysis to differences in signal
strength between correct and error trials, we measured firing rates in a
single, larger time bin starting with the onset of the second stimulus in the
sequence (boundary or sample), when rule-dependent category was de-
fined, and ending with the onset of the first choice stimulus. We then
decoded rule-dependent spatial category as a single variable with four
levels (left, right, above, and below) reflecting the combination of
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sample position and boundary orientation.
We trained the classifier using population
activity patterns on correct trials, and then
decoded rule-dependent category on error
trials.

Category selectivity index. We computed a
category-selectivity index (Freedman et al.,
2001, 2002; Roy et al., 2010) for each neuron
identified as category selective based on the re-
sults of the ANOVA/ANCOVA above. The in-
dex contrasts the mean difference in firing rate
(during the second stimulus and subsequent
delay period) for all pairs of sample positions
located in different spatial categories (between-
category difference, or BCD), and all pairs of
sample positions located within the same spa-
tial category (within-category difference, or
WCD). The between-category and within-
category differences reflected the mean differ-
ence in firing rate for all pairs of sample
positions oriented orthogonal and parallel to
the category boundary, respectively. We then
computed the category selectivity index for
each neuron as the difference between these
measures divided by their sum as follows:
(BCD ! WCD)/(BCD " WCD).

Sliding window linear regression analysis. We
used a sliding window linear regression analy-
sis to quantify the magnitude and timing of the
effects that task variables exerted on the firing
rates of single neurons. For this purpose, we
measured the firing rate of each neuron in a
200 ms window advanced in 20 ms increments
through the trial, and fit the firing rates ob-
served at each time step to the following linear
model: F # !0 " !1R " !2H " !3V " !4RH "
!5RV " ", where F is firing rate, R is the cate-
gorization rule signified by the orientation of
the boundary cue (LR or AB), H is the horizon-
tal category of the sample (left or right), and V
is the vertical category of the sample (above or
below). The RH and RV terms capture the in-
teraction between the categorization rule and
horizontal and vertical categories, respectively.
We used the regstats function of the MATLAB
statistical toolbox to estimate the regression
coefficients !0–!5. The analysis produced a
succession of regression coefficients for each
neuron quantifying the magnitude of the rela-
tionship between firing rate and model param-
eters as the rate window was advanced through
the trial.

Statistical tests of differences in neural signals
between cortical areas. To test whether differ-
ences in decoding accuracy across areas were
significant, we applied the z test of proportions
to compare counts of trials producing accurate
and erroneous decoding based on parietal and
prefrontal activity in each time bin. We also
used the sequential trials test (Armitage, 1975)
to determine whether the time series of poste-
rior probabilities computed by the decoding
analysis and the time series of regression coef-
ficients obtained in the regression analysis dif-
fered significantly between cortical areas. The
sequential trials test computes upper and lower
95% confidence boundaries around a mean
zero accumulated difference between two time
series, detecting a significant difference if the

Figure 2. Behavioral performance of monkeys 1 (A–D) and 2 (E–H ) in the DYSC task. The horizontal axis of each plot indicates
the position of the sample stimulus, in degrees angle counterclockwise from the direction to the right of the fixation target (defined
as 0°; sample eccentricity was fixed at 13°). The red- and blue-shaded regions indicate spans of sample angle corresponding to the
spatial categories right and left (A, C, E, G), above and below (B, D, F, H ), respectively. The lines and symbols indicate the
probability (proportion of trials) that monkeys selected choices that were located in the right (red lines) or left (blue lines), above
(blue lines) or below (red lines) spatial categories for each sample position and rule. The vertical dashed lines indicate angles
corresponding to the category boundary under a given rule. A, B, Performance of monkey 1 under the LR rule, when the boundary
cue was vertical. The solid lines indicated performance on trials using the boundary–sample sequence, and the dashed lines
performance on trials using the sample– boundary sequence. A, Under the LR rule, monkey 1 selected left choices with high
probability (blue symbols and lines) when the sample category was left (blue shading), and right choices with high probability (red
symbols and lines) when the sample category was right (red shading). B, Under the LR rule, the vertical category of the choices
selected by monkey 1 (above or below) did not relate systematically to the vertical category of the sample. C, D, Performance of
monkey 1 under the AB rule, when the boundary cue was horizontal. C, Under the AB rule, the horizontal category of the choices
selected by monkey 1 (left or right) did not relate systematically to the horizontal category of the sample. D, In contrast, under the
AB rule, monkey 1 selected above choices with high probability (blue symbols and lines) when the sample category was above
(blue shading), and below choices with high probability (red symbols and lines) when the sample category was below (red
shading). E–H, Corresponding data for monkey 2.
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accumulated difference crosses one of the
boundaries. The distance between the upper
and lower confidence boundaries increases
over time to offset the increasing probability of
getting larger accumulated differences by
chance as a function of time after the start of
the test. The slope of the confidence boundar-
ies is a function of the ! level (0.05) and the
minimum effect size being evaluated. We im-
plemented the analysis to evaluate significance
using an effect size of 0.8.

Results
Behavioral performance
Monkey 1 performed the DYSC task at a
level of 86.5 and 84.9% correct for bound-
ary–sample and sample– boundary stim-
ulus sequences, respectively. Monkey 2
performed the DYSC task at a level of
85.0% correct for the boundary–sample
stimulus sequence. The DYSC task re-
quired monkeys to flexibly parse the cir-
cular stimulus array into two orthogonal
pairs of spatial categories: left/right and
above/below. Figure 2 plots choice prob-
ability as a function of sample position
and boundary orientation (sample posi-
tion is indicated in polar coordinates
along the x-axis in degrees counterclock-
wise relative to 0°, to the right of fixation).
The blue and red shading indicate spans of
sample angle that correspond to left and
right spatial categories (Fig. 2A,C,E,G),
as well as above and below spatial catego-
ries (Fig. 2B,D,F,H).

Under the LR rule, instructed by the
vertical boundary cue, both monkeys se-
lected left choices with high probability
(Fig. 2A,E, blue lines) when the sample
had appeared in the left spatial category
(Fig. 2 A, E, blue-shaded regions), and
right choices with high probability when
the sample had appeared in the right spa-
tial category (Fig. 2A,E, red lines and re-
gions). The vertical category of the sample
had little influence on vertical choice
probability under the LR rule (Fig. 2B,F).
On trials in which the category boundary
was rotated to instruct the AB categoriza-
tion rule (horizontal boundary), both
monkeys no longer systematically based
their choices on the horizontal category of
the sample (Fig. 2C,G), but rather selected
above choices with high probability (Fig.
2D,H, blue lines) when the sample had
appeared in the above spatial category
(Fig. 2D,H, blue-shaded regions), and be-

Figure 3. Rasters and spike density functions illustrate the activity of single neurons in parietal cortex (A, C, E) and prefrontal
cortex (B, D, F ) varying significantly ( p ! 0.05) as a function of sample position (A, B), rule (or boundary orientation) (C, D), and

4

spatialcategory(E,F).Neuralactivityassociatedwiththepreferred
position, rule, or category of each neuron is illustrated in the upper
raster of each panel and activity on nonpreferred trials is illustrated
in the lower raster (the thin blue line in the lower rasters shows
activity on preferred trials for comparison).
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low choices with high probability when the sample had appeared
in the below spatial category (Fig. 2D,H, red lines and regions).

The performance of both monkeys was less accurate under the
AB rule, particularly on trials in which the sample stimulus had
been presented near the horizontal category boundary (Fig.
2D,H; sample angles near 0 and 360°). This suggests that vertical
categorization was more difficult for both monkeys. Nonetheless,
the points of inflection of choice probability functions were lo-

cated near the angles corresponding to the
active category boundary, both for the LR
rule (Fig. 2A,E; response probability
functions cross near the vertical dashed
lines indicating the angles of the vertical
boundary cue at 90 and 270°) and also the
AB rule (Fig. 2D,H; functions cross near
the vertical dashed lines indicating the an-
gles of the horizontal boundary cue at 0,
180, and 360°). Furthermore, in both
monkeys, choice probability clearly re-
flected an interaction between sample po-
sition and categorization rule, even for
their weaker performance under the AB
rule. These data are evidence that mon-
keys assigned the same set of visual stimuli
to different sets of spatial categories in a
flexible and rule-dependent manner.

Neural database
We recorded the activity of 1016 neurons
in parietal cortex and 977 neurons in pre-
frontal cortex of two monkeys performing
the DYSC task. In monkey 1, we recorded
the activity of 504 parietal neurons and
496 prefrontal neurons. Of these, 705
neurons were recorded using the bound-
ary–sample stimulus sequence and 295
neurons using the sample– boundary
stimulus sequence. In monkey 2, we re-
corded the activity of 512 parietal neurons
and 481 prefrontal neurons using the
sample– boundary stimulus sequence.

Network representation of spatial
position, rule, and category
The position of the sample stimulus, the
orientation of the boundary cue, and the
spatial category of the sample com-
prised the primary spatial variables de-
fined by the DYSC task. We found that
populations of single neurons coding
each of these spatial variables were dis-
tributed between parietal and prefrontal
cortex (Fig. 3). Individual parietal neu-
rons (Fig. 3 A, C,E) and prefrontal neu-
rons (Fig. 3 B, D,F ) exhibited firing rates
that varied significantly as a function of
sample position (Fig. 3 A, B), the catego-
rization rule (Fig. 3C,D), and the spatial
category of the sample (Fig. 3 E, F ).

Neurons with activity relating exclu-
sively to the main effect of either posi-
tion, rule, or category in the ANOVA/
ANCOVA were encountered in parietal

cortex (Fig. 4 A, B, black) and prefrontal cortex (Fig. 4 A, B,
gray), both in monkey 1 (Fig. 4 A) and monkey 2 (Fig. 4 B).
There was a tendency for pure rule neurons to be more com-
mon in parietal cortex, and pure category neurons to be more
common in prefrontal cortex in the two monkeys (Fig. 4 A, B),
and the distribution of neuronal types varied significantly be-
tween parietal and prefrontal cortex in monkey 1 (Fig. 4 A;
!2 ! 8.28; p " 0.05) and in monkey 2 (Fig. 4 B; !2 ! 14.39; p "

Figure 4. Proportion of task-related neurons in parietal cortex (black) and prefrontal cortex (gray) in which firing rate related
significantly ( p " 0.05) to the main effects of position, rule, and category in the ANOVA/ANCOVA (relative to the total number of
neurons exhibiting any significant effect) in monkey 1 (A) and monkey 2 (B). Counts of parietal neurons (black) and prefrontal
neurons (gray) exclude neurons significant for multiple main factors.

Figure 5. Plots of decoding accuracy over time indicate the proportion of trials in which sample position (A, B), rule (C, D), and
spatial category (D, E) were accurately decoded from population activity patterns measured in successive 50 ms time bins in
parietal cortex (red) and prefrontal cortex (blue). Data from monkey 1 (A, C, E) and monkey 2 (B, D, F) are plotted separately. Time
bins in which the proportion of correctly decoded trials varied significantly between prefrontal and parietal cortex are indicated by
filled circles and sections of the time courses plotted with a thicker line (z test of proportions, " level indicated in each panel).
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Figure 6. Rasters and spike-density functions (!! 20 ms) illustrate rule-dependent, category-selective activity of a neuron in parietal cortex (A, B) and a neuron in prefrontal cortex (C, D). The
activity of both neurons was significantly influenced by the interaction between rule and category ( p " 0.05). A, Activity of the parietal neuron on LR rule trials (vertical boundary cue) using the
boundary–sample sequence. B, Activity of the same parietal neuron on AB rule trials (horizontal boundary cue). The neuron exhibits a moderate increase in firing rate late in the delay period
following the presentation of the sample stimulus when the sample was located in the above spatial category (positions 1– 6: diagram of sample positions at right). C, Activity of the prefrontal
neuron on LR rule trials (vertical boundary cue) using the boundary–sample sequence. D, Activity of the same prefrontal neuron on AB rule trials (horizontal boundary cue). The neuron was strongly
activated during the boundary period and the subsequent delay period on trials in which the sample stimulus was located in the above spatial category (positions 1– 4; diagram of sample positions
at right). The black bars labeled “S” and “B” indicate the sample and boundary periods, respectively. The red tick mark on each row of the rasters indicates the time at which the monkey depressed
the response key.

3506 • J. Neurosci., March 7, 2012 • 32(10):3499 –3515 Goodwin et al. • Executive Control of Rule-Based Categorization



0.001). Considering counts of neurons including those with
combinations of main effects, we obtained a similar result with
an overrepresentation of rule neurons in parietal cortex and
category neurons in prefrontal cortex. In this analysis, there
was a significant relationship between cortical area and neu-
ronal type in monkey 2 (!2 ! 12.05; p " 0.005), and a trend in
this direction in monkey 1 (!2 ! 5.10; p ! 0.07).

To compare the strength and timing of physiological sig-
nals in parietal and prefrontal cortex coding sample position,
rule, and spatial category, we applied a pattern classification
analysis to decode these task variables from population activ-
ity patterns measured in successive 50 ms time bins on trials
using the sample– boundary sequence. Population signals
coding the position of the sample stimulus were either earlier
(Fig. 5A) and/or stronger (Fig. 5B) in parietal cortex relative to
prefrontal cortex in the two monkeys (Fig. 5; dots and thicker
lines indicate a significant difference in the proportion of cor-
rectly decoded trials between cortical areas). Population sig-

nals coding the orientation of the category boundary (the rule)
were likewise earlier and stronger within parietal cortex rela-
tive to prefrontal cortex in both monkeys (Fig. 5C,D). We
obtained the reverse result in the relative strengths with which
parietal and prefrontal cortex represented spatial category.
Population signals reflecting the spatial category of the sample
were stronger and earlier in prefrontal cortex relative to pari-
etal cortex in both monkeys (Fig. 5 E, F ). These data are con-
sistent with signals reflecting visual features of stimuli flowing
in a forward direction from parietal to prefrontal cortex, and
signals reflecting abstract spatial categories in our task flowing
in the reverse direction, from prefrontal to parietal cortex.

Modulation of category representations by rules in the
prefrontal-parietal network
Modulation of neural signals coding spatial category as a function
of the rule provided a neural correlate of executive control over a
spatial cognitive process. Figure 6 illustrates the rule-dependent

Figure 7. Spike density functions ("!40 ms) illustrate the activity time course of individual neurons (4 each in parietal and prefrontal cortex) exhibiting activity that was significantly influenced ( p"0.05)
by the interaction between rule and either horizontal or vertical category in the ANCOVA. A–D, Plots illustrate the activity of four parietal neurons exhibiting rule-dependent category selectivity. Activity on trials
when the sample was located in the right (black) and left (gray) spatial categories is plotted separately for neurons with horizontal category preferences (B, D). Activity on trials when the sample was located in
the above (gray) and below (black) spatial categories is plotted separately for neurons with vertical category preferences (A, C). In each pair of plots in each panel, activity on compatible rule trials (e.g., the LR rule
for neurons preferring horizontal categories, or the AB rule for neurons preferring vertical categories) is plotted on the left, and activity on incompatible rule trials on the right. E–H, Corresponding data for four
prefrontal neurons.
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and category-selective activity of a neuron in parietal cortex (Fig.
6A,B) and a neuron in prefrontal cortex (Fig. 6C,D). Both neu-
rons were preferentially activated when sample stimuli appeared
in any one of the positions located in the above spatial category
(in the upper half of the circular stimulus array), but only when
the AB rule was in force (Fig. 6B,D; numbers next to each raster
correspond to stimulus positions at right). When sample stimuli
were presented in the same positions under the LR rule, the pref-
erence for sample positions in the above category was no longer
evident in either neuron (Fig. 6A,C). This is evidence that
category-selective activity in these cells was jointly determined by
stimulus position and the categorization rule. For example,
category-selective activity in these neurons did not depend solely
on the position of the sample stimulus, or the neurons would
have been active when samples appeared in the upper positions of

the stimulus array under the LR rule (Fig. 6A,C) as well as the AB
rule (Fig. 6B,D). By the same token, the activity of these neurons
did not depend solely on the orientation of the boundary cue
either, or the neurons would have been active on all trials in
which the boundary cue was horizontal, instructing the AB rule,
and not just the subset of these trials associated with the upper
category (Fig. 6B,D). This joint dependence is further indicated
by the observation that the prefrontal neuron, tested with the
sample– boundary sequence, did not respond immediately when
the sample stimulus appeared (Fig. 6D, black bars labeled “S”),
but rather responded later in the trial when the boundary cue had
been presented (Fig. 6D, black bars labeled “B”), and the two
pieces of information (sample position and boundary orienta-
tion) had been provided that were required to compute rule-
dependent category. Comparing the activity of the two neurons,

Figure 8. Average normalized population SDFs (!! 40 ms) illustrate the activity of neurons coding rule-dependent category in parietal cortex and prefrontal cortex. Separate SDFs in each plot
illustrate the activity of the same neural population on trials that the sample was assigned to the preferred (black) and nonpreferred (gray) category of each neuron. Pairs of plots comprising each
panel (A–H) illustrate population activity under the LR and AB categorization rules, respectively (the number of neurons in each population is indicated in the bottom right corner of the right plot
of each pair). Neurons were included if their activity during the boundary and following delay periods related significantly ( p " 0.05) to horizontal category and its interaction with rule, or vertical
category and its interaction with rule. Neurons were excluded if their activity related to sample position ( p " 0.1) during the sample or subsequent delay periods. The vertical lines delineate the
sample period (black bar labeled “S”) and the boundary cue period (black bar labeled “B”), and indicate the presentation of the first choice (“C1”). A, C, Population SDFs illustrating the activity of
neurons selective for horizontal categories under the LR rule (left) and AB rule (right) recorded using the sample– boundary sequence. B, D, Population activity of neurons selective for vertical
categories under the LR rule (left) and AB rule (right) recorded using the sample– boundary sequence. E–H, Corresponding data for activity recorded using the boundary–sample sequence.
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the prefrontal neuron exhibited notably stronger category-
selective activity (Fig. 6D) relative to the parietal neuron (Fig.
6B), a pattern that is consistent with the differential representa-
tion of rule-dependent categories at the population level between
the two cortical areas that we document below.

Figure 7 provides additional single-neuron examples of rule-
dependent and category-selective activity that were recorded in
parietal (Fig. 7A–D) and prefrontal (Fig. 7E–H) cortex using the
sample– boundary sequence. Neurons selectively encoding hori-
zontal categories (Fig. 7B,D,G) and vertical categories (Fig.
7A,C,E,F,H) as a joint function of sample position and bound-
ary orientation were distributed to both cortical areas.

To compare this neural signal between cortical areas at the
population level, we constructed average normalized population
spike density functions (SDFs) including all neurons in parietal
and prefrontal cortex in which activity related significantly (p !
0.05) to the interaction between rule and category (Fig. 8). The
population activity functions parallel the single-neuron examples
(Figs. 6, 7). Activity in a group of neurons in parietal and prefron-
tal cortex differentiated left and right spatial categories under the
LR rule, but not under the AB rule (Fig. 8A,C,E,F). Activity in
another, largely distinct group of neurons in both cortical areas
differentiated above and below spatial categories under the AB
rule, but not under the LR rule (Fig. 8B,D,G,H). This basic pat-
tern was evident whether using the sample– boundary sequence
(Fig. 8A–D) or the boundary–sample sequence (Fig. 8E–H). In
both cases, rule-dependent category signals emerged after the
second stimulus in the sequence had been presented.

Neurons with activity significantly influenced by the interac-
tion between rule and category were encountered with compara-

ble frequency in parietal and prefrontal
cortex. The firing rate of 26% of parietal
neurons (130 of 504) and 29% of prefron-
tal neurons (142 of 496) was significantly
influenced by the interaction between
rule and category in monkey 1. In mon-
key 2, the firing rate of 17% of parietal
neurons (86 of 512) and 16% of pre-
frontal neurons (78 of 481) was signifi-
cantly influenced by the interaction
between rule and category.

We computed a category-selectivity
index based on the one developed in prior
studies of the neural correlates of catego-
rization (Freedman et al., 2001, 2002; Roy
et al., 2010). The index ranges between
"1, to indicate differences in firing rate
between but not within categories, and #1,
to indicate the converse. We computed the
index for each category-selective neuron on
compatible and incompatible rule trials.
The category index was significantly larger
on compatible rule trials when the category
information each neuron carried was rele-
vant to the choice that monkeys had to make
(Fig. 9A,B), than when that category infor-
mation was irrelevant (Fig. 9C,D), both in
parietal cortex (t test; 0.23 vs #0.05; p !
0.0001), and prefrontal cortex (t test; 0.25 vs
#0.03; p ! 0.0001). The degree of category
selectivity in prefrontal cortex measured by
the index on compatible rule trials (mean
index, 0.25) was comparable with that re-

ported in prior studies of categorization (mean index, 0.16) (Roy et
al., 2010).

We applied pattern classification to population activity in pa-
rietal and prefrontal cortex to generate a decoding time course
that measured fluctuation in the strength of signals coding rule-
dependent spatial categories in the two cortical areas. To quantify
the degree to which category signals exhibited rule dependence,
we contrasted the accuracy of decoding on trials when the rule
made the category preference of each neuron relevant or irrele-
vant to the required behavioral choice. For example, the activity
of neurons preferring the “left” or “right” spatial categories car-
ried task relevant category information under the LR rule, but the
category information carried by these cells was irrelevant under
the AB rule, because horizontal categories were irrelevant to
choice selection under this rule. The strength of the category
signal as measured at the population level by decoding accuracy
was strongly modulated by the categorization rule and therefore
task relevance in both cortical areas and monkeys (Fig. 10). When
the category information carried by neurons was task relevant
under the current rule, decoding accuracy in parietal cortex (Fig.
10, red) and prefrontal cortex (Fig. 10, blue) increased shortly
after the onset of the second stimulus in the trial sequence,
whether the boundary cue (Fig. 10A,B,D,E) or the sample (Fig.
10G,H). Decoding accuracy peaked in the range of 80 –90% cor-
rect in monkey 1 (Fig. 10A,B;G,H) and 65– 80% correct in mon-
key 2 (Fig. 10D,E). When the category information carried by
neurons was irrelevant to the task under the current categoriza-
tion rule, decoding accuracy based on the activity of the same
populations of neurons was significantly reduced in parietal cor-
tex (Fig. 10A,D,G) and prefrontal cortex (Fig. 10B,E,H; “incom-

Figure 9. Distribution of the category selectivity index for single neurons recorded using the sample– boundary sequence in
parietal and prefrontal cortex. Neurons were included if their activity related significantly to either horizontal or vertical category
( p ! 0.05 by ANCOVA/ANOVA). The vertical white dashed line indicates the mean value of the category index in each distribution.
A, Distribution of category index values in parietal cortex on trials in which the rule was compatible with the category preference
of each neuron. B, Distribution of category index values in prefrontal cortex on compatible rule trials. C, Distribution of category
index values in parietal cortex on incompatible rule trials (same neural sample as in A). D, Distribution of category index values in
prefrontal cortex on incompatible rule trials (same neural sample as in B).
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patible rule,” black time courses). Time bins in which the
proportion of correctly decoded trials differed significantly (p !
0.05) as a function of the categorization rule are indicated by
black circles and thicker sections of the decoding time courses
(Fig. 10; the large majority of time bins with significant rule mod-
ulation cluster in the period following the presentation of the
second stimulus in the trial sequence). We obtained comparable
decoding results whether decoding was based on the firing rates
of the top 70 (Fig. 10; solid lines), the top 200 (Fig. 10; dashed
lines), or all significant neurons (Fig. 10; dotted lines) in each
cortical area, providing evidence that the decoding results were
representative of the signals present within parietal and pre-
frontal cortex. Rule modulation of category signals did not
seem to be contingent on the visual properties of the stimuli

that elicited these effects, namely the sample or boundary
stimuli, as rule modulation could occur following the presen-
tation of either stimulus. In the sample– boundary data, de-
coding accuracy was generally near chance levels (50%
correct) on trials when the rule made the category preference
of neurons irrelevant to the required choice (Fig. 10 A, B, D, E;
incompatible rule). On boundary–sample trials, decoding ac-
curacy remained above chance levels on incompatible rule
trials (Fig. 10G,H ). The more accurate decoding on incompat-
ible rule trials under the boundary–sample sequence suggests
that signals reflecting the category of visible stimuli (Fig.
10G,H ) are less completely modulated by rules than signals
reflecting the category of stimuli stored in working memory
(Fig. 10 A, B, D, E).

Figure 10. Decoding time courses illustrate fluctuation in the accuracy of decoding spatial category based on population activity patterns in parietal cortex (red) and prefrontal cortex (blue),
measured in successive 50 ms time bins. Separate decoding time courses in each panel plot the results obtained using population activity on trials in which the rule was compatible with the category
preference of each neuron (red and blue), and trials in which the rule was incompatible (black). Time bins in which the proportion of correctly decoded trials differed significantly between compatible
and incompatible rule trials are indicated by black circles and corresponding thicker sections of the decoding time courses. Neurons in this analysis were ranked according to the p value associated
with the interaction between rule and category in the ANOVA/ANCOVA, and then varying numbers of the most significant neurons were selected to include in the populations used for the decoding.
Decoding results indicate the accuracy obtained when based on the activity of the most significant 70 neurons (solid lines), the most significant 200 neurons (dashed lines), or all significant neurons
(dotted lines) in each cortical area and monkey. A, B, Decoding accuracy obtained when using population activity in parietal cortex (A) and prefrontal cortex (B) of monkey 1 on sample– boundary
trials. The difference between decoding accuracy on compatible and incompatible rule trials measures the modulation of category signals by the rule. For the decoding analysis including all
significant neurons, 55 neurons in parietal cortex and 58 neurons in prefrontal cortex contributed. C, The blue and red time courses indicate the mean posterior probability over time (averaged over
trials) associated with the correct spatial category on compatible rule trials, based on neural activity in prefrontal and parietal cortex, respectively (data from monkey 1 on sample– boundary trials).
The black time course illustrates the cumulative difference between the two time series. The diagonal dashed lines indicate the upper and lower confidence boundaries established by the sequential
trials test. The cumulative difference function crosses the upper confidence boundary, indicating that the posterior probability is significantly larger in prefrontal cortex relative to parietal cortex
( p ! 0.05). D–F, Corresponding data from monkey 2 on sample– boundary trials. For the decoding analysis including all significant neurons, 62 neurons in parietal cortex and 90 neurons in
prefrontal cortex contributed. G–I, Corresponding data from monkey 1 on boundary–sample trials. For the decoding analysis including all significant neurons, 104 neurons in parietal cortex and 120
neurons in prefrontal cortex contributed.
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In addition to classifying trials to categories based on patterns
of population activity observed in each time bin, the decoding
analysis also provided the posterior probability, or confidence,
associated with each classification. We constructed time courses
of the mean posterior probability in the decoding analysis asso-
ciated with the correct category on compatible rule trials using
the activity of the same populations of neurons (Fig. 10C,F, I).
The mean posterior probability was greater and/or increased ear-
lier in prefrontal cortex (Fig. 10C,F, I; blue time course) relative
to parietal cortex (Fig. 10C,F, I; red time course), indicating a
stronger representation of the correct rule-dependent category in
prefrontal cortex. We applied the sequential trials test (Armitage,
1975) to determine whether differences in the posterior proba-
bility time series differed significantly between parietal and pre-
frontal cortex. The test evaluates significance by determining
whether the cumulative difference between two time series
crosses one of two 95% confidence boundaries centered around a
mean difference of 0 (the distance between boundaries increases
over time to compensate for the increasing probability of accu-
mulating larger differences between the series over time by
chance). Applied to the posterior probability time series, the test

confirmed that posterior probabilities as-
sociated with the correct rule-dependent
category in each trial were significantly
greater in prefrontal cortex relative to pari-
etal cortex in each monkey, and using both
stimulus sequences (Fig. 10C,F,I; the cu-
mulative difference functions, shown as
thick black lines, increase monotonically
upward to cross the upper boundary indi-
cating significantly larger values in prefron-
tal cortex). To confirm this result, we
computed posterior probability based on
firing rates in a 150 ms time bin advanced in
150 ms steps (so that the same action poten-
tials did not contribute to successive values),
and then tested the significance of the differ-
ence between parietal and prefrontal cortex
in the mean posterior probability observed
during the second stimulus and subsequent
delay periods (by t test). The mean posterior
probability associated with the correct rule-
dependent spatial category was significantly
greater in prefrontal cortex than parietal
cortex in monkey 1 on sample–boundary
trials (0.62 vs 0.57; p ! 10"4), monkey 2 on
sample–boundary trials (0.59 vs 0.55; p !
10"7), and monkey 1 on boundary–sample
trials (0.74 vs 0.63; p ! 10"11).

To evaluate whether the depth of mod-
ulation of category signals as a function of
rule varied significantly across cortical ar-
eas, we performed a two-way ANOVA on
the posterior probability associated with
the spatial category of the sample using
cortical area and rule compatibility as fac-
tors. (The rule compatibility factor con-
trasted posterior probabilities computed
using activity on separate subsets of trials
in which the rule was compatible or in-
compatible with the category preference
of each neuron.) We combined the
boundary–sample and sample– boundary

data in monkey 1 for this analysis and performed the decoding in
both monkeys based on firing rates measured within a 150 ms
time bin advanced in 150 ms steps (during the second stimulus
and subsequent delay period). We detected a significant interac-
tion between cortical area and rule compatibility in the analysis,
with stronger rule effects on category signals in prefrontal cortex,
both in monkey 1 (F # 5.72; p ! 0.05), and monkey 2 (F # 8.02;
p ! 0.005).

To quantify the influence of rule, category, and their interac-
tion on the activity of single neurons, we measured the firing rate
of each neuron (without preselection) within a sliding 200 ms
window advanced in 20 ms steps, and regressed firing rate over
trials at each time step onto category, and the interaction between
category and rule. The regression analysis produced a time series
of regression coefficients for each neuron showing the strength of
the relationship between firing rate and spatial category, as well as
the interaction between category and rule, at each time step (Fig.
11). We found by this analysis that neurons tended to exhibit
their strongest relationship to category and the interaction with
rule for a relatively short duration, and that the time at which this
occurred was distributed in the interval after the onset of the

Figure 11. Time course of regression coefficients obtained for category and the interaction between category and rule for
individual neurons in parietal and prefrontal cortex. Each row in the color plots indicates the time series of regression coefficients
obtained for a single neuron normalized to the peak coefficient for that neuron. In monkey 1, data from sample– boundary and
boundary–sample trials are aligned to the onset of the second stimulus (“S2”) and combined. (The two data sets shared the same
duration of S2. The different durations of the first stimulus, S1, included in these data are indicated by the black and white portions
of the bar marked “S1.” The different timings of the onset of the first choice are indicated by vertical lines marked “C1a” and
“C1b.”) A, B, Regression coefficients for category (A) and the interaction between rule and category (B) obtained for parietal
neurons in monkey 1. The white lines show the time of peak coefficients in prefrontal cortex (Prefrontal peak) of the same monkey
for comparison. C, D, Regression coefficients for category (C) and the interaction between rule and category (D) obtained for
prefrontal neurons in monkey 1. The white lines show the time of peak coefficients in parietal cortex (Parietal peak) of this monkey
for comparison. The dark blue regions indicate time points at which coefficients were nonsignificant. E–H, Corresponding data for
monkey 2.
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second stimulus and the first choice stim-
ulus in the trial. Ranking neurons accord-
ing to the time of the peak coefficient,
early to late from bottom to top in Figure
11, produced a diagonal band of color in
each plot indicating the rate at which neu-
rons were recruited to represent category
or its interaction with rule in each cortical
area. Pairs of plots illustrating recruit-
ment in parietal and prefrontal cortex for
a given variable include equal numbers of
neurons in the two areas so the slopes of
the lines of color indicating neuronal re-
cruitment can be visually compared
across areas. Neurons with activity reflect-
ing spatial categories (Fig. 11A,C;E,G)
and the interaction between rule and cat-
egory (Fig. 11B,D;F,G) were recruited at
a faster rate or at earlier times in the trial in
prefrontal cortex compared with parietal
cortex, in both monkey 1 (Fig. 11A–D)
and monkey 2 (Fig. 11E–H).

We compared the mean population re-
gression coefficient for the interaction
between rule and category obtained in pa-
rietal and prefrontal cortex at each time
point in the trial (Fig. 12). (Mean popula-
tion coefficients are small because all neu-
rons in each population were included in
computing the population average, and
only a few neurons in the population were
active at any one time, so that most of the
coefficients contributing to the popula-
tion average at each time point were non-
significant and therefore 0.) We restricted
this analysis to the neurons with the stron-
gest signals, in which the peak coefficient
was significant at p ! 0.01 and was "3 Hz.
We found that the rising edge of the in-
crease in the mean population coefficient
for the interaction between rule and cate-
gory lead in prefrontal cortex and fol-
lowed in parietal cortex (Fig. 12A,B), and
that the regression coefficient for the in-
teraction was significantly larger in pre-
frontal cortex than parietal cortex (Fig.
12C,D; sequential trials test). To confirm
the significance of this difference between
cortical areas, we reran the regression analysis using a 100 ms
time bin advanced in 100 ms steps, and found that the mean
population coefficient for the interaction between rule and cate-
gory during the second stimulus and subsequent delay periods
was significantly larger (by t test) in prefrontal cortex than pari-
etal cortex, both in monkey 1 (0.69 vs 0.47; p ! 0.05) and in
monkey 2 (0.99 vs 0.49; p ! 10#9).

To evaluate the significance of differences in the timing of this
signal between cortical areas, we compared the mean time to the
half-maximum coefficient for the interaction between rule and
category in parietal and prefrontal neurons. In monkey 1, the
time to the half-maximum coefficient in prefrontal cortex (Fig.
12E,G; blue bars and line; mean, 582.7 ms after onset of the
second stimulus) was significantly earlier than the time to half-
maximum in parietal cortex (Fig. 12E,G; red bars and line; mean,

726.1 ms; t $ 2.05; p ! 0.05). Likewise in monkey 2, the time to
the half-maximum coefficient in prefrontal cortex (Fig. 12F,H;
blue bars and line; mean, 679.5 ms) was significantly earlier than
the time to half-maximum coefficient in parietal cortex (Fig.
12F,H; red bars and line; mean, 886.15 ms; t $ 2.33; p ! 0.05).

Although the neurophysiological signal reflecting the interac-
tion between rule and category was significantly earlier in pre-
frontal cortex than parietal cortex in both monkeys, neurons
exhibiting this signal were coactivated to a considerable degree in
the two areas, providing evidence that the executive control of
categorization was a distributed process. Furthermore, it is im-
portant to note that it is not possible by single-neuron recording
to determine whether the first neurons carrying the signal reflect-
ing the interaction between rule and category were located in
prefrontal or parietal cortex. Rather, these data provide evidence

Figure 12. Comparison of the strength and timing of regression coefficients obtained for the interaction between rule and
category in parietal and prefrontal neurons (data restricted to regression coefficients that were significant at p ! 0.01). A, B, Plots
illustrate variation over time in the mean population regression coefficient for the interaction in parietal cortex (red lines) and
prefrontal cortex (blue lines) of monkey 1 (A) and monkey 2 (B). C, D, Results of sequential trials tests applied to population
coefficient time series in parietal and prefrontal cortex in monkey 1 (C) and monkey 2 (D), starting at the onset of the second
stimulus in the trial sequence. The thick black lines indicate the cumulative difference between population coefficient time series
in the two cortical areas (prefrontal # parietal). The cumulative difference functions deflect upward and cross the upper confi-
dence boundary (at the points indicated by the vertical blue lines), indicating that the coefficient for the interaction between rule
and category is significantly larger in prefrontal cortex ( p ! 0.05, minimum effect size of 0.8). E, F, Frequency distribution
histograms of the time to the half-maximum regression coefficient for the interaction between rule and category in prefrontal
cortex (blue bars) and parietal cortex (red bars) of monkey 1 (E) and monkey 2 (F). G, H, Cumulative distributions of the time to the
half-maximum regression coefficient for the interaction between rule and category in prefrontal cortex (blue lines) and parietal
cortex (red lines) of monkey 1 (G) and monkey 2 (H).

3512 • J. Neurosci., March 7, 2012 • 32(10):3499 –3515 Goodwin et al. • Executive Control of Rule-Based Categorization



that on average, neurons with stronger signals were more rapidly
recruited to reflect the interaction between rule and category in
prefrontal cortex.

Relationship of rule-dependent category representation to
successful performance
To determine whether the strength of neural signals reflecting the
executive control of categorization related to behavioral perfor-
mance, we compared the accuracy of decoding rule dependent
category as a single variable with four levels (left, right, above,
below) using neural activity on correct and error trials. We found
that decoding accuracy was significantly reduced on error trials
(Fig. 13, gray) relative to correct trials (Fig. 13, black) in both
cortical areas and monkeys. Erroneous choices were therefore
preceded by a failure of the prefrontal-parietal network to accu-
rately encode the correct rule-dependent spatial category of the
sample.

Discussion
Executive control involves determining not only what action to
take, but what cognitive process to execute to select the best ac-
tion in a given context. Our objective in this experiment was to
better understand how physiological signals in prefrontal cortical
networks mediate executive control over cognitive processing.
To approach that goal, we developed a task in which monkeys had
to selectively implement competing cognitive processes in re-
sponse to a rule cue. We then sought to isolate neural signals that
reflected rule-dependent cognitive processing in the prefrontal-
parietal network. The task we developed for this purpose required
monkeys to flexibly reassign the same circular array of stimulus
positions into different spatial categories according to different
categorization rules or grouping criteria on a trial-by-trial basis.
This task allowed us to isolate neural signals in the network that
were selective for spatial categories and were also rule dependent,
providing a cellular correlate of executive control over a cognitive
process. By characterizing the timing and distribution of this
physiological signal in the prefrontal-parietal network, we sought
to understand further how the network implemented the com-

putational flexibility the task required, and what the respective
roles of parietal and prefrontal cortex in this computational flex-
ibility might be.

We report several primary findings. First, the spatial variables
defined by the DYSC task—spatial position, rule (boundary ori-
entation), and spatial category—were each represented at the
cellular level by the parallel activation of neurons with similar
physiological properties in parietal and prefrontal cortex. Neural
representations related to task performance therefore were fun-
damentally distributed in this network. However, population de-
coding revealed that signals reflecting the spatial attributes of
visual stimuli (sample position and boundary orientation)
emerged earlier and/or were stronger in parietal cortex (area 7a)
relative to prefrontal cortex (area 46), consistent with a feedfor-
ward of visually evoked signals in the network. Conversely, we
found that signals reflecting the spatial category of the sample
were stronger and emerged earlier in prefrontal cortex relative to
parietal cortex, consistent with a feedback of abstract category
signals in the network. This suggests that, within the context of
this task, the spatial category signal may originate in prefrontal
cortex.

Second, a primary objective of the current experiments was to
better understand the neural mechanism by which the brain was
able to assign one stimulus to multiple alternative categories ac-
cording to a variable rule, and we detected a direct neural corre-
late of this computational flexibility. We found that single
neurons exhibited activity that was both category selective and
also rule dependent (Figs. 6 –12). Neurons of this class were acti-
vated in the case that the sample stimulus was assigned to the
preferred spatial category of each neuron, but only when that
category was compatible with the rule in force, in which case the
category information carried by neurons was task relevant and
provided a basis to select the correct choice. This context-
dependent activation of neuronal populations coding categories
appears to reflect executive control over a cognitive process, as
opposed to a sensorimotor process, in the sense that rule-
modulated neurons encoded abstract information (a spatial cat-
egory) rather than sensorimotor information (such as the
position of a stimulus or direction of forthcoming movement).
We found that rule-modulated category neurons were distrib-
uted between prefrontal and parietal cortex, suggesting that the
executive control of spatial categorization was a network-level
process, involving at a minimum these two cortical areas (and
most probably others).

Third, by comparing the strength and timing of rule-
modulated category signals in the prefrontal-parietal network,
we obtained evidence that executive control over spatial catego-
rization in our task may originate within the prefrontal cortex.
Specifically, we found that neural signals coding rule-dependent
spatial categories (1) were stronger, (2) more deeply modulated
by the rule, and (3) emerged earlier in prefrontal cortex relative to
parietal cortex. The conclusion that signals reflecting the execu-
tive control of categorization were stronger and earlier in pre-
frontal cortex was strengthened by the fact that these
observations were confirmed significant in each of the two mon-
keys considered individually. However, it is important to note
some aspects of executive control as defined by our task were
represented by neural signals that emerged in parietal cortex first,
notably the signal reflecting the categorization rule, although this
signal may have reflected the visual attributes of the boundary cue
instructing the rule, rather than an abstract rule per se.

Prior work on the neural mechanisms of categorization in the
somatosensory system has shown that neural signals reflecting

Figure 13. Relationship of population decoding accuracy to behavioral performance. In this
analysis, population activity was used to decode rule-dependent spatial category defined
jointly by sample position and boundary orientation and coded as a categorical variable with
four levels (left, right, above, and below). Decoding is based on the 50 neurons in each cortical
area and monkey having activity most significantly related to the interaction between rule and
category. Decoding accuracy was significantly reduced on error trials (gray) relative to correct
trials (black), both in parietal cortex and prefrontal cortex in monkeys 1 and 2 considered
individually. The significance of the difference in decoding accuracy on correct and error trials,
evaluated using the z test of proportions, is as indicated by asterisks in the figure. Chance
decoding (given 4 categories) is 25% correct.
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the category of vibrotactile stimuli are distributed between the
supplementary motor area (SMA) and pre-SMA (Romo et al.,
1993, 1997). Prior work in visual categorization has shown that
neurons coding object categories based on shape are distributed
between prefrontal and inferotemporal cortex (Freedman et al.,
2001, 2002, 2003; Freedman and Miller, 2008), whereas neurons
coding categories based on the spatial attributes of visual stimuli
are distributed between prefrontal and posterior parietal cortex
(Freedman and Assad, 2006; Merchant et al., 2011). Regarding
spatial categorization, a recent study compared the timing and
strength of category-selective neural signals in parietal and pre-
frontal cortex of a monkey assigning horizontal bar stimuli to the
spatial categories “high” and “low” (Merchant et al., 2011). That
study and the present one both found that category-selective sig-
nals were stronger and arose earlier in prefrontal cortex relative to
parietal cortex. Merchant et al. (2011) found that category signals
in parietal cortex emerged only toward the end of the trial near
the time of the categorical choice, whereas we observed an earlier
recruitment of parietal cortex and a more extensive period of
prefrontal-parietal coactivation (Figs. 8, 10, 12, 13) (but see Fig.
6A for a parietal neuron with a late-onset category response). A
recent study in which monkeys assigned visual stimuli to spatial
categories based on their direction of visual motion observed the
opposite order of recruitment in the prefrontal-parietal network,
with neurons in parietal area LIP exhibiting stronger and earlier
category-selective signals relative to their prefrontal counterparts
(Swaminathan and Freedman, 2011). The reason for the differ-
ences in network dynamics observed in these studies is not clear.
One possibility could be that parietal area 7a [the focus of record-
ing in the present study and that of Merchant et al. (2011)] and
parietal area LIP [the focus of recording in the study by Swami-
nathan and Freedman (2011)] are recruited to represent spatial
categories at different times relative to prefrontal cortex. Another
possibility is that parietal cortex leads prefrontal cortex in cate-
gory representation to the degree that visual features and visual
categories are tightly coupled, as visually derived information
generally flows from parietal to prefrontal cortex (Fig. 5A–D). In
the present study, spatial position and spatial category were dis-
sociated by requiring that monkeys use two sequentially pre-
sented stimuli to compute category, and further by assigning each
sample stimulus (and hence each collection of stimulus features)
to two alternative categories over trials. Thus, the requirement to
compute category using information stored in working memory,
or the requirement to do this flexibly in accordance to a changing
rule, could shift network dynamics in favor of prefrontal cortex.

Other work on the neural mechanisms of executive control
has shown that neurons participating in rule-dependent compu-
tations are found both within posterior parietal cortex (Stoet and
Snyder, 2004; Asari et al., 2005; Kamigaki et al., 2009, 2011) and
prefrontal cortex (Wallis et al., 2001; Nakahara et al., 2002; Man-
souri et al., 2006; Muhammad et al., 2006). A recent study of
particular relevance characterized the neural mechanisms of ex-
ecutive control in prefrontal cortex specifically as it applied to
object categorization (Roy et al., 2010). Both that prior study and
the present one found that, when monkeys had to flexibly assign
the same visual stimulus to competing perceptual categories, the
alternative categories were represented by largely distinct popu-
lations of prefrontal neurons that were conditionally activated as
a function of the category boundary applied. The agreement be-
tween these two studies suggests that prefrontal cortex contains a
common neural mechanism for flexible categorization that ap-
plies to both spatial and object categories.

Characterizing differences in the strength and timing of physio-
logical signals that are distributed across interconnected cortical ar-
eas provides one approach to disentangling the contributions that
each cortical area makes to their shared patterns of electrical activity
(Chafee and Goldman-Rakic, 1998; Crowe et al., 2004; Nieder and
Miller, 2004; Buschman and Miller, 2007). Our present data provide
evidence that signals reflecting the interaction between rules and
categories, and therefore the executive control of categorization as a
cognitive process, are earlier and stronger in prefrontal cortex rela-
tive to posterior parietal cortex. These findings may provide a posi-
tive image of the cognitive deficit in executive control that has long
been recognized as a hallmark of prefrontal cortical damage in hu-
mans (Goldman-Rakic, 1987; Miller, 2000), by providing some of
the first single-neuron evidence that prefrontal cortex might be a
generator of distributed signals that reflect computational flexibility
in cortical networks.
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