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Dynamically Modulated Spike Correlation in Monkey
Inferior Temporal Cortex Depending on the Feature
Configuration within a Whole Object

Toshiyuki Hirabayashi and Yasushi Miyashita
Department of Physiology, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo 113-0033, Japan

The mechanism underlying the processing of spatially separated multiple local features to form a unique whole object is an important
issue in visual object recognition. We tested whether, in behaving monkeys, the spike correlation between pairs of inferior temporal (IT)
neurons dynamically changes depending on the spatial configuration of the local features within a whole object. We prepared more than
60,000 face-like objects (FOs) and their corresponding non-face-like objects (NFOs) that consisted of random arrangements of the same
set of local features as those in FOs. The spike correlation between a pair of neurons was quantified by the peak height of the shift
predictor-subtracted cross-correlogram. For both neurons of the pair, the local features in a whole object were determined so that they
elicited as high a response as possible to enable a reliable cross-correlation analysis. We found that the FOs thus constructed elicited
neuronal activities that were more strongly correlated than the corresponding NFOs. Firing rates of the same neurons did not show such
a consistent bias depending on the feature configuration. Furthermore, receiver operating characteristic analysis revealed that this FO
dominance of spike correlation was robust enough to discriminate between different feature configurations at the population level. Spike
correlation of the cell pairs exhibited significant FO dominance within 300 ms after stimulus onset. The present results suggest that
feature configuration within a unique whole object can be reflected in the rapid modulation of spike correlation among a population of
neurons in the IT cortex.
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Introduction

A fundamental step in visual object recognition is the integra-
tion of spatially separated multiple local features into a single
whole object. Many imaging studies and single-unit studies sug-
gest that the higher-order association cortex is responsible for
this process (Miyashita, 1993; Logothetis and Sheinberg, 1996;
Tanaka, 1996; Tootell et al., 1996; Ishai et al., 1999; Rolls, 2000;
Orban, 2001; Grill-Spector and Malach, 2004). In the human
fusiform and inferior temporal gyri and the monkey inferior tem-
poral (IT) cortex, there are various classes of neurons that re-
spond specifically to familiar or extensively learned complex ob-
jects (Miyashita, 1988; Allison et al., 1994; Logothetis et al., 1995;
Kobatake et al., 1998; Baker et al., 2002; Palmeri and Gauthier,
2004). In addition, for many complex objects, IT neurons re-
spond equally well to geometrically less complex features within a
whole object (Perrett et al., 1987; Desimone, 1991; Tanaka, 1996;

Received July 22, 2005; revised Sept. 28, 2005; accepted Sept. 28, 2005.

This work was supported by Grant-in-Aid for Specially Promoted Research 14002005 (Y.M.) from the Ministry of
Education, Culture, Sports, Science, and Technology of Japan. We thank Y. Naya, K. Nakahara, M. Takeda, and J.
Kishimoto for discussion and H. Morimoto for technical support.

Correspondence should be addressed to Dr. Yasushi Miyashita, Department of Physiology, The University of
Tokyo School of Medicine, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan. E-mail: yasushi_miyashita@
m.u-tokyo.ac.jp.

DOI:10.1523/JNEUR0SCI.3036-05.2005
Copyright © 2005 Society for Neuroscience ~ 0270-6474/05/2510299-09$15.00/0

Tsunoda et al., 2001). However, even a limited number of dis-
crete features yield, when combined, an enormous number of
unique whole objects, in each of which local features are arranged
in particular configuration. The exact encoding schemes of such a
unique whole object and configural information still remain es-
sentially unknown despite their importance. One possible mech-
anism lies in the population rate coding, in which many IT neu-
rons with broad but different stimulus selectivities can encode, as
a population, any unique whole object (Pouget et al., 2000; Rolls,
2000). Another possible mechanism, although not exclusive of
the former possibility, lies in correlated discharges of multiple
neurons, each of which encodes local features within a whole
object (von der Malsburg, 1981; Singer and Gray, 1995). Several
studies have shown IT neurons to exhibit correlated discharges
(Gochin et al., 1991; Gawne and Richmond, 1993; Tamura et al.,
2004; Aggelopoulos et al., 2005), but it has not yet been examined
whether the spatial configuration of multiple local features in a
whole object can be reflected in the spike correlation in the IT cortex
and whether such a neuronal correlation will emerge rapidly enough
in response to a presented stimulus to mediate recognition.

Our aim, therefore, was to test the hypothesis that more
strongly correlated discharges will emerge among IT neurons in
response to the presentation of a whole object in which the local
features are arranged in face-like configuration [face-like object
(FO)] than to the presentation of a random arrangement of the
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Figure1.  Whole objects and their constituent parts used in a behavioral task. 4, Examples of
whole objects: FOs (left) and NFOs (right) composed of the same set of parts. The background
was dark blue, and the objects were yellow. B, Constituent parts of the whole objects shown in
A. We prepared 120 facial-feature-like parts (40 eye-like parts, 40 nose-like parts, and 40
mouth-like parts) to construct 64,000 (equal to 40 ®) FOs and NFOs.

same local features [non-face-like object (NFO)]. Face-like ar-
rangement of local features leads to more rapid and precise rec-
ognition than random arrangement [ “the face superiority effect”
(Gorea and Julesz, 1990)]. In the present experiment, an enor-
mous (>60,000) number of FOs were constructed by combining
a variety of facial feature-like parts. We designed this procedure
so that a single IT neuron could not be easily tuned to a specific
FO (Kobatake et al., 1998; Baker et al., 2002). Simultaneous ex-
tracellular recordings from pairs of IT neurons were conducted
during a visual discrimination task between FOs and NFOs. Neu-
ronal correlation was examined by cross-correlating the neuronal
activity elicited by FOs or NFOs.

Materials and Methods

Behavioral tasks and visual stimuli. Two monkeys (Macaca fuscata) were
initially trained to perform a delayed matching-to-sample (DMS) task
(Miyashita, 1988) using 120 facial-feature-like parts (40 eye-like parts, 40
nose-like parts, and 40 mouth-like parts) (Fig. 1 B) with the delay period
of 2 s. The IT neurons have been shown to reveal learning-dependent
plasticity (Miyashita, 1993; Logothetis et al., 1995; Logothetis and Shei-
nberg, 1996; Kobatake et al., 1998; Baker et al., 2002). We aimed, there-
fore, to tune the I'T neurons to the 120 parts through the extensive train-
ing on the DMS task using these stimuli. After extensive training on this
task (at least 600 times of exposures for each part), monkeys were trained
to perform an FO/NFO judgment task, in which neuronal responses to
FOs and NFOs were examined. While a monkey fixed its gaze within
1.0-1.4°, an FO or NFO was presented for 1 s (cue period). Eye position
was monitored using a scleral search coil (Judge et al., 1980). After a delay
period (500 ms), the go signal appeared, which required the monkey to
push the right or left button within 1 s depending on the presented
stimulus (FO or NFO). The hand used to perform the task was controlled
and counterbalanced between the monkeys. Monkeys performed this
task with 99.7 = 0.4% (mean * SEM) correct responses during recording
sessions. The monkeys were also trained to perform a passive viewing
task, in which, while the monkey fixated within 1.0-1.4°, five different
parts were sequentially presented for 350 ms each, with an interstimulus
interval of 600 ms. During recording sessions, neuronal responses to the
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large (120) set of parts were assessed in a short time using this task. Whole
objects were composed of four individual parts (size of each part, <2.3°
X 2.3°) arranged in facial (FO) or random (NFO) configurations within
a radius of ~3° against a surrounding contour (7.8° high and 6.1° wide)
without spatial overlapping. All animal experiments were performed in
accordance with the National Institutes of Health Guide for the Care and
Use of Laboratory Animals and the regulations of the University of Tokyo
School of Medicine

Recording procedures. Multiple single-unit activities were recorded
from the IT cortex in three hemispheres of the two monkeys using Te-
trodes (Thomas Recording, Giessen, Germany) (Aronov et al., 2003;
Tamura et al., 2004). Neuronal signals were amplified, bandpass filtered
(500 Hz to 5 kHz) (Csicsvari et al., 1998; Tamura et al., 2004; Tomita and
Eggermont, 2005), and sorted on-line into a pair of single units using the
standard window discrimination technique. The optimal stimuli were
determined during recording sessions for these on-line-sorted cell pairs
(see below). Neuronal signals were also stored and digitized off-line at 25
kHz to sort more precisely into multiple single units by waveform anal-
ysis (DataWave Technologies, Longmont, CO) (Alonso et al., 1996; Us-
rey et al., 2000; Roy and Alloway, 2001; Lee et al., 2005). The presence of
refractory period was confirmed in the auto-correlogram (Alonso et al.,
1996; Csicsvari et al., 1998; Usrey et al., 2000). If the number of spikes
with interspike intervals of shorter than 2 ms exceeded 1% of the total for
a given unit, that unit was discarded or reisolated. These off-line-sorted
spike data were used in the analyses of both responsiveness and spike
correlation in the present study.

During a recording session, the parts comprising the optimal whole
objects were determined by the minimax algorithm (Baky et al., 1981) for
each on-line-sorted neuron pair so that they elicited as high a response as
possible from both neurons. We first examined the responses of each
neuron of the pair to the 40 eye-like parts during the passive viewing task
and determined the one eye-like part to which the smaller of the re-
sponses of the two neurons was the largest among all of the 40 eye-like
parts. This part was defined as the most effective eye-like part. The second
and third most effective eye-like parts were similarly determined, as were
the three most effective nose-like parts and mouth-like parts. This set of
partsyielded 3° = 27 possible combinations of parts in a whole object for
testing the responsiveness. Using these combinations of parts, we next
examined the responses of the two neurons to FO and NFO in the
FO/NFO judgment task. The spatial arrangement of parts for NFOs in
this procedure was randomly determined before starting each recording
session, and the same arrangement was used for all of the 27 combina-
tions of parts in this procedure. A set of parts in a whole object was
defined as the best if the smallest response of the two cells to the two
arrangements (FO and NFO) was the largest among all the 27 combina-
tions of parts. This best set of parts was used for the optimal FO (pFO)
and the optimal NFO (pNFO) of the cell pair. Note that the spatial
arrangement of the parts in the optimal NFO was changed in a different
recording session, and the same arrangement was never used again.
Fourth and fifth most effective parts were also determined (in the passive
viewing task), and a similar procedure was applied to determine the five
least effective parts. The resultant 30 parts (5 X 3 most effective parts and
5 X 3 least effective parts) were termed pooled parts. Nonoptimal FOs and
NFOs were randomly constructed from all of the possible combinations of
the pooled parts other than the parts used in the optimal FO/NFO (that is,
9 X 3 parts were available for nonoptimal FOs/NFOs). Optimal and nonop-
timal FOs/NFOs were presented to the animal in a pseudorandom order.

During a recording session, we isolated a pair of single cells and deter-
mined optimal stimuli for that cell pair. Off-line spike sorting was later
conducted to more precisely isolate the recorded multiple single cells to
obtain the neuronal data for conducting additional analysis. Neuronal
correlation was not examined during recording sessions, ensuring that
the recorded cell pairs or their optimal stimuli could not be selected so
that the cell pairs revealed spike correlation in response to the optimal
whole objects or any other stimuli. For the optimal and nonoptimal
stimuli, we calculated the minimum firing rates of single cells in each
off-line-sorted cell pair. This minimum firing rate should be higher for
optimal stimuli than for nonoptimal stimuli if the firing properties of the
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on-line-sorted cells were preserved for the off-line-sorted cells, and we
confirmed that this was true for all the analyzed off-line-sorted cell pairs.

Data analysis. In the present study, the neuronal data were analyzed
only in the correct trials. In the FO/NFO judgment task, we defined a cell
as responsive to a whole object if the firing rate during the cue period
(assessed in a 450 ms period from 80 ms after cue onset) was significantly
(paired t test, p < 0.05) different from that in the corresponding period
just before cue onset. We conducted cross-correlation analysis for a cell
pair only if both constituent cells showed significant responses to both
their optimal FO and NFO that were determined during the recording
session before the cross-correlation analysis. We constructed raw cross-
correlograms for lag times within 100 ms (1 ms resolution) using spikes
recorded during a 1 s period beginning 80 ms after cue onset in the
FO/NFO judgment task. The cross-correlogram for the optimal FO or
NFO was constructed from spikes recorded in at least 55 trials for each
stimulus and was accepted only if the available spikes exceeded 1600
(mean * SEM, 4357 =+ 228 for all of the analyzed cell pairs, at least 600
per cell). A shift predictor, calculated using one-trial-shifted spike trains
(Constantinidis et al., 2001, 2002; Tamura et al., 2004; Kohn and Smith,
2005), was smoothed (five-bin boxcar averaging) (Nowak et al., 1995)
and then subtracted from the raw cross-correlogram to remove the
stimulus-locked component (Perkel et al., 1967; Nowak et al., 1995; de
Oliveira et al., 1997; Das and Gilbert, 1999; Steinmetz et al., 2000; Usrey
et al., 2000; Bair et al., 2001; Aggelopoulos et al., 2005; Kohn and Smith,
2005), yielding the shift predictor-subtracted cross-correlogram (SSCC).
The peak height of the SSCC was then normalized by the SD of the shift
predictor to calculate a z-score (de Oliveira et al., 1997; Constantinidis et
al., 2001). Peaks were identified as significant if the z-score exceeded the
level corresponding to p = 0.05 [one-tailed, z > 2.81, detected within the
lag time of 10 ms (—10 to +10 ms), corrected for multiple comparisons].
The cross-correlograms for nonoptimal FOs and NFOs were constructed
similarly from spikes in at least 75 trials and were accepted only if avail-
able spikes exceeded 1300 (3921 =+ 277, atleast 350 per cell). We adopted
these criteria for the minimum number of spikes because nonoptimal
stimuli did not drive the cell pairs as strongly as the optimal stimuli did.
However, we confirmed, for nonoptimal whole objects, that the feature
configuration dependence of the spike correlation remained unchanged
when the criteria for the minimum number of spikes were the same as
those for the optimal whole objects (data not shown). The number of
spikes used to calculate SSCCs was not significantly different between the
optimal and nonoptimal whole objects ( p > 0.3, paired ¢ test). Because
the spike-sorting method used in the present study did not separate
multiple spikes fired simultaneously (within 1.28 ms), leading to under-
estimation of spike counts on the resultant raw cross-correlograms
within this window, counts on SSCCs within the corresponding lag times
(within 2 ms) were not included in our analyses (Constantinidis et al.,
2002; Tamura et al., 2004). Regarding the type of neuronal interaction,
we defined the peak as “one-sided-like” when the bins with significant
correlation were detected only at one side of the SSCC. We also defined
the “presumable presynaptic and postsynaptic neurons” according to the
putative side of the one-sided-like peak in the SSCC. For the neurons that
exhibited significant correlation in response to pFOs, stimulus selectivity
was defined by calculating the proportion of FO stimuli that elicited over
half the maximum response after subtracting the spontaneous firing rate.

Time course of neuronal correlation was analyzed using SSCCs calcu-
lated from spikes within a sliding time window (see Fig. 6) (Nowak et al.,
1995; deCharms and Merzenich, 1996; de Oliveira et al., 1997; Constan-
tinidis et al., 2002). In this analysis, data from different time windows
were not independent of one another, because SSCCs for different time
windows were constructed using partially overlapping populations of
spikes. Bonferroni’s method was therefore applied after paired ¢ tests for
each time window to correct for overlapping spike samples and for mul-
tiple comparisons. Because the probability of detecting false positives
with repeated applications of statistical tests is lower when the data are
mutually correlated than when the data are mutually independent, Bon-
ferroni’s correction for our data provided statistically conservative re-
sults (Frison and Pocock, 1992). In the correlation analysis using a short
(200 ms) time window (see Fig. 7), raw cross-correlograms and shift
predictors were calculated at a resolution of 2 ms (one cell pair with
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available spikes of <400 was excluded from the analysis for the period of
100-300 ms), the SSCCs were calculated by subtracting the shift predictor
from the raw cross-correlogram, and z-scores were calculated using the
square root of the expected correlation strength instead of the SD of the shift
predictor (Eggermont, 1992; de Oliveira et al., 1997; Thiele and Stoner,
2003). We used the above method in this analysis, because the spikes were
collected in a short period, and thus the truncated spike trains produced
artificially higher bin counts around the lag time of 0 ms in the shift predic-
tor, leading to overestimation of the variance of the SSCC bin counts if the
SD of the shift predictor was used for estimating the variance.

We also quantified the spike correlation by neural correlation coefficient
(NCC) (Abeles, 1982; Eggermont, 1992; Roy and Alloway, 2001; Tomita and
Eggermont, 2005). The NCC was calculated as defined in the previous stud-
ies, using the peak height and the bin width of the raw cross-correlogram, the
number of spikes from each neuron of the pair, and the total recording time
(Eggermont, 1992; Tomita and Eggermont, 2005).

Receiver operating characteristic (ROC) analysis was conducted to
assess the stimulus discriminability of spike correlation at the population
level (Macmillan and Creelman, 1991; Palanca and DeAngelis, 2005) (see
Fig. 5). The hit rate for detecting pFOs at a given threshold was defined as
the proportion of cell pairs that exhibited higher correlation in response
to pFOs than the threshold. The false alarm rate for detecting pFOs at the
threshold was defined as the proportion of cell pairs that exhibited higher
correlation in response to pNFOs than the threshold. The threshold was
moved throughout the distribution of SSCC peak height from the highest to
the lowest value among the stimuli, and hit/false alarm rates were calculated
for each threshold to construct the ROC curve. To quantify the stimulus
discriminability, the area under the ROC curve was calculated. For assessing
the statistical significance of the area under the ROC curve, 5000 surrogate
ROC curves were constructed from the permutated distributions of SSCC
peak height among the different feature configurations (pFOs and pNFOs),
and the area under the ROC curve was calculated for each surrogate curve to
compare with the real value. ROC analysis for the average firing rates of
individual cell pairs was also similarly conducted.

The information about the feature configuration carried in a single
trial by spike correlation or by firing rate was calculated as in the previous
study (Franco et al., 2004). Briefly, the spike correlation of a cell pair in
each trial was quantified using Pearson’s correlation coefficient. Then,
the expected stimulus from the spike correlation for that trial was deter-
mined by the vicinity of the correlation coefficient for that trial to the
mean value for pFOs or pNFOs, which was calculated with the current
trial excluded. The expected stimulus was determined for all trials, and
the mutual information between the expected and the actual stimulus
was calculated to estimate the information carried by the correlated
spikes. The firing rates of the two neurons of a pair in each trial were
represented as a two-dimensional vector. The dot product between the
vector for each trial and the vector for the mean (pFOs or pNFOs, the
current trial was excluded from the calculation of the mean) was com-
puted and was normalized by the product of both of the vector lengths.
The expected stimulus for each trial was determined by comparing these
normalized dot products for pFOs and for pNFOs, and the information
in the firing rates of both neurons of the pair was estimated from the
mutual information between the expected and the actual stimulus.

All of the statistical tests in the present study were two-tailed unless
otherwise stated.

Results

We prepared 120 facial-feature-like parts (40 eye-like parts, 40
nose-like parts, and 40 mouth-like parts) to construct 64,000
(40°) FOs and their corresponding NFOs that consisted of ran-
dom arrangements of the same constituent parts (Fig. 1). This
large number of FO/NFO repertoires enabled us to test the re-
sponsiveness and the spike correlation of neuron pairs to a
unique whole object, which the monkeys had encountered only a
few times before it was used in a recording session for examining
neuronal correlation. Simultaneous extracellular recordings
from pairs of neurons were conducted in the IT cortex of two
monkeys while the animals performed a visual discrimination
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Figure2. Feature-configuration-dependent spike correlation of a pair of IT neurons. A, Waveforms, auto-correlograms, and peristimulus time histograms of a pair of IT neurons to their optimal

FO and optimal NFO. Fifty traces of action potentials were superimposed. Horizontal bars below each peristimulus time histogram indicate 1 s duration of stimulus presentation (cue period). B,
Correlated activity of the cell pair. Top, Raw cross-correlograms of the cell pair obtained with the optimal FO (left, red) and optimal NFO (right, blue). Abscissa, Spike time of cell 1 relative to that of
cell 2. Bin width, 1 ms. Gray traces, Shift predictors. Bottom, SSCCs of the cell pair obtained with the optimal FO (left, red) and optimal NFO (right, blue). The cross-correlograms for the bins within
=2 ms were drawn with thin lines and were not included in the analyses (see Materials and Methods). Horizontal gray lines, Confidence limit ( p = 0.05, corrected for multiple comparisons).

task in which the configuration oflocal features (FO or NFO) had
to be distinguished. In a recording session, we first examined the
responses of a pair of cells to all of the 120 parts and then deter-
mined the pFO and the pNFO of the cell pair to elicit as high a
response as possible from both neurons. Both the pFO and pNFO
were composed of the same constituent parts, the only difference
being their configurations (Fig. 1). The spike correlation between
a pair of neurons was quantified based on the peak height of the
SSCC (Nowak et al., 1995; de Oliveira et al., 1997; Das and Gil-
bert, 1999; Aggelopoulos et al., 2005).

Neuronal correlation in the IT cortex depends on the

feature configuration

The cell pair shown in Figure 2 exhibited differential spike corre-
lation that depended on the feature configuration in a whole
object. Both cells in this pair responded significantly to both the
pFO and pNFO (Fig. 2A). Raw cross-correlogram for this cell pair
showed a prominent peak only with the pFO (Fig. 2 B, top), despite
the fact that both the pFO and pNFO were composed of the same
constituent parts (Fig. 2 B, top inset). The peak height of the SSCC
was significant for the pFO ( p < 0.001) (see Materials and Methods)

(Fig. 2B, bottom left) but not for the pNFO (p > 0.3) (Fig. 2B,
bottom right). The full-width at half-maximum of the pFO-derived
SSCC was 4 ms, and the lag time of the peak was 4 ms.

Population analyses were then performed with a total of 134
cells (from 48 recording sessions) that exhibited significant re-
sponses to both of their pFOs and pNFOs. Among these, 30 cell
pairs composed of 50 cells showed significant peaks in their SS-
CCs (z > 2.81; p < 0.05) in response to either the pFO or pNFO
of the cell pair and were further analyzed. For the significant
majority of cell pairs (23 of 30 pairs, 77%; p < 0.004, x test),
SSCC peak height was higher for pFOs than for pNFOs (Fig. 3A).
In total, the z-score of the peak height was significantly greater for
discharges elicited by pFOs than by pNFOs ( p < 0.003, paired ¢
test; n = 30). This pFO-dominant spike correlation was consis-
tently observed in both monkeys (supplemental Table 1, available
at www.jneurosci.org as supplemental material). It has been
shown that the correlated spikes within ~10 ms could have an
impact on the firing probability of the postsynaptic neurons (Us-
rey et al., 2000; Roy and Alloway, 2001). In the present study,
therefore, a peak in an SSCC was detected within a 10-ms-lag
window (Thiele and Stoner, 2003; Tamura et al., 2004; Kohn and
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Figure 3.  Population data for spike correlation and firing rate. A, Peak heights of SSCCs in

z-scores for all the cell pairs, obtained for optimal FOs (ordinate) and NFOs (abscissa) (n = 30).
Horizontal and vertical lines, Confidence limit ( p = 0.05). p value depicted in the figure was
derived from paired  test. Triangles represent outliers and were rescaled preserving the ratio of
the peak heights for the two conditions. B, Mean firing rates for all the cell pairs in the same
period as that for the above correlation analyses, obtained for optimal FOs (ordinate) and NFOs
(abscissa) (n = 30).

Smith, 2005; Tomita and Eggermont, 2005), but the result was
also significant when this window size was extended to 20 ms
(p=0.011) or 30 ms ( p = 0.014). The “correlation strength” was
calculated by computing the number of spikes under the SSCC
peak bin divided by half the number of spikes from both neurons
of the pair. The proportions of spikes under the SSCC peak bin
were 1.6 * 0.2% for pFOs and 1.1 = 0.2% for pNFOs (mean *=
SEM; n = 30). The difference was significant ( p < 0.02, paired ¢
test), consistent with the results regarding the peak height. More-
over, we also quantified the spike correlation by using another
index, NCC (Abeles, 1982; Eggermont, 1992; Roy and Alloway,
2001; Tomita and Eggermont, 2005) and confirmed that this in-
dex also provided similar results [mean = SEM, 0.017 = 0.002 for
pFOs, and 0.013 = 0.002 for pNFOs; n = 30; the difference was
significant (p < 0.01, paired t test)] as that provided by the
original index derived from an SSCC. The above FO-dominant
spike correlation was not observed when nonoptimal whole ob-
jects were analyzed (supplemental Table 1, available at www.
jneurosci.org as supplemental material). We next examined the
average firing rates of individual cell pairs during the same period
as that used for the above correlation analysis. In contrast to the
spike correlation, firing rates did not reveal a consistent bias that
depended on the feature configuration (pFO vs pNFO; p > 0.8;
n = 30) (Fig. 3B). This result also indicates that these neurons do
not belong to a population of “face neurons” (Baylis et al., 1985;
Desimone, 1991; Perrett et al., 1992; Rolls, 2000).

The scattergram in Figure 4 shows the relationship between spike
correlation and firing rate in each cell pair (n = 30). Of 23 cell pairs
with higher spike correlation for pFOs than for pNFOs, 12 pairs
(52%) showed higher firing rates in response to pNFOs, indicating
that there were many cases in which the firing rate to the pFO was
lower but the spike correlation was higher. Overall, Spearman’s r of
the scattergram was 0.16 and was not significant ( p > 0.4; n = 30).
Thus, the observed pFO dominance of neuronal correlation for each
cell pair cannot be explained only by the difference in the firing rate
between the pFO and pNFO for the same cell pair.

If the differences between the spike correlation for pFOs and
pNFOs were smaller than the overall variance of correlation
among the population of neurons, spike correlation might not
provide a reliable signal to discriminate these feature configura-

J. Neurosci., November 2, 2005 - 25(44):10299 10307 « 10303

0.6 r
[ ]
[ ]
c . o ® °
je] o © °
-— [ ]
© ‘’h .
o
b 8 ° .
(o]
S Y
vZ °,
= ® hd
2= -05 " . 0.5
J0
< L ® [ ]
£ .
S
Z
r=0.16
>
06l P>0.4
Norm. Afiring rate
(FO vs NFO)

Figure4. Relationship between spike correlation and firing rate for each cell pair. Difference

in the SSCC peak height between the optimal FO and NFO for each cell pair was normalized by
the sum (ordinate) and plotted against the normalized difference in the firing rate for the same
cell pair (abscissa). Positive value indicates that the optimal FO evoked higher spike correlation
(ordinate) or firing rate (abscissa) than the corresponding optimal NFO.

A

o8

1.0 0.8
g *
§ —
o 07f
@)
o o
© (0]
Z05) £06r Ns,
T [9) —
o
C
S05FFT-1-F-
==Correlation (n =30) ©
==Firing rate (n=30) <
0 L ’ 0.4 . d
0 0.5 1.0 Firing rate Correlation
False alarm rate * : P<0.001
N.S.:P>0.2
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(black) and for firing rate (gray). Dotted line indicates the chance level. Statistical significance of
the area under the ROC curves were assessed by constructing 5000 surrogate curves by permu-
tating the original distributions of SSCC peak height or of firing rate among the different feature
configurations (pFOs and pNFOs).

tions for that population of neurons. To address this possibility,
we conducted ROC analysis, in which stimulus discriminability
of spike correlation was assessed after pooling the data across cell
pairs (Palanca and DeAngelis, 2005). Spike correlation consis-
tently revealed a higher hit rate than false alarm rate for discrim-
inating pFO from pNFO (Fig. 5A, black trace). We assessed
whether the area under the ROC curve, the index of reliability for
discriminating the stimuli, significantly exceeded the chance level
(0.5) by comparing it with 5000 surrogate curves that were con-
structed by permutating the real data. The area under the ROC
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curve for spike correlation was 0.72 and was statistically signifi-
cant ( p < 0.001, permutation test; n = 30) (Fig. 5B, right). This
result suggests that configuration dependence of spike correla-
tion can be a reliable signal in a population of neurons to discrim-
inate the presented stimulus. The firing rates did not reveal sig-
nificant stimulus discriminability (the area under the ROC curve
was 0.55; p > 0.2, permutation test; n = 30). We next conducted
information theoretic analysis to assess whether the strength of
spike correlation carried reliable information about the feature
configuration in a single trial. A significant amount of informa-
tion about the feature configuration was carried by the spike
correlation compared with that calculated from the trial-shifted
spike trains, even in a single trial (0.020 % 0.003 vs 0.006 % 0.001 bits,
mean = SEM; p < 0.005, paired t test; n = 30). In 17% of the neuron
pairs (5 of 30 pairs), the information in the correlated spikes ex-
ceeded 80% of that in the firing rates of both neurons of the pair.
However, in most neuron pairs, a substantially larger amount of
information was available in the firing rates of both neurons of the
pair relative to that in the spike correlation (0.27 = 0.05 vs 0.02 =
0.003 bits, mean = SEM; p < 0.001, paired ¢ test; # = 30), consistent
with the previous result (Aggelopoulos et al., 2005). Note that the
information analysis did not discriminate which configuration was
more effective or whether the effective configuration was consistent
among the population of neurons. Consistent bias and robust stim-
ulus discriminability of spike correlation thus raise the possibility
that spike correlation also provides a reliable signal for discriminat-
ing the stimulus in a population of neurons.

In the present study, the central bins of the SSCC were not
observable, and thus it cannot be determined whether the ob-
served peaks indeed straddled the time 0 or were one sided. To
examine the type of neuronal interaction between the recorded
neurons, we attempted to define the one-sided-like peak in the
SSCC (see Materials and Methods). Of 29 (17) pairs of neurons
that exhibited significant correlation for pFOs (pNFOs), 20 (9)
pairs showed one-sided-like peaks. We did not observe a signifi-
cant difference in the stimulus selectivity between the presumable
presynaptic and postsynaptic neurons (0.20 = 0.04 vs 0.19 =
0.05; n = 20; p > 0.8, paired ¢ test).

Temporal dynamics of neuronal correlation

The correlation analyses in the previous section did not provide
information about when or how long the neuronal correlation elic-
ited by pFOs exceeded that elicited by pNFOs. To address these
issues, we next examined the time course of neuronal correlation
(Nowak et al., 1995; deCharms and Merzenich, 1996; de Oliveira et
al.,, 1997; Constantinidis et al., 2002). Figure 6 A shows the data of a
representative cell pair. The SSCC at the time point of 0 ms was
calculated using spikes recorded during the 500 ms period just be-
fore cue onset. This 500 ms window was then successively shifted in
steps of 100 ms. The resultant surface plot for this cell pair con-
structed from the SSCCs contained a ridge of peaks at a lag time of 4
ms. The pFO-induced spike correlation first exceeded those elicited
by the pNFO at the time point of 500 ms, a time when the SSCC was
constructed using spikes that occurred during the period from 0 to
500 ms after cue onset (Fig. 6A). In contrast, there was little differ-
ence in the average firing rate of this cell pair elicited by the pFO and
PNFO throughout the analyzed period (Fig. 6C).

The population data obtained with the analysis described
above are shown in Figure 6, D and E. The SSCC peak height for
each cell pair in each period was normalized using its maximum
and minimum values among all of the periods and stimuli (pFO
and pNFO) for the same cell pair. These normalized values of
SSCC peak height were then averaged across all of the cell pairs.
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Figure 6.  Temporal dynamics of spike correlation. A, Time course of spike correlation (z-

score) of a pair of neurons in response to the optimal FO (left) and NFO (right). The surface plots
were constructed from SSCCs calculated using spikes in a 500 ms window that was successively
shifted in steps of 100 ms. SSCC at the time 0 was calculated using spikes in a 500 ms period just
before cue onset. B, €, Auto-correlograms of the pair of neurons (B) and time course of normal-
ized firing rates of the cell pair in response to the optimal FO (red) and NFO (blue) (C). D, E,
Average time courses (thick lines) of spike correlation (D) and firing rate (E) for optimal FOs (red)
and NFOs (blue) across all of the cell pairs (n = 30). Thin lines, Average = SEM. Seven and six
cell pairs were excluded from the analyses for the time points of 0 and 100 ms, respectively,
attributable to low firing rates. Asterisks, Significant differences between optimal FOs and NFOs
[paired t test, corrected for multiple comparisons and overlapping sampling of spikes in differ-
ent windows (Frison and Pocock, 1992); see Materials and Methods].

The averaged time course of the firing rates was calculated simi-
larly. Neuronal correlation elicited by pFOs was significantly
stronger than that elicited by pNFOs at the time points of 500 and
600 ms [p < 0.02 and p < 0.01, respectively, paired ¢ test; the
effects of both multiple comparisons and overlapping samplings
were corrected (Frison and Pocock, 1992); see Materials and
Methods] (Fig. 6 D). We confirmed that the NCC also provided
similar results ( p < 0.02 and p < 0.03 for the time points of 500
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and 600 ms, respectively). The firing rates elicited by pFOs and
pNFOs were not significantly different at any time examined
(p > 0.2) (Fig. 6 E).

To more precisely determine when the observed difference in
the neuronal correlation emerged, we further divided the period
from 0 to 500 ms after cue onset, during which the differential
correlation was observed (Fig. 6 D), into two periods (from 100 to
300 ms and from 300 to 500 ms, after cue onset) and examined
the spike correlation in each period. The peak height of the SSCC
for pFOs was significantly higher than that for pNFOs as early as
100-300 ms after cue onset ( p < 0.04, paired ¢ test, the effect of
multiple comparisons for the divided time window was correct-
ed; n = 29, one cell pair was excluded from the analysis because of
the small number of spikes within the window; see Materials and
Methods) (Fig. 7A, top left, B, left). Firing rates were highest in
this period for both pFOs and pNFOs at the population level
(data not shown) and did not reveal significant dependence on
the feature configuration ( p > 0.3) (Fig. 7A, top right, C, left).
During the period from 300 to 500 ms after cue onset, feature
configuration dependence was significant in neither the spike
correlation ( p = 0.12) (Fig. 7A, bottom left, B, right) nor the firing
rate (p > 0.9) (Fig. 7A, bottom right, C right), although the spike
correlation still revealed weak pFO dominance. Thus, neuronal cor-
relation was modulated by feature configuration in a whole object
within 300 ms after stimulus onset, whereas the firing rates did not
reveal configuration-dependent bias in the same period during
which the majority of recorded neurons fired maximally.

Discussion

In the present study, we found that the discharges of cell pairs
elicited by pFOs were more strongly correlated than those elicited
by pNFOs. ROC analysis revealed the robustness of correlation
difference between pFOs and pNFOs compared with the overall
variance among the recorded population of cell pairs, indicating
reliable stimulus discriminability by spike correlation. The pFO-
dominant spike correlation emerged within 300 ms after stimulus
onset, which is rapid enough to mediate recognition of the pre-
sented stimulus. Firing rates did not reveal consistent dependence
on the feature configuration even in this period, in which the major-
ity of the recorded IT neurons fired maximally. Our findings suggest
that the spatial configuration of multiple local features in a unique
whole object can be reflected in the temporally correlated activity of
a population of neurons in the IT cortex.

Detection of configuration-dependent spike correlation

We quantified the spike correlation of cell pairs by calculating
z-scores of the peak height of SSCCs that were constructed by
subtracting a shift predictor from the raw cross-correlogram. We
also calculated the NCC (Abeles, 1982; Eggermont, 1992; Roy and
Alloway, 2001; Tomita and Eggermont, 2005) as another index of
correlation strength and confirmed the consistency of the results
obtained with these two different statistical indices. When the
spike correlation is assessed during the period of sensory stimu-
lation, as in the present study, the raw cross-correlogram exhibits
asharp peak derived from the neuronal connectivity atop a broad
foothill derived from the stimulus-locked covariation of firing
rates. The component derived from the neuronal connectivity
thus can be extracted from the raw cross-correlogram by sub-
tracting the shift predictor, which reflects only the stimulus-
locked component (Perkel et al., 1967; Nowak et al., 1995; de
Oliveira et al., 1997; Das and Gilbert, 1999; Steinmetz et al., 2000;
Usrey et al., 2000; Bair et al., 2001). This method for quantifying
the spike correlation is, however, sensitive to the variance of the
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Figure7.  Rapid emergence of feature configuration-dependent spike correlation. 4, Scatter

grams showing peak heights of SSCCs in z-score (left) and mean firing rates (right) for all of the
cell pairs, elicited by optimal FOs (ordinate) and NFOs (abscissa) in the periods of 100 —300 ms
(top; n = 29, one pair with small number of spikes was excluded) and 300500 ms (bottom;
n = 30) after cue onset. B, (, Average peak heights of SSCCs in z-scores (B) and average firing
rates (€) across all of the cell pairs elicited by optimal FOs (gray) and NFOs (white) during the
periods of 100 —300 ms (left; n = 29) and 300 —500 ms (right; n = 30) after cue onset. Asterisk,
Significant difference assessed by paired t test corrected for multiple comparisons for the di-
vided time window. Error bars represent SEM.

bin counts in the shift predictor (Brody, 1999). Conversely, the
NCC is not directly affected by the bin count variance of the shift
predictor, because the expected value of the correlation, which is
subtracted from the raw cross-correlogram, is a single value cal-
culated from the number of spikes, the recorded duration, and
the bin width of the raw cross-correlogram. However, because
the broad structure in the shift predictor is considered indirectly
in calculating the NCC, it might be difficult to extract the com-
ponent derived from the neuronal connections if the shift predic-
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tor has a complex structure. The consistency of our results ob-
tained with those two different methods thus suggests that the
present results are robust regardless of the methods for quantify-
ing the spike correlation.

The advantage in the spike correlation for pFOs over pNFOs
rests on a relatively small fraction of the total spikes fired by each
neuron (1.6 vs 1.1% for pFOs and pNFOs; see Results). Note,
however, that the pFO dominance of spike correlation was robust
against overall variance of spike correlation among the popula-
tion of neuron pairs (Fig. 5). Correlated spikes have an additional
impact on the firing probability of the postsynaptic neurons
(Alonso et al., 1996; Usrey et al., 2000; Roy and Alloway, 2001).
Thus, relatively small difference in the spike correlation as ob-
served might be effective in a network of IT neurons to discrim-
inate between different feature configurations.

To construct reliable cross-correlograms, a sufficient number of
spikes were needed in both pFO and pNFO trials. For that purpose,
the minimax algorithm was used in recording sessions to determine
the pFOs and pNFOs, and the off-line-sorted cells that responded to
the pFOs or pNFOs with low firing rate were not included in the
analyses (see Materials and Methods). Our results were thus ob-
tained from this subpopulation of IT neurons, and it is an open
question how another subpopulation of IT neurons would have par-
ticipated in the representation of unique whole objects.

Possible sources of pFO-dominant neuronal correlation

In the present study, pFO-induced neuronal correlation was
shown to be stronger than that induced by pNFO. Several possi-
bilities can be raised as the source of this pFO-dominant neuronal
correlation. One possibility is the common input from the neu-
rons that selectively respond to a specific pFO but not to the
corresponding pNFO. Regarding the possible existence of such a
pFO-selective neuron, 64,000 different FOs were presented in a
nearly trial-unique manner before they were used for examining
the neuronal connectivity. Thus, we expect I'T neurons not to
have become selective for a specific FO. Although the recorded cell
pairs indeed responded well to pFOs, they responded equally well to
their corresponding pNFOs (Fig. 3B), suggesting that stimulus selec-
tivities of these neurons might be related to the facial-feature-like
parts used in the pFOs/pNFOs. It is thus unlikely that the observed
pFO-dominant spike correlation was evoked by common input
from neurons that were tuned to a specific pFO.

A second possible source of pFO-dominant spike correlation is
the common input from the face neurons that respond to many faces
(Perrett et al., 1992). It might be difficult, however, to explain the
observed pFO-dominant spike correlation by this mechanism be-
cause the face neurons would also respond to nonoptimal FOs, lead-
ing to higher spike correlation in response to nonoptimal FOs than
to nonoptimal NFOs, which is not consistent with our finding (sup-
plemental Table 1, available at www.jneurosci.org as supplemental
material). Instead, the pFO-dominant spike correlation might be
explained by considering more complex modulations of local syn-
aptic transmission in the neuronal circuit rather than only a simple
common input from the face neurons.

A third possibility is that the pFO-dominant spike correlation
was induced by stronger attention to FOs than to NFOs, because
neuronal synchronization is enhanced by attention (Steinmetz et
al., 2000; Fries et al., 2001). If the spike correlation was enhanced
by stronger attention directed to FOs than to NFOs, then nonop-
timal FOs should also exhibit stronger correlation than nonopti-
mal NFOs, which was not the case in the present study (supple-
mental Table 1, available at www.jneurosci.org as supplemental
material). Therefore, it is unlikely that the pFO-dominant neu-
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ronal correlation was provided by general enhancement of the
spike correlation by stronger attention to FOs. Still, the firing rate
of neurons can be modulated by attention in a stimulus-
dependent manner (McAdams and Maunsell, 1999; Reynolds et
al.,, 2000). Therefore, the pFO-dominant spike correlation might
occur if there exist some mechanisms to transmit such a
stimulus-specific attentional modulation to the recorded cell
pairs without systematic changes in their firing rates.

Neuronal correlation in response to a face-like-pattern
Previous psychophysical studies have revealed the existence of the
face superiority effect, in which the parts arranged in a face-like pat-
tern can be more rapidly and accurately recognized by human ob-
servers than those arranged in a random patterns (Homa et al., 1976;
Gorea and Julesz, 1990; Tanaka and Farah, 1993). The pFO-
dominant spike correlation we found might be one of the possible
mechanisms underlying this face superiority effect. In human EEG
experiments, stronger gamma-band coherence was induced in re-
sponse to upright Mooney face, which was perceived as a face, than
to the inverted one, which was not perceived as a face (Rodriguez et
al., 1999). Another EEG study showed that a line-drawn image of a
real object evoked stronger gamma oscillation than a moderately
scrambled image of the same object (Herrmann et al., 2004). We did
not encounter pFO-induced gamma oscillations in the present study
(Singer and Gray, 1995). This might be because the cross-correlation
between single-unit activities is less sensitive in detecting oscillatory
synchronization than the cross-correlation between multiunit activ-
ities or local field potentials (Fries et al., 2001; Lee et al., 2005). Re-
garding the origin of the observed higher spike correlation with the
facial configuration of constituent parts, it might have been acquired
through the extensive training on the FO/NFO judgment task in
which the facial configuration was repeatedly presented with a vari-
ety oflocal features, as discussed in human imaging studies (Palmeri
and Gauthier, 2004). Whether the observed spike correlation is also
involved in the representation of objects in general by IT neurons is
an important issue to be resolved in future studies.

Several studies have been conducted to assess the spike corre-
lation in the IT cortex of anesthetized (Tamura et al., 2004) or of
awake (Gochin et al., 1991; Gawne and Richmond, 1993; Agge-
lopoulos et al., 2005) monkeys. However, it has not yet been
demonstrated that the spike correlation in the IT cortex is dy-
namically modulated by the presentation of complex visual ob-
ject. The present results suggest that feature configuration within
aunique whole object can be reflected in the rapid modulation of
spike correlation among a population of neurons in the IT cortex
of behaving monkeys. This study also demonstrated that these
cross-correlation analyses would be an important tool for shed-
ding light on the local structures within a cell assembly in the IT
cortex in which the cognitive computations are implemented.
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