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Neurons are sensitive to the relative timing of inputs, both because
several inputs must coincide to reach spike threshold and because
active dendritic mechanisms can amplify synchronous inputs. To
determine if input synchrony can influence behavior, we trained
mice to report activation of excitatory neurons in visual cortex
using channelrhodopsin-2. We used light pulses that varied in
duration from a few milliseconds to 100 ms and measured neuronal
responses and animals’ detection ability. We found detection per-
formance was well predicted by the total amount of light delivered.
Short pulses provided no behavioral advantage, even when they
concentrated evoked spikes into an interval a few milliseconds
long. Arranging pulses into trains of varying frequency from beta
to gamma also produced no behavioral advantage. Light intensi-
ties required to drive behavior were low (at low intensities, chan-
nelrhodopsin-2 conductance varies linearly with intensity), and the
accompanying changes in firing rate were small (over 100 ms,
average change: 1.1 spikes per s). Firing rate changes varied
linearly with pulse intensity and duration, and behavior was pre-
dicted by total spike count independent of temporal arrangement.
Thus, animals’ detection performance reflected the linear integra-
tion of total input over 100 ms. This behavioral linearity despite
neurons’ nonlinearities can be explained by a population code using
noisy neurons. Ongoing background activity creates probabilistic
spiking, allowing weak inputs to change spike probability linearly,
with little amplification of coincident input. Summing across a pop-
ulation then yields a total spike count that weights inputs equally,
regardless of their arrival time.
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Many neurons in the brain receive thousands of inputs
spread over their dendritic trees, and several of those inputs

need to be active simultaneously to generate a spike reliably (1, 2).
In this way, coincident synaptic inputs can be amplified relative to
asynchronous inputs. In addition to this nonlinearity caused by
spike threshold, other active processes such as dendritic calcium
spikes (3–5) can preferentially amplify synchronous inputs. A va-
riety of ways that timing could impact network function have been
explored, including oscillatory synchronization (6, 7), strong cas-
cading effects of individual neurons or synapses (8–11), and in-
formation encoding via temporal patterns (12). In the songbird,
for example, song neurons receive precisely timed coincident input
that recruits active calcium conductances, generating strong,
reliable spike bursts that control the song (13, 14). However, syn-
chrony might not always be critical for neuronal processing. Several
types of models show that neuronal networks can be insensitive
to precise spike timing even though individual neurons are highly
sensitive. Most of these models rely on strong (15) or numerous
(16–18) inputs and amplification of small perturbations, leading
to chaotic network dynamics and noisy single neurons (15, 17, 19).
Experimental data show that at times neuronal responses can
combine responses to sensory input linearly, as with simple cells
in visual cortex (20, 21). However, it has been unclear how ei-
ther synchronous or linear responses in the cerebral cortex
might guide behavior.

Determining how input synchrony influences behaviors requires
both behavioral measurements and the ability to identify and re-
cord the neurons used for behavior. Optogenetic stimulation
provides an opportunity to study the effects of synchrony, be-
cause it allows us to supply input to a restricted set of neurons
and ask animals to make behavioral responses that depend on
the activity of those neurons. Because each input spike results in
a brief change in conductance in postsynaptic neurons, we can
study the effects of synchrony by providing large transient changes
in conductance or weaker sustained changes. These changes in
conductance simulate the effects on single cells when their many
presynaptic partners fire synchronously or asynchronously. Thus,
we can study synchrony not by measuring correlated spiking in
a large population of neurons, but by simulating the effects of an
input population of varying synchrony by controlling conductance
amplitude and duration.
Here, we trained mice to perform a behavioral task in which

they monitored background activity in their visual cortex and
reported when cells were stimulated optogenetically. This ap-
proach allowed us to provide conductance input to the neurons
that drive the behavior, vary the strength and duration of the
input, and measure how input synchrony affects behavioral per-
formance. We find that animals’ detection performance is pre-
dicted only by the total amount of light power delivered and
not by its pattern within a 100-ms interval. Stimulation pro-
duces only small changes in the spiking of neurons and population
responses vary linearly with pulse duration and amplitude. Thus,
behavior is predicted by the total number of spikes fired above
baseline, independent of their temporal pattern. Unexpectedly,
cellular nonlinearities do not appear to be exploited to im-
prove detection performance for synchronous input. Hereafter
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we use the term “synchronous input” to describe the brief, strong
changes in conductance that we provide (and that are produced
in single cells when input spikes arrive synchronously; shown
schematically in Fig. 1A). However, because we observe linear
spike responses, “synchronous” also can be used to describe
spike patterns: We find that a constant number of evoked spikes
produces the same behavioral detection performance, no matter
whether spikes are arranged synchronously or are spread out
over a 100-ms interval.

Results
Animals Reliably Report Changes in Neuronal Firing Induced by
Channelrhodopsin-2. We stimulated a small region of primary vi-
sual cortex (V1) using channelrhodopsin-2 (ChR2). We limited
expression to excitatory pyramidal neurons using a transgenic
mouse (Emx1-Cre) and viral transfection. We illuminated a spot
<1 mm in diameter on the surface of the exposed dura to
stimulate hundreds to thousands of transfected neurons (Fig. 1C
and Figs. S1 and S2), comparable to the number of neurons
affected by the smallest possible visual stimulus because of the
size and scatter of V1 receptive fields (22). Animals readily
detected ChR2 stimulation, and we obtained precise psycho-
metric thresholds for direct cortical stimulation, as in sensory
tasks (23), by changing the intensity of the stimulus (Fig. 1 D and
E). Moving the excitation light to an adjacent area of cortex with
weaker expression dramatically reduced animals’ ability to do the
task (Fig. 1F and Fig. S2), as would be expected if the animals

were directly detecting changes in neuronal activity and not the
laser light. Shorter reaction times to cortical stimulation [∼150
ms minimum compared with ∼210 ms minimum in a visual task
(23)] are further evidence that animals detect direct neuronal
activation, as has been shown previously in a range of species and
brain areas (24–28).

Detection Performance Varies with Total Stimulation Power. To ex-
amine the importance of input synchrony for behavior, we used
different temporal patterns of excitation light to simulate syn-
chronized or desynchronized synaptic input. We chose a 100-ms
maximum interval to ensure that recorded neuronal responses
were not contaminated by activity related to motor response or
reward, because animals’ reaction times could be as fast as 150 ms
(Fig. 1E).
We first delivered short and long pulses of light, scaling pulse

amplitude to find detection threshold, which is the amplitude
that produces equal detection performance for each pulse du-
ration (Fig. 2A). We found that detection threshold varied in-
versely with pulse duration, so when pulse duration was reduced
by a factor of 10, the amplitude needed to achieve the same
performance was increased by approximately a factor of 10. To
eliminate any possibility that this variation could be influenced
by fluctuation in perceptual criterion, we measured threshold
both in terms of percent correct, corrected for false alarms
(Methods and Fig. 2 B–D; n = 4 animals, slope on a log–log plot
of duration vs. threshold percent correct: mean −0.87, largest
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Fig. 1. Animals directly detect activation of cortical neurons by ChR2. (A) Schematic showing how spike synchrony among inputs affects input conductance.
(Top) Simulated asynchronous (Left) or synchronous (Right) input spikes. (Bottom) Schematic of a conductance waveform that would result from summation
of the same conductance response from each spike (convolution of spikes with an exponentially decaying response). (B) Change-detection behavior. Animals
press a lever to initiate the trial, and after a random delay we deliver a light pulse to stimulate ChR2-expressing neurons. Animals respond by releasing the
lever. Responses before the stimulus are false alarms; failures to release quickly (within 450 ms) are classified as misses. Correct releases are rewarded; errors
cause the trial to end, and a delay is imposed before the next trial. (C) Histological section showing ChR2-expressing neurons, pseudocolored with yellow
indicating highest fluorescence. The injection is a few hundred microns in diameter (see Fig. S1 for the distribution of responsive neurons). The area between
neurons is densely labeled red because ChR2 is expressed in cell membranes throughout the neuropil. (Scale bar: 100 μm.) (Inset) Detailed view showing a cell
with membrane expression (2) and one with less expression (1). (Scale bar, 20 μm.) (D and E) Typical behavioral sessions showing that animals are good
psychophysical observers. (Upper) Psychometric functions. Horizontal black line: 95% CI for threshold. (Lower) Reaction times. Heavy lines are hyperbolic
function fits; yellow points indicate means; error bars show SEM. At the highest stimulus intensity, reaction times are much shorter for direct cortical
stimulation than for visual stimuli, because animals detect signals that bypass the sensory periphery. (F) Performance relies on optical excitation of ChR2
neurons, showing that animals detect changes in cortical activity and not retinal stimulation with blue light. The y axis shows the behavioral threshold
(calculated as shown in D and E; 95% CIs). The left value shows the behavioral threshold when the excitation light spot is directed at ChR2 neurons;
on the right, the elevated threshold reflects worse performance when the light spot is displaced ∼500 μm away from ChR2 expression peak (n = 1 animal,
15 behavioral sessions; see Fig. S2 for more details.).
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magnitude −1.00) and in terms of d′ (slope on a log–log plot of
duration vs. threshold d′: mean −0.89, largest slope magnitude
−1.15). This relationship, with a slope near −1, means that the
total light power (the product of pulse duration and amplitude)
closely predicted behavioral performance (Fig. 2 B–D), whether
the total power was distributed over 100 ms or was concentrated
into an interval of only a few milliseconds. [We chose a minimum
pulse length of 1 ms to fall just under the limits of ChR2 kinetics,
because ChR2 has an activation time constant of 1.5 ms (29)].
This dependence on total power is unexpected for direct inputs
to cortical neurons, because cortical neurons are variable and
have nonlinearities caused by spike threshold and active den-
drites. Such neuronal nonlinearities, if used in this behavior,
would generate better performance for short pulses than for long
pulses of the same total power. Instead, animals’ behavior re-
flected nearly perfect linear integration.
To explore the neuronal basis of the linear behavioral integration

we found, we first examined how neurons’ firing was changed by
optogenetic inputs. Our recordings during the task using a linearly
changing light stimulus showed that neuronal firing rates varied
monotonically with the ChR2 input (Fig. 3 A–C). We applied light
stimuli both during and outside the detection task and found that
spiking was similar in those two conditions (Fig. 3D). Therefore, to
maximize statistical power, all further recordings we show are
responses recorded outside the detection task while animals were

awake and receiving reward periodically to keep them alert. To
determine if changes in spiking occurred with a time course
similar to that of the light pulses we delivered, we next stimu-
lated with square pulses and measured spiking in small neuronal
populations. Consistent with ChR2 kinetic properties (activa-
tion time constant = 1.5 ms, deactivation time constant ∼5 ms)
(29), the duration of firing rate changes matched the duration
of pulses. Higher-amplitude light pulses also produced larger
changes in average firing rate (Fig. 3 E and F) or, equivalently,
spike probability. (Below, we quantify these changes across
a larger neuronal population.)

Population Firing Rates Change Linearly with both Pulse Duration and
Amplitude. The simplest manifestation of the linearity we ob-
served in behavior would be for the underlying neuronal pop-
ulation to show a linear relationship between input and spike
output, despite individual neurons’ threshold nonlinearities. In
this case, the sum of population spike activity would be similar
for short, high-amplitude and long, low-amplitude pulses over
the ranges used for behavioral measurements. To test this case
quantitatively, we recorded the activity of hundreds of units
while stimulating with light in vivo (Fig. 4). For these studies we
recorded many units (n= 243 single and multiunits responsive to
stimulation; Methods), giving us the power to measure changes in
spiking even at low light intensities near the behavioral threshold
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Fig. 2. Behavioral detection thresholds show that inputs can be integrated linearly. (A) An example of psychometric functions from two sessions in one
animal. Dark blue, 100-ms pulse; cyan, 10-ms pulse; green, 1-ms pulse. Data shown in solid cyan and dark blue (single points shown with rightward-oriented
triangles) were collected in one session; dotted cyan and green curves (leftward-oriented triangles) were obtained in a second session; within a session, trials
were randomly intermixed. The x axis shows the peak power of each square pulse. Horizontal lines indicate the 95% CIs around each pulse duration’s
threshold. (B) An example of behavioral detection as a function of total pulse power. Data are from a second animal (n = 10 sessions.) The x axis shows total
pulse power in millijoules per square millimeter, or peak power in milliwatts per square millimeter (as in A) times pulse duration in seconds. Other conventions
are as in A. (C) The threshold is nearly linearly proportional to pulse time. Data are from the animal in B. Black points indicate threshold measurements for
pulses of different durations (95% CI), slightly offset on the x axis for clarity. Blue lines connect pairs of measurements made in a single session (no nor-
malization). The heavy red line indicates the linear fit; slope −1.01. (D) Summary of data from four animals. Each color represents one animal (blue, animal
with data in A; red, animal in B). Error bars at 1, 10, and 100 ms indicate the SEM. For each animal, data include at least five points at 1 and 100 ms and at least
10 points at 10 ms. Data are normalized to the threshold at either 10 ms or 100 ms, one of which was measured each day. Slope range: −0.85 to −1.01. The
slope measures animals’ ability to integrate inputs; the offset on the y axis reflects only changes in absolute power threshold and could arise from many
sources, including variation in dural thickness or slight differences in expression level (Fig. S2). Animals’ lapse rates were low (median <3%), and neither lapse
rate nor slope varied with pulse duration (Fig. S7).
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(compared with Fig. 3 E and F, which used higher intensities).
We found linear increases in spiking when the duration or am-
plitude of the stimulation pulse was increased (Fig. 4 A–D) and
confirmed this finding by fitting a linear regression model
containing terms for peak power, duration, and total power
(peak power times duration). Only the total power term was
significant (P < 10−120), and it captured the entire effect;
when the total power was accounted for, neither single factor
modulated responses further (P > 0.30). The coefficient (β, or
slope) of the total power term was 0.11; this is the number of
spikes per cell per trial near behavioral threshold (Methods).
We also observed linearity if we considered single units alone
(n= 53; again, only the total power term was significant, P < 10−25),
where the coefficient is even smaller (0.050), as expected because
multiunits group together several single units. The regression
showed no distortions caused by changes in each variable alone,
as might have occurred, for example, if short pulses had produced
more spikes than long pulses of identical total power.
Instead, we found that the same number of spikes was gen-

erated by the population by pulses with the same total power
(i.e., using higher peak powers for shorter pulses), even though
shorter pulses yielded higher instantaneous firing rates (Fig. 4E).
Stimulation with short pulses elevated the firing rate for only
a few milliseconds at total powers near the behavioral threshold
(Fig. 4E; a 3-ms light pulse elevated population activity for 4.4 ms,
FWHM). Although responses could show slight initial transients
at higher powers (e.g., Fig. 3E), these were not seen near the
behavioral threshold (Fig. 4E), and even at high powers any
transients were fast and caused little deviation from linearity
(Fig. 4 A–D). Together, these observations support the idea that
the total spike count over a 100-ms period is important for be-
havior, regardless of the maximum firing rate achieved or how
those spikes (or the conductance inputs that cause them) are
arranged in time.
The linear neuronal changes we observed might be possible

because at low light powers ChR2 avoids nonlinearities such as
desensitization and saturation. Experimental observations have
shown that at low powers ChR2 exhibits a linear relationship
between excitation light and channel conductance (29, 30), and
this relationship has been quantified in biophysical models (29,
31), which we reimplemented to plot this linearity (Fig. 4F).
Indeed, power densities at or above 10 mW/mm2 applied directly

to a thin tissue section often are used to drive spiking in vitro
(32); here we approach that number only for the shortest pulses,
and we deliver power to the top of the dura, so that the light
reaching cells is attenuated by overlying tissue. Therefore, the
linearity of ChR2 at low light powers is likely to underlie the
linearity we see between light intensity and our in vivo spike data.
However, even in the presence of ChR2 linearity, the output
spike count we measured would not be expected to be linear for
short and long pulses of similar total power, because cellular
nonlinearities such as threshold and active dendrites predict that
short inputs should be more effective at driving spikes.
The low light levels needed for behavioral detection pro-

duced small changes in the firing rate of individual neurons (Fig.
5). The effects of ChR2 stimuli at the behavioral threshold
were sufficiently weak so that neurons often fired no extra
spikes on individual trials (mean: 0.11 extra spikes per unit per
trial; SD: 0.26; equivalent to an average change in firing rate
of 1.1 spike/s for a 100-ms stimulus; Fig. 5). As often seen in
the cortex (33), the responses of neurons to stimulation were
variable (noisy), following a nearly-Poisson distribution (Fano
factor: mean 1.20) with a small but positive pairwise correla-
tion (correlation coefficient: mean 0.016). The small rate
changes and the Poisson trial-to-trial variability support the
notion that we were activating only a fraction of the total
ChR2 molecules (Fig. 4F), allowing ChR2 conductance to
vary linearly with excitation light power. Although the ChR2
stimulus had only a small effect on individual neurons, many
cells (both single and multiunits) showed these changes (Fig. 5).
These data show that behavior in this task can be controlled by
a population of many neurons, each of which changes its firing
probability only slightly.

Periodic Pulse Trains Do Not Improve Detectability. The linear be-
havioral trade-off we found between pulse amplitude and dura-
tion suggests that periodic synchronization among inputs would
not improve behavioral performance. To test this notion directly,
we used pulsed light waveforms with different frequencies and
pulse durations (Fig. 6 A–D). We held the length of each pulse
train constant at 100 ms and varied the number of pulses from
two to six, yielding frequencies between ∼10 and 50 Hz. For trains
with five pulses (45 Hz, near the middle of the gamma range),
we also changed how tightly inputs were synchronized by varying
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pulse duration between 3 ms and 11 ms while scaling intensity to
find behavioral thresholds. To separate the effects of shortening
pulses and of arranging them in periodic trains, we also ran-
domized the position of pulses within trains (Fig. S3). In all
these cases we found that the behavioral threshold varied in
a way that depended only on the integrated light power and
that trains that synchronized spikes within short pulses pro-
vided no advantage in behavioral detection. We again used in vivo
recordings to confirm that neurons were spiking synchronously (Fig.
6E) and found that neurons fired extra spikes only during these
pulses, as expected from the kinetic properties of ChR2 (Fig.
4E) (29, 31).

Using two types of stimulation waveforms (Figs. 2 and 6), we
have measured two types of behavioral effects in which dif-
ferent integration times would be optimal: for single pulses of
different duration (Fig. 2) and for pulsed trains where the total
duration was held fixed (Fig. 6). We observed that animals’
reaction times varied when the optimal integration time varied
and were constant when the optimal integration time was held
constant (Fig. S4). In both cases, however, the threshold was
predicted only by the integral of light (total conductance), in-
dependent of its pattern within a 100-ms period, showing that
animals’ integration time does not affect the linear relationship
between threshold and input duration.
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multiunits, one animal. Peak power of 100-ms pulse is 0.05 mW/mm2 (total power, 0.005 mJ). Data in A–E were collected during the awake, rewarded
condition (y axis, Fig. 3D) to maximize the number of trials and statistical power. (F) ChR2 total conductance is linear across power and pulse length, as long as
power is low. Conductance change [computed using the model of Nikolic et al. (29)] is almost exactly linear when less than 3% of ChR2 molecules are recruited
(dark line and Inset) and deviates for the shortest pulses at 10 times this power (dashed and dotted line), principally because of saturation.
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Discussion
Linear Population Codes Can Arise from Weak Inputs on a Noisy
Background. We found that behavioral detection performance
depends only on the number of spikes fired by a population over
100 ms, as if each spike were weighted equally, regardless of its
arrival time. Also, although neuronal nonlinearities would pre-
dict that the total number of spikes should be amplified for short
pulses, we instead observed linear population responses across
a wide range of light pulse durations. How is it possible for be-
havior and neuronal spiking to vary linearly given the threshold
and dendritic nonlinearities of single cells? The observations that
behaviorally detectable inputs are weak and that individual cells
are variable support a population coding model that can explain
linear behavioral performance. Cortical neurons in vivo receive
an ongoing barrage of input that produces large fluctuations in
membrane potential and causes the cell to cross the threshold with
highly irregular timing (11, 33, 34). The observed variability in the
firing of cortical neurons generally is thought to arise from this
background activity, because these neurons respond determin-
istically to input (35). Because small perturbations in nonlinear
systems can produce linear responses (36), weak inputs added to
the ongoing background fluctuations can change this probability
of spiking slightly but linearly (18, 37). Thus, one important as-
pect of our findings is that small changes in firing rate over many
neurons are behaviorally detectable.
However, the observation that small perturbations in the firing

rate produce linearity is insufficient by itself to yield a population
linear response, because the spike threshold rectifies neurons’
input–output relationship. In principle, small inputs should have
little or no effect on spiking, because they are insufficient to

cross threshold. This observation suggests that neurons act as
coincidence detectors (12). However, background activity, which
is largest in the cortex when animals are awake and alert (38) can
explain how cortical neurons produce a linear population spike
response. We observed that behaviorally detectable ChR2 input
did not drive neurons to fire at high rates and did not produce
reliable spiking (Fig. 5), showing that the ChR2 input rarely was
sufficient by itself to cross the threshold. In the absence of on-
going cortical background input, these inputs likely would have
produced few or no spikes, as is the case with the small excitatory
postsynaptic potentials often generated by synaptic input (1,
39, 40). Instead, the observed trial-to-trial neuronal variability
means that threshold crossings were determined primarily by
background activity, and ChR2 inputs modify the chance of
a spike firing only slightly. For single neurons it is difficult to
discern such changes in firing probability on a single trial, but
inputs can be decoded more reliably (by the animal or the ex-
perimenter) by summing spikes across a neuronal population
(Fig. 4). In summary, the neuronal noise generated by ongoing
activity may be a necessary nuisance that enables firing rate to
vary linearly with input, avoiding the rectifying effects of spike
threshold.
To guide a behavioral response from such a population of

neurons that show small rate changes, many cells must partici-
pate in the population. Accordingly, we estimate that hundreds
or thousands of neurons were stimulated by ChR2 during be-
havior. For the session shown as an example in Fig. 3 A–D, we
recorded 33 single and multiunits during behavior and saw 7.2
spikes per trial at threshold power (Fig. 3C, green). If we assume
conservatively that each site can record from neurons up to 50 μm
away (41), we surveyed ∼1/25th of layer 2/3 of the injection site
(Fig. 1C), so we would expect at least 150 spikes for each near-
threshold stimulus. These recording electrodes were placed in the
superficial cortical layers, and if neurons in deeper layers also
were stimulated, we would expect even more spikes. Our data do
not exclude the possibility that infrequent behavioral responses
could be induced by far fewer spikes (Fig. 3 A–D, blue) (10).
However, as expected for a sum of variable Poisson spike counts,
reliable behavioral performance (e.g., >50% correct) depends on
the addition of many spikes to the population.
Over the wide ranges of duration and amplitude we measured,

behavioral performance is predicted well by total integrated light
power, with little advantage given to short pulses. This type of
linear integration has been demonstrated behaviorally for brief
visual, auditory, and other sensory stimuli, where it is called
Bloch’s law (42–44). This nearly perfect integration (slope near −1
on a log–log plot of threshold vs. duration; Fig. 2) has been
thought to occur in the periphery, where graded potentials can
support integration (42). Because cortical neurons are noisy and
nonlinear, the linear integration we observed is unexpected for
the direct conductance inputs we used. In studies of temporal in-
tegration over longer times, performance often improves with the
square root of time [slope −1/2; (43)], rather than linearly with
time (slope −1), as we find. However, temporal integration effects
with slope −1/2 still can reflect perfect integration of sensory input
(43, 45) when the stimuli involved vary randomly, so that perfor-
mance is limited by statistical variations in the stimulus. However,
because those statistically varying stimuli are suprathreshold and
are easily visible, and because linearity for the dim, constant visual
stimuli described by Bloch’s law becomes imperfect beyond ∼100
ms (42), studies of temporal integration over longer time periods
might have a different neuronal circuit basis than our effects.

Generalization to Other Tasks and Areas. Different types of behav-
ioral tasks might rely on different regimes of cortical computation
and, unlike the effects we observed, might rely on the known
nonlinearities in cortical neurons. We have studied how animals
detect weak signals near the limits of perception. In other studies
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Fig. 5. Stimulation near the behavioral threshold produces small changes in
the activity of many cells. Each point is the activity of one of 441 units (110
single, 331 multiunits) recorded from the same two animals shown in yellow
and red in Fig. 2D. (A) Spike count in the absence of ChR2 stimulation, il-
lustrating the size of our measurement noise (average over 90–110 repeti-
tions). The y axis shows spike count in a 100-ms period with no stimulation,
minus the count in a baseline period of the same duration. Each point is one
unit, ordered (x axis) by mean absolute baseline firing rate (unit baselines:
10th percentile, 0.28 spikes/s; median, 2.8 spikes/s; 90th percentile, 9.9 spikes/s).
(B) Spike counts in response to ChR2 stimulation at a power just above the
behavioral threshold (0.1 mW/mm2, 100-ms square pulse, 0.01 mJ/mm2). See
Fig. S1 for spatial locations of recording sites. The single filled circle is
a multiunit that fired 1.95 spikes per stimulus, shifted down to the axis limit
for visual clarity. The mean response is 0.11 spikes per stimulus (an average
change in rate of 1.1 spike/s over 100 ms), which is nearly identical to
threshold found by the slope in Fig. 4 A and D. These data were collected
during the awake, rewarded condition (y axis, Fig. 3D) to maximize the
number of trials and statistical power.

Histed and Maunsell PNAS | Published online December 23, 2013 | E183

N
EU

RO
SC

IE
N
CE

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1318750111/-/DCSupplemental/pnas.201318750SI.pdf?targetid=nameddest=SF1


where animals have been asked instead to differentiate between
two strong, suprathreshold patterns of activity generated by
electrical microstimulation, they were able to detect differences in
stimulus timing (46, 47). Electrical stimulation studies cannot
examine network linearity, because pulsed current has a stronger
effect than sustained current (48) and because there is a complex
relationship between stimulation current and evoked spike count.
However, the stimulation currents used likely evoked stronger
activity than our near-threshold stimulation (27, 49). In fact,
frequency discrimination of both sensory and direct electrical
stimuli is best with intensities well above the detection threshold
(50). Discrimination of two patterns thus might rely on more
spikes in the population than detection of minimal stimulation. It
remains unclear whether these stronger inputs and the compu-
tation they support take advantage of network nonlinearity.
Populations of nonlinear neurons may support linear temporal

integration in brain regions beyond the visual cortex. On the one

hand, visual cortical neurons can show sustained sensory responses,
but more transient responses, implying a stronger reliance on
timing-based codes, have been observed in other primary sensory
areas such as rodent somatosensory (barrel) and auditory cortex
(51–53). However, in these other areas temporal integration is
possible [e.g, when sensory stimuli are combined (51) and direct
electrical stimuli are used (54)]. Across sensory cortical areas,
there is strong divergence even in the first set of inputs, the
thalamocortical connections, and most individual inputs are
weak (1, 39, 55, 56). These are the conditions—when each cell
receives many inputs and no single input dominates—under
which population linearity can hold. Thus, it appears that other
cortical areas have the anatomical capacity to produce such
linear coding in some behavioral contexts. The fact that syn-
chronized spiking in the V1 population (Fig. 6E) produced no
behavioral advantage over sustained spiking (Fig. 6C) suggests
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constant at 100 ms, and the pulse number (and thus pulse duration, to keep 50% duty cycle) is varied. For example, the train with pulses of 20-ms duration has
three 20-ms pulses (with two 20-ms gaps between them), resulting in a repetition frequency of 25 Hz. The train with pulses 11 ms in duration has five pulses
(and four gaps) for a frequency of 45 Hz (schematic shown in Inset). The y axis shows the threshold (95% CI) in units of total integrated light intensity (mJ/
mm2, or mW/mm2 times the sum of pulse durations for that train). As predicted by linear integration, different pulse durations give similar total power
thresholds. The black line shows the linear fit. We additionally normalize each day’s threshold measurement (black) by the ratio of that session’s control 100-
ms threshold (gray points, slightly offset horizontally for visual clarity) to the mean 100-ms threshold for that animal to reduce noise by slightly reducing
session-to-session fluctuations in threshold (Fig. 2 C and D). (B) Data from a single animal showing the pulse duration while the number of pulses was held
constant (all trains have five pulses with an 11-ms period, 45 Hz). The x axis shows the duty cycle, or total power as a fraction of the power of the 100-ms pulse.
Other conventions are as in A. The slope is not significantly different from zero (P > 0.05), but any upward slope of the regression line would show that short
pulses (of similar total power and thus higher amplitude) are less effective than long pulses at driving behavior, a result opposite that expected from cells’
threshold nonlinearities. (C and D) Summary over four animals. Each color represents a different animal. Red data are for the animal shown in A and B; the
animals and the colors are the same as in Fig. 2. Error bars: 95% CI, except for 100-ms control pulses: SEM. There is little variation in the behavioral threshold,
as shown by near-zero slopes (no slope is significantly different from zero; P > 0.05 via linear regression, corrected for multiple comparisons.) Upward trends
in D suggest that short pulses may be even less effective in driving behavior at similar total power. (E) Responses in small populations (powers above be-
havioral threshold) verify that that pulsed stimulation evokes synchrony in cortical neurons; conventions are as in Fig. 3 E and F (average over n = 19 units, 5
single and 14 multiunits). (F) ChR2 model simulation shows that at low light levels conductance oscillations are limited by ChR2 kinetics, and there is sub-
stantial oscillation at 45 Hz, as we observed in vivo (E; also see Fig. 4E).
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that the output of V1 was summed linearly by any stages that
received that output and contributed to the behavioral response.
The cortical local field potential and EEG contain signatures

of global oscillations in larger pools of neurons (6). Although
a noisy population code explains why these oscillations need not
impact behavior, inputs arriving at particular oscillation phases
might be processed preferentially. If such phase-locking aided
performance in our task, the pulsed waveforms sometimes would
have arrived at the correct phase and sometimes would have
arrived at the incorrect phase and thus should have increased the
variability of reaction times and changed the slope of the psy-
chometric function. We found no evidence for either effect (Fig.
S5). Additionally, we observed no changes in pairwise synchrony
amongst recorded neurons as a result of ChR2 stimulation (Fig.
S6). Other computations might use this sort of synchrony, al-
though coding via coherence between inputs and the local net-
work state requires two distant neuronal populations to be
synchronized with precise timing. Given the wide variety of ax-
onal lengths and numbers of synapses between any two cortical
neurons, each of which induce variable delays, the cortex might
well have faced evolutionary pressure to develop coding schemes
that are resistant to timing, such as those reflected in our data.

Conclusion
The linear behavior we observed is unexpected given the many
nonlinearities at the cellular and network level that could have
changed animals’ behavior. At the single-cell level, spike threshold,
active dendritic processes, or spike rate saturation and refractory
periods could have changed the effect of coincident input. Known
properties of cortical networks also could have produced non-
linearity, including excitatory recurrent amplification or damping
by recruitment of inhibition, which indeed are known to occur
under extreme conditions of strong input (57–59). Nonetheless,
we find that recurrent cortical networks are capable of linear
behavior. Likely requirements are that behaviorally relevant
inputs are weak compared with other inputs (Fig. 5) and that
inhibition roughly balances excitation (15, 16). Cortical circuits
have corresponding anatomical features—specifically, dense, re-
current local excitatory connections and promiscuously con-
nected inhibitory networks. Thus, the circuit architecture of the
cortex may exist to allow such linear population coding.

Methods
Animals and Transfection. All animal procedures were approved by the In-
stitutional Animal Care and Use Committee at Harvard Medical School and
conformed to National Institute of Health guidelines. Adult animals (post-
natal age 35 d or older; n = 7) were implanted with a head plate in aseptic
surgery. Data from four animals are shown in Figs. 2 and 5; data from two of
these animals are shown in Figs. 4 A–D, 5, and 6 E and F, and data from one
of these animals is shown in Fig. 1E. Of the three remaining animals, data
from one each are shown in Figs. 1D, 3 A–C, and 4E. Animals expressed an
Emx1-Cre knock-in transgenic construct (Jackson Labs, stock #5628) and were
outbred, derived mainly from C57/Bl6 and BALB/c lines. We injected an
AAV2.8 virus into the binocular region of primary visual cortex (1 μL over 40
min, 0.1–1 × 109 viral particles) containing ChR2 [the original variant without
H134R mutation (60)] in a Cre-dependent inverted-floxed construct (61, 62)
(FLIP/DIO) fused to mCherry.

ChR2 Stimulation. Several weeks after injection, we localized the area of
maximum expression via wide-field fluorescence microscopy and fixed an
optical fiber (400 μm in diameter, 0.39 NA; Doric Lenses, Inc.) to the implant so
that it terminated < 4 mm from the dural surface. We delivered light through
the fiber via either a 473-nm low-noise solid-state laser (Laserglow, Inc.) for
training and recording or via a 455-nm LED (for training only). We calibrated
light intensity at the entrance to the cannula using a photodiode (Newport,
Inc.) and measured insertion loss through each implanted fiber as ≤1 dB. The
brain was covered by a glass optical window above agarose or a silicone
adhesive (Kwik-sil; World Precision Instruments, Inc.), or by the adhesive alone.
To calculate power density, we used a CCD camera to measure the laser spot
size as the FWHM of intensity at the dural surface. Intensities at the dural

surface are an upper bound on intensities experienced by cells at depth be-
cause of loss in tissue and scattering (63), so our intensity measurements
are difficult to compare across animals (e.g. the animal whose data is
shown in Fig. 3 had a slightly higher detection threshold than other
animals; this animal showed some tissue regrowth above the dura which
may have attenuated stimulation light). Thus, we made only within-animal
comparisons of intensity and collected each animal’s behavioral data (Figs.
2 and 6) without disturbing the implant. To confirm that no threshold
fluctuations occurred, we collected reference threshold data (for 100- or 10-ms
pulses) during each session. We plot population data by normalizing to the
reference (e.g., Fig. 2D) but omitting the normalization produced qualitatively
identical results (compare Fig. 2 A–C).

Behavioral Task. Animals were trained to report changes in neuronal activity
induced by ChR2 bymanipulating a lever. We first trained animals to perform
a task detecting visual changes (see ref. 23 for details) until they achieved
a stable perceptual threshold. Then on all visual stimulation trials we
added a 100-ms ChR2 stimulation pulse at 0.5–2 mW/mm2 (5–10 times above
the detection threshold) whose onset was simultaneous with the visual
stimulus onset. Over one to eight sessions we made the visual task more
difficult by progressively lowering contrast, making it increasingly advan-
tageous for animals to use the ChR2 stimulus to guide behavior. When
performance for all contrasts rose to nearly 100%, indicating that the
animals were responding well to the ChR2 stimulus, we removed the visual
stimulus. Over 5–10 sessions we gradually lowered the intensity of the
ChR2 stimulus until we could estimate a perceptual threshold for a 100-ms
ChR2 stimulus. All four animals (Figs. 2 and 6) that we trained to perform this
task did so successfully and continued to perform the task well for several
months. First we collected behavioral data for all animals for long (100-ms)
pulses. We collected thresholds for shorter pulses later, ending with 1-ms
pulses. The measurements for the pulse trains shown in Fig. 6 were made
before short single pulses in two animals and after short single pulses in
two animals; no differences were observed, and we observed no effects of
learning for repeated measurements with the same pulse parameters over
several sessions. For one animal we remeasured 100-ms pulse thresholds
after collecting 1-ms pulse thresholds and found the 100-ms pulse thresholds
had not changed, further indicating that learning did not affect our results.
All stimulus parameters were interleaved randomly from trial to trial. We
used threshold measurements only from sessions with >200 total hits and
misses, with low lapse rates at high intensities, and with a stable within-
session false-alarm rate. (Fig. S7 shows that false-alarm distributions do not
vary with pulse length.) Behavioral control was done with MWorks (http://
mworks-project.org) and custom software in Matlab (The Mathworks) and
Python (www.enthought.com).

Neuronal Recording. We recorded extracellularly from visual cortex using mul-
tisite silicon probes (Neuronexus, Inc.; 32-site model 4 × 8-100–400-177 or 64-site
model Buszaki64sp). Recording sites were 15 μm in diameter. Some recording
sites were treated to increase conductance by electrochemically depositing
the conductive polymer PEDOT:PSS [poly(3,4-ethylenedioxythiophene): poly
(styrenesulfonate)] (64) using the NanoZ (White Matter Research, Inc.). Record-
ings were targeted to the site of ChR2 expression by imaging mCherry fluores-
cence with a fluorescence microscope and camera (Zeiss, Inc). We modulated
laser light intensity with a Pockels modulator (Conoptics, Inc.). If electrical arti-
facts due to intensity changes were present during recording, to prevent them
we used a 1-2–ms linear ramp between intensities. We amplified site signals,
filtered between 750 Hz and 7.5 kHz, and sampled around threshold crossings
(Blackrock, Inc.). We sorted waveforms into single and multiunits by amplitude,
shape, and interspike interval (OfflineSorter, Plexon, Inc.) independently on each
site. We discarded threshold crossings during any laser pulse transition ramp (as
indicated by broken lines in Fig. 5E) to remove any remaining artifacts. We
recorded the spike data shown in Figs. 4 and 5 during the awake, rewarded
condition (outside behavior while animals were awake and receiving occasional
reward between light stimuli to keep them alert). Fig. 3 shows that these neu-
ronal responses are similar to those during behavior.

Responsive units were defined as any that showed a significant change (P<
0.05, sign test, 120-ms response period compared with baseline) in response
to ChR2 stimulation in the awake, rewarded condition. Baseline counts were
computed on the same trials as response counts, and the two time periods
were of matched duration; the baseline period ended 50 ms before the
onset of stimulation. We pool single and multiunits together, because
population analysis of single units alone produced similar effects. In fact, for
measurements of spikes fired per stimulus, because we plot raw spike counts
and do not normalize (Fig. 5), combining single neurons into multiunits only
could have made our estimates larger and thus did not affect our conclusions.
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Data in Figs. 4 A–D and 5 were recorded from two animals used for behavior
(the animals shown by yellow and red lines in Fig. 2D). Data in Fig. 4E were
recorded from an animal that had never been trained but was transfected
with ChR2 as described above. Figs. 3 and 4 A–D include units responsive (as
defined above, n = 243/441 units, 53 single and 190 multiunits) to pulses
using a high fixed power to include cells that showed even small effects
(1 mW/mm2, 100-ms pulse; 0.1 mJ/mm2). Fig. 4E includes units responsive
(n = 75/105, 26 single and 49 multiunits) at the single fixed total power we
used (0.005 mJ/mm2), pooling over pulse duration. We used responsive
neurons in Fig. 4 A–E because averaging only over cells that showed
a response is appropriate when computing response size per cell. However,
using all cells had no qualitative effects on the results and only decreased
the number of spikes fired per cell per trial; including all cells thus would
have made our small modulation estimates even smaller. Responses from
the entire Fig. 4 A–D dataset are shown in Fig. 5 and Fig. S1 (n = 441, 110
single and 331 multiunits).

Behavioral Data Analysis. Psychometric data were fit to mean responses with
Weibull cumulative density functions via least-squares weighted by the
variance of eachmean [weighting by variance reduces bootstrap variance and
improves fit (65)]. Thresholds are the Weibull location parameter: the 63%
point between upper and lower asymptotes. To control for fluctuations in
percent correct that might be induced by changes in the animal’s willingness
to respond, or criterion (66), we applied a correction to hit rate based on
signal detection principles as described in ref. 23. We estimated the proba-
bility that each correct response was a guess or a spurious correct, based on
the reaction time window and time-dependent false-alarm rate at each
point in the trial and subtracted a proportionate number of correct trials.
This correction brings the hit rate to zero for the lowest intensities. How-
ever, because false-alarm rates were not high, and we presented stimuli at
various times within the trial, the overall frequency of spurious corrects
resulting from guessing was low before correction for even the lowest in-
tensities (maximum correction: 12%; median: <5%). Even without the cor-
rection, we observed no differences in criterion (false-alarm rate; Fig. S7)
across pulse durations, and normalizing by a second threshold, estimated on
intermixed trials to control for criterion, did not change our results (Fig. 2 C
and D). We used least-squares optimization to estimate the lapse rate (up-
per asymptote), slope, and location parameters and fixed the lower as-
ymptote at 0% correct (because of the above correction). Confidence
intervals (CIs) for threshold were estimated via nonparametric bootstrap
(67). Fits and CIs were estimated separately for both types of trials (10/100 ms
control, or varying pulse pattern) within session. To control further for any
potential criterion fluctuations, we calculated threshold in terms of d′ (66).
We found the probability of false alarm, given no response or stimulus had

yet occurred, as a function of time within trial in 50-ms bins. We observed
this probability was constant with trial duration, so we averaged over dura-
tions and scaled by the length of the reaction time window to produce two
false-alarm rates per session, one for each randomly intermixed pulse duration.
We found d′ for each stimulus intensity as Φ−1ðHÞ−Φ−1ðFAÞ, where Φ−1 is the
inverse of the cumulative Gaussian distribution, H is hit rate or (uncorrected)
percent correct, and FA is the false-alarm rate. In accordance with ref. 68, we
fit a Naka–Rushton equation to the d′ values and extracted threshold as c50.
We then used linear regression on log10-transformed duration and threshold
to find the slope for each animal, and, as expected from the similarity of
false-alarm rates, we found near-linear scaling, as when computing thresh-
old with corrected percent correct (Results and Fig. 2).

Neuronal Data Analysis. Histograms were smoothed using a piecewise-
regressive (Lowess) method. We used a multiple linear regression to deter-
mine whether spike count varied linearly with the product of power and
duration. The regression independent variable was the mean count above
baseline for each cell over a 120-ms period after stimulation; dependent
terms were power, duration, and power times duration (total power). A
constant term was included in the model but explains no variance because
baseline subtraction yields zero spikes in the absence of stimulation. So
that the coefficient (β) could be interpreted directly as the mean number
of spikes at threshold (0.11), in the regression we normalized the total
power term (power times duration) by the average total power at
threshold over animals (Fig. 4). For the 3D plots in Fig. 4 C and D, we dropped
any measurements with a mean rate below 0.02 spikes/s, because 90–110
measurements did not produce reliable estimates for these low rates;
this rate was below the behavioral detection threshold of 0.11 spikes/s.
To determine if ChR2 conductance varied linearly with light duration
and amplitude, we implemented the four-state ChR2 biophysical model
of Nikolic et al. (29, 31). Simulations confirmed that, at low light levels,
neither desensitization nor saturation causes nonlinearities (Fig. 4F). We
also found that ChR2 kinetics were not limiting; the maximum frequencies
we used produce significant oscillation in ChR2 conductance (Figs. 4F and
5F; see ref. 69). Data were analyzed and simulations implemented with
Matlab and Python.
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Supporting Information
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SI Methods
Data Analysis.To compute reaction times at threshold, we linearly
interpolated between reaction times at the sampled powers,
because the threshold typically fell between two presented light
power levels. Because reaction times can be measured only on
correct trials, we excluded power levels when the percent correct
was less than 40%.

Illumination Spot and mCherry Fluorescence Measurements. The il-
lumination spot area was defined as the area bounded by the half-
maximum fluorescence level. Tomeasure this area, we imaged the
illumination of the cortex with a fluorescence microscope when
excitation light was delivered through the fixed fiber, ensuring

that no pixels were saturated. We smoothed the resulting image
with a 2D Gaussian filter, σ = 5 μm, and found the contour line at
50% intensity between background and maximum. This contour
line is the boundary of the blue areas shown in Fig. S2. The
mCherry fluorescence image and intensity contours labeled in
Fig. S2 were computed similarly by imaging the emitted red
fluorescence and smoothing to find contours. To find the aver-
age fluorescence in each illumination spot, we computed the
mean mCherry fluorescence value, normalized so that back-
ground was 0% and maximum intensity 100%, for all pixels in-
side the half-maximum illumination spot boundary. The two il-
lumination spots resulted from two different implanted fibers.

Fig. S1. Neural responses across recording sessions. (A and B) We recorded 441 single units and multiunits from two animals outside the behavioral task. We
found that each unit was modulated only weakly near the behavioral threshold, implying that behavior is controlled by a population of neurons that fires
a spike infrequently on each trial (Fig. 4). These data are summarized for the two animals. The rows show different stimulation powers (all using 100-ms pulses).
Top, no stimulus; two baseline periods are subtracted to indicate our measurement noise. Plus symbols indicate the mean response for each unit across 90–110
stimulus repetitions (y axis: average spike number per trial during pulse compared with a same-duration baseline period ending 50 ms before pulse; see
Methods). Responses greater than 0.3 extra spikes per trial are shown in red. We show extra spikes produced in response to stimulation without normalizing;
thus, grouping single neurons into multiunit recordings could only increase the number of extra spikes. Because we find that each unit fires few spikes, we plot
single and multiunits together. (In Fig. 5 in the main text, we plot each unit’s response, ordered by each unit’s baseline activity, again showing that both single
and multiunits fire few spikes.). All units collected on a single shank are plotted at the same location (40 total shanks). Multisite silicon probes had four shanks,
separated by either 400 μm (left-most columns, animal A) or 200 μm (all columns, animal B). Horizontal brackets in the bottom row connect all shanks recorded
simultaneously. The electrode position was targeted to the area of maximum fluorescence but was different for each recording session. Behavioral thresholds
for these animals (yellow and red lines in Fig. 2) are 0.036 mW/mm2 and 0.065 mW/mm2, between the powers shown in the middle and bottom rows. These
data show that channelrhodopsin-2 (ChR2) responses can be observed from shanks separated by at least 400 μm. Responding neurons thus are distributed
across several hundred microns of the cortex, similar to the cells activated by a minimal visual stimulus, because of receptive field size and scatter (1) as in
primates (2). This result confirms our anatomical observations; we found ChR2-expressing neurons (Fig. 1E) to be distributed over a cortical region a few
hundred microns in diameter.

1. Bonin V, Histed MH, Yurgenson S, Reid RC (2011) Local diversity and fine-scale organization of receptive fields in mouse visual cortex. J Neurosci 31(50):18506–18521.
2. Dow BM, Snyder AZ, Vautin RG, Bauer R (1981) Magnification factor and receptive field size in foveal striate cortex of the monkey. Exp Brain Res 44(2):213–228.

Histed and Maunsell www.pnas.org/cgi/content/short/1318750111 1 of 6

www.pnas.org/cgi/content/short/1318750111


spot 1 spot 2

0.01

0.1

T
hr

es
ho

ld
 (

m
J 

/ m
m

2 )

a b

Light stimulation spot 1
(brighter mCherry 
fluorescence)

Light stimulation spot 2
(weaker mCherry
fluorescence)

0.5 mm

Fig. S2. Illuminating an area with weaker ChR2 expression degrades detection performance. (A) Fluorescence map from one animal. Contours indicate the
percent of maximum fluorescence. The area of spot 1 is 0.13 mm2, the area of spot 2 is 0.11 mm2. Spot boundaries are the 50% contour of maximum fluo-
rescence for each light spot. Average fluorescence (per unit area) in spot 2 is 63% of spot 1 (SI Methods). (B) Power required to achieve the same behavioral
performance is 6.6 times higher for spot 2. (Data are as in Fig. 1E in the main text.) Error bars are SEM over n = 5, 10 behavioral sessions in one animal. A 100-ms
linear ramp light waveform was used in both cases. Performance is drastically degraded when the excitation light spot is moved a few hundred microns to an
area with fewer ChR2 neurons. If the animals were detecting the blue excitation light using their visual system, this small change in excitation position over
occipital cortex would have little to no effect on retinal excitation and behavior. The large change in behavior provides evidence that the animals were
detecting ChR2 neuronal activation directly.

Histed and Maunsell www.pnas.org/cgi/content/short/1318750111 2 of 6

www.pnas.org/cgi/content/short/1318750111


a

cb

1

2

5

10
th

re
sh

ol
d 

ra
tio

 (
vs

. 1
00

 m
s 

pu
ls

e)

1

2

5

10

periodic random
pulse
phase

shorter
pulses

random
pulse
sum

periodic
random

 pulse sum
random

 pulse phase

shorter pulses

5 x 5 ms pulses 5 x 3 ms pulses

5x

Periodic Random pulse sum Random pulse phase

Examples:

Fig. S3. Randomizing pulses within trains does not affect behavior. In principle, synchrony and short pulses could produce offsetting effects, although
biophysical facts suggest both should produce the same direction of effect on behavior. To rule out the possibility of offsetting effects directly, we measured
behavioral thresholds while varying pulse position within the pulse train. We performed this randomization in two ways. (A) (Left) We generated trains by
starting with a blank 100-ms interval and dropping five pulses (each 5 ms in duration) uniformly onto the interval, allowing them to sum if they overlapped
(Center: random pulse sum). (Right) Then, starting with a periodic train, we uniformly shifted each pulse within a single period (random pulse phase). We
generated a different random train for each trial. Randomizing pulse trains had no effect on behavioral threshold. (B) Thresholds: For each measurement, we
obtained curves for 100-ms control pulses and the pulse trains. Lines connect the two thresholds measured on each day. We divided both by the 100-ms control
threshold so the control threshold was set to 1 (y axis). Because each pulse train had five pulses of 5 ms (integral = 25 ms, or 0.25 times the 100-ms pulse),
measured thresholds were four times higher, as expected. There was no difference in threshold for randomizing the pulse sum or phase, as summarized in C
(bar height shows the threshold mean, and error bars show the SEM). For comparison we show thresholds for five periodic pulses of 3 ms (green) [the same
period as 5 × 5 ms (periodic, Left)], 22 ms, or 45 Hz. These thresholds are elevated, as expected when behavior is affected only by total input and not by its
temporal pattern. Shown are random pulse data from 12 sessions, one animal; 5 × 5 and 5 × 3 ms data are from 11 sessions across four animals as in Fig. 6.
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Fig. S4. Reaction time is lengthened for long pulses, reflecting increased integration time. When we presented single pulses of excitation light, we found that
animals’ thresholds depended on pulse length, nearly doubling when pulse length was halved (Fig. 2 in the main text). Because information allowing animals
to perform the task was present only during the pulse, reaction times should be longer for longer pulses, as shown here. The blue line indicates the mean
reaction time at threshold (error bars indicate SD) across all experimental sessions with that pulse length. The black line indicates the linear regression; line
slope: 45-ms change in reaction time over 100-ms change in pulse time; y-intercept: 210 ms. We found that changes in reaction time are nearly one-half the
changes in pulse length (slope 0.45); a possible explanation is that the animals chose a suboptimal reaction time. Animals were not rewarded for fast reaction
times, and the maximum allowed reaction time was 450 ms, so they had little incentive to use the fastest reaction time possible. In contrast, animals received
a reward only when they correctly detected the stimulus, so they had strong incentive to use the lowest detection threshold possible. We controlled for
variations in integration time by comparing trains of short pulses (3–11 ms; fixed 100-ms train length) and single long (100-ms) pulses. Threshold data from this
manipulation are shown in Fig. 6 of the main text. In both cases the optimal integration time was 100 ms, and, as predicted, reaction times do not differ:
medians are 248 ms and 245 ms, respectively (P = 0.42, rank sum test), and pulse duration, number of pulses, and total pulse power do not predict reaction time
(P > 0.35 for all three via regression). However, the behavioral threshold does vary and is predicted well by variation in total pulse power (Fig. 6 and Fig. S3).
Thus, we found that reaction times vary when total train duration varies but are constant when train duration is constant, showing that animals’ reaction times
vary with the optimal behavioral integration window. The behavioral threshold varies in both cases even though reaction time varies in the former case but
not the latter. In both cases, threshold follows total input (total integrated light power), regardless of its pattern.
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Fig. S5. Neither psychometric slope nor reaction time is changed by pulsed stimulation. If the timing of pulsed stimulation relative to an ongoing rhythm
affected stimulus efficacy, it might have changed behavioral performance. Because the stimulation sometimes would have arrived in phase and sometimes
would have arrived out of phase, we would expect the psychometric function slope to flatten and reaction times to lengthen or become more variable. We
found no evidence for these effects. (A) Slope is unchanged by pulsed stimulation. Each thin line is a single behavioral session in which a 100-ms control
threshold and a pulsed-stimulation threshold were estimated. Red indicates five-pulse (45-Hz) trains; blue indicates all others (two to six pulses; see Fig. 3).
Heavy lines indicate means; black error bars indicate SEM. (B) Diagram of phase interaction causing possible slope change. In-phase stimulation (red) might
have produced better performance than out-of-phase (green), which we would measure as a decrease in slope (black). No such decrease was seen in A. (C)
Reaction time at threshold. Because the reaction time varies with stimulus intensity, we found the reaction time for each session at threshold by regressing
a line on the reaction time for each intensity; the reaction time at the session’s detection threshold is plotted on the y axis. Other conventions are as in A. (D)
Reaction time variability is unchanged. As in A, we would expect the distribution of reaction times to broaden if one phase of stimulation were more effective.
The y axis shows the SD for each session at the first stimulus intensity above the threshold. Conventions are as in A.
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Fig. S7. The lapse rate and the slope of the psychometric function do not vary with pulse duration. For psychometric measurements using single pulses of
varying duration (shown in Fig. 2), we plot above the lapse rate (deviation from 100% performance for the easiest high-power conditions) and psychometric
function slope (data from four animals). Lapse rate: 100 − cupper, where cupper is the upper asymptote of the fitted Weibull function (Methods). The slope is the
Weibull β parameter. (A) Lapse rate histogram. Blue, 100-ms pulse; green, 10-ms pulse; red, 1-ms pulse. Medians are 3.9%, 3.0%, and 1.2%, respectively;
differences are not statistically significant; all pairwise P values > 0.05; Wilcoxon test. (B) Slope histogram; conventions area as in A. Medians are 2.6, 2.3, and
2.7, respectively; differences are not statistically significant; all pairwise P values > 0.05; Wilcoxon test). There was no systematic change in either lapse rate or
slope as a function of light pulse duration.

Fig. S6. Changes in neural cross-correlation are primarily signal correlations, arising from rate changes caused by light stimulation. (A) Average cross-cor-
relogram over 5,886 simultaneously recorded pairs to trains of five square pulses, each 11 ms long (22-ms period; 45 Hz). The dotted lines indicate the lag
corresponding to the middle of each stimulation pulse. The y axis shows the correlation normalized by variance so that auto-correlation is 1 at lag 0. Cross-
correlation in response to 100-ms pulses has been subtracted to remove baseline slow shifts caused by the stimulation envelope. The lag = 0 point has been
removed to ensure there is no contamination from light artifact. (B) The data in A have been shuffle-corrected (trial identity has been shuffled randomly for
each pair to give an estimate of signal correlation only, and this estimate has been subtracted). The result is the noise correlation only, the change in pairwise
correlation that comes not from the stimulus but from trial-by-trial variations in the network. All data are from four recording sessions in two animals; to
measure these correlations, we presented 90-110 repetitions of pulse train stimuli. Single and multiunits are pooled. The pairwise signal correlation (A) is much
larger than any noise correlation (B), showing that the primary effect of ChR2 stimulation is to change neurons’ rate (i.e., the correlation with the stimulus;
signal correlation), and not their correlation with each other (noise correlation). This result was expected, because we observed that neurons were near-Poisson
with small positive pairwise correlation. ChR2 stimulation perturbs each neuron only slightly compared with background fluctuations, so its effect on global
network coupling can be small; the primary effect is to encode the input in a small but linear change in spike probability.
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