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Humans rapidly process visual scenes from their environment, an 
ability that is critical to everyday functioning. One facet of scene 
understanding is invariant object recognition1, which is a challenging 
computational problem because different images of the same object 
can have vastly different low-level statistics2. Extensive research has 
uncovered the role of the ventral visual stream, a series of connected 
cortical areas present in humans and other primates3, in solving this 
challenge. During early neural activity (~150 ms post stimulus-onset),  
the ventral stream functions approximately like a hierarchy of  
increasingly abstract processing stages1,2,4–6. Neurons in the earliest 
ventral visual processing stage, V1, can be approximated as local edge 
detectors7, but cannot support decoding of object category under 
complex image transformations1. In contrast, population activity in 
IT cortex, the processing stage at the top of the ventral hierarchy, can 
directly support invariant object categorization8–10. These results can 
be summarized in this way: the amount of easily accessible infor-
mation for high-variation object categorization tasks—as measured 
via the performance of linear classifiers seeking to decode category 
labels—increases along the ventral hierarchy (Fig. 1a). It is this  
pattern of relative, explicit information content between adjacent 
areas in the sensory cascade, rather than the absolute, implicit infor-
mation in any one area, that strongly constrains the possible neural 
mechanisms that might be operating in the ventral hierarchy.

Visual perception involves the estimation of variety of other object-
related properties besides object categorization. Many of these proper-
ties (object position, size, orientation, heading, aspect ratio, perimeter 
length, etc.) are often considered to be ‘nuisance’ variables that must be 
discounted to achieve invariant recognition. But humans do in fact per-
ceive all of these category-orthogonal visual object properties in images, 
raising the question of what overall neural architecture underlies  

both tolerance to identity-preserving variable transformations needed 
for object categorization tasks and sensitivity to these same variables 
for other scene-understanding tasks. Although much research has 
investigated position sensitivity for simple stimuli in lower ventral 
visual areas such as V1 (ref. 11), relatively little work has focused on 
comparing such properties across ventral visual areas, especially in 
complex natural scenes. As a result, the patterns of information for 
these properties have remained largely unknown (Fig. 1a).

These patterns bear on a number of hypotheses about the ven-
tral stream. One hypothesis is an intuitively appealing ‘local coding’ 
idea that directly generalizes Hubel and Wiesel’s simple-to-complex 
dichotomy directly to higher visual areas: view-tuned units are aggre-
gated across identity-preserving transformations at each scale to pro-
duce partially view-invariant units, which are themselves aggregated 
to produce invariance at a larger scale. A natural prediction from this 
conception is that there is a trade-off between increasing receptive 
field size and categorization ability on the one hand and orthogonal 
task performance on the other, so that explicitly available informa-
tion for non-categorical properties decreases in higher ventral areas 
(hypothesis H1; Fig. 1b). This local coding mechanism is consistent 
with the observation of highly position and orientation-sensitive units 
in V1 (ref. 11), the observation of position-, size- and pose-invariant  
units in higher ventral areas12,13, and the fact that higher ventral 
stream neurons have, on average, larger receptive fields and are less 
retinotopic than those in lower areas1. Local coding is also consistent 
with an multiple-streams hypothesis that identity-specific properties 
(for example, category membership) are represented in the ventral 
stream, whereas other visual variables (for example, position) are rep-
resented separately, either in the dorsal stream14,15 or perhaps directly 
accessed from V1 (ref. 16).
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Explicit information for category-orthogonal object 
properties increases along the ventral stream
Ha Hong1–3,5, Daniel L K Yamins1,2,5, Najib J Majaj1,2,4 & James J DiCarlo1,2

Extensive research has revealed that the ventral visual stream hierarchically builds a robust representation for supporting 
visual object categorization tasks. We systematically explored the ability of multiple ventral visual areas to support a variety of 
‘category-orthogonal’ object properties such as position, size and pose. For complex naturalistic stimuli, we found that the inferior 
temporal (IT) population encodes all measured category-orthogonal object properties, including those properties often considered 
to be low-level features (for example, position), more explicitly than earlier ventral stream areas. We also found that the IT 
population better predicts human performance patterns across properties. A hierarchical neural network model based on simple 
computational principles generates these same cross-area patterns of information. Taken together, our empirical results support 
the hypothesis that all behaviorally relevant object properties are extracted in concert up the ventral visual hierarchy, and our 
computational model explains how that hierarchy might be built. 
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A second hypothesis is that non-categorical properties rely on inter-
mediate visual features, analogous to ‘border-ownership cells’ that 
have been discovered in V2 (ref. 17). On this view, information for 
properties such as object perimeter length or aspect ratio might peak 
in the middle of the ventral stream (H2; Fig. 1b).

Experimentally, it has been observed that IT cortex maintains some 
sensitivity to position, pose and other properties18–24. Notably, this 
work only showed that some amount of this information was present 
in IT, and it did not compare across areas or reference to human levels 
of performance on the same tasks (Fig. 1a). Despite those limitations, 
such results have been used to argue for a third hypothesis (H3; Fig. 1b),  
in which information for low-level orthogonal properties is not lost 
along the ventral hierarchy, but is instead preserved because it may be 
behaviorally useful. A line of theoretical work has suggested factored 
representation schemes that retain nuisance variable information 
while still building category selectivity2,18,25. This view is suggested 
as one possibility in some of our own previous studies18 and is consist-
ent with ideas of hyperacuity26.

A final hypothesis is that information increases for the category-
orthogonal object tasks, just as it does for categorization tasks (H4; 
Fig. 1b). The ideas of coarse coding show how larger receptive fields 
could in theory be used to achieve greater accuracy in estimating 
properties such as object position27,28. Such ideas suggest alternatives 
to the multiple streams hypothesis, potentially avoiding some feature-
binding problems29 associated with that concept.

We investigated this issue systematically by recording neural 
responses in IT and V4 cortex and testing simulated V1 neural  
responses to a large set of visual stimuli containing a range of  
real-world objects with substantial simultaneous variation in object 
position, size, and pose and background scene1,8,30. This image set 
allows characterization of neural encodings for standard object 
categorical tasks as well as a variety of category-orthogonal object 
property estimation tasks. We quantified the amount of explicitly 
available information in each ventral stream processing stage for 
each task, assessing both the dependence of these measurements on 
the complexity of the image variation, as well as how the informa-
tion is distributed across the neural populations. As a reference, we 
also measured human performance on each of these same category-
orthogonal estimation tasks using the same images.

Figure 1 Illustration of possible scenarios. (a) Prior to this study,  
extensive research has shown that invariant category recognition 
performance increases along the ventral pathway1 (top), whereas lower  
and intermediate visual areas are sensitive to various categorical-orthogonal 
properties (position, border continuity, etc.) in simple stimuli11,17. It was 
also known that IT contains some information for category-orthogonal 
properties18–21,24: as illustrated (bottom), performance in IT must be 
above floor. (b) However, the previous literature determined neither the 
relative amounts of explicitly decodable information for category-orthogonal 
properties between ventral cortical areas nor the ratio of neural decode 
performance in IT (or elsewhere) to measured behavioral performance 
levels. In other words, there were multiple qualitatively different 
hypotheses consistent with the known data as to both the red curve’s shape 
and its height on the y axis. In hypothesis H1a, there is a tradeoff between 
increasing receptive field size and categorization ability, and performance 
on the orthogonal task. Early areas match human performance on these 
tasks, whereas later areas do not. This is probably the dominant view in 
the visual neuroscience community39. In hypothesis H1b, the same tradeoff holds as in H1a, except that the human performance is matched in IT, rather 
than early layers. In hypothesis H2, explicitly decodable information peaks (for at least some non-categorical properties) in intermediate visual areas, 
analogous with the results for V2 border-ownership cells that have been found in the context of simple visual stimuli17. In hypothesis H3, information is 
neither lost nor gained for the orthogonal variable tasks up through the ventral stream, it is simply preserved. This view is suggested as one possibility in 
previous studies from our group18 and is consistent with ideas of hyperacuity26. Finally, in hypothesis H4, information increases for the orthogonal tasks 
along with the categorization tasks. Aspects of this possibility are consistent with coarse coding27,28.

We found that, for all tasks in the high variation image set, including 
those often considered to be low level (for example, object position), 
the amount of explicitly available information progressively increased 
along the ventral stream, consistent with H4 (Fig. 1b). Moreover, 
unlike lower-area representations, we found that the decoded IT pop-
ulation performance pattern was consistent with measured human 
behavioral patterns across tasks. Task information is broadly distrib-
uted throughout the IT population, rather than concentrated in task-
specific specialist units. We also found that, in lower variation image 
sets, the V1-V4-IT increase-of-information pattern attenuated, and 
in some cases reversed, suggesting that the amount of object varia-
tion, rather that the specific object-related task, is a key determinant 
of information patterns along the ventral hierarchy.

We also asked whether these empirically observed phenomena 
are readily captured by a hierarchical convolutional neural network 
derived from recent work modeling the ventral stream30,31. Even 
though it was not explicitly optimized for category-orthogonal  
task estimation, the network accurately predicts the patterns of  
information along the ventral hierarchy across tasks and variation  
levels. Taken together, our empirical results suggest that, just as  
with the perception of object category, the perception of category-
orthogonal object properties is constructed by the ventral visual  
hierarchy, and our computational models provide insight into how 
that hierarchy is built.

RESULTS
Large-scale array electrophysiology in macaque V4 and IT
We measured macaque IT and V4 neural population responses  
to a stimulus set containing 5,760 images of photorealistic three-
dimensional objects drawn from eight common categories (Fig. 2a 
and Supplementary Fig. 1a). For each image, a single foreground 
object was rendered at high levels of position, scale and pose vari-
ation and placed on a randomly selected cluttered natural scenes. 
This image set supports testing of standard object recognition 
tasks, including basic-level categorization (for example, faces versus  
cars), as well as subordinate object identification (Toyota versus 
BMW). Because of the high variation levels, recognition in this  
image set is challenging for most artificial vision systems, but is 
robustly solved by humans2,30,32 and by linear IT decodes8. Monkeys 
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and humans have been shown to have very similar patterns of  
behavioral responses on similar tasks33.

The simultaneous variation of object viewpoint parameters in the 
image set also allows assessment of a battery of continuous-valued 
category-orthogonal object properties (Fig. 2c). These include object 
center position; object size, defined in terms of perimeter length, reti-
nal area or three-dimensional scale; bounding-box location, area and 
aspect ratio; two-dimensional rotation properties including major 
axis length and angle; and three-dimensional pose, defined relative 
to category-specific canonical poses. For each property, we defined 
the task of estimating the value of that property, invariant to all 
other varied properties (including category). Using nine chronically 
implanted electrode arrays across three hemispheres in two macaque 
monkeys, we collected responses from 266 neural sites in area IT and 
126 neural sites in area V4 to each image in the set30 (Fig. 2b and 
Online Methods). We then investigated the ability of each of these 
neural populations, as well as a simulated V1 neural population, to 
support each task.

Comparing task representations across cortical areas
For many tasks, including object category, position, size and pose, 
we found that some individual sites in our IT sample had responses 
that contained reliable information for that task, despite simultaneous 
variation in all other variables (Fig. 3a and Supplementary Fig. 2).  
For categorical tasks, we defined single-site performance as the abso-
lute value of the site’s discriminability for the task on a set of held-out 
images (Online Methods). For estimation tasks, we defined single-
site performance as the absolute value of the Pearson correlation of  
that site’s response with the actual property value, again on a set 
of held-out test images. For most tasks, the best IT sites contained  
substantially more information than those from V4 (Fig. 3a).

Because information about visual properties is often distributed 
across multiple neural sites, we next investigated encoding at the 

neural population level by training linear decoders to extract the 
properties of interest (Fig. 3b). For discrete-valued categorization 
and subordinate identification tasks, we use linear SVM classifiers8,9, 
while for estimation tasks we used L2-regularized linear regressors. 
Population performance levels were higher than from individual sites, 
as expected. The IT population (Fig. 3b) significantly outperformed 
the V4 population on all tasks, with a larger IT-V4 gap than for single 
sites (see Supplementary Table 1 for statistical information). To com-
pare these results to lower-level visual response properties, we also 
evaluated a Gabor-wavelet-based V1 model with local competitive 
normalization32 on our stimulus set (Online Methods). In all cases, 
the IT sample population outperformed the V1-like model and, in 
most cases, the V4 population did as well. A trivial pixel control (black 
bars) performed least well in nearly all cases. Results were evaluated 
for each task using an equal number of sites from each population  
(n = 126). We performed additional controls to ensure that IT/V4 
gap was not due to differences in recording quality, receptive field 
coverage, sampling sparsity, or number of decoder training examples 
(Online Methods and Supplementary Figs. 2d–f, 3 and 4).

In addition to the high variation stimulus set used above, we  
also tested a simpler stimulus sets containing Gabor-like grating 
patches. In the simpler stimuli, we observed qualitatively different 
results from the case of the higher variation stimuli, with the V1-like 
population achieving higher performance than the V4 or IT popula-
tions on position and orientation estimation tasks (see below).

Neural consistency with human performance patterns
We next collected human performance data on a subset of the tasks, 
including categorization, position, size, pose and bounding-box  
estimation tasks (Online Methods). We sought to characterize, for 
each neural population and task, how many neural sites would be 
required to reach parity with human performance levels. For each 
neural population, we subsampled sites and trained linear decoders 
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Figure 2 Large-scale electrophysiological 
measurement of neural responses in macaque IT 
and V4 cortex to visual object stimuli containing 
high levels of object viewpoint variation.  
(a) We recorded neural responses to 5,760  
high-variation naturalistic images consisting of 
64 exemplar objects in eight categories (animals, 
boats, cars, chairs, faces, fruits, planes and 
tables), placed on natural scene backgrounds, at 
a wide range of positions, sizes and poses.  
(b) Stimuli were presented to awake fixating animals  
for 100 ms in a rapid serial visual presentation 
(RSVP) procedure (horizontal black bars indicate 
stimulus-presentation period). Object centers 
varied within 8° of fixation center. Recordings 
were made using chronically implanted electrode 
arrays, collecting a total of 392 neuronal sites in 
IT (n = 266) and V4 (n = 126) visual cortex. Each 
stimulus was repeated between 25 and 50 times. 
Spike counts were binned in the time window 
70–170 ms post stimulus presentation (as 
indicated by shaded regions) and averaged across 
repetitions, to produce a 5,760 × 392 neural 
response pattern array. (c) We then used linear 
readouts to decode a variety of types of image 
information from the neural responses, including 
categorical data such as object category and 
exemplar identity, as well as continuous data such 
as object position, retinal and three-dimensional 
object size, two- and three-dimensional pose 
angles, object perimeter, and aspect ratio.
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for each sample and task using the same decoder methods described 
above. For each task, we produced decoding performance curves as a 
function of population sample size (Fig. 4a). For the IT and V4 neural 
populations, we produced curves out to the limit of the neural data, 
whereas we sampled increasing numbers of units up to 2,000 units for 
the V1 model and pixel control. We then fit each task’s neural perform-
ance curve to a logarithmic functional form, to estimate performance 
levels at larger sample sizes. For all tasks, the estimated IT population 
performance curves reached human performance parity with fewer 
than 2,000 sites (Table 1), with a mean across tasks of 695 ± 142 sites 
(Online Methods). All tasks had similar performance-increase rates, 
suggesting that each additional IT site contributed a roughly similar 
performance benefit for each task. In contrast, V4 population per-
formance curves were more variable over the tasks (compared with 
IT) and in most cases required several orders of magnitude more sites 
than the IT population to match human performance. The V1 model 

representation typically required several orders of magnitude more 
sites, in many cases unrealistically many more (greater than the total 
number of neurons in cortex). The pixel representation was not viable 
for any measured task.

Some of the tasks were more difficult than others for our human 
subjects. Pose estimation, for example, had lower raw accuracy than 
position estimation. Given this variability, we sought to determine 
whether human performance was predicted by neural population 
performance (Fig. 4b). To this end, we computed the Spearman rank 
correlation between the vector of human performances across tasks 
with equivalent vectors for each neural population (Online Methods). 
We found that the IT performance pattern predicted human perform-
ances substantially better than V4 or the V1-like model (Fig. 4c). 
Together with the performance parity estimation result, this suggests 
that IT more directly drives downstream behavior-generating neu-
rons than lower cortical areas for all measured non-categorical and 
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Figure 3 Comparison between ventral cortical areas of object property information encoding in high-variation stimuli. (a) Performance of single  
best sites from IT (blue bars) and V4 (green bars) on each task measured task. Best sites were chosen in a cross-validated manner, with performance 
being evaluated on held-out images. Chance performance is at 0. Error bars represent s.d. of the mean taken over subsets of images used to choose  
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See Supplementary Table 1 for statistical details.
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categorical tasks, and that linear decoders are a reasonable approxima-
tion of that downstream computation.

Distribution of information across IT sites
We next sought to characterize whether non-categorical proper-
ties are estimated by dedicated subpopulations of IT neurons or are 
instead integrated in a highly overlapping joint representation. Studies 
showing IT units tuned to multiple visual properties suggest that a 
joint representation is possible18,20, but other studies suggesting the 
modularity of face, body and place-selective units34 may point in a 
different direction.

To address these issues, we first considered the distribution of infor-
mation across sites for each task (Fig. 5a–c and Supplementary Fig. 5).  
We used the weights assigned to each of the 266 IT sites by the linear 
decoder for that task as a proxy for the task relevance of that site, with 
positive weights indicating task-response correlation and negative 
weights indicating anticorrelation. For each task’s site-weight distribu-
tion, we measured sparseness and imbalance. High sparseness would 
indicate only a very few sites being highly informative for the task, and 
low values indicate little cross-site differentiation. Imbalance meas-
ures the relative preponderance of sites correlated with the task, as 
compared with those that are anticorrelated.

Sparseness measurements revealed that fraction of highly weighted 
sites makes up between 15% and 35% of all sites, with a mean of 26.3%, 
and nearly half of the tasks had sparseness that was statistically indistin-
guishable at the P = 0.5 level from that of the standard normal distribution  
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Table 1 Estimated number of neural sites required to match 
median human performance

IT V4 V1 Pixels

Basic categorization 773 ± 185 2.2 × 106 – –
Subordinate identification 496 ± 93 4.4 × 106 – –
Horizontal position 1,414 ± 403 5.2 × 105 3.0 × 107 –
Vertical axis position 918 ± 309 2.5 × 104 8.7 × 106 –
Bounding box area 322 ± 90 1.7 × 104 – –
Width 256 ± 87 9.8 × 103 3.4 × 107 –
Height 237 ± 87 3.8 × 103 9.5 × 106 –
Three-dimensional object scale 401 ± 90 3.2 × 104 – –
Major axis length 201 ± 70 1.1 × 104 – –
Aspect ratio 163 ± 61 951 ± 59 6.5 × 103 –
Major axis angle 774 ± 128 1.6 × 105 – –
z axis rotation 1,932 ± 1,061 – – –
y axis rotation 396 ± 115 2.8 × 105 – –
x axis rotation 1,570 ± 530 – – –

Error bounds are due to variation in site subsamples, and are extrapolated based on 
actual site subsample variation in the data (see Online Methods). Dash (–) indicates 
more than 10 billion sites are required.
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Figure 5 Distribution and overlap of IT cortex 
site contribution across tasks. (a) Histograms of 
values of sparseness over all tasks. Sparseness 
is measured via excess kurtosis (γ2, Online 
Methods). Reference values show fractions of 
‘high-relevance’ sites, as determined by three-
point distribution method (Online Methods). 
Gray band represents 1 s.d. of distribution 
of sparseness values taken on size-matched 
samples from a Gaussian distribution.  
(b) Histograms of values of imbalance over  
all tasks. Imbalance is measured via skewness 
(γ1, Online Methods). Reference values at the 
top of the imbalance panel show fractions of 
values above versus below means, ranging 
from 1.3 to 0.7. Gray band represents 1 s.d. 
of distribution of imbalance values taken on size-matched samples from a Gaussian distribution. (c) Sparseness (left) and imbalance (right) of weight 
distributions for selected tasks. Error bars represent s.d. over image splits on which weights were determined. Gray bands here are defined as in a and b. 
(d) Quantification of weight pattern overlap for pairs of tasks. Each colored square in the heat map is the Pearson correlation between the absolute value 
of the weight vectors for a pair of tasks. A high value (red color) indicates that the weight pattern for the pair of tasks is similar; a low value (blue color) 
indicates the opposite. White indicates a value that is not statistically significantly different from zero. The order of tasks is the same as in c.

of equal size (n = 266 sites). For the majority of tasks, imbalance  
measurements were also statistically indistinguishable at the P = 0.5 
level from equivalently sized normal distributions. Overall, these results 
suggest that task information distribution is comparatively normal, 
with few properties having statistically especially selective units.

We then quantified information overlap between pairs of tasks. 
Overlap was defined as the correlation of the absolute values of the 
decoder weight vectors for each task pair (Fig. 5d). A high positive 
overlap for two tasks (Fig. 5d) indicates that downstream neurons 
could use common neurons for decoding the two tasks, whereas 

high negative correlation indicates the opposite. Across all pairs of 
tasks in our data set, 56.5% of pairs had positive overlap, 16.6% had 
negative overlap and 26.9% had overlap that was statistically indis-
tinguishable from 0. High overlap tended to occur between groups of 
semantically related tasks (for example, size-related tasks). However, 
apparently unrelated tasks typically had more overlap than would be 
expected from a purely random distribution of units (Online Methods 
and Supplementary Fig. 6). An exception was the face-detection 
task, where the estimated overlap with other tasks was significantly  
less than random (P < 0.01). Taken together, these results provide  
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Figure 6 Computational modeling results. (a) Performance of fully-trained model at each hidden layer. y axes are as described in Figure 3b for 
corresponding tasks (Supplementary Fig. 9). (b) Scatter plots of performance of computational model’s top hidden layer on training-set categorization 
performance versus testing-set estimation accuracy for selected non-categorical tasks. Each dot represents a state of the model during training 
(Supplementary Fig. 10). (c) Quantification of relationship in b, shown for all tested tasks aside from categorization itself (n = 15). Bar height 
represents Pearson correlation of accuracy on indicated task with test-set categorization performance, taken across training time steps. Error bars 
represent s.d. of the mean taken across both time steps as well as splits of images used for performance assessment. (d) Scatter plot of performance of 
top hidden layer of fully trained model versus performance of IT neural representation, on each task measured in Table 1. As in Figure 4b, large squares 
represent aggregated tasks (n = 16) and small circles represent disaggregated tasks (n = 43). Unlike Figure 4b, several tasks are included for which 
human data were not collected. (e) Consistency of fully trained model with neural performance pattern across layers, using the same metric described in 
Figure 4c. y axis and error bars are as described in Figure 4c. See Supplementary Table 1 for statistical details.
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additional evidence for the hypothesis that, with the possible excep-
tion of face-detection, the IT neural population jointly encodes both 
categorical and non-categorical visual tasks.

Computational modeling
Recent work has shown that neural responses in ventral cortex can 
be modeled effectively by hierarchical convolutional neural networks 
(HCNNs) that are optimized for performance on object categoriza-
tion tasks30,31,35. Each HCNN layer is composed of simple, biologi-
cally plausible operations including template matching, pooling and 
competitive normalization (Supplementary Fig. 7a and ref. 30); filter  
is applied convolutionally, and identical filters are applied at all spatial  
locations. Layers are stacked hierarchically to produce complex trans-
formations of the input images.

To determine whether HCNN models are consistent with our 
empirical results, we implemented one such model, containing six 
hidden hierarchical layers followed by one fully connected output 
layer. We optimized this model for category recognition performance 
on a subset of ImageNet, a database of natural photographs contain-
ing millions of images in thousands of every-day object categories36 
(Supplementary Fig. 7d). To ensure a sufficiently strong test of gen-
eralization was performed, we removed categories from the training 
set that overlapped with those appearing in the testing image set used 
in the neural and behavioral experiments discussed above.

Even though no neural data were used to learn model parameters, 
and the semantic content of the training was different from that  
of the testing images, the trained model was nonetheless highly  
predictive of neural responses in the test images on an image-by- 
image basis. Consistent with previous work30, the model’s top hidden  
layer was predictive of neural response patterns in IT cortex, interme-
diate layers were predictive of neural response patterns in V4 cortex 
and lower layers evidenced V1-like Gabor 
edge tuning (Supplementary Fig. 7c). These 
results validate the model for further inves-
tigation on non-categorical tasks.

For a series of time points during model training, we computed 
model activations from each layer on the test image set, which could 
be viewed as analogous to taking a time course of neural response 
measurements in a developing animal. We tested the performance of 
the top hidden layer of the model, with the same tasks and decoder 
procedures for the neural populations above. We found that perform-
ance on the categorical tasks in the test set increased throughout  
the course of training (Supplementary Fig. 8), indicating effective 
generalization from training to test categories.

We investigated task performance for each model layer. On the high-
variation stimulus set, performance increased with each successive  
hidden layer, both for categorization and category-orthogonal 
tasks (Fig. 6a and Supplementary Fig. 9), in direct accord with our 
neural results (Fig. 3b). We found that, throughout training, per-
formance of the model’s top hidden layer improved on category-
orthogonal estimation tasks (Fig. 6b,c, and Supplementary Figs. 8  
and 10). This result may be nonintuitive, as the model’s output 
layer, immediately downstream of the top hidden layer, was not only 
not explicitly supervised for estimating these category-orthogo-
nal parameters, but in fact received supervised training to become 
invariant to these object parameters. Moreover, the performance 
pattern across tasks of the fully trained network’s top hidden layer 
was highly consistent with the IT neural performance pattern, and  
consistency increased through model layers (Fig. 6d,e). Together, 
these results indicate that this computational model is a plausible 
description of the mechanism underlying our empirical results.

Dependence on amount of stimulus variation and complexity
We also recorded V4 and IT neural responses to simple grating-like 
patches at varying positions and orientations (Supplementary Fig. 1b).  
We then measured decoding performance for horizontal and vertical 
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Figure 7 Dependence of linearly accessible 
information on the amount of variation in 
stimuli. (a) Population neural decoding results 
for position and orientation tasks defined on 
a simpler stimulus set consisting of grating 
patches placed on gray backgrounds. y axis,  
bar colors and error bars are as described  
in Figure 3b (Supplementary Fig. 11).  
(b) Performance of three selected neural 
network model layers (layer 1, yellow; layer 3, 
olive green; layer 6, cyan) for the tasks shown 
in a. (c) Population decoding performance as 
a function of amount of rotational variation 
in classifier training and testing data sets, for 
each of several representative object tasks, 
for measured IT neural population, V4 neural 
population, V1 model and for the three model 
layers. x axis represents (absolute value of) 
the amount of rotational variation allowed in 
all three rotational axes; for example, a value 
of 10 corresponds to rotation in x, y and z 
axes ranging from −10 to 10 degrees. y axis is 
performance evaluated using the same metrics 
and decoder training procedures as described 
in Figure 3b. Error bars are computed over 
selections of sites and units as well as image 
training splits (see Supplementary Table 1  
for statistical details).
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position and orientation estimation tasks, again using linear classifiers 
(Fig. 7a and Supplementary Fig. 11). V4 and IT performance levels 
were significantly higher than chance, but, unlike the results for com-
plex stimuli, the IT population was not better than the V4 population 
on position tasks for these simpler stimuli, and both IT and V4 popula-
tions were worse than the V1-like model (see Supplementary Table 1  
for statistical information). This clarifies our main result in relation 
to existing results in early visual areas7, which contain neurons that 
outperform animal behavior on low-level tasks37: although the larger 
receptive fields in V4 and IT lose resolution for the pixel-level judg-
ments needed in simplified stimuli, this information loss does not 
strongly interfere with decoding of similarly defined object properties 
in more complex image domains.

To further characterize the relationship between the cross-area 
information pattern and the amount of variation in stimuli, we per-
formed analyses identical to those shown in Figure 3b, subsetting  
the image set at varying levels of rotational variation between 10° and  
90° (Fig. 7c and Supplementary Fig. 12). Even at low rotational  
variation levels, the images contained substantial variation in object 
position and size, as well as background content. For each task, we 
found that, as the rotational variation decreased, the gap in per-
formance between V4 and IT decreased, although the rates at which  
this gap closed varied between tasks. In some cases (for example, 
subordinate-level identification or three-dimensional object scale), 
the relative rank order of V4 and IT reversed at low rotational  
variation levels.

We evaluated the computational model using grating stimuli  
(Fig. 7a). We found that the lowest intermediate model layer (layer 1) 
had the highest level of performance, with a subsequence perform-
ance drop in higher layers (Fig. 7b), echoing the empirically observed 
pattern (although see the mismatch between model layer 3 and V4 
data in the orientation task). We also investigated the dependence of 
computational model performance on the amount of rotational vari-
ation in the testing set. We found that, just as with the neural popula-
tions, the gap between the top hidden model layer and intermediate 
layers closed with lower amounts of rotational variation (Fig. 7c). 
The model also predicted performance characteristics on individual 
tasks, for example, the inversion of performance between higher and 
intermediate layers at low variation levels for the subordinate iden-
tification task. We also investigated the importance of high levels of 
variation for model correctness by training with a lower-variation 
image set in place of ImageNet. This alternatively trained model was 
much less effective at describing the observed empirical patterns of 
relative information (Supplementary Figs. 13 and 14).

DISCUSSION
We found that, for a battery of high-variation non-categorical visual 
tasks, there was more linearly decodable information in neural popu-
lations sampled from higher ventral stream areas than lower ones, the 
relative pattern of performance levels across all these tasks measured 
in human behavior was more consistent with that decoded from IT 
populations than from lower area populations, and task-related infor-
mation was distributed broadly in the IT neural population, rather 
than factored into task-specific unit subpopulations. Unlike previ-
ous studies, we recorded population responses in two cortical areas 
(V4 and IT) for a large, high-variation image set, and were thus able 
to make empirical area comparisons for category-orthogonal tasks. 
Qualitatively different, but highly plausible, alternatives were con-
sistent with the previously known data (Fig. 1). Our results show 
that only one of these scenarios (H4; Fig. 1) is correct for complex 
naturalistic stimuli.

Our results suggest that the same neural mechanisms that build 
tolerance to identity-preserving transforms also build explicit rep-
resentation of those same transforms. Although this may sound like 
a contradiction, it can be interpreted in light of existing theoretical 
ideas about distributed, coarsely coded representations2,18,23,25,27.  
A key contribution of our experimental results is a systematic confir-
mation that, for complex naturalistic image domains, these theories 
are more consistent with the empirical data than alternatives14,15,38.

Our study argues against mechanisms that aim to hierarchically 
reduce sensitivity to category-orthogonal properties with repeated 
‘simple/complex-cell’ arrangements, trading off accuracy on orthogo-
nal properties for increased receptive field size (H1a and H1b; Fig. 1b).  
As these mechanisms represent perhaps the dominant conception in 
the visual neuroscience community of how invariant object recogni-
tion is produced39,40, in addition to the ideas implied in some of our 
own earlier work18,39 (H3; Fig. 1b), our empirical results here are 
important. Previous findings suggest that the ventral stream repre-
sentation strategically throws out certain stimulus information25. Our 
computational model depends crucially on the presence of pooling 
operations that throw out information, but our results (computational 
and empirical) suggest that the role of pooling is not likely to be the 
layer-wise discounting of object transformations. So what informa-
tion is thrown out? It would be of interest to determine whether 
human performance patterns in simpler image domains (for example,  
Fig. 7a) are better explained by V1 than IT, especially as V1 neurons 
can sometimes outperform animal behavioral performance37,41.

By exploring the dependence of the relative task performance 
between areas on the amount of object view variation, we found that, 
for some simpler and lower-variation image domains, which may 
sometimes by ecologically relevant, lower visual areas can have more 
easily accessible information than higher areas. Our data are thus not 
best understood as confirming that a specific type of coarse coding 
strategy is a complete description of the ventral stream. Our results 
suggest that amount of complexity in the stimulus set, rather than 
type of task (for example, position estimation), is a key determinant of 
cross-area information patterns. Future research should explore this 
dependence along multiple axes of variation (for example, position, 
size, background complexity, etc.).

These results highlight the importance of high-variation stimuli 
in comparing visual areas. A number of earlier studies demonstrated 
information for position and pose in IT18,19,21,23,24, largely employing 
simpler stimuli. Had those experiments compared IT with V4 and V1, 
they might have found a decrease in information in higher areas (analo-
gous to Fig. 7a). That the relative power of V4 and IT could be reversed 
for some tasks by reducing variation in one parameter (pose) while 
retaining substantial variation in others suggests that future studies of 
higher visual cortex should be careful to include sufficient variation. 
Future work should look to expand to more realistic image domains, 
with multiple foreground objects in natural visual scenes. Although it 
is one thing for linear decoders to report a suite of properties relevant 
to an object in a scene, understanding how the brain handles the full 
‘binding problem’ posed by combinatorial property compositions is a 
key challenge that is beyond the scope of our current results29.

Computationally, our main contribution is a model generated from 
simple principles that encompasses our main empirical findings. This 
model suggests why coarse encodings may have arisen to begin with: 
they are optimal for high-level performance goals, even when the 
properties they encode (for example, position) are apparently orthog-
onal to the optimization goal (categorization). Going beyond these 
ideas, however, we found that, across tasks and levels of variation, 
complex patterns of relative information are possible, in ways that 
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are not predicted by any one encoding theory or ‘word model’. Our 
results suggest that, rather than fully adopting a specific encoding 
strategy (coarse or local), a more general top-down goal optimization 
principle is at work in the ventral stream.

Feedback and/or attentional mechanisms42,43 could account for 
how multiple orthogonal properties of objects can be integrated 
(reminiscent of the dorsoventral separation-of-roles hypothesis). 
However, given that our neural data were collected from passively 
fixating animals in a rapid serial visual presentation procedure with 
randomly interleaved images, reading out the earliest evoked IT 
responses (70–170 ms post-presentation), feedforward effects were 
likely dominant. Our computational model provides a neurally plau-
sible ‘existence proof ’ for how the experimental phenomena that we 
observed can be generated using largely feedforward circuitry.

Notably, our computational results indicate that learning robust 
category selectivity brings along performance on non-categorical 
tasks ‘for free’. Future studies should investigate whether the converse 
is true, whether learning one or more non-categorical properties is 
enough to guarantee categorization performance or is categoriza-
tion a stronger constraint driving IT neural responses. It would be  
interesting to identify a visual property of complex natural scenes  
that is supported by the IT population representation, but does not 
arise automatically with categorization optimization.

Our results may also be viewed as evidence that the ventral stream 
inverts a generative model of image space44. The test image set was 
produced by photorealistic rendering, with each image corresponding 
to a different choice of rendering parameters. Our results indicate that 
IT neural output encodes key inputs required to re-run the renderer. 
Such a representation could support on-line inference and long-term 
learning44,45. Although these interesting theoretical ideas have limited 
experimental support, our results show that some important elements 
are in place.

Our work is dependent on assumptions about how IT neurons 
are decoded by downstream units directly responsible for behavior. 
Linear estimators are technical tools for quantifying easily accessible 
task-relevant information in a population. However, because they 
consist only of linear weightings and at most a single threshold value, 
they also express a plausible rate-code model for downstream decoder 
neurons1. Future research should explore more sophisticated codes 
(for example, temporal decoding schemes) for the visual properties 
that we investigated, as well as potential columnar layout for these 
properties, such as those observed for shape selectivity46.

An additional limitation is that comparisons to lower level visual  
areas use a V1-like model rather than actual neural recordings. 
However, this model is similar to state-of-the-art V1 models7 and 
shows a clear and consistent pattern with data from our V4 and IT 
recordings. However, the model is an imperfect match to V1 (ref. 7), 
and it would be useful to repeat the analyses done here in V1 neural 
recordings. Along similar lines, although the CNN model described 
in Figures 6 and 7 predicts many qualitative and quantitative  
features in our observed data, it is an imperfect match. Improved 
models will be critical in better understanding ventral stream infor-
mation processing.

Another limitation of our data is that images were restricted to an  
8° diameter window at the animal’s center of gaze. This is large enough 
to allow substantial object position variability, with maximal dis-
placement greater than the object’s base diameter. However, it is not 
large enough to show effects in the visual periphery of the kind nor-
mally associated with parietal cortex47,48, nor do we mean to suggest  
that such processing occurs exclusively in the ventral stream. Given 
our results and recent data showing shape and category selectivity 

in parietal areas48–50, we speculate that both the dorsal and ventral 
stream contain representations for overlapping visual properties, cat-
egorical and otherwise, albeit at different levels of spatial resolution, 
with the ventral being fine scale and centrally biased and the dorsal 
being coarse scale with peripheral coverage. If borne out, this arrange-
ment would naturally support behavior in which dorsal machinery 
directs foveation around an environmental saliency map, whereas 
the ventral machinery parses multiple object parameters extracted in 
each salient (para-)foveal snapshot, information that could then be 
integrated downstream across multiple foveations to produce overall 
scene understanding.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.

AcknowledgmenTS
We are grateful to K. Schmidt and C. Stawarz for key technical support, and to  
D. Ardila, R. Rajalingham, J. Tenenbaum, S. Gershman, C. Jennings and J. Fan 
for useful suggestions. The infrastructure needed for this work was supported by 
DARPA (Neovision2) and the NSF (IIS-0964269). The bulk of the work presented 
in this manuscript was supported by the US National Institutes of Health (NEI-R01 
EY014970), with partial support from the Simons Center for the Global Brain and 
the Office of Naval Research (MURI). H.H. was supported by a fellowship from 
the Samsung Scholarship. We thank NVIDIA for a grant of GPU hardware and 
Amazon for an education grant supporting computational and psychophysical 
work. Additional computational infrastructure support was provided by the 
McGovern Institute for Brain Research (OpenMind).

AUTHoR conTRIBUTIonS
H.H., N.J.M. and J.J.D. designed the neurophysiological experiments. H.H. and 
N.J.M. performed the neurophysiology experiments. D.L.K.Y., H.H. and J.J.D. 
designed the human psychophysical experiments. D.L.K.Y. performed the human 
psychophysical experiments. D.L.K.Y. and H.H. performed data analysis.  
D.L.K.Y. and H.H. performed computational modeling. D.L.K.Y., J.J.D., H.H.  
and N.J.M. wrote the paper. 

comPeTIng FInAncIAl InTeReSTS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/
reprints/index.html.

1. DiCarlo, J.J., Zoccolan, D. & Rust, N.C. How does the brain solve visual object 
recognition? Neuron 73, 415–434 (2012).

2. DiCarlo, J.J. & Cox, D.D. Untangling invariant object recognition. Trends Cogn. Sci. 
11, 333–341 (2007).

3. Felleman, D.J. & Van Essen, D.C. Distributed hierarchical processing in the primate 
cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

4. Tanaka, K. Inferotemporal cortex and object vision. Annu. Rev. Neurosci. 19, 
109–139 (1996).

5. Logothetis, N.K. & Sheinberg, D.L. Visual object recognition. Annu. Rev. Neurosci. 
19, 577–621 (1996).

6. Vogels, R. & Orban, G.A. Activity of inferior temporal neurons during orientation 
discrimination with successively presented gratings. J. Neurophysiol. 71,  
1428–1451 (1994).

7. Carandini, M. et al. Do we know what the early visual system does? J. Neurosci. 
25, 10577–10597 (2005).

8. Majaj, N.J., Hong, H., Solomon, E.A. & DiCarlo, J.J. Simple learned weighted sums 
of inferior temporal neuronal firing rates accurately predict human core object 
recognition performance. J. Neurosci. 35, 13402–13418 (2015).

9. Hung, C.P., Kreiman, G., Poggio, T. & DiCarlo, J.J. Fast readout of object identity 
from macaque inferior temporal cortex. Science 310, 863–866 (2005).

10. Rust, N.C. & Dicarlo, J.J. Selectivity and tolerance (“invariance”) both increase  
as visual information propagates from cortical area V4 to IT. J. Neurosci. 30, 
12978–12995 (2010).

11. Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. Spatial summation in the receptive 
fields of simple cells in the cat’s striate cortex. J. Physiol. (Lond.) 283, 53–77 
(1978).

12. Gochin, P.M. The representation of shape in the temporal lobe. Behav. Brain Res. 
76, 99–116 (1996).

np
g

©
 2

01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://dx.doi.org/10.1038/nn.4247
http://dx.doi.org/10.1038/nn.4247
http://dx.doi.org/10.1038/nn.4247
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html


622  VOLUME 19 | NUMBER 4 | APRIL 2016 nature neurOSCIenCe

a r t I C l e S

13. Ito, M., Tamura, H., Fujita, I. & Tanaka, K. Size and position invariance of neuronal 
responses in monkey inferotemporal cortex. J. Neurophysiol. 73, 218–226 (1995).

14. Goodale, M.A. & Milner, A.D. Separate visual pathways for perception and action. 
Trends Neurosci. 15, 20–25 (1992).

15. Ungerleider, L.G. & Haxby, J.V. ‘What’ and ‘where’ in the human brain. Curr. Opin. 
Neurobiol. 4, 157–165 (1994).

16. Bosking, W.H., Crowley, J.C. & Fitzpatrick, D. Spatial coding of position and 
orientation in primary visual cortex. Nat. Neurosci. 5, 874–882 (2002).

17. Zhou, H., Friedman, H.S. & von der Heydt, R. Coding of border ownership in monkey 
visual cortex. J. Neurosci. 20, 6594–6611 (2000).

18. Li, N., Cox, D.D., Zoccolan, D. & DiCarlo, J.J. What response properties do individual 
neurons need to underlie position and clutter “invariant” object recognition?  
J. Neurophysiol. 102, 360–376 (2009).

19. DiCarlo, J.J. & Maunsell, J.H. Anterior inferotemporal neurons of monkeys  
engaged in object recognition can be highly sensitive to object retinal position.  
J. Neurophysiol. 89, 3264–3278 (2003).

20. Logothetis, N.K., Pauls, J. & Poggio, T. Shape representation in the inferior temporal 
cortex of monkeys. Curr. Biol. 5, 552–563 (1995).

21. MacEvoy, S.P. & Yang, Z. Joint neuronal tuning for object form and position in the 
human lateral occipital complex. Neuroimage 63, 1901–1908 (2012).

22. Nishio, A., Shimokawa, T., Goda, N. & Komatsu, H. Perceptual gloss parameters 
are encoded by population responses in the monkey inferior temporal cortex.  
J. Neurosci. 34, 11143–11151 (2014).

23. Sayres, R. & Grill-Spector, K. Relating retinotopic and object-selective responses 
in human lateral occipital cortex. J. Neurophysiol. 100, 249–267 (2008).

24. Sereno, A.B., Sereno, M.E. & Lehky, S.R. Recovering stimulus locations using 
populations of eye-position modulated neurons in dorsal and ventral visual streams 
of non-human primates. Front. Integr. Neurosci. 8, 28 (2014).

25. Edelman, S. & Intrator, N. Towards structural systematicity in distributed, statically 
bound visual representations. Cogn. Sci. 27, 73–109 (2003).

26. Snippe, H.P. & Koenderink, J.J. Discrimination thresholds for channel-coded 
systems. Biol. Cybern. 66, 543–551 (1992).

27. Hinton, G., McClelland, J. & Rumelhart, D. Distributed representations. in Parallel 
Distributed Processing, Vol 1 (eds. Rumelhart, D. & McClelland, J.) 77–109 (MIT 
Press, 1986).

28. Eurich, C.W. & Schwegler, H. Coarse coding: calculation of the resolution achieved by 
a population of large receptive field neurons. Biol. Cybern. 76, 357–363 (1997).

29. Treisman, A. The binding problem. Curr. Opin. Neurobiol. 6, 171–178 (1996).
30. Yamins, D.L. et al. Performance-optimized hierarchical models predict neural responses 

in higher visual cortex. Proc. Natl. Acad. Sci. USA 111, 8619–8624 (2014).
31. Khaligh-Razavi, S.M. & Kriegeskorte, N. Deep supervised, but not unsupervised, 

models may explain it cortical representation. PLoS Comput. Biol. 10, e1003915 
(2014).

32. Pinto, N., Cox, D.D. & DiCarlo, J.J. Why is real-world visual object recognition hard? 
PLoS Comput. Biol. 4, e27 (2008).

33. Rajalingham, R., Schmidt, K. & DiCarlo, J.J. Comparison of object  
recognition behavior in human and monkey. J. Neurosci. 35, 12127–12136 
(2015).

34. Tsao, D.Y. & Livingstone, M.S. Mechanisms of face perception. Annu. Rev. Neurosci. 
31, 411–437 (2008).

35. LeCun, Y. & Bengio, Y. Convolutional networks for images, speech, and time series. 
in The Handbook of Brain Theory and Neural Networks (ed. Arbib, M.A.) 255–258 
(MIT Press, 1995).

36. Deng, J. et al. ImageNet: a large-scale hierarchical image database. Proc. IEEE 
Conf. Comput. Vis. Pattern Recognit. 248–255 (2009).

37. Chen, Y., Geisler, W.S. & Seidemann, E. Optimal decoding of correlated neural 
population responses in the primate visual cortex. Nat. Neurosci. 9, 1412–1420 
(2006).

38. Mishkin, M., Ungerleider, L.G. & Macko, K.A. Object vision and spatial vision:  
two cortical pathways. Trends Neurosci. 6, 414–417 (1983).

39. Zoccolan, D., Kouh, M., Poggio, T. & DiCarlo, J.J. Trade-off between object selectivity 
and tolerance in monkey inferotemporal cortex. J. Neurosci. 27, 12292–12307 
(2007).

40. Serre, T. et al. A quantitative theory of immediate visual recognition. Prog. Brain 
Res. 165, 33–56 (2007).

41. Nienborg, H. & Cumming, B.G. Decision-related activity in sensory neurons  
may depend on the columnar architecture of cerebral cortex. J. Neurosci. 34, 
3579–3585 (2014).

42. Chikkerur, S., Serre, T., Tan, C. & Poggio, T. What and where: a Bayesian inference 
theory of attention. Vision Res. 50, 2233–2247 (2010).

43. Milner, P.M. A model for visual shape recognition. Psychol. Rev. 81, 521–535 
(1974).

44. Yildirim, I., Kulkarni, T.D., Freiwald, W.A. & Tenenbaum, J.B. Efficient analysis-by-
synthesis in vision: a computational framework, behavioral tests, and modeling 
neuronal representations. Proc. Annu. Conf. Cogn. Sci. Soc. 471 (2015).

45. Kersten, D., Mamassian, P. & Yuille, A. Object perception as Bayesian inference. 
Annu. Rev. Psychol. 55, 271–304 (2004).

46. Tanaka, K. Columns for complex visual object features in the inferotemporal cortex: 
clustering of cells with similar but slightly different stimulus selectivities. Cereb. 
Cortex 13, 90–99 (2003).

47. Brown, L.E., Halpert, B.A. & Goodale, M.A. Peripheral vision for perception and 
action. Exp. Brain Res. 165, 97–106 (2005).

48. Sereno, A.B. & Lehky, S.R. Population coding of visual space: comparison of spatial 
representations in dorsal and ventral pathways. Front. Comput. Neurosci. 4, 159 
(2011).

49. Rishel, C.A., Huang, G. & Freedman, D.J. Independent category and spatial 
encoding in parietal cortex. Neuron 77, 969–979 (2013).

50. Swaminathan, S.K. & Freedman, D.J. Preferential encoding of visual categories in 
parietal cortex compared with prefrontal cortex. Nat. Neurosci. 15, 315–320 
(2012).

np
g

©
 2

01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



nature neurOSCIenCedoi:10.1038/nn.4247

ONLINE METhODS
High variation stimulus set and visual task battery. Our main neural test stimu-
lus set, which will be denoted as Images, consisted of 5,760 images of 64 distinct 
objects chosen from one of eight categories (animals, boats, cars, chairs, faces, 
fruits, planes, tables), with eight specific exemplars in each category (for example, 
BMW, Z3, Ford, etc. within the car category). The set was designed (see ref. 30) 
to: (i) span a range of everyday objects, (ii) support both coarse, “basic-level” 
category comparisons (for example, “animals” versus “cars”) and finer subor-
dinate level distinctions (for example, distinguish among specific cars)51, and  
(iii) contain substantial variation in object view parameters (position, size, 
pose) that makes it challenging to decode any of the visual properties of objects  
(category, identity, position, size, pose). Objects were placed on realistic back-
ground images which were chosen randomly to prevent correlation between 
background content and object class identity.

As in ref. 30, the object view parameters for stimuli in Images were chosen 
randomly from uniform distributions in three levels of variation.

Low variation. All objects placed at image center (horizontal = 0, vertical =0), 
with a constant scale factor (s = 1) translating to objects occluding 40% of image 
on longest axis, and held at a fixed reference pose (rx = ry = rz = 0).

Medium variation. Object position varies within one-half multiple of total 
object size (|horizontal|, |vertical| ≤ 0.3), varying in scale between s = 1 / 1.3 ~ .77  
and s = 1.3, and between −45 and 45 degrees of in-plane and out-of-plane  
rotation (≤45°).

High variation. Object position varies within one whole multiple of object 
size (|horizontal|, |vertical| ≤ 0.6), varying in scale between s = 1 / 1.6 ~ 0.625 
and s = 1.6, and between −90 and 90 degrees of in-plane and out-of-plane  
rotation (≤90°).

Using this stimulus set, we defined a battery of visual tasks.
Basic-level object categorization. This is a discrete-valued eight-way object 

categorization task, in which the goal is to report the category of the object  
in the image, from the set of choices: Animals, Boat, Car, Chair, Face, Fruit, 
Plane, Table.

Subordinate-level object identification. These are discrete-valued eight-way 
object identification task, in which the goal is to report the specific identify of 
an object in each image from the list of eight exemplars of that object’s category. 
There are eight such tasks, one for each category in the data set. For example, in 
the case of the car category, the eight-way subordinate-level object identification 
task is identify an image as containing one of: Beetle, Alfa Romeo, Vauxhall Astra, 
BMW 325, Maserati Bora, Toyota Celica, Renault Clio, or BMW z3.

Position estimation. These are a set of related continuous-valued location  
estimation task, in which the goal is to identify an object’s center location. Tasks 
are to identify the location in pixels of the object center, along the horizontal 
axis (“Horizontal Position”) and the vertical axis (“Vertical Position”), and the 
distance in linear pixels of the object center to any fixed point location (“Center 
Distance”).

Bounding-box size estimation. These are a set of related continuous-valued 
bounding-box related tasks. The bounding box for an object is defined to be the 
smallest axis-aligned rectangular subset of the image that fully contains the pixels 
of the object. Location of each corner is measured, as is the size in linear pixels 
along both axes (“Width” and “Height”, respectively). The area of the bounding 
box in square pixels is also measured (“Bounding Box Area”).

Two-dimensional retinal area. This continuous-valued task measures the area 
in square pixels that the object takes up in the image. Each image pixel is either 
covered by the object, in which case the pixel is counted toward this metric, or it 
is not covered by the object, in which case the pixel is not counted. For example, 
pixels surrounded by an object but not actually covered by it (for example, the 
hole of a donut) do not count toward this measure.

Perimeter. This continuous-valued task measures the area in linear pixels on 
the boundary of the object. Pixels in the object not completely surrounded by 
other pixels also in the object do count toward this measure; any other pixels 
do not count.

Three-dimensional object scale. This continuous-valued task measures  
the three-dimensional scale parameter used to generate the image in the  
original rendering process, relative to a fixed canonical size — namely, s = 1 in 
the object parameterization discussed above. This relationship of this property  
to the two-dimensional retinal area depends in a complex manner on the  
object’s geometry.

Major axis length, aspect ratio and angle. The major axis of an object is defined 
to be the longest line segment such that both ends of the line segment are pixels 
within the object. The minor axis is the shortest perpendicular line segment so 
that the rotated bounding box defined by the major and minor axes covers the 
object. The continuous-valued measure axis length is measured in linear pixels. 
The aspect ratio is the ratio of the lengths of minor to the major axis. The major-
axis angle is the two-dimensional angle, in degrees, made by the major line with 
the horizontal line.

Three-dimensional rotation. These three rotations are the angles, in degrees, 
used by the renderer to orient the object in the original image creation process 
with a right-handed coordinate system, where +y, +z, +x directions correspond to 
“right”, “up”, and “out of the screen” directions (Fig. 2c). The angles are described 
via standard Euler rotations using the XYZ order. The (0, 0, 0) rotation is defined 
separately for each of the 64 exemplar objects in the data set. However, the exem-
plar angles are fairly well-defined “semantically”, meaning that they are reasonably 
consistent across the eight exemplars each for the eight basic object categories. 
Specifically, for each category the (0, 0, 0) angle is the one in which:

• Animals: animal is facing forward, with its head upright.
• Boats: boat is oriented with bow facing forward and keel point downward.
• Cars: car grille is facing forward, while tires on the bottom.
• Chairs: chair legs are facing downward, with the seat facing forward.
• Faces: looking straight the viewer, with top of the head oriented upward.
•  Fruits: stem attachment at the top. Note that many of the fruits possess a 

rough rotational symmetry around the vertical axis.
• Planes: cockpit facing forward, with plane in upright position.
•  Tables: table legs facing straight downward, with longest side along the  

horizontal axis.

We used the following metrics for measuring performance on these tasks, 
across all modalities (for example, neural data, human data, and computational 
model outputs). Specifically, for the discrete-valued categorization tasks, per-
formance is measured using balanced accuracy. Balanced accuracy is defined for 
a prediction of binary task with positive and negative classes as

AccBal= + −TP
P

TN
N

1

where TP is the number of correct positive predictions, P is the number of posi-
tives examples in the data, TN is the number of correct negative predictions, 
and N is the number of negative examples in the data. Balanced accuracy for a 
multi-class prediction problem is the average of one-versus-all (OVA) prediction 
problems over the classes. For continuous-valued estimation tasks, performance 
is measured as the Pearson product-moment correlation between the predicted 
and actual values. Specifically: 

Corr=
⋅

→ →
covariance p a

variance p variance a

( , )

( ) ( )

 

where 

p  is the vector of predictions for a sequence of images and 


a  is vector of 

corresponding ground-truth values for that property.
We chose these metrics because they both range from –1 to 1, with 0 being 

chance-level prediction and 1 being perfect prediction. Slight negative values of 
these metrics will sometimes arise in practice because classifiers and regressors 
are cross-validated on held-out testing images.

We repeated our core population decoding analysis on V4 and IT neural data 
on a spectrum of subsets of the full high-variation image set Images. Specifically, 
we chose to subset the image set by amount of variation in the rotation parameters. 
We considered variation cutoff levels φ ranging between 10° and 90°, at 5 degree 
intervals. For each such φ, we created a subset of the original data set defined by 
restricting rotations of objects to at most φ degrees on all three axes, i.e.:

 Images Imagesf f= ∈ ≤{ | ( ) | }., ,x if rot xx y z  

We then performed the full battery of classifier and regressor training and test-
ing on Imagesφ for each value of φ (Fig. 7c and Supplementary Fig. 12). In this 
work we do not make comparisons between the absolute values of the lines in 6 
at different ends of the variation spectrum, and instead focus only on the relative 
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values of IT, V4, and the V1-like model because there is covariation between the 
amount of rotational variation and variation amounts for other parameters.

Simple stimuli. We also gathered neural data on a simpler set of stimuli 
(Supplementary Fig. 1b), consisting of small grating patches placed on gray 
backgrounds. We will denote this set of images gratings. The grating objects were 
shown at different positions in a 5-by-5 location grid. At each location, gratings 
were shown at each of 4 orientations, including 0°, 45°, 90°, and 135°, for a total 
of 100 images). The overall intensity of the images are all identical.

Array electrophysiology. Neural data were collected in the visual cortex of two 
awake behaving rhesus macaques (Macaca mulatta, 7 and 9 kg, both male) using 
parallel multi-electrode array electrophysiology recording systems (BlackRock 
Microsystems, Cerebus System). All procedures were done in accordance with 
NIH guidelines and approved by the MIT Committee on Animal Care guidelines. 
Nine 96-electrode arrays (three arrays in each hemisphere, with a total of three 
hemispheres, two left, one right, across two monkeys) were surgically implanted 
in anatomically-determined V4, posterior IT, central IT and anterior IT regions3. 
Of these, 392 neural sites (266 in IT and 126 in V4) were selected as being visually 
driven with a separate imageset. Passively fixating animals were presented with 
testing images in pseudo-random order with image duration comparable to those 
in natural primate fixations52. Images were presented one at a time on an LCD 
screen (Samsung SyncMaster 2233RZ at 120 Hz) for 100 ms, occupying a central 
8° visual angle radius on top of a gray background, followed by a 100 ms gray 
“blank” period with no image shown. Eye movements were monitored by video 
tracking (SR Research, EyeLink II), and animals were given a juice reward each 
time fixation was maintained for 6 successive image presentations. Presentations 
in which eye movement jitter exceeded ±2° from screen center were discarded.  
In each experimental block, responses were recorded once for each image,  
resulting in 25–50 repeat recordings of the each testing image.

For each image repetition and electrode, scalar firing rates were obtained from 
spike trains by averaging spike counts in the period 70–170 ms post-stimulus 
presentation, a measure of neural response that has recently been shown to match 
behavioral performance characteristics very closely8. Background firing rate, 
defined as the mean within-block spike count for blank images, was subtracted 
from the raw response. Additionally, the signal was normalized such that its 
per-block variance is 1. Final neuron output responses were obtained for each 
image and site by averaging over image repetitions. Recordings took place daily 
over a period of several weeks, during which time neuronal selectivity patterns at 
each recording site were typically stable. Based on firing rates and spike-sorting 
analysis, we estimate that each individual electrode multi-unit site in this study 
picks up potentials from 1–3 single neural units.

Sorting of single units. To determine whether results would likely differ for 
direct single-unit recordings, we sorted single units from the multi-unit IT data 
by using affinity propagation53 together with the method described in (ref. 54). 
Based on these analyses, we estimate that each of our multi-unit sites contains 
spikes from between 1 and 5 single units. In our IT sample, we obtained 154 well-
isolated single units; in our V4 sample, we obtained 191 well-isolated single units. 
Throughout, we repeated analyses both for our raw multi-unit site data, as well as 
for these isolated single-unit populations. We did not see significant differences 
from the multi-unit analyses in the relative performance levels between V4 and IT. 
Absolute performances from the single units was generally lower, since the sorted 
single units were less reliable on average than our multi-units, but measured on a 
per-spike basis were generally equal to or slightly higher than for the multi-units. 
Moreover, we have supplemented with serially sampled, single-electrode record-
ing9,10, and have found that neuronal populations from arrays have very similar 
patterns of image encoding as assembled single-electrode unit populations.

Receptive field analysis. Using the simple grating-like stimuli, we were able to 
compare receptive field locations and sizes in our V4 and IT populations. We 
found that for both populations, receptive fields were concentrated near the 
center of gaze. In the case of V4 population, these fields covered the approximately 
central 4° relative to the center of case; in our IT population, the fields covered 
roughly central 8°. To investigate the effect of receptive field coverage on our 
results, we performed versions of each of our analyses restricting to images in the 
central 4 degrees of the field of view, but did not see substantial differences.

neural performance assessment. We assessed the performance of neural sites 
and populations on each of the tasks in our task battery. For discrete-valued tasks, 
performance was assessed by training SVM classifiers (using a linear kernel) 
on neural output55. Linear SVM classifiers are a standard tool for analyzing the 
performance capacity of a featural representation of stimulus data on discrete 
classification problems8,9,55. For neuronal sites, the output features are defined 
as the vector of scalar firing rates for each unit, as is typical in neural decoding 
studies8,9,56. For any fixed population of output features (from either a model 
or neural population), a linear classifier determines a linear weighting of the 
units, followed by a discrete threshold, which best predicts classification labels 
on a sample set of training images. Category or identity predictions are then 
made for stimuli held out from the weight training set, and accuracy is assessed 
on these held-out images. For continuous-valued estimation tasks, performance 
was assessed by training support vector regression regressors with linear kernels  
on the output features55. A linear regressor determines a linear weighting of the 
units that best predicts the target property on a set of training images. Predictions 
for that property are then made for a set of held-out images, and accuracy is 
assessed using the Pearson correlation measure discussed above.

For both discrete classifiers and continuous regressors, to reduce the noise in 
estimating accuracy values, results are averaged over a number of independent 
cross-validation splittings of the data into training and testing portions. In the 
data shown in Figures 3 and 4, results show cross-validated test performance 
averaged over 50 splits in which each training split contained a randomly selected 
80% of the data, and the corresponding testing split contained the remaining 
20% of the data. While absolute values of performances depend on the size of 
training split, the results discussed in this paper do not. In all cases, classifiers 
and regressors were trained using an l2 regularization penalty on the weights, and 
the penalty weight C was chosen separately for each split with cross-validation 
by sub-splitting the training data55.

For each of the 8-way classification tasks, including the basic-categorization 
task and the eight subordinate identification tasks, classifiers were trained using 
an 8-way one-versus-all (OVA) methodology55. For most tasks, training and  
testing was done across images of all eight basic categories taken together. 
However, for the pose estimation tasks, the training was done within each of  
the eight basic category of images separately, in analogy with the human psy-
chophysics experiments. Similarly, for eight within-category subordinate 
identification tasks, training and testing were performed on images from each 
corresponding category.

In addition to the population analyses reported in Figure 3b, we performed 
separate analyses for posterior IT cortex (PIT, n = 184 sites) and central IT cortex 
(CIT, n = 125 sites), though we did not have sufficiently many anterior (AIT) 
cortex units to perform a separate analysis there. Though we found several  
individual tasks with statistically-significant differences between PIT and CIT, 
taken as a whole with the appropriate multiple-comparison (Bonferroni) correc-
tion applied, we cannot conclude from our limited data any statistically significant 
differences between PIT and CIT, either for absolute performances levels (as in 
Fig. 3) or cross-task behavioral consistency (as in Fig. 4), similar to our previous 
observation on classification tasks in ref. 8.

control models. Throughout, we use two basic models as controls against to 
which to compare neural population recordings.

•  A V1-like model32, that we use to provide an approximate comparison  
point for lower levels in the ventral visual stream. This model is based on 
a grid of 96 Gabor wavelets composed of filters at 16 spatial frequencies 
and 6 evenly-spaced spatial orientations, proceeded and followed by a local 
competitive normalization operation. This model is similar to those used to 
provide state-of-the-art predictions of neural responses in V1 (ref. 7).

•  The trivial Pixel control, in which 256 × 256 square images were  
flattened into a 65,536-dimensional “feature” representation. The pixel  
features provided a control against the most basic types of low-level  
image confounds.

Image level controls. There is a potential that our V4 records might have been 
generally less reliable or of lower quality than our IT recordings, since sites in V4, 
with their smaller receptive fields, might be more sensitive to various factors such 
as (for example,) animal eye movements. To ensure that our results comparing V4 
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to IT were not influenced by generally lower recording quality in V4, we estimated 
a number of image-level controls (Supplementary Fig. 2d–f ):

1.  We measured per-site cross-trial reliability of each site (Supplementary  
Fig. 2d). To measure reliability, for each site we compared that site’s 
responses across images on one trial (producing a vector of responses) to 
the same site’s responses on a different trial (producing a second vector  
of responses). We quantified reliability as the Pearson correlation 
between these two vectors, averaged across all pairs of trials. (For site and  
each image, we had between 25 and 50 trials.) We did not observe a  
statistically significant difference between reliability in our V4 sites (median 
= 0.73 ± 0.05) as compared to our IT sites (media = 0.76 ± 0.06).

2.  We measured selectivity for each site (Supplementary Fig. 2e). For each  
site, we measured selectivity as the d-prime for separating that site’s best 
(most highly response-driving) stimulus from its worst (least highly 
response-driving) stimulus. D-prime was computed by comparing the 
response mean of the site over all trials on the best stimulus as compared 
to the response mean of the site over all trials on the worst stimulus, and 
normalized by the square-root of the mean of the variances of the sites on 
the two stimuli: 

selectivity site i mean b mean wi i

var bi var wi
( ) ( ) ( )

( ) ( )
= −

+

 

 

2  

 where 

bi is the vector of responses of site i to its best stimulus over all 

trials and 

wi  is the vector of responses of site i to its worst stimulus. We 

computed this number in a cross-validated fashion, picking the best and 
worst stimulus on a subset of trials and then computing the selectivity 
measure on a separate set of trials, and averaging the selectivity value of  
20 trial splits. We did not observe a statistically significant difference 
between selectivities in our V4 population (median = 1.88 ± 0.14) and  
IT populations (median = 1.80 ± 0.21).

3.  We measured the population level separability for image pairs 
(Supplementary Fig. 2f). For each of 5000 randomly selected image 
pairs in our main test stimulus set (Supplementary Fig. 1a), we trained a  
classifier on our neural population to separate the first image in the pair 
from the second. The classifiers were trained and tested in a cross-validated 
way over trials (for example, classifier weights determined from one set of 
trials and then evaluated on another set of trials, with results averaged over 
50 train/test trial splits). We measured performance as the d-prime of the 
2×2 test result confusion matrices, i.e.: 

′ = −d Z TP Z FP( ) ( )

where Z is the normal z-score function, TP is the true positive rate, and 
FP is the false positive rate. Supplementary Figure 2f show histograms 
of the cross-validated d-prime values, over the 5000 pairs of images, with 
classifiers trained on the V4 population (left panel) and the IT population 
(right panel). We observed a barely statistically significant difference at the  
p = 0.05 level between the median d-prime value for the V4 population 
(median = 3.84 ± .08) and the IT population (median = 3.66 ± .10).

These measures show that, using image-level comparison metrics, the data 
from our V4 site recordings were not significantly less reliable, selective, or able 
to separate image pairs than that from our IT population.

extrapolation analyses. We produced performance curves by subsampling 
our neural populations to various sizes between 1 site and all available sites. 
Performance scaling appeared in all cases approximately log-linear, for example, 

Performance n k log n( ) ( )∼ ⋅

where n is the number of neural sites, and k is a constant. We then extrapolated 
performance to larger n values, fitting k fit to the observed data points using a 
least-squares error metric57. For the V4 and IT neural population data, we fit to 
all available data (out to 126 and 266 sites, respectively), while for the V1 and 

pixel controls we produced random samples of the features out to size 2000.  
In all cases used averages of performance over 100 samples, except when fewer 
than 100 unique samples of a given size were available.

counting neural sites. In understanding the counts of the number of neural 
sites used in various analyses in this work, it is important to recognize the use of 
repetition-averaged multi-unit site responses. This underestimates the number 
of single neurons needed to support each task in real time. To translate to single-
trial single-neuron counts, it is necessary to multiply the counts reported here by 
factors correcting for the effects of noise reduction over multiple trials as well as 
the number of single sites in a multiunit. This has been done carefully in ref. 8, 
yielding a factor of approximately 120. Thus our median number of 695 repeti-
tion-average multi-unit sites translates to approximately 83,000 IT neurons.

Performance in simple stimuli. We estimated population decoding performance 
for three tasks defined on the simple grating stimuli (as shown in Supplementary 
Fig. 1b), including Horizontal Position estimation, Vertical Position estimation, 
and orientation estimation. We used two types of classifiers to perform these 
analyses, including linear SVM classifiers, using the same protocol as with the 
analysis in Figure 3b; as well as nonlinear Radial Basis Function (RBF) SVM clas-
sifiers55, using Gaussian kernels. We found that patterns of performances were 
similar for both linear and nonlinear classifiers (Supplementary Fig. 11).

Human psychophysical experiments. Data on human object recognition judg-
ment abilities shown in Figure 4 were obtained using Amazon’s Mechanical Turk 
crowdsourcing platform, an online task marketplace where subjects can complete 
short work assignments for a small payment. All data were collected under approval 
by the MIT Committee on the Use of Humans as Experimental Subjects.

We measured human performance for a subset of the tasks on which we 
decoded neural performance (see below for detailed list). We recruited MTurk 
subject pools separately for each task with a subject count of n = 80, though there 
ended up being a small amount of overlap between the subject pools for the  
various tasks (there were fewer than 5 overlapping subjects for any pair of tasks). For 
each participant and each task, task sessions consisted of a training phase contain-
ing 10 trials (except as indicated below) and a testing phase containing 100 trials.  
On each trial, a sample image was shown, followed by a 500ms pause, and then 
a response screen was shown. The nature of the response screen depended on 
the task type (see below for details). For each of the sessions, we measured 20 of  
the testing images 2 times, to enable calculation of within-subject reliability.

During the training trials, sample images were shown for an extended period of 
time and in which correct answers were indicated both via annotation on the origi-
nal sample image and in the response screen. During the 100 testing trials, sample 
images were shown for 100ms, followed by a 500ms pause, and then a response 
screen was shown. The accuracy values reported in the figures and text were gener-
ated from the testing trials only. A small bonus was paid to subject based on their 
average estimation accuracy at the end of the session, and subjects were told at the 
beginning of each session that their bonus would depend on correctness.

The tasks we measured included:

•  Basic categorization task. This was an eight-way alternate forced choice  
(8-AFC) task. The response screen for this task consistent of 8 response 
images, one for each of the eight basic categories in our image set. Subjects 
were required to click with their mouse on the image representing the cat-
egory they thought they saw in the sample image. Average within-subject 
reliability for this task was 0.97.

•  Subordinate identification tasks. This consisted of eight separate 8-AFC 
tasks, one for each category. These tasks were not intermixed, for exam-
ple, sessions involving subordinate car identification were not intermixed 
with subordinate boat identification. The response screen for each the eight 
category tasks consisted of 8 response images, one for each specific object 
identity within that category. Average within-subject reliability for this task 
was 0.92. For analyses in this paper that treat subordinate categorization as 
a single task, that is, performance values were averaged across each of the 8 
individual tasks to produce a composite value.

•  Position estimation. Response screens consisted of a blank canvas the same size 
as the sample image, and subjects were required to click at the location where 
they estimated the centroid of the object in the sample image was located. 
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Horizontal position and vertical position estimates were computed from  
the indicated centroid. Average within-subject reliability for the horizontal 
position estimate was 0.91 and for the vertical position estimate was 0.94.

•  Axis-aligned bounding box estimation. Response screens consisted of a 
blank canvas the same size as the sample image, and subjects were required 
to click on the locations where they thought the top-left and bottom-right  
of the axis aligned bounding box had been for the object in the sample 
image. Width, height and bounding-box area were computed from the  
indicated bounding box. Average within-subject reliability of width was 0.96, 
for height was 0.92, and for bounding-box area was 0.84.

•  Rotated bounding box estimation. Response screens consisted of a blank 
canvas the same size as the sample image. Subjects were first required to 
click on two points indicating one side of the rotated bounding box, and 
then on a third point indicating the extent of the rotated bounding-box in 
the orthogonal direction. Major axis length, major axis angle, and aspect 
ratio where computed from the subject’s rotated bounding box estimate. 
Average within-subject reliability for major axis length was 0.85, for major 
axis angle was 0.79, and for aspect ratio was 0.91.

•  Object three-dimensional scale. Response screens consisted of a new image of 
the object in the sample image, but shown from a single fixed canonical angle 
(chosen on a per-category basis as described above). On each testing phase 
trial, the size of the response image was randomized by uniformly drawing 
from the full size range in the data set. Subjects were given a slider and  
were required to resize the image so that the object was at the same three-
dimensional size as they perceived it to be in the sample image. Once  
subjects felt they had correctly resized the object they pressed a “submit”  
button. Average within-subject reliability for object scale estimate was 0.87.

•  Object three-dimensional rotation. Response screens consisted of a three-
dimensional graphical “pointer” indicating defined “top” and “front” orien-
tations. Subjects were required to rotate the pointer into alignment with the 
top and front orientations that they perceived in the sample image. Once 
subjects felt they had correctly posed the pointer, the clicked a “submit” 
button. Training was provided on a per-category basis to teach subjects our 
definition of the canonical (0, 0, 0) angle for each category, and 32 training 
examples were provided (containing training images for 4 exemplars each 
for each of 8 categories). Average within-subject reliability for z-axis rota-
tion was 0.76; for x-axis rotation was 0.69; and for y-axis rotation was 0.71.

We did not measure two-dimensional retinal area and perimeter estimation 
tasks in our human subjects. Across all tasks, while subject consistency was  
comparatively high, there were a range of levels of performance. Some tasks (for 
example, position estimation) were reliably easier than other tasks (for example, 
three-dimensional pose estimation), though all tasks were both significantly 
above chance and significantly below ceiling. Relatively low performance on 
three-dimensional pose estimation tasks is likely to be explained by the fact that 
objects rotated on all the axes simultaneously (while changing in size and position 
and background as well).

We sought to determine whether the relative difficulty of tasks for  
humans across our range of tasks corresponded to the relative difficulty  
predicted by the neural populations (Fig. 4b). We first constructed a vector  
of performances: 

v p p phuman human t human t human tn


= …( , , , ), , ,1 2

where phuman,ti was the mean performance of the human subject pool on task i. 
We next constructed a vector of performances: 

v p p pneural neural t neural t neural tn


= …( , , , ), , ,1 2

where pneural,ti was the mean performance of the trained decoder on a given neural 
population on task i. We then measured the consistency of the neural and human 
population as the Spearman rank correlation between these two vectors: 

consistency neural human Spearman v vhuman neural( , ) ( , )=
 

We estimated the human-to-human consistency in performance pattern by 
bootstrapping methods with n = 1000 bootstrap replicas, using 68% confidence 

intervals58 to determine the uncertainty in this value (as shown in Fig. 4c, left 
and right panels, horizontal gray bands). The bootstrapping was done over vari-
ation caused by subsampling in the set of tasks as well as the set of images used 
to compute performance for each task.

Partitioning tasks for various analyses. Through this work, we have attempted to 
keep the set of task used in each analysis as close to identical as possible. However, 
there are a number of exceptions to this that we note here:

1.  In the analyses in Figure 3, we show 16 separate tasks. These are all the 
tasks for which we measured neural data, and on which we computed per-
formance for computational models. As described in a previous subsection, 
these tasks include two categorical (that is, classification) tasks and 14 non-
categorical tasks. These tasks are basic-level categorization (for example, 
“Animals versus Boats versus Cars etc.”), as well as subordinate identifica-
tion for each of the 8 categories.

2.  The analyses comparing neural data to human data in Figure 4b and 
Supplementary Figure 4 show only 14 of the tasks. This is because, as 
noted above, we did not collect human data for two of the non-categorical 
tasks (two-dimensional retinal area and perimeter length).

3.  In performing the analyses comparing neural data to human data in  
Figure 4b,c tasks were split up in two ways:

•  The first method, corresponding to the large squares in Figure 4b  
and the left panel in Figure 4c, is to treat each of the 14 tasks as single 
individual data points.

•  However, as discussed above, four of these tasks actually themselves 
consisted of averages of 8 per-category individual tasks, including sub-
ordinate identification, and the three three-dimensional pose tasks (that 
is, x-axis, y-axis, and z-axis rotation estimation). We wanted to be sure 
that our results on neural/human consistency did not depend on the 
fact of making these aggregations over category. Thus, we also produced 
versions of these analysis in which each of the 8 per-category data points 
were considered separately, for these four tasks. This corresponded to the 
small circles in Figure 4b and the right panel in Figure 4c. This analysis 
comprised 41 separate task points (9 tasks that were not treated on a 
per-category basis, plus 8 tasks for each of 4 tasks there were treated on 
a per-category basis).

4.  The analyses in Figure 6d are analogous to Figure 4b, but are different in 
that this figure compares model performances to neural performances. 
Because we had measured all 16 tasks for the neural data and the models 
(as opposed to the subset of 14 measured for the humans), we were able 
to include all these tasks in this scatter plot – making for a total of 16 large 
squares and 43 small circles.

5.  As discussed below in the section on weight pattern analysis, in the analy-
ses in Figure 5, we computed metrics about the weight distributions of 
classifiers and regressors. To make each such distribution comparable, we 
were required to compare the individual one-dimensional weight patterns 
from each task. However, as discussed above, the classifiers for each of the 
8-way tasks, including basic categorization and the eight subordinate clas-
sification tasks, were actually comprised of 8 separate one-versus-all binary 
classifiers that were combined using the maximum-margin methodology. 
For this reason, in the analysis in Figure 5, there were 107 separate linear 
decoders, including:

•  8 (for the basic-categorization task,
•  plus 64, including 8 for each of the 8 subordinate identification tasks,
•  plus 11 for each of the non-categorical regression tasks whose train-

ing was not done a separate per-category basis (for example, everything 
except the three-dimensional rotations),

•  plus 24, including 8 for each of the three three-dimensional rotation 
tasks.

6.  In the analyses in Figure 6d, 15 tasks are present (as opposed to 16) because 
we are showing the correlation between categorization performance (on the 
training data set) and the remaining tasks.
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weight pattern analysis. Having determined that the IT population is able to sus-
tain behaviorally plausible linear coding for a variety of tasks, our next goal was to 
understand the distribution of information for each of the tasks amongst the vari-
ous sites. To formalize the concept of “relevance of a task at a given site”, we used 
the classifier/regressor weights trained in the population analyses described above 
(see below for a discussion of alternative metrics). In mathematical terms: 

relevance of  site i for ast k T wTi=
 

where w w w wT T T Tn


= …( , , , )1 2  is the vector of weights of a l2-regularized  
linear estimator for task T on site i, and n is the number of neural sites. In the 
case of the continuous regression tasks, the weights are simply the regression 
coefficients, whereas in the case of the discrete categorization tasks, the weights 
are classifier coefficients, before the final threshold value. The absolute value of 
the classifier weight, |wTi|, is a proxy for the amount of information contributed 
by site i for task T. If |wTi| is large compared to the weights wTj for other sites j, 
site i is taken to be more relevant for the task; wTi >> 0 corresponds to strong 
correlation between the site’s output at the task, while wTi << 0 corresponds to 
strong anticorrelation.

Let DT be the distribution of weights for task T (Supplementary Fig. 5a).  
In this work, we assume that the weights in 


wT  are IID samples from DT.  

We consider the distributions for 107 separate binary tasks, including:

•  The 8 one-versus-all basic-level categorization tasks (for example, Animals 
versus all, Boats versus all, etc.).

•  8 one-versus-all subordinate categorization tasks for each of 8 categories, 
for a total of 64 binary tasks.

•  11 size, position, bounding box, and pose estimation tasks, as described 
above.

•  24 subordinate three-dimensional pose estimation tasks, eight each for the 
three pose axes, as described above.

In Figure 5b,d, we only show results for the non-subordinate tasks, for visual 
clarity. However, Figure 5c shows distributions of the γ1 and γ2 statistics (see 
below) for all 107 decoders.

We had two basic analysis goals with these distributions: (a) what do the indi-
vidual task distributions of information look like for each task? and (b) how do 
they overlap between tasks?

Individual Task Information distribution. In mathematical terms, our first 
goal was to characterize the shape of DT for each task T. To do this, we used two 
statistical properties of the distributions: skewness and kurtosis.

The γ1 skewness of the weight vector is a measure the imbalance or  
asymmetry of the distribution of the weights about the mean weight. Positive 
skewness means that the positive tail of the weight distribution is longer than 
the negative tail, for example, the majority of the weight distribution is below 
the mean. In the context of this work, high skewness for the weight distribution 
associated with a given task would indicate that the population was biased toward 
having sites that are anticorrelated with the task, while high negative skewness 
would indicate the opposite. Formally, skewness is a statistical third-moment 
measure defined as: 

g m
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is the s.d. of the weights.
We measured the sparseness of weight distributions via excess kurtosis, γ2. 

Excess kurtosis measures how spread out the weights are, relative to a normal 

distribution. Positive excess kurtosis means that the distribution is more peaked 
than a Gaussian distribution with the same mean and s.d. High kurtosis values 
indicating that only a very few sites are highly informative for the task, and low 
values indicating little differentiation between sites. Formally, excess kurtosis is 
defined as
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To ensure that we accurately took into account the effects of noise and sparse 
sampling of image space, the skewness and sparseness shown are computed by 
averaging the skewness and sparseness computed separately for the weights of 50 
classifiers/regressors, each trained on a different split containing 50% of the train-
ing data. We also resampled sites with replacement, to ensure we were properly 
accounting for uncertainty due to site sampling. Error bars shown in Figure 5b 
are s.d. computed over both site samples and image splits.

To help interpret the meaning of these skewness and sparseness values, we 
compared them to two types of controls:

1.  Gaussian control. With a statistically large enough sample, Gaussian dis-
tributions have 0 skew and 0 excess kurtosis. However, finite samples of a 
Gaussian distribution will not have 0 skewness or kurtosis. We matched 
the size of the empirical distribution of IT sites (n = 266) and drew 1000 
samples of size from a standard Gaussian, and computed the skewness and 
kurtosis for each sample. The gray bars in Figure 5b show the s.d. spread 
of these values.

2.  Three-point distribution control. The other end of the statistical spectrum 
from the Gaussian control are three-point distributions, distributions that 
have support on three distinct points, x x x− +< <0 . For each task T, we 
approximated the empirical distribution DT with a three-point distribution by  
solving for x x x− +, ,0  as well as probabilities 0 10 0< = − −− + −p p p p p, , ,  
such that x0 is the empirical mean of DT and the three-point distribution 
had the same mean, s.d., skew and kurtosis as DT. Conceptually, the inter-
pretation of these approximations are to divide the population of sites for 
each task T into three subpopulations: the x−-sites that are the “highly- 
anticorrelated” with the task T, the x+-sites that are highly correlated with 
the task, and the x0-sites that are not highly relevant to the task. The refer-
ence values shown in the skewness histogram (Fig. 5b) are, by definition,

reference skewness
p p
p p

= + ⋅
+ ⋅

+
−

0 5
0 5

0

0

.

.  
 measuring the ratio of above-mean to below-mean sites. The reference 
numbers shown in the sparsity histogram (Fig. 5a) are, by definition 

proportion of p phigh-  relevance sites = +− +

As shown in Figure 5b,c and discussed in the text, we found that the distribu-
tions of weights are:

•  On average, comparatively symmetric, in which most tasks are  
statistically indistinguishable in their skewness from size-matched Gaussian 
control, and the proportion of above-mean to below-mean sites range  
from 0.7 to 1.3.

•  On average, slightly more sparse than normally distributed, in which the 
proportion of high-relevance sites (as defined above) ranges from 15%  
to 35% of the total, with a median of 26.3%. The normal distribution has 
32.5% high-relevance sites, and a significant proportion of tasks are not 
statistically distinguishable in their sparsity from that of the size-matched 
Gaussian control.

Taken together, these results suggest a picture of information distribution 
across sites that is comparatively well distributed, as opposed to each task being 
supported by a small number highly-dedicated sites.

Task-pair information overlap. Having characterized the per-task distributions, 
we sought to characterize the overlap of weights for each task pair, seeking to 
understand how the sites that are likely to be useful for any one task are related to 
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those that are relevant for each other task. We defined the overlap between tasks  
i and j as the Pearson correlation between the absolute values of the weight vectors 
for the two tasks (see below for discussion of alternative metrics). Formally, the 
overlap matrix (see Fig. 5d) has i, j -th element defined as 

M corr w w
cov w w

var w var
i j Ti Tj

Ti Th

Ti

, (| |,| |)
(| |,| |)

(| |)
= =

⋅
→

 
 

((| |)wTh
→

where Ti and Tj are the i-th and j-th tasks, respectively. This value ranges between 
1 (perfectly correlated, meaning complete overlap) and –1 (perfectly anticor-
related, meaning totally non-overlapping). In practice, given that the number 
of tasks is comparable to the number of sites in our sample, and that (as seen in 
the previous section), each task utilizes between 15% and 35% of all sites, the 
minimum possible average overlap will be significantly larger than –1.

In Figure 5d, we show the average of the correlations of 1,000 random draws 
of weights of classifiers/regressors over a set of 50 splits containing 50% of the 
training data. That is, each matrix element is the average of 1000 correlations 

corr w wTi
sk

Tj
sl( , ) where wTi

sk  is the weight vector for the i-th task, trained on the 

k-th (of 50) splits, and where sk an sl where chosen randomly for each of the 
1000 repeats.

We were particularly interested in quantifying the overlap between category-
detection tasks and non-categorical tasks. To provide reference points against 
which to compare our results, we considered two controls:

1.  Random overlap model. Weights are randomly assigned to each task  
subject to the constraint of matching per-task and per-site marginal  
weight distributions, but in which task pair overlap is unconstrained.

2.  Minimum overlap model. Weight assignments are constrained as in  
the random overlap model but additional constrained to result in as little 
overlap as possible.

3.  In both cases, we used gradient-based optimization methods to solve for 
weights hTi i n,0 ≤ <  for each task T, such that

•   hTiT
N

TiT
N w2

0
2

0== =∑ ∑  for each unit i, where N is the number of tasks. 
•  mean mean wT T( ) ( )h h


=   for all tasks T

•   variance variance wT T( ) ( )h h


=  for all tasks T 
•   skewness skewness wT T( ) ( )h h


=  for all tasks T

•   kurtosis kurtosis wT T( ) ( )h h


=  for all tasks T.

Using the l-bfgs algorithm55, we minimized the square difference objective 
function summed over the above 5 terms. In the case of the minimum overlap 

model also simultaneously minimized corr Ti TjTi Tj
(| |,| |)h h
 

<∑ . For both the 

random and minimum overlap models, we ran the optimization over 1,000 ran-
dom initializations of the η values.

In summary, and shown in Supplementary Figure 6 we found that:

•  Overlap is generally positive.
•  The average overlap of (non-face) categorical tasks with each other is higher 

than would be predicted by the random overlap model, except for the case 
of faces.

•  The average overlap of the face-detection task with other categorical tasks 
is lower than would be predicted by random overlap, but higher than would 
be predicted by the minimal overlap model.

•  The average overlap of (non-face) categorical tasks with non-categorical 
tasks is lower but not statistically different from the prediction of the ran-
dom model.

•  The average overlap of face detection with non-categorical tasks is not statis-
tically distinguishable from that predicted by the minimal overlap model.

Taken together, these results suggest that, holding faces aside, the IT neural 
population jointly encodes both categorical and non-categorical visual tasks using 
an integrated representation in which many units participate in tasks. However, our 
this observations are consistent with well-established observations of segregated 

face-specific sites34,59, and provides a positive control that the overlap-measurement  
methodology used here is able resolve module-like structure when it exists.

normalized decoder weights. In Supplementary Figure 5a, we show “nor-
malized” decoder weights, meaning that the weights of the decoders have been 
divided by the total sum across sites of the absolute values of the weights. We’ve 
done this so that the visual comparison between the weights between decoders 
for several different tasks can be made on the same scale.

Statistical methods. In several of the figures of this paper, we use statistical tests. 
These include:

•  In Figures 3, 4, and 6, as well as Supplementary Figures 3, 4, 6b, 7b,c, 8, 
9, and 13, we use confidence intervals based on bootstrapping to estimate 
error bars. In each figure caption, it is indicated which source(s) of variance 
were included in computing these bootstraps. At first, we performed 1000 
replicas for each bootstrap, but upon observing the highly normal distribu-
tion of the data, we reduced the number of replicas subsequently to 100 (or 
in some cases 500), to aid with computational efficiency.

•  In Figures 3, 4c, 7, Supplementary Figures 2d–f and 11, we used two-way 
population t-tests to determine statistical significance of the differences 
between IT-V4 and V4-V1 populations. In all cases we use Welch’s version 
of the test since the variation in each of the populations were typically not 
equal. In Figure 7c, we specifically tested two hypotheses:

1.  The IT and V4 population performance gap is smaller at low amounts of 
rotational variation (left-hand ends of axes) that high amounts of varia-
tion (right-hand end). We also made similar comparisons for the model 
Layer 3 and Layer 6 performances. This hypothesis was shown to be 
statistically significant, both for neuronal data and models, at 0.005 levels 
for 13 out of 16 tasks and at 0.05 for the remaining 3.

2.  There are tasks for which the V4 population performance at low  
variation levels is greater than the IT population performance level. 
We found several tasks for which this hypothesis is true (for example,  
subordinate identification) at a confidence level of p < 0.001. However, 
because testing this hypothesis involves multiple comparisons — one 
for each task — we must use a correction to achieve a meaningful  
statistical result. Using m = 16 in the Bonferroni correction, we find  
that the hypothesis that there is at least one such task is significant at 
the P = 0.05 level. 

•  In Figure 4c, we used a 1-way ANOVA to determine that the human con-
sistencies of the IT, V4, V1-like and pixel were different, finding that the 
populations were different at a p-value of less than 10−5, with F-value of 
164.52. We then used standard t-tests to determine the statistical significance 
of the differences between each population in the human average (note that 
the value with respect to which these differences were computed was not 0, 
but rather the dotted lines in the relevant panels of Fig. 4c).

No statistical methods were used to pre-determine the size of our neural  
sample, but our sample sizes are similar to those reported in previous  
publications8–10. Whenever parametric studies were deployed, we assumed 
that distributions were normal, but this was not formally tested. As this study 
did not test the effect of a treatment condition, no blinding techniques were 
deemed applicable, and no such techniques were employed. Information  
on randomization in selection of units is discussed above in section entitled 
“Array Electrophysiology”.

computational modeling. Computational modeling was done using convolu-
tional neural networks, as in previous work30. HCNNs are multi-layer neural net-
works35. HCNNs approximate the general retinotopic organization of the ventral 
stream via spatial convolution, with computations in any one region of the visual 
field identical to those elsewhere. Each convolutional layer is composed of simple 
and neurally plausible basic operations, including linear filtering, thresholding, 
pooling and normalization. These layers are stacked hierarchically to construct 
deep neural networks.
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Basic definitions. Formally, an image-like array is a three-dimensional dimen-
sional floating-point array whose shape is (s, s, nc), where s is the image size and 
nc is the number of channels in the image. Let’s begin by defining three basic 
operations on image-like arrays:

•  Filter: this is a convolutional filterbank operation35, which applies the same 
filter block equally to every point in an image-like array. It’s parameters 
include:

•  The number of filters nf. This is a positive integer.
•  The size of the filter kernel fs, in pixels. This is an odd integer.
•  The stride of the convolution, sf. This is a positive integer.
•  The specific filter values, denoted F, a floating-point matrix of shape (nc, fs, 

fs, nf), where nc is the number of channels in the input.
•  A bias vector b, of length nf.

For any image-like array X of shape (s, s, nc) the output of FilterF on X is the 
image-like array Y of shape ( , , )s s s s nff f   where 

Y i j k b k
fs

F k N X s i s jfs f f( , , ) [ ] [:,:,:, ] ( , , )= + ⊗ ⋅ ⋅∑1
2

where  is pointwise array multiplication, i j s s f, [ , , ]∈ …1  , k nf∈ …[ , , ]1 ,  
and N X i jfs( , , ) denotes the square neighborhood of diameter fs at location i, j 
in X. The convolution is done with “same” mode, meaning that at the edges the 
image is padding with 0s to produce an output of the same shape as the input

•  Thres is a rectified linear clipping operation. Its parameters are:
•  The value of the upper clipping threshold, tmax, which can be any floating 

value.
•  The value of the lower clipping threshold, tmin, which can be any floating 

value less than ti
max .

By definition, 

Thres( ) ( ( , ), )X max min X t tmax min=

•  Pool is a local pooling operation that aggregates values of the input, within 
each channel. Its parameters are as follows: 

•  The size of the pooling kernel, ps. This is an odd integer.
•  The pooling order po. This is 1, an even integer, or .
•  The pooling stride sp. This is a positive integer.

By definition, for any image-like array X of shape (s, s, nc), the output of Pool on 
X is the image-like array Y of shape ( , , )s s s s ncp p   where 

Y i j k
ps

N X s i s j kps
po

p p

po
( , , ) ( , , )[:,:, ]= ⋅ ⋅( )





∑1

2

1

where i j s s f, [ , , ]∈ …1  , k nc∈ …[ , , ]1 , and N X i jps( , , ) is the square neighbor-
hood of diameter ps in X at location i, j. Notice that when po = 1, this is simple 
local averaging, and when po = , this is max-pooling.

A convolutional layer is a composition of these three basic operations; that is, 
a function of the form 

F P T F P T F( , , )q q q q q q=Pool Thres Filter 

where (θp, θT, θF) are choice of parameters for the three basic operations. A hier-
archical convolutional neural network (HCNN) is a composition of convolutional 
layers, for example, 

F = …−F F FL L  1 1

The only two restriction that are required for composition to make sense are: 
(1) that the number of channels in layer i is equal to the number of filters in layer 
i − 1, that is nci = nfi−1 and (2) that the spatial size si of the image-like arrays is 
1 or greater at every stage. If the spatial size becomes 1, then only thresholding  

or filtering operations with filter size 1 can be applied from then onwards.  
When this occurs, we say that the network is “fully connected” at that layer  
(and from then on).

In our case, the input image-like arrays are RGB images, so that the number 
of channels in in the first layer is 3, one for each color channel. (When applied to 
grayscale images we simply copy the grayscale values into the three channels).

network selection. We divide the parameters that specify the layers of an HCNN 
into two classes, selected in two phases:

Screening. In which all the parameters except the filterblock and bias values 
where chosen. These parameters, which we refer to as the “architectural param-
eters”, include the number of network layers, and at each layer, the number of 
tilers, the sizes of the filter and pooling kernels, and the pooling order.

Training. In which, once the non-filter parameters are fixed, the filter-values 
and bias vectors for each layer are determined via error backpropagation.

details of error backpropagation. For any given setting of architectural param-
eters, we used a standard neural network backpropagation algorithm60 to set filter 
filters for the parameters. The training set that we used was the 2013 ImageNet 
Challenge set36, which contains approximately 1.3 million images in 1000 natural 
categories. We filtered out any categories that were animals, boats, cars, chairs, 
fruits, planes or tables from this set (some of these categories do not appear 
anywhere in the ImageNet challenge set to begin with), retaining 799 catego-
ries containing a total of approximately 1 million images. Actual training was 
performed on a subset of approximately 950,000 images, while the remaining 
images were used as a validation subset to monitor performance during training. 
Supplementary Figure 7d shows the percent-incorrect error rate during training, 
both for the actual trained subset and for the held-out validation set. Performance 
on the training subset was computed once every 256 images, and averaged on a 
running bases of 50 256-image batches (black line in panel d); performance on 
the validation subset was computed at the end of each 50-batch set, with no run-
ning average taken (gray line in panel d). Because the validation performance was 
computed at the end of a set of batches over which the training performance was 
averaged, the validation error rate is typically slightly lower (better performance) 
than its corresponding training time point as plotted in Supplementary Fig. 7d).  
Because we did not observe significant overfitting (which would have been indi-
cated by the training curve in Supplementary Fig. 7d rising significantly above 
the validation curve), we stopped the training process when performance on 
the training subset appeared to stop decreasing. The significant error-rate drop 
at approximately 3 × 107 images seen in Supplementary Figure 7d is due to a 
lowering of the learning rates at each model layer by a factor of 10.

details of screening. We used high-throughput screening techniques30,61 
to select the architectural parameters. In this process, we randomly selected  
50 draws of the number of layers and within-layer architecture parameters from 
a parameter space (see below), ran error backpropagation on the network with 
those parameters for 5 epochs of ImageNet, and then recorded the final train-
ing error. We then used Tree Parzen Estimation in the Hyperopt parameter  
optimization framework61 to further select 150 additional architectural  
parameters, and again, ran backpropagation on these networks. After having 
run 200 networks, we selected the best such network and subjected it to further 
error backpropagation for 40 epochs. This optimal model had 6 layers. At every 
epoch of ImageNet training, we saved out checkpoints containing the filter and 
bias parameters.

The parameter space that we tested was defined by the following bounds:

•  Number of layers ranged in [4, 5, 6].
•  Filter sizes ranged in [3, 5, 7, 9].
•  Pooling kernel sizes ranged in [3, 5, 7, 9].
•  Pooling order ranged in [1, 2, 3, 4, 5, ].
•  Upper clipping thresholds ranged in [1, ] and lower clipping thresholds 

ranged in [1, −].

The remainder of the parameters were set to the following fixed values: number 
of filters at layer 1 was 96, at layer 2 was 256, at layer 3 was 512, and then at 256 
for subsequent layers; strides at layer 1 was 1, at layer 2 was 2, at layer 3 was 2, 
and at 1 in subsequent layers.
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evaluation on the testing set. The model that achieved the best performance 
on the training set was selected for evaluation on the testing image set discussed 
earlier in the section on “Stimulus Set and Visual Task Battery” (that is, the images 
on which we measured neural data and human performance). For each of the 
40 checkpoints saved during model training (see above), and each layer of the 
network, we extracted features for all the testing images. This lead to six timeseries 
of length 40, each point of which is a (5760, nfi) matrix, where nfi is the number 
of features at layer i. We then computed performance on each tasks on which we 
had earlier computed neural performance, for each layer and time point. That is, 
we build linear decoders for each of the testing tasks on top of the features from 
each layer — effectively equivalent to training a new fully-connected layer (with 
no nonlinearity) on top of the fixed nonlinear features up to each layer. For each 
model layer and each time point, we also computer the layer’s ability to fit V4 and 
IT neural data, using procedures identical to those in ref. 30.

We also evaluated the computational model on the spectrum of rotation-lim-
ited stimulus sets Imagesφ , again using the same procedures as on the whole set. 
See Figure 7c showing the results for three model layers (Layer 1, Layer 3 and 
Layer 6), for four selected tasks. In addition, we evaluated the computational 
model on the simple grating stimuli (Fig. 7b). We found similar patterns to the 
neural data for these simpler tasks (Fig. 7a), with lower layers having more lin-
early-accessible information than higher layers.

Alternative computational model with lower-variation training. Both our 
empirical and computational results suggest that the amount of variation in the 
stimulus set, rather than the specific task, is a key determinant of the pattern of 
information through the levels of the ventral stream. However, our results only 
address the visual system in a “fixed” adult state, being presented with stimulus 
sets containing various levels of variation. A key question is whether high vari-
ation levels are themselves necessary for the proper development of the ventral 
stream, or whether the empirically observed pattern of information across areas 
would emerge from any hierarchical neural processing system. While we cannot 
conclusively answer this question with our existing data, we investigated this 
question computationally by training an alternative model using the same net-
work architecture as our original model, but replacing the original high-variation 
(photographic) training set with a data set containing less object view parameter 
variation. Specifically, we created a synthetic training data set containing images 
of 1,105 three-dimensional objects in 77 categories, again containing no overlap 
with the categories of the high-variation test image set. Objects in this alterna-
tive training set varied in position, size, and in-plane pose, but did not vary in 
out-of-plane pose angles, and were presented on uniform gray backgrounds.  
We then trained a model on this data set to predict the category of the object  
(a 77-way categorization task; see Supplementary Fig. 13a). This trained model 

was then evaluated on the high-variation testing image set discussed in Figures 3  
and 6. Although this model did achieve a significant level of generalization of 
categorization performance to the testing image set (Supplementary Fig. 13b), 
performance on non-categorization tasks was not strongly correlated with cat-
egorization performance in most model layers (Supplementary Fig. 13b,c). 
Moreover, performance did not typically monotonically increase through model 
layers (Supplementary Fig. 14), and the layers in which peak performance was 
achieved for one task did not always coincide with the peak-performance layer 
for other tasks.

These results suggest that the patterns of relative information seen in empiri-
cal neural data (for example, increasing information for all tasks) may depend 
critically on the fact that high levels of object view variation are present during 
development. They also serve as a kind of control for our computational mod-
eling effort more generally: it is not the case that any deep convolutional network 
trained to solve an arbitrary object categorization task will trivially exhibit the 
features of the ventral stream (for example, more information at each succeeding 
layer for each task) that are reproduced in our original high-variation-trained 
computational model.

A Supplementary methods checklist is available.
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