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Abstract

& A central question in behavioral science is how we select
among choice alternatives to obtain consistently the most
beneficial outcomes. Three variables are particularly important
when making a decision: the potential payoff, the probability
of success, and the cost in terms of time and effort. A key
brain region in decision making is the frontal cortex as damage
here impairs the ability to make optimal choices across a range
of decision types. We simultaneously recorded the activity of
multiple single neurons in the frontal cortex while subjects
made choices involving the three aforementioned decision

variables. This enabled us to contrast the relative contribution
of the anterior cingulate cortex (ACC), the orbito-frontal cor-
tex, and the lateral prefrontal cortex to the decision-making
process. Neurons in all three areas encoded value relating to
choices involving probability, payoff, or cost manipulations.
However, the most significant signals were in the ACC, where
neurons encoded multiplexed representations of the three
different decision variables. This supports the notion that the
ACC is an important component of the neural circuitry under-
lying optimal decision making. &

INTRODUCTION

A fundamental question in understanding the link be-
tween brain and behavior is how the brain computes the
best course of action among competing alternatives. In
particular, economists, psychologists, and behavioral
ecologists have emphasized the importance of three
decision variables in how humans and animals deter-
mine the value of a choice alternative (Kacelnik, 1997;
Stephens & Krebs, 1986; Kahneman & Tversky, 1979):
the ‘‘payoff’’ of a choice, the ‘‘probability’’ the choice
will yield a particular outcome, and the ‘‘cost’’ in time
and effort to obtain an outcome. The neuronal repre-
sentation of these individual decision variables might
be used to form a common neuronal currency which
can subsequently guide decision making (Montague &
Berns, 2002). Despite the growing interest in the neu-
ral correlates of decision making, it remains unclear
how these three decision variables are represented
and to what extent they are encoded by distinct neuro-
nal populations.

A logical place to search for the encoding of these
decision variables is the frontal lobe as damage within
this region often causes impairments in decision making
and goal-directed behavior. Three specific areas within
the frontal lobe are implicated: the orbito-frontal cortex
(OFC) (Fellows & Farah, 2007; Fellows, 2006; Izquierdo,
Suda, & Murray, 2004; Baxter, Parker, Lindner, Izquierdo, &

Murray, 2000; Bechara, Damasio, Damasio, & Anderson,
1994), the anterior cingulate cortex (ACC) (Amiez,
Joseph, & Procyk, 2006; Kennerley, Walton, Behrens,
Buckley, & Rushworth, 2006; Rudebeck, Buckley, Walton,
& Rushworth, 2006; Rudebeck, Walton, Smyth, Bannerman,
& Rushworth, 2006; Walton, Kennerley, Bannerman,
Phillips, & Rushworth, 2006; Williams, Bush, Rauch,
Cosgrove, & Eskandar, 2004; Hadland, Rushworth,
Gaffan, & Passingham, 2003; Shima & Tanji, 1998), and
the lateral prefrontal cortex (LPFC) (Miller & Cohen,
2001; Owen, 1997; Duncan, Emslie, Williams, Johnson,
& Freer, 1996; Shallice & Burgess, 1991). Neuronal
activity in these areas is often modulated by manipula-
tions that alter the value of a trial, including reward size
(Sallet et al., 2007; Amiez et al., 2006; Padoa-Schioppa &
Assad, 2006; Roesch, Taylor, & Schoenbaum, 2006;
Roesch & Olson, 2003, 2004; Wallis & Miller, 2003b;
Leon & Shadlen, 1999), taste (Padoa-Schioppa & Assad,
2006; Schoenbaum, Setlow, Saddoris, & Gallagher, 2003;
O’Doherty, Deichmann, Critchley, & Dolan, 2002; Hikosaka
& Watanabe, 2000; Tremblay & Schultz, 1999; Schoenbaum,
Chiba, & Gallagher, 1998; Watanabe, 1996), proximity to
reward delivery (Ichihara-Takeda & Funahashi, 2007;
Roesch et al., 2006; Roesch & Olson, 2005; McClure,
Laibson, Loewenstein, & Cohen, 2004), outcome likelihood
(Matsumoto, Matsumoto, Abe, & Tanaka, 2007; Sallet et al.,
2007; Amiez et al., 2006; Brown & Braver, 2005; Knutson,
Taylor, Kaufman, Peterson, & Glover, 2005), and even ab-
stract rewards such as beauty (Kawabata & Zeki, 2004)
and trust (King-Casas et al., 2005; Rilling et al., 2002).University of California at Berkeley
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Recent studies have shown that single neurons in the
ACC (Sallet et al., 2007; Amiez et al., 2006) and the OFC
(Padoa-Schioppa & Assad, 2006, 2008) can reflect the
integration of some of these variables to derive an ab-
stract value signal.

Manipulations of reward appear to have a widespread
effect on neural activity both within the frontal cortex as
well as many other regions of the brain (Shuler & Bear,
2006; McCoy & Platt, 2005; Dorris & Glimcher, 2004;
Sugrue, Corrado, & Newsome, 2004; Platt & Glimcher,
1999; Schoenbaum et al., 1998). These widespread
reward-related activations are unlikely to be redundant
signals, and so it is particularly important to understand
how they differ across areas. There is some evidence
that different decision variables may be represented by
distinct populations of neurons (Kobayashi et al., 2006;
Roesch et al., 2006; Rudebeck, Walton, et al., 2006;
Roesch & Olson, 2004). However, to date, no study
has recorded from all three of these frontal areas for
any one of these decision variables. Thus, one has to
infer specialization of function by comparing across
studies, potentially masking important differences be-
tween brain areas due to differences in subjects, behav-
ioral paradigms, analysis methods, and selectivity
criterion. In addition, many previous studies that exam-
ined value manipulations on frontal cortex activity did
not require the subject to choose between alternative
outcomes. Differences in frontal activity have been
noted when a choice is either required or not required
(Arana et al., 2003). Consequently, it is important to
assess the contribution of different frontal areas to
encoding different decision variables within the context
of choice behavior.

One way to address these issues is to record from
multiple brain regions simultaneously while subjects
perform decision-making tasks. This provides a way to
compare and contrast the functional contributions of
different areas for different functions while capitalizing
on the spatial and temporal resolution of single-unit
neurophysiology. We used this multi-site, multivariable
technique to examine how different frontal areas repre-
sent different aspects of decision value. We trained two
male rhesus macaques (Macaca mulatta) to make
choices between pictures associated with different val-
ues along three physically different decision dimensions
(‘‘payoff,’’ ‘‘probability,’’ and ‘‘cost’’) and recorded the
electrical activity of single neurons simultaneously from
the OFC, the ACC, and the LPFC while the subjects made
their choices. We sought to determine whether there
was evidence for distinct populations of neurons within
or between areas that encoded the different decision
variables. One possible distinction is that the OFC is
more important for encoding the reward outcome,
whereas the ACC and/or the LPFC encodes the costs in-
volved in obtaining that reward (Rushworth & Behrens,
2008; Lee, Rushworth, Walton, Watanabe, & Sakagami,
2007; Wallis, 2007). This is consistent with the fact that

the ACC and the LPFC have stronger connections with
motor areas than the OFC, whereas the OFC has stron-
ger connections with the olfactory and gustatory cortex
(Petrides & Pandya, 1999; Carmichael & Price, 1995;
Dum & Strick, 1993). An alternative possibility is that
neurons throughout the frontal cortex will encode value
irrespective of the decision variable, consistent with re-
cent accounts of abstract value signals in the OFC and
the ACC (Padoa-Schioppa & Assad, 2006, 2008; Sallet
et al., 2007; Amiez et al., 2006).

METHODS

Subjects and Neurophysiological Procedures

The subjects, two male rhesus macaques (Macaca mulatta),
were 5 to 6 years of age and weighed 8 to 11 kg at
the time of recording. We regulated their daily fluid
intake to maintain motivation on the task. Our meth-
ods for neurophysiological recording are reported in
detail elsewhere (Wallis & Miller, 2003a). Briefly, we im-
planted both subjects with a head positioner for re-
straint, and two recording chambers, the positions of
which were determined using a 1.5-T magnetic reso-
nance imaging (MRI) scanner. We recorded simulta-
neously from the ACC, the LPFC, and the OFC using
arrays of 10 to 24 tungsten microelectrodes (FHC In-
struments, Bowdoin, ME). In Subject A, we recorded
from the LPFC and the OFC in the left hemisphere and
the ACC, the OFC, and the LPFC from the right
hemisphere. In Subject B, we recorded from the ACC
and the LPFC in the left hemisphere and from the OFC
and the LPFC in the right hemisphere. We determined
the approximate distance to lower the electrodes from
the MRI images and advanced the electrodes using
custom-built, manual microdrives. We randomly sam-
pled neurons; no attempt was made to select neurons
based on responsiveness. This procedure ensured an
unbiased estimate of neuronal activity, thereby allowing
a fair comparison of neuronal properties between the
different brain regions. Waveforms were digitized and
analyzed off-line (Plexon Instruments, Dallas, TX). All
procedures were in accord with the National Institutes
of Health guidelines and the recommendations of the
U.C. Berkeley Animal Care and Use Committee.

We reconstructed our recording locations by measur-
ing the position of the recording chambers using ste-
reotactic methods. These were then plotted onto the
MRI sections using commercial graphics software (Adobe
Illustrator, San Jose, CA). We confirmed the correspon-
dence between the MRI sections and our recording
chambers by mapping the position of sulci and gray
and white matter boundaries using neurophysiological
recordings. The distance of each recording location
along the cortical surface from the lip of the ventral
bank of the principal sulcus was then traced and mea-
sured. The positions of the other sulci, relative to the
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principal sulcus, were also measured in this way, allowing
the construction of the unfolded cortical maps shown in
Figure 6.

Behavioral Task

We used NIMH Cortex (www.cortex.salk.edu) to control
the presentation of stimuli and task contingencies. We
monitored eye position with an infrared system (ISCAN,
Burlington, MA). Each trial began with the subject
fixating a central square cue 0.38 in width (Figure 1A).
If the subject maintained fixation within 1.88 of the cue
for 1000 msec (fixation epoch), two pictures (2.58 in
size) appeared at 5.08 to the left and right of fixation.
Each picture was associated with either: (i) a specific
number of lever presses required to obtain a juice
reward with the probability and magnitude of reward
held constant (cost trials), (ii) a specific amount of juice
with probability and cost held constant (payoff trials),
(iii) a specific probability of obtaining a juice reward with
cost and payoff held constant (probability trials). After
1500 msec, the fixation cue changed color, indicating
that the subject was free to indicate its choice. Thus, on
any given trial, choice value was manipulated along a

single decision variable. Choice value in this context re-
fers to the value of the pair of stimuli available for choice
on each particular trial. Although the definition of value
is fraught with difficulty, we use it here purely in an op-
erational sense to refer to a manipulation which caused
our subjects to favor one choice alternative over another.

We used five different picture values for each decision
variable and the two presented pictures were always
adjacent in value (Figure 1B). Thus, each picture set
involved four distinct choice values. This ensured that,
aside from the pictures associated with the most or least
valuable outcome, subjects chose or did not choose the
pictures equally often. For example, a subject would
choose Picture C (Figure 1B) on half of the trials (when
it appeared with Picture B) and not choose it on the
other half of the trials (when it appeared with Picture D).
Thus, frequency with which a picture was selected could
not account for differences in neuronal activity across
decision value. Moreover, by only presenting adjacent
valued pictures, we were able to control for the differ-
ence in value for each of the choices and, therefore,
the conflict or difficulty in making the choice. We used
two sets of pictures for each decision variable to ensure
that neuronal responses were not driven by the visual

Figure 1. (A) Sequence of
events in the behavioral task.

Each trial began with the

monkey fixating a central cue

for 1000 msec (fixation epoch),
after which two pictures

appeared either side of

fixation. After 1500 msec, the

fixation cue changed color,
indicating that the subject was

free to saccade (Subject B) or

move a joystick (Subject A) to
indicate its choice (choice

epoch). (B) The pictures

and outcomes used for

Subject B. We used the same
outcomes, but different

pictures for Subject A. (C)

Magnetic resonance scan of a

coronal slice through the
frontal lobe of Subject B.

Shaded regions denote the

boundaries of the three frontal

areas investigated. White lines
depict potential electrode

paths. The coronal slice is at

the approximate center
position of the recording

chambers along the anterior–

posterior axis. (D) Schematic

showing the boundaries of the
frontal areas from which we

recorded on ventral, medial,

and lateral views of the

macaque brain. Dashed line
depicts unfolded cingulate

sulcus.
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properties of the pictures. We presented trials at random
from a pool of 48 conditions: three decision variables,
two picture sets, two responses (left/right), and four
decision values. Subjects worked for �600 trials per day.
We defined correct choices as choosing the outcome
associated with the largest amount of juice, most prob-
able juice delivery, and least amount of cost. We never
punished the animal for choosing a less valuable out-
come, for example, by using ‘‘timeouts’’ or correction
procedures. Nevertheless, the subjects rapidly learned
to choose the more valuable outcomes consistently,
typically taking just one or two sessions to learn a set
of five picture–value associations during initial behav-
ioral training. Once each subject had learned several
picture sets for each decision variable, behavioral train-
ing was completed and two picture sets for each deci-
sion variable were chosen for each subject. Only these
six picture sets for each subject were used during all
recording sessions.

Subject B was required to maintain fixation within 1.88
of the central point throughout the 1000-msec fixation
epoch and 1500-msec choice epoch, and indicated his
final choice with an eye movement. Failure to maintain
fixation resulted in a 5-sec timeout and repetition of the
trial. Subject A had great difficulty not looking at the
peripheral pictures and maintaining fixation. We decided
to require him to fixate within 1.88 of the central point
for the 1000-msec fixation epoch, but when the pictures
appeared on the screen, he was free to look at them
without penalty. This enabled us to analyze his eye
movements during the choice epoch, which could pro-
vide us with some indication as to the processes under-
lying his choice. He subsequently indicated his choice by
moving a joystick with an arm movement. We tailored
the precise reward amounts to each subject to ensure
that they received their daily f luid aliquot over the
course of the recording session and to ensure that they
were sufficiently motivated to perform the task. In both
subjects, probability trials delivered 0.45 ml of juice,
whereas cost trials yielded 0.525 ml for Subject A and
0.55 ml for Subject B. Payoff trials yielded the amounts
indicated in Figure 1B.

Data Analysis

We excluded trials in which a break fixation occurred
and the repetition of the trial that followed such a break
(19% of trials—Subject B only) and trials where the
subject chose the less valuable outcome (<2% trials in
both subjects). We constructed spike density histograms
by averaging activity across the appropriate conditions
using a sliding window of 100 msec. To calculate neu-
ronal selectivity related to encoding the choice’s value,
we fit a linear regression to the neuron’s firing rate
observed during a 200-msec time window and the
choice’s value (1 through 4; see Figure 1B). We used
this to determine the percentage of the total variance in

the neuronal activity that the choice’s value explained
(PEV or percentage of explained variance). This measure
enabled us to determine the selectivity of the neuron in
a way that was independent of the absolute neuronal
firing rate. This is useful when comparing neuronal
populations that can differ in the baseline and dynamic
range of their firing rates. We calculated PEVValue for the
first 200 msec of the fixation period and then shifted
this 200-msec window in 10-msec steps until we had
analyzed the entire trial and calculated the PEVValue for
each time point. We then used this analysis to deter-
mine the latency at which neurons exhibited selectivity.
We defined a neuron as encoding the value of a choice
for a given decision variable if the sliding regression ana-
lysis reached a significance level of p < .001 for three
consecutive sliding time bins. We chose this criterion to
produce acceptable type I error levels. We quantified
this by examining how many neurons reached our
criterion during the fixation period (when the subject
does not know which choice will occur, and so the
number of neurons reaching criterion should not exceed
chance levels). Our threshold yielded 0.8% of the neu-
rons reaching criterion during the fixation period for
probability decisions, 0.7% for payoff decisions, and
0.8% for effort decisions. There were no neurons that
reached criterion for more than one decision variable.
Thus, our type I error for this analysis was acceptable:
Crossings of our criterion by chance typically occurred
less than 1% of the time for a 1000-msec epoch.

We used a similar method to analyze the encoding of
the motor response. We examined the extent to which
neurons encoded this factor by comparing neuronal
activity on trials where the more valuable picture (and
consequently, the subject’s response) was on either the
left or right side of the screen using a one-way ANOVA.
From this, we calculated the percentage of variance in
the neuronal firing rate attributable to the motor re-
sponse (PEVResponse). We did this for 200-msec windows
of activity shifted in 10-msec steps until the entire trial
had been analyzed, and then determined the latency at
which neurons exhibited selectivity using the criterion of
three consecutive time bins with p < .001.

The present analyses focus on neuronal activity during
the choice epoch. We also recorded neuronal activity
during the outcome of the choice, which we will de-
scribe in a subsequent report.

RESULTS

Subjects performed the task near ceiling, choosing the
more valuable picture on more than 98% of the trials
(Figure 2A and B). The value of the choices systemati-
cally affected both subjects’ reaction times although in
opposite directions. As value increased, Subject A’s reac-
tion times generally decreased whereas Subject B’s in-
creased. A more detailed analysis using a two-way ANOVA
with the factors of choice (four different choices) and
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decision (probability, payoff, and cost) revealed a signifi-
cant interaction for both subjects [Subject A: F(6, 276) =
2.5, p < .05; Subject B: F(6, 408) = 15.6, p < 1 � 10�15].
An analysis of the simple effects showed that Subject A’s
reaction times decreased linearly as value increased for
probability [F(3, 276) = 11.8, p < 1 � 10�15] and payoff
[F(3, 276) = 4.6, p < .01] decisions, but not for cost
decisions [F(3, 276) = 0.1, p > .1]. In contrast, for Sub-
ject B, reaction times increased linearly with value for
probability [F(3, 408) = 6.7, p < .001] and payoff deci-
sions [F(3, 408) = 7.6, p < 1 � 10�15] and nonlinearly
for cost decisions [F(3, 408) = 39.6, p < 1 � 10�15].
Thus, although decision value was manipulated objec-
tively, behavioral evidence suggests this manipulation
had a significant effect on how the subjects subjectively
valued each condition.

Encoding of Decision Variables during
Choice Evaluation

We recorded the activity of 610 neurons from the frontal
lobe. There were 257 neurons from the LPFC defined as
areas 9, 46, 45, and 47/12l (113 from Subject A and 144
from Subject B). There were 140 neurons from the OFC
defined as areas 11, 13, and 47/12o (58 from Subject A
and 82 from Subject B). Finally, 213 neurons were in the
ACC, within area 24c in the dorsal bank of the cingulate
sulcus (70 from Subject A and 143 from Subject B). For
many neurons, the activity during the choice epoch
(1500-msec period between picture onset and go cue)
reflected the value of the available options.

The neuron in Figure 3A encodes the value of the
choice for a single decision variable. It shows an increase
in firing rate as the probability of the reward decreases,
but does not modulate its firing rate for choices where we
manipulate payoff or cost. Other neurons showed more
complex encoding, modulating their firing rate to com-
binations of two or more decision variables. For example,
the neuron in Figure 3B shows an increase in firing rate
as value decreases for manipulations of either payoff or
cost but shows no change in its response when we ma-
nipulate the value of the probability decisions. Figure 3C
illustrates a neuron that shows an increase in firing rate as
value decreases for manipulations of probability and
payoff but not cost. The neuron in Figure 3D illustrates
a neuron that increases its firing rate as the value of the
choice increases for all three decision variables. None of
the four neurons in Figure 3 are modulated by the up-
coming motor response or the picture sets that we used.

To quantify and compare the strength and time
course of the encoding of the choice’s value across the
different neuronal populations, we performed a sliding
linear regression analysis (see Methods). Figure 3 shows
that there is good correspondence between this mea-
sure and the selectivity evident in the spike density
histograms. Figure 4 illustrates the time course of en-
coding the choice’s value for all neurons in each brain
area and for each decision variable. The most prevalent
selectivity was in the ACC, where 84% of the neurons
reached criterion for encoding value for at least one
of the decision variables, followed by the OFC (56%)
and the LPFC (49%). There was no difference in these

Figure 2. (A, B) Both subjects

performed the task near

ceiling, choosing the more

valuable picture on more
than 98% of the trials. (C, D)

The value of the choices

systematically affected both
subjects’ reaction times

although in opposite

directions. As value

increased, Subject A’s
reaction times generally

decreased, whereas

Subject B’s increased.
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proportions between the subjects for the ACC and the
LPFC, but in the OFC, selectivity was weaker in Subject B
(46%) than in Subject A [71%, x2 = 7.2, p < .01]. To
determine the strength of selectivity, for every neuron
that exceeded our criterion value, we determined the
peak selectivity reached during the choice epoch (Fig-
ure 5A). In both subjects, the ACC exhibited the stron-
gest selectivity, followed by the OFC and then the LPFC.
We compared these values using a two-way ANOVA
with the factors of decision and area. There was a very

significant main effect of area [F(2, 681) = 42.9, p < 1 �
10�16], with no significant effect of decision and no in-
teraction. Subsequent post hoc analysis using a Tukey–
Kramer test confirmed that the values for every brain
area were significantly different from one another ( p <
.01), with the ACC showing stronger peak selectivity
than the OFC and the LPFC, and the OFC showing
stronger peak selectivity than the LPFC.

We classified each neuron according to whether it
reached criterion for each decision variable. We saw many

Figure 3. (A) An ACC neuron that increases its firing rate as choice values decrease for probability decisions only. The top three rows of

panels display spike density histograms illustrating the mean firing rate of the neuron on trials sorted according to choice value, direction of

the behavioral response, and picture set, respectively. Each column illustrates the neuron’s response to each of the decision variables. The

lowest row of panels quantifies the strength of encoding of the choice’s value by calculating the percentage of explained variance based on
the results of a sliding linear regression analysis (see Methods). Significant time bins are colored red. (B) An ACC neuron that encodes the

choice values for payoff and cost decisions. (C) An ACC neuron that encodes the choice values for probability and payoff. (D) An ACC neuron

that encodes the value of the choices for all three decision variables.

FPO
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Figure 4. The time course of selectivity for encoding a choice’s value across the entire population of neurons from which we recorded,

sorted according to the area from which we recorded and the decision variable that was manipulated. On each plot, each horizontal line

indicates the data from a single neuron, and the color code illustrates how the PEVValue changes across the course of the trial. We have sorted

the neurons vertically according to the latency at which their selectivity exceeds criterion. The dark area at the top of each plot consists of
neurons that did not reach the criterion during the choice epoch.
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different types of encoding, representing every decision
variable and every combination of decision variables.
These different types of encoding were present in all
three of the frontal lobe areas from which we recorded
(Figure 5B). We grouped the different types of encoding
according to how many variables were encoded (Fig-
ure 5C). In both subjects, LPFC neurons frequently
encoded single decision variables, but showed little
evidence of encoding multiple decision variables. In
contrast, ACC neurons frequently encoded multiple
decision variables. The data from the OFC showed
variation between the two subjects, with less encoding
of multiple variables occurring in the OFC of Subject B.
Nevertheless, even in Subject B, 12% of OFC neurons
encoded all three decision variables. For the majority of
neurons, the relationship between firing rate and value
was consistent across decision variables. For example, if
a neuron showed a positive relationship between its
firing rate and the value of a choice for one decision
variable, it would show a similar positive relationship for
other decision variables. There were exceptions but they
constituted a minority (10.0% of all neurons). Figure 5B
and C shows that there was an approximately equal
number of neurons that increased their firing rate as the
value increased (49%) compared with the number of
neurons that increased their firing rate as the value
decreased (51%).

A plausible mechanism by which these different value
signals might arise is that neurons that integrate value
for multiple decision variables do so by receiving in-
formation from neurons tuned to single decision vari-
ables. If this were the case, one might expect neurons

that encode value for a single decision variable to do
so earlier than neurons that encode value for two or
more decision variables. To examine whether this was
the case, we focused on the ACC because this region
contained sufficient neurons that encoded one, two, or
three decision variables to permit a meaningful anal-
ysis in both subjects. We compared the latencies at
which neurons reached our criterion for encoding the
value of the choice using a one-way ANOVA grouping
the neurons according to the number of decision vari-
ables for which the neuron encoded value [there was
a significant effect, F(2, 175) = 14.5, p < .00001]. A
post hoc Tukey–Kramer test revealed that this was due
to significantly longer latencies for encoding one deci-
sion variable (645 ± 48 msec) compared to two (460 ±
31 msec) and three decision variables (381 ± 21 msec).
The latter two groups did not significantly differ from
one another. The same pattern of significant results was
evident if we analyzed the data from each subject
separately. In sum, there was no evidence that neurons
that encoded all three decision variables did so by
integrating information from neurons that encoded a
single decision variable.

There was no evidence that neurons encoding a
particular decision variable(s) were clustered within a
brain area (Figure 6). However, in Subject A, we extend-
ed our recording area posteriorly toward the cingulate
motor areas and recorded the activity of 31 neurons. In
this region, many neurons encoded the value of the
choice, but tended to do so for only a single decision
variable (12/31 or 38%; Figure 6). Only 2/31 neurons
(6%) encoded value for two decision variables, and there

Figure 5. (A) The mean (± standard error) of the peak selectivity reached during the choice epoch for every neuron that reached criterion.
(B) Percentage of all neurons that encode the value of the choice depending on which decision variable was being manipulated. The light

shading indicates the proportion of neurons that increased their firing rate as value increased, whereas the dark shading indicates those that

increased their firing rate as value decreased. (C) Percentage of neurons that encode value across one, two, or three decision variables.
Asterisks indicate the proportions that are significantly different from one another (x2 test, p < .05).
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were none that encoded value for all three variables.
Thus, within the dorsal bank of the cingulate sulcus, the
encoding of value across multiple decision variables
appears to be a process that is confined to the anterior
portion of the ACC.

Action Selection

Once the subject has determined the value of the choice
alternatives, they must then select the appropriate mo-

tor response. We calculated the percentage of explained
variance in the neuronal firing rate attributable to the
motor response (selection of the left or right picture)
across the course of the trial (see Methods). For each
brain area, we determined the total number of neurons
that reached criterion for encoding the motor response
for any of the three decisions. The proportion of motor-
selective neurons in the ACC (50%) and the LPFC (43%)
did not significantly differ (x2 = 2.0, p > .1). However,
the proportion in the OFC (30%) was significantly smaller

Figure 6. Locations of all recorded neurons (open circles) and neurons selective for the different decision variables (filled circles) in (A) Subject A

and (B) Subject B. Location of neurons selective for different numbers of decision variables in (C) Subject A and (D) Subject B. Red circles

indicate the main dataset, whereas blue circles indicate the neurons recorded from the more posterior extent of the ACC. The size of the circles
indicates the number of neurons at that location. We measured the anterior–posterior (AP) position from the interaural line (x-axis), and the

lateral–medial position relative to the lip of the ventral bank of the principal sulcus (0 point on y-axis). The y-axis runs from ventral to dorsal

locations for ACC and LPFC data, and from medial to lateral locations for the OFC data. Gray shading indicates unfolded sulci. See Methods

for details regarding the reconstruction of the recording locations. AC = anterior cingulate sulcus; SA = superior arcuate sulcus; IA = inferior
arcuate sulcus; P = principal sulcus; LO = lateral orbital sulcus; MO = medial orbital sulcus.
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than in either the ACC (x2 = 13.6, p < .001) or the LPFC
(x2 = 6.4, p < .05). Motor-selective neurons were also
more prevalent in Subject A (67%) who indicated his
response with an arm movement, than in Subject B
(27%, x

2 = 97, p < 1 � 10�15) who indicated his
response with an eye movement. Previous studies with-
in the ACC have tended to observe more response
encoding when arm movements were used (Matsumoto,
Suzuki, & Tanaka, 2003; Shima & Tanji, 1998) rather
than eye movements (Seo & Lee, 2007; Ito, Stuphorn,
Brown, & Schall, 2003). Future experiments will examine
whether these differences depend on the effector or
reflect individual differences.

We compared the latency at which neurons encoded
the value of the choice with the latency that they
encoded the motor response using a three-way ANOVA
performed separately for each subject’s data (Figure 7).
The factors were encoding (whether the latency was to
encode value or motor information), area (LPFC, OFC,
and ACC), and decision (probability, payoff, and cost).
For Subject A, there was a significant effect of encod-
ing [F(1, 601) = 21.1, p < .00001]. Neurons encoded
value information with a mean latency of 529 msec
(±20 msec), whereas they encoded response informa-
tion with a mean latency of 644 msec (±19 msec). For
Subject B, there was a highly significant effect of encod-
ing [F(1, 525) = 43.7, p < 1 � 10�9]. Neurons encoded
value information with a mean latency of 448 ± 15 msec,
whereas they encoded response information with a
mean latency of 729 ± 31 msec. There was also a
significant effect of area [F(2, 525) = 8.7, p < .001]. ACC
neurons encoded both value and motor information
significantly more quickly than LPFC neurons (Tukey–
Kramer test, p < .01), whereas OFC neurons did not
significantly differ from either area.

In summary, these results show that neurons encoded
response information later in the trial than value infor-
mation consistent with the notion that the subject has
to calculate the value of the choice alternatives before
that information can be used to select the appropriate
response. However, no other main effects or interac-
tions were significant at p < .01 in either subject. Thus,
there was no evidence that a specific area encoded value
or motor information for a specific decision variable
before the other areas.

Other Types of Encoding

Our focus on the encoding of value and motor informa-
tion was based on the prominence of this selectivity in
the spike density histograms. However, to ensure that
we were not overlooking other kinds of neuronal encod-
ing, we performed a factorial analysis using a sliding
three-way ANOVA for each neuron and each decision
variable in turn. The factors were value (the four differ-
ent choice values), response (left or right), and picture
set (the two sets of pictures). Figure 8 shows, for each
time point, the proportion of neurons in the population
that significantly encoded a factor or interaction of fac-
tors. In every area and for every decision variable, the
most prevalent encoding was either the choice’s value or
the upcoming motor response, supporting our focus on
these two factors.

An advantage of using ANOVA to characterize neuro-
nal selectivity is that it makes no assumptions regarding
the precise relationship between the neuron’s firing rate
and the value of the choice. We capitalized on this to
examine whether a monotonic linear relationship best
described this relationship. For every time bin in the
sliding ANOVA analysis that showed a significant main

Figure 7. Comparison of
the mean latency (± standard

error) of all selective neurons

to reach the criterion for

selectivity for encoding of
the choice’s value and

the motor response, for

probability, payoff, and cost

decisions for Subject A (A–C)
and Subject B (D–F).

FPO
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Figure 8. The line plots indicate the percentage of all neurons according to the three-way ANOVA that encoded a given factor or interaction

of factors at each time point across the course of a trial for (A) Subject A and (B) Subject B. The checkerboard indicates the proportion of

different value-encoding schemes. Each row indicates a specific ordering of values, with the values arranged from left to right according to how
strongly the neuron fired. The intensity of shading indicates a specific value (with lowest to highest value shaded light to dark). The height of each

row indicates the percentage of neurons that encoded value with that particular ordering. The different orderings are arranged vertically in

decreasing prevalence. As an example, consider the encoding of value for probability decisions in ACC (A, top right). The most common ordering

(bottom row) is those neurons that fired least to the highest value (leftmost darkest shading) and then showed a progressive increase in firing as
value progressively decreased, with their highest firing rate occurring to the lowest value (rightmost lightest shading). The next most prevalent

ordering (row second from bottom) is those neurons that fired least to the lowest value and then showed a progressive increase in firing as

value progressively increased. We have color-coded the different orderings to highlight those of particular interest. The red shading indicates

the two orderings that correspond to monotonic encoding schemes, whereas the blue shading indicates the six orderings that correspond to
single transpositions from monotonic encoding. The gray-scale shadings ref lect the remaining 16 orderings that were neither monotonic nor a

single transposition from monotonic. The overall height of the checkerboard indicates the proportion of the neuronal population that encoded

value, whereas the absolute number of neurons that did so is printed atop the checkerboard.

FPO
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effect of value, we rank-ordered the choice values ac-
cording to the firing rate of the neuron. Then, for each
neuron and each decision variable, in turn, we deter-
mined the most frequent ordering over the course of
the trial (in 6% of the cases two or more orderings were
equally frequent, in which case we used the one that
occurred earliest in the trial). Figure 8 illustrates the
proportion of these different orderings via the checker-
board plots. Out of the 24 possible orderings, the two
most frequent were monotonically increasing and de-
creasing seen in approximately one third of neurons
(probability = 31%; payoff = 38%; cost = 33%). The six
orderings that corresponded to single transpositions
from monotonic accounted for activity in over one third
of neurons (probability = 35%; payoff = 34%; cost =
39%). The remaining 16 possible orderings were en-
coded by the remaining neurons (probability = 34%;
payoff = 28%; cost = 28%). We also performed a trend
analysis for every time bin in the sliding ANOVA analysis
that showed a significant main effect of value. In 68% of
cases, the variance in the data was fit by a linear function
with no residual variance left to explain. The addition of
a quadratic function significantly reduced the residual
variance in 2% of the remaining cases. In sum, for the
majority of neurons, the neuronal encoding of value was
best described as a linear monotonic function.

Finally, we examined whether other factors might be
capable of explaining value encoding. We repeated the
sliding regression analysis and determined the partial
correlation between neuronal activity and decision value,
with the subjects’ reaction times partialled out. For Sub-
ject A, who was allowed to move his eyes during the
choice epoch, we also partialled out saccadic reaction
times, number of saccades, and the total duration spent
looking at the chosen or not chosen picture. For both
subjects, there was little effect of these parameters on
value encoding. An average of 1% of the neurons that we
had previously classified as selective were now classed as
nonselective.

Value Transitivity

Although neuronal responses indicated that neurons
encoded the value of a choice pair relative to other
choice pairs, this was not required to solve the behav-
ioral task. Subjects could have performed the task op-
timally by considering each choice pair in isolation (‘‘if
given options A and B, choose B; if given options B and
C, choose C,’’ etc.). Such a strategy would have left them
unable to solve novel choice pairing, except through a
process of trial-and-error learning. We tested whether
this was the case, by presenting each subject with pairs
of pictures that were not adjacent in value, a pairing they
had never previously encountered. The only way to
perform optimally in a transitive inference test is to
use the picture–value associations to determine which
choice is optimal. Of the 36 novel picture pairings, both

subjects chose the more valuable picture every time on
the very first occasion of the transitive test. This behav-
ioral evidence is consistent with the neuronal data and
suggests that subjects did evaluate choice outcomes rel-
ative to other potential choices.

DISCUSSION

During the performance of a simple choice task, many
neurons throughout the frontal cortex encoded the
value of the choice. There was no evidence that specific
areas of the frontal cortex were specialized for process-
ing specific decision variables. There were neurons in all
three frontal areas that encoded value relating to deci-
sions involving probability, payoff, or cost manipula-
tions. However, there was a specialization of function
with relation to the number of decision variables en-
coded. Neurons that encoded a single decision variable
were equally prevalent throughout the frontal cortex,
whereas neurons that encoded two or more decision
variables were significantly more common in the ACC
and the OFC compared to the LPFC. Neurons that
encoded two decision variables are particularly interest-
ing. Had we only found neurons that encoded one
decision variable, we would not have evidence that
neurons encode value in at least a partially abstract
manner. Conversely, had we only found neurons that en-
coded value for all three decision variables, we could not
unconfound decision value from associated processes
that correlate with value, such as motivation, arousal,
and attention (Roesch & Olson, 2007; Maunsell, 2004).
The activity of neurons that encode one or two decision
variables cannot be related to motivation, attention, or
arousal because these associated cognitive processes
would correlate with value regardless of how it is ma-
nipulated. These neurons signal both the value of the
choice and the reason that the choice is valuable (i.e.,
which decision variable was manipulated).

Neurons typically encoded value as a linear mono-
tonic function. However, as the value of the choice
increased, an approximately equal number of neurons
increased their firing rate as decreased their firing rate.
The reason for this bidirectional information encoding
scheme is unknown, but is evident in multiple frontal
areas during perceptual and reward-related discrimina-
tions (Seo & Lee, 2007; Machens, Romo, & Brody, 2005).
One possibility is that these different encoding patterns
reflect different processes that guide choice, such as
encoding the value of the chosen or nonchosen alter-
native to bias the selection process. There was no spatial
organization evident in the distribution of such neurons:
We even recorded neurons with positive and negative
relationships between firing rate and decision value from
the same electrode position. These results have broad
implications for neuroscientific investigations of decision
making, as methodologies that average the neuronal
response across populations of neurons (e.g., functional
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magnetic resonance imaging and event-related poten-
tials) may not be sensitive to detect these value signals.
Summing together neurons with equally prevalent but
opposing encoding schemes would average out the
information we presently report (cf. Nakamura, Roesch,
& Olson, 2005).

Comparison of the Encoding of Decision Variables
across Frontal Areas

This is the first time that single-neuron activity has been
contrasted in the ACC, the LPFC, and the OFC in the
same study. We found the strongest and most complex
encoding of value information in the ACC. Eighty-four
percent of ACC neurons recorded decision value for at
least one decision variable and the encoding of choice
was consistently the strongest in this area. In addition,
significantly more ACC neurons encoded two or more
decision variables compared to the OFC and the LPFC.
Finally, we showed that the encoding of multiple deci-
sion variables was confined to the most anterior extent
of the ACC. As we moved posteriorly, there was a
marked drop off in such encoding, even though there
were still many neurons that would encode value for a
single decision variable. It is noteworthy that ACC con-
nections with PFC areas 9 and 46, the amygdala, and the
OFC tend to be strongest in more anterior regions of
the ACC and diminish in more posterior regions of the
ACC (Ongur & Price, 2000; Carmichael & Price, 1996;
Bates & Goldman-Rakic, 1993; Van Hoesen, Morecraft,
& Vogt, 1993; Amaral & Price, 1984). Our results are
consistent with the growing evidence emphasizing the
importance of the ACC in diverse aspects of decision
making (Behrens, Woolrich, Walton, & Rushworth, 2007;
Sallet et al., 2007; Seo & Lee, 2007; Amiez et al., 2006;
Kennerley et al., 2006; Walton et al., 2006).

The ACC has also been implicated in other cognitive
processes such as conflict monitoring (Botvinick, Braver,
Barch, Carter, & Cohen, 2001) and error detection (Niki
& Watanabe, 1979), and autonomic processes such as
arousal (Critchley et al., 2003). It is difficult to explain
our data in terms of these processes. First, we only
presented pairs of pictures that were adjacent in value.
This design equated the difference in value for all four
choices of a decision variable (Figure 1B), which con-
trolled for such potential confounds as response con-
flict, selection difficulty, and value difference across the
four choices within a decision variable. Moreover, if re-
action times are taken as a measure of selection difficulty
or monitoring of conf lict, there was no consistent
pattern for reaction times to increase as the value of a
choice increased (Figure 2). Second, subjects chose the
optimal picture on >98% of trials, suggesting that error-
related activity cannot account for our data. Although
activity in probability trials may reflect the detection of a
potentially nonrewarded response (Brown & Braver,
2005), ACC neurons were not specialized for encoding

probability information. Finally, as discussed above, al-
though explanations in terms of motivation or arousal
might account for neurons that encode value for all
three decision variables, one cannot apply such an expla-
nation to neurons that were finely tuned for encoding
value for just one or two decision variables. Moreover,
although response times were significantly modulated
by decision value, the partial correlation analysis indi-
cated they made little contribution to the neuronal en-
coding of decision value, suggesting that motivation and
motor preparation cannot account for our data. Thus,
the most parsimonious explanation is neurons in the
ACC are encoding the value of the choices, albeit with
varying degrees of dependence on the nature by which
value is manipulated.

Many studies have shown encoding of reward infor-
mation in the LPFC (Kobayashi et al., 2006; Roesch &
Olson, 2003; Wallis & Miller, 2003b; Leon & Shadlen,
1999; Watanabe, 1996). Likewise, in the current study,
approximately one third of the LPFC neurons encoded
the value of the choice. However, a key difference
between the selectivity in the LPFC and the ACC was
that neurons in the LPFC encoded value for just one
decision variable, and rarely encoded value information
for multiple decision variables. The LPFC may be re-
cruited in more dynamic contexts than the present task,
such as when optimal performance depends on tracking
the history of actions and outcomes (Seo, Barraclough,
& Lee, 2007; Barraclough, Conroy, & Lee, 2004).

Although the data from the OFC was more variable be-
tween the subjects, there were some consistent trends.
In terms of the strength of encoding, it was intermediate
between the LPFC and the ACC, and it was more likely
than the LPFC to encode value across multiple decision
variables. However, the encoding of multiple decision
variables within the OFC was more prevalent in Subject
A compared to Subject B. One obvious explanation is
that there might have been a discrepancy in our record-
ing locations between the two subjects. However, this
does not appear to have been the case. In both subjects,
we recorded from a wide expanse of the cortex between
the lateral and medial orbital sulci, encompassing areas
13l, 13m, 11l, and 11m (Carmichael & Price, 1994).
There was no evidence that neurons encoding multiple
decision variables were restricted to a particular location
within these areas (Figure 6C and D). An alternative
explanation is that the simplicity of our task allowed our
subjects to solve the task using different learning sys-
tems. Intuitively, one would predict that the subjects
observe the stimuli, recall the outcome associated with
those stimuli, and then determine the optimal response,
which would tax stimulus–outcome associations. How-
ever, it is also possible that through repeated experience
with the task, subjects would learn that given a specific
stimulus configuration (pair of pictures), a specific re-
sponse was optimal, which would tax stimulus–response
associations, rather than stimulus–outcome associations.
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Lesion evidence suggests that the OFC is more im-
portant for the encoding of stimulus–outcome associa-
tions than response–outcome associations (Ostlund &
Balleine, 2007), thus a difference in learning strategy
could conceivably produce a differential involvement of
the OFC in our task.

An important avenue of future research is to specify
precisely the contributions of the ACC and the OFC to
choice behavior. One possibility is that the OFC is
primarily involved in determining the affective value of
different reinforcers, whereas the ACC may be vital in
determining the value of different actions based on the
history of actions and outcomes. Several pieces of
evidence point to this distinction. The ACC strongly
connects with cingulate motor areas and limbic struc-
tures (Carmichael & Price, 1995; Dum & Strick, 1993),
placing it in a good anatomical position to use reward
information to guide action selection. The OFC differs
from the ACC in that it only weakly connects with motor
areas, but heavily connects with all sensory areas, in-
cluding visual, olfactory, and gustatory cortices (Kondo,
Saleem, & Price, 2005; Cavada, Company, Tejedor, Cruz-
Rizzolo, & Reinoso-Suarez, 2000; Carmichael & Price,
1995; Rolls, Yaxley, & Sienkiewicz, 1990). Studies that
manipulate gustatory rewards have consistently found
encoding of these rewards within the OFC (Padoa-
Schioppa & Assad, 2006; Tremblay & Schultz, 1999;
Watanabe, 1996; Rolls et al., 1990), but not necessarily
in ACC (Rolls, Inoue, & Browning, 2003). Moreover, OFC
activity is correlated with the preference ranking of
different rewards (Arana et al., 2003; Tremblay &
Schultz, 1999; Watanabe, 1996) and the combination of
reward preference and magnitude (Padoa-Schioppa &
Assad, 2006, 2008). Damage to the OFC impairs the abil-
ity to establish relative and consistent preferences when
offered novel foods (Baylis & Gaffan, 1991), and humans
with OFC damage show inconsistent preferences (Fellows
& Farah, 2007). The use of only a single reward type
(apple juice) in the current study may therefore have
limited the recruitment of the OFC (relative to the ACC)
as reward preference was not a variable manipulated.

Encoding of Value Scales

Although it would be possible to evaluate and compare
different choice outcomes on a case-by-case basis, there
are several computational advantages in assigning them
to a linear value scale that generalizes across multiple
decision variables (Montague & Berns, 2002). First, as
the number of potential outcomes increases linearly, the
number of comparisons between them increases at a
combinatorial rate. For example, if you were choosing
between five items on a menu, to compare any two
items directly would require 10 comparisons. However,
the number of comparisons increases to 45 if you have
to compare 10 items directly. A value scale provides an
efficient linear solution to this problem: The choice

values can be positioned along the same scale and the
most valuable choice readily determined. Second, it
enables the subject to deal efficiently with novelty. By
assigning a value to a newly experienced choice out-
come, the individual knows the value of that outcome
relative to all previously experienced outcomes. Indeed,
our subjects coped with novel choices efficiently as
indicated by transitive inference tests. Finally, a value
scale may aid behavioral flexibility by facilitating the
comparison of disparate behavioral outcomes. This is
analogous to the reason that societies use an abstract
value measure (fiat currency) to enable the comparison
of disparate goods and services. For example, although
they are two very physically different things, a consumer
can readily determine the relative value of a car and a
vacation because each can be assigned an abstract
monetary value. Analogously, a multiplexed neuronal
value signal could enable the brain to determine the
relative value of two different actions, such as grooming
a conspecific or eating a banana.

Conclusion

Our results are the first to report how individual ACC,
LPFC, and OFC neurons encode information about deci-
sion value. The value signals reported here are abstract
in the sense that they are encoded by many neurons
irrespective of the sensory modality or physical manner
in which the value is manipulated. In addition, the value
signal is temporally separate from motor preparation
processes, which suggests that choice value is computed
before the appropriate physical action is selected. Finally,
the encoding of value across multiple decision variables
appears to be much stronger in the ACC than in the OFC
or the LPFC. The robust anatomical connections of the
ACC with frontal, limbic, and motor areas places the ACC
in an ideal anatomical position to determine the value of
choice alternatives based on multiple decision variables
such as motivational state, action and reward history,
effort, risk, and expected payoff. Ultimately, understand-
ing the relationship between neuronal activity and deci-
sion making must begin by understanding the neuronal
mechanisms that allow the individual components of a
decision to be computed. The encoding of probability,
payoff, and effort value by individual ACC neurons may
represent an abstract neuronal currency that is a neces-
sary component for optimal choice.
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Duncan, J., Emslie, H., Williams, P., Johnson, R., & Freer, C.
(1996). Intelligence and the frontal lobe: The organization
of goal-directed behavior. Cognitive Psychology, 30,
257–303.

Fellows, L. K. (2006). Deciding how to decide: Ventromedial
frontal lobe damage affects information acquisition in
multi-attribute decision making. Brain, 129, 944–952.

Fellows, L. K., & Farah, M. J. (2007). The role of ventromedial
prefrontal cortex in decision making: Judgment under
uncertainty or judgment per se? Cerebral Cortex, 17,
2669–2674.

Hadland, K. A., Rushworth, M. F., Gaffan, D., & Passingham,
R. E. (2003). The anterior cingulate and reward-guided
selection of actions. Journal of Neurophysiology, 89,
1161–1164.

Hikosaka, K., & Watanabe, M. (2000). Delay activity of orbital
and lateral prefrontal neurons of the monkey varying with
different rewards. Cerebral Cortex, 10, 263–271.

Ichihara-Takeda, S., & Funahashi, S. (2007). Activity of
primate orbito-frontal and dorsolateral prefrontal
neurons: Effect of reward schedule on task-related
activity. Journal of Cognitive Neuroscience, 20, 563–579.

Ito, S., Stuphorn, V., Brown, J. W., & Schall, J. D. (2003).
Performance monitoring by the anterior cingulate
cortex during saccade countermanding. Science, 302,
120–122.

Izquierdo, A., Suda, R. K., & Murray, E. A. (2004). Bilateral
orbital prefrontal cortex lesions in rhesus monkeys
disrupt choices guided by both reward value and
reward contingency. Journal of Neuroscience, 24,
7540–7548.

Kacelnik, A. (1997). Normative and descriptive models of
decision making: Time discounting and risk sensitivity. Ciba
Foundation Symposium, 208, 51–67; discussion 67–70.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An
analysis of decision under risk. Econometrica, 47, 263–291.

Kawabata, H., & Zeki, S. (2004). Neural correlates of beauty.
Journal of Neurophysiology, 91, 1699–1705.

Kennerley, S. W., Walton, M. E., Behrens, T. E., Buckley, M. J.,
& Rushworth, M. F. (2006). Optimal decision making and
the anterior cingulate cortex. Nature Neuroscience, 9,
940–947.

King-Casas, B., Tomlin, D., Anen, C., Camerer, C. F., Quartz,
S. R., & Montague, P. R. (2005). Getting to know you:
Reputation and trust in a two-person economic exchange.
Science, 308, 78–83.

Knutson, B., Taylor, J., Kaufman, M., Peterson, R., & Glover, G.
(2005). Distributed neural representation of expected value.
Journal of Neuroscience, 25, 4806–4812.

Kobayashi, S., Nomoto, K., Watanabe, M., Hikosaka, O.,
Schultz, W., & Sakagami, M. (2006). Influences of rewarding
and aversive outcomes on activity in macaque lateral
prefrontal cortex. Neuron, 51, 861–870.

Kondo, H., Saleem, K. S., & Price, J. L. (2005). Differential
connections of the perirhinal and parahippocampal cortex
with the orbital and medial prefrontal networks in macaque
monkeys. Journal of Comparative Neurology, 493, 479–509.

Lee, D., Rushworth, M. F., Walton, M. E., Watanabe, M., &
Sakagami, M. (2007). Functional specialization of the
primate frontal cortex during decision making. Journal of
Neuroscience, 27, 8170–8173.

Kennerley et al. 15



Leon, M. I., & Shadlen, M. N. (1999). Effect of expected
reward magnitude on the response of neurons in the
dorsolateral prefrontal cortex of the macaque. Neuron, 24,
415–425.

Machens, C. K., Romo, R., & Brody, C. D. (2005). Flexible
control of mutual inhibition: A neural model of two-interval
discrimination. Science, 307, 1121–1124.

Matsumoto, K., Suzuki, W., & Tanaka, K. (2003). Neuronal
correlates of goal-based motor selection in the prefrontal
cortex. Science, 301, 229–232.

Matsumoto, M., Matsumoto, K., Abe, H., & Tanaka, K. (2007).
Medial prefrontal cell activity signaling prediction errors of
action values. Nature Neuroscience, 10, 647–656.

Maunsell, J. H. (2004). Neuronal representations of cognitive
state: Reward or attention? Trends in Cognitive Sciences, 8,
261–265.

McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D.
(2004). Separate neural systems value immediate and
delayed monetary rewards. Science, 306, 503–507.

McCoy, A. N., & Platt, M. L. (2005). Risk-sensitive neurons in
macaque posterior cingulate cortex. Nature Neuroscience,
8, 1220–1227.

Miller, E. K., & Cohen, J. D. (2001). An integrative theory of
prefrontal cortex function. Annual Review of Neuroscience,
24, 167–202.

Montague, P. R., & Berns, G. S. (2002). Neural economics
and the biological substrates of valuation. Neuron, 36,
265–284.

Nakamura, K., Roesch, M. R., & Olson, C. R. (2005). Neuronal
activity in macaque SEF and ACC during performance of
tasks involving conflict. Journal of Neurophysiology, 93,
884–908.

Niki, H., & Watanabe, M. (1979). Prefrontal and cingulate unit
activity during timing behavior in the monkey. Brain
Research, 171, 213–224.

O’Doherty, J. P., Deichmann, R., Critchley, H. D., & Dolan, R. J.
(2002). Neural responses during anticipation of a primary
taste reward. Neuron, 33, 815–826.

Ongur, D., & Price, J. L. (2000). The organization of
networks within the orbital and medial prefrontal cortex
of rats, monkeys and humans. Cerebral Cortex, 10,
206–219.

Ostlund, S. B., & Balleine, B. W. (2007). The contribution
of orbitofrontal cortex to action selection. Annals of
the New York Academy of Sciences, 1121, 174–192.

Owen, A. M. (1997). Cognitive planning in humans:
Neuropsychological, neuroanatomical and
neuropharmacological perspectives. Progress in
Neurobiology, 53, 431–450.

Padoa-Schioppa, C., & Assad, J. A. (2006). Neurons in the
orbitofrontal cortex encode economic value. Nature, 441,
223–226.

Padoa-Schioppa, C., & Assad, J. A. (2008). The representation
of economic value in the orbitofrontal cortex is invariant
for changes of menu. Nature Neuroscience, 11, 95–102.

Petrides, M., & Pandya, D. N. (1999). Dorsolateral prefrontal
cortex: Comparative cytoarchitectonic analysis in the human
and the macaque brain and corticocortical connection
patterns. European Journal of Neuroscience, 11,
1011–1036.

Platt, M. L., & Glimcher, P. W. (1999). Neural correlates
of decision variables in parietal cortex. Nature, 400,
233–238.

Rilling, J., Gutman, D., Zeh, T., Pagnoni, G., Berns, G., & Kilts,
C. (2002). A neural basis for social cooperation. Neuron, 35,
395–405.

Roesch, M. R., & Olson, C. R. (2003). Impact of expected
reward on neuronal activity in prefrontal cortex, frontal and

supplementary eye fields and premotor cortex. Journal of
Neurophysiology, 90, 1766–1789.

Roesch, M. R., & Olson, C. R. (2004). Neuronal activity related
to reward value and motivation in primate frontal cortex.
Science, 304, 307–310.

Roesch, M. R., & Olson, C. R. (2005). Neuronal activity in
primate orbitofrontal cortex ref lects the value of time.
Journal of Neurophysiology, 94, 2457–2471.

Roesch, M. R., & Olson, C. R. (2007). Neuronal activity related
to anticipated reward in frontal cortex: Does it represent
value or reflect motivation? Annals of the New York
Academy of Sciences, 1121, 431–446.

Roesch, M. R., Taylor, A. R., & Schoenbaum, G. (2006).
Encoding of time-discounted rewards in orbitofrontal cortex
is independent of value representation. Neuron, 51,
509–520.

Rolls, E. T., Inoue, K., & Browning, A. (2003). Activity of
primate subgenual cingulate cortex neurons is related to
sleep. Journal of Neurophysiology, 90, 134–142.

Rolls, E. T., Yaxley, S., & Sienkiewicz, Z. J. (1990). Gustatory
responses of single neurons in the caudolateral orbitofrontal
cortex of the macaque monkey. Journal of Neurophysiology,
64, 1055–1066.

Rudebeck, P. H., Buckley, M. J., Walton, M. E., & Rushworth,
M. F. (2006). A role for the macaque anterior cingulate
gyrus in social valuation. Science, 313, 1310–1312.

Rudebeck, P. H., Walton, M. E., Smyth, A. N., Bannerman,
D. M., & Rushworth, M. F. (2006). Separate neural pathways
process different decision costs. Nature Neuroscience, 9,
1161–1168.

Rushworth, M. F., & Behrens, T. E. (2008). Choice, uncertainty
and value in prefrontal and cingulate cortex. Nature
Neuroscience, 11, 389–397.

Sallet, J., Quilodran, R., Rothe, M., Vezoli, J., Joseph, J. P., &
Procyk, E. (2007). Expectations, gains, and losses in the
anterior cingulate cortex. Cognitive, Affective & Behavioral
Neuroscience, 7, 327–336.

Schoenbaum, G., Chiba, A. A., & Gallagher, M. (1998).
Orbitofrontal cortex and basolateral amygdala encode
expected outcomes during learning. Nature Neuroscience,
1, 155–159.

Schoenbaum, G., Setlow, B., Saddoris, M. P., & Gallagher, M.
(2003). Encoding predicted outcome and acquired value
in orbitofrontal cortex during cue sampling depends
upon input from basolateral amygdala. Neuron, 39,
855–867.

Seo, H., Barraclough, D. J., & Lee, D. (2007). Dynamic signals
related to choices and outcomes in the dorsolateral
prefrontal cortex. Cerebral Cortex, 17, i110–i117.

Seo, H., & Lee, D. (2007). Temporal filtering of reward
signals in the dorsal anterior cingulate cortex during a
mixed-strategy game. Journal of Neuroscience, 27,
8366–8377.

Shallice, T., & Burgess, P. W. (1991). Deficits in strategy
application following frontal lobe damage in man. Brain,
114, 727–741.

Shima, K., & Tanji, J. (1998). Role for cingulate motor area cells
in voluntary movement selection based on reward. Science,
282, 1335–1338.

Shuler, M. G., & Bear, M. F. (2006). Reward timing in the
primary visual cortex. Science, 311, 1606–1609.

Stephens, D. W., & Krebs, J. R. (1986). Foraging theory.
Princeton: Princeton University Press.

Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2004).
Matching behavior and the representation of value in the
parietal cortex. Science, 304, 1782–1787.

Tremblay, L., & Schultz, W. (1999). Relative reward preference
in primate orbitofrontal cortex. Nature, 398, 704–708.

16 Journal of Cognitive Neuroscience Volume X, Number Y



Van Hoesen, G. W., Morecraft, R. J., & Vogt, B. A. (1993).
Connections of the monkey cingulate cortex. In B. A. Vogt
& M. Gabriel (Eds.), Neurobiology of cingulate cortex
and limbic thalamus: A comprehensive handbook
(pp. 249–284). Cambridge: Birkhäuser.
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