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Adaptation of Reward Sensitivity in Orbitofrontal Neurons
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Animals depend on a large variety of rewards but their brains have a limited dynamic coding range. When rewards are uncertain,
neuronal coding needs to cover a wide range of possible rewards. However, when reward is likely to occur within a specific range, focusing
the sensitivity on the predicted range would optimize the discrimination of small reward differences. One way to overcome the trade-off
between wide coverage and optimal discrimination is to adapt reward sensitivity dynamically to the available rewards. We investigated
how changes in reward distribution influenced the coding of reward in the orbitofrontal cortex. Animals performed an oculomotor task
in which a fixation cue predicted the SD of the probability distribution of juice volumes, while the expected mean volume was kept
constant. A subsequent cue specified the exact juice volume obtained for a correct saccade response. Population responses of orbitofron-
tal neurons that reflected the predicted juice volume showed adaptation to the reward distribution. Statistical tests on individual re-
sponses revealed that a quarter of value-coding neurons shifted the reward sensitivity slope significantly between two reward
distributions, whereas the remaining neurons showed insignificant change or lack of adaptation. Adaptations became more prominent
when reward distributions changed less frequently, indicating time constraints for assessing reward distributions and adjusting neuro-
nal sensitivity. The observed neuronal adaptation would optimize discrimination and contribute to the efficient coding of a large variety
of potential rewards by neurons with limited dynamic range.

Introduction
Adaptation is a ubiquitous property of the brain that enables
efficient processing of diverse physical events by systems with
limited dynamic coding range (Fairhall and Bialek, 2002; Dean et
al., 2005). For example, retinal ganglion cells increase sensitivity
to amplify weak sensory inputs in a dark environment and de-
crease sensitivity to prevent strong inputs from saturation in a
bright environment (Hosoya et al., 2005; Dunn et al., 2007). Ad-
aptation to the statistics of environmental stimuli is known to
improve discrimination and thus increase the effective operating
range of the neural system.

The biological value of stimuli in the world is also highly di-
verse and statistical. Foraging animals encounter different ranges
of rewards depending on various factors such as place and season.
To assure optimal chances for survival, the brain’s reward system
needs to discriminate a variety of possible rewards. Thus it is
fundamental to understand how efficient neuronal reward cod-
ing is when the statistical properties of reward distributions
change.

The orbitofrontal cortex is a key reward structure of the brain.
Monkeys with orbitofrontal lesions respond abnormally to
changes in reward contingencies (Iversen and Mishkin, 1970;
Dias et al., 1996) and show altered reward preferences (Baylis and

Gaffan, 1991). Orbitofrontal neurons are sensitive to different
types and magnitudes of reward (Thorpe et al., 1983; Tremblay
and Schultz, 1999; Hikosaka and Watanabe, 2000; Wallis and
Miller, 2003), and thus translate various reward features into a
scalar measure of reward value.

An important question is whether the reward signals in the
orbitofrontal cortex adapt to changes in contexts and statistical
distributions of reward. Tremblay and Schultz (1999) demon-
strated that value-coding responses in the orbitofrontal cortex
shifted their reference according to the available rewards that
changed in every block of trials. Neuronal sensitivity tuning was
optimized to the center of currently expected reward values, sug-
gesting neuronal adaptation to the mean, first moment, of reward
distributions.

Adaptation to the second statistical moment, represented by
variance or SD, is critical for efficient neuronal coding. Unlike
mean adaptation, SD adaptation requires changes in neuronal
sensitivity because different ranges of input signals have to be
mapped on naturally limited neuronal encoding range. In this
study, we aimed to examine whether orbitofrontal neurons adapt
to the SD of reward distributions provided they were known in
advance. We used specific visual cues that predicted different SDs
while keeping the means of the distributions constant. We mea-
sured neuronal response to a subsequent value cue which speci-
fied the exact upcoming juice volume. To confirm the animals’
learning and preferences of the cues, we examined behavioral
choices between the cues associated with different juice volumes.

Materials and Methods
Experimental design
We used two reward distributions with different SDs, and each dis-
tribution consisted of three equiprobable juice volumes. For each
distribution, a specific geometric picture predicted the SD (SD cue),
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and a subsequent specific fractal picture pre-
dicted the reward volume (value cue) (Fig.
1 A, B). The two SD cues and the six value
cues were counterbalanced across the two
animals used. Mean reward volume was
identical in each distribution.

Subjects and surgery
We used two adult male monkeys (Macaca
mulatta), weighing 10 and 14 kg. Before the
recording experiments started, we implanted
under general anesthesia a head holder and a
chamber for access to the brain via a small
opening in the cranium while keeping the dura
intact. All experimental protocols were ap-
proved by the Home Office of the United
Kingdom.

Behavioral paradigm
Imperative saccade task. Animals sat in a pri-
mate chair, at 45 cm in front of a computer
display (Fig. 1 A,B). An immovable, touch-
sensitive resting key was mounted on the right
hand side in front of the animal. Each trial
started with the SD cue (2.6° visual angle, pre-
sented at monitor center). The animal touched
the resting key and maintained eye fixation at
the center for 2.0 s. Then the value cue (7.3°)
appeared briefly (0.5–1.0 s) at either the left or
right at a distance of 10.6° from the center of
the monitor. After 0.5 s the SD cue disap-
peared, triggering a saccade to the location of
the value cue. Following a correct saccade, a red
circle (1.1°) appeared at target location. The
animal maintained eye fixation on the target
for 1.5 s until the red circle changed to green,
which signaled to release the resting key. One
second after key release, blackcurrant squash
juice was delivered at the volume predicted by
the value cue. Trials were immediately aborted
after premature break of fixation, inaccurate
saccades, or premature release of the resting
key.

We tested each neuron with two different
reward distributions. Variations in reward vol-
ume consisted either of different juice volumes
delivered as a single shot (animal A, 0.06 – 0.62
ml) or of different numbers of successive shots
of fixed juice volumes (animal B, 1–9 shots, 1
shot � 75 �l). For animal A, we used juice
volumes of 0.20, 0.34, and 0.48 ml in the nar-
row distribution (SD, �narrow � 0.114 ml) and
0.06, 0.34, and 0.62 ml in the wide distribution
(SD, �wide � 2�narrow � 0.228 ml). For animal
B, we used juice volumes of 3, 5, and 7 drops
(0.23, 0.38, and 0.53 ml) in the narrow distri-
bution (SD, �narrow � 1.63 drops � 0.122 ml)
and 1, 5, and 9 drops (0.08, 0.38 and 0.68 ml) in
the wide distribution (SD, �wide � 2�narrow �
3.26 drops � 0.244 ml). The method of juice
delivery, single shot with variable volume orFigure 1. Experimental design and behavioral results. A, Imperative saccade task used for neuronal recording. A trial started

when the animal touched an immobile key and gazed at the central cue that indicated the SD of the outcome reward distribution
(SD cue). If the animal maintained eye fixation for 2.0 s, a peripheral picture (value cue) was presented briefly indicating the
location of future saccade and the volume of upcoming juice reward. Disappearance of the SD cue signaled the monkey to make a
saccade to the previously cued location. Successful saccades were followed by juice delivery at the predicted volume. B, Stimulus–
reward mapping. The SD cue (left) predicted the SD of the reward distribution. Different fractal pictures (value cues, right) indicated
different juice volumes. Two different SDs of reward were tested (�narrow, �wide) with the same mean (�). C, Animal choice
behavior. Preferences to different value cues were tested in the choice saccade task. Both animals chose the cues associated with
larger volumes of juice regardless of small or large SD. Error bars represent SD. D, E, Behavioral adaptation to the predicted reward

4

distribution during the imperative saccade task. Error rate (D)
and saccadic reaction time to the value cue (E) are plotted
against the predicted juice volume. The shifts of the regression
slope between narrow (dotted black line) and wide (solid red
line) reward distributions suggest scaling of both behavioral
measures to reward range. Error bars represent SEM.
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multiple shots of fixed volume, did not significantly affect the proportion
of value coding responses within the task-related responses or the pro-
portion of neurons that adapted to reward distributions ( p � 0.5, � 2

test). Thus, we collapsed neuronal data sampled with two different meth-
ods of reward delivery. We routinely calibrated the solenoid valve to
assure that valve opening times corresponded exactly to the set juice
volumes.

To examine the speed of neuronal adaptation, each sampled neuron
was tested with one of three schedule types (random, mini block, or large
block schedule). In the random trial schedule, the reward distribution
changed pseudorandomly in every trial (see Fig. 5A, top). In the mini
block schedule, the specific reward distribution used was fixed for a small
number of trials (4 –13 trials, mean 6.4 trials); narrow and wide distribu-
tions alternated frequently (Fig. 5A, middle). In the large block schedule,
we kept the same reward distribution constant for a large number of trials
(14 –93 trials, mean 28.1 trials); thus reward distributions alternated in-
frequently (Fig. 5A, bottom). The SD cue always indicated the specific
distribution used in each trial. We used the three schedules randomly and
independent of responses and anatomical coordinates of sampled
neurons.

Choice saccade task. A choice task served to assess the animals’ learning
and preferences of the different volumes of juice reward. This task was
identical to the imperative saccade task, except that two value cues ap-
peared simultaneously at left and right monitor positions (10.6° from
center). The animal chose one target by a saccadic eye movement. In each
trial we presented randomly two value cues from each reward distribu-
tion (small versus intermediate, intermediate versus large, small versus
large). Positions of the two value cues were randomized. Behavioral pref-
erences were expressed as probability of choosing the larger volume of
reward in each cue combination (Fig. 1C). Behavioral testing with the
choice task alternated in trial blocks with the imperative task during
neuronal recordings.

Recording procedures
Conventional techniques of in vivo extracellular recordings served to
study the activity of single orbitofrontal neurons. Animal A provided
neuronal data from the left hemisphere, the recording chamber being
centered at A 34.5 and L �11. Animal B provided data from both hemi-
spheres, centered at A 36 L9 and A33 L �9. A stainless steel guide tube
(0.8 mm diameter) served to insert a single tungsten microelectrode into
the brain (125 �m diameter, 1–5 M� initial impedance at 1 kHz; Fred-
erick Haer). Although the guide tube conceivably caused more damage to
the overlying dorsolateral cortex and white matter compared to solid
microelectrodes alone, it permitted the use of thinner microelectrodes
causing very little damage to the orbitofrontal cortex itself. A hydraulic
micromanipulator (MO-95, Narishige) advanced the microelectrode
vertically in the stereotaxic plane. Discharges from neuronal perikarya
were amplified, filtered (300 Hz to 2 kHz) and monitored with oscillo-
scopes. An adjustable Schmitt trigger converted neuronal discharges into
standard digital pulses which were continuously monitored on a digital
oscilloscope together with the original waveforms. Custom-made soft-
ware on a Macintosh IIfx computer (Apple) controlled the behavioral

task. An infrared eye tracking system monitored eye position with 200 Hz
(5 ms) resolution (ETL200; ISCAN).

Data analysis
We analyzed neuronal data from the imperative saccade task in several
consecutive steps. First, we identified task-related activities by comparing
activity between five task periods: intertrial interval (from 1.0 to 0.5 s
before the SD cue), value cue (from 0 to 0.5 s after value cue onset), delay
(from 0.5 to 1.0 s after value cue onset), saccade (from 0.3 s before to 0.2 s
after saccade onset), and reward (from 0 to 0.5 s after reward onset) ( p �
0.01, one-way ANOVA). For those neurons that showed significant task
relation, we further identified the task periods in which responses were
significantly different from baseline activity during the intertrial interval
( p � 0.01, post hoc Scheffé test).

In the second step, we searched for value-coding responses in all task-
related responses identified by the ANOVA. We used the nonparametric
Spearman’s rank correlation coefficient to assess a possible relationship
to juice volume ( p � 0.05, corrected for multiple comparisons).

In the third step, we assessed neuronal adaptation to the SD of reward
distributions in all value-coding responses identified by Spearman’s cor-
relation. We tested the hypothesis that adaptation of neuronal coding to
SD consisted in a change of value-response slope, being steeper with the
narrow compared to the wide distribution. We used the following two
linear regressions as main model that allowed us to obtain and compare
directly the response slopes between the two distributions:

Y � �0 � �narrow�Xnarrow � ��, (1)

Y � �0 � �wide�Xwide � ��, (2)

where �0, �narrow, and �wide were unstandardized regression coefficients.
Xnarrow and Xwide were juice volumes with equiprobable three elements
(Xnarrow �{� � �narrow, �, � � �narrow}, Xwide � {� � �wide, �, � �
�wide}). Y is discharge rate in a given task period in response to juice at
volume X. The terms � and � are expected mean and SD of the reward
distributions, respectively. Mean juice volume � was identical in both
reward distributions; therefore it should produce similar neuronal re-
sponses. Based on this assumption, the two models were constrained to
the point (�, �0), which simplified the subsequent analyses. The regres-
sion coefficients, �narrow and �wide, predicted neuronal response changes
per unit juice volume (impulses/s/ml); thus they reflected the neuronal
response slope, i.e., neuronal sensitivity to reward. Responses with dif-
ferent signs of �narrow and �wide were excluded from all analysis (8.5% of
whole value-coding responses).

To test for neuronal adaptation to the two reward distributions, we
compared the two response slopes (�) in each individual value-coding
neuron with the normalized-t approximation method (DeShon and Al-
exander, 1996) with the null hypothesis of �narrow � �wide. A significantly
steeper slope with the narrow compared to the wide distribution would
reject the null hypothesis and indicate adaptive neuronal coding. We
used two-tailed t test to assess both adaptive (��narrow� � ��wide�) and
inverse (��narrow� � ��wide�) slope changes ( p � 0.05). However, inverse

Table 1. Number of task-related, value-coding, and adaptive responses in each task period

Value cue Delay Saccade Reward Total

Task-related responses 149 97 87 97 430
A: 101 A: 65 A: 50 A: 60 A: 276
B: 48 B: 32 B: 37 B: 37 B: 154

Value-coding responses 63 (42.3%) 40 (41.2%) 19 (21.8%) 27 (27.8%) 149 (34.7%)
A: 40 (39.6%) A: 27 (41.5%) A: 10 (20.0%) A: 11 (18.3%) A: 88 (31.9%)
B: 23 (47.9%) B: 13 (40.6%) B: 9 (24.3%) B: 16 (43.2%) B: 61 (39.6%)

Adaptive responses 22 (34.9%) 12 (30%) 1 (5.3%) 3 (11.1%) 38 (25.5%)
A: 16 (40%) A: 11 (40.7%) A: 1 (10.0%) A: 2 (18.2%) A: 30 (34.1%)
B: 6 (26.1%) B: 1 (7.7%) B: 0 (0%) B: 1 (6.3%) B: 8 (13.1%)

Top, Task-related responses. Responses significantly different from baseline (intertrial interval) activity were counted as task-related responses in each task period ( p�0.01 post hoc Scheffé test). Middle, Value-coding responses. Responses
significantly correlated with predicted juice volume were counted as value-coding responses in each task period ( p � 0.05, Spearman’s rank correlation, corrected for multiple comparisons). Numbers in parentheses indicate proportions
of value-coding responses in task-related responses during each task period. Bottom, Adaptive responses. Neuronal adaptation was examined by comparing the regression slopes between narrow and wide reward distributions using
regression models (Eqs. 1, 2). Numbers in parentheses indicate adaptive responses as percentage of value-coding responses during each task period. A and B refer to the two animals used.
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slope changes were never found to be significant. We quantified the
degree of neuronal adaptation by an adaptation score, defined as the ratio
between �narrow and �wide (�narrow/�wide) obtained from Equations 1
and 2. Adaptation score � 1.0 indicated steeper slopes in the more nar-
row distribution (��narrow� � ��wide�).

Our main regression model (Eqs. 1, 2) estimated and compared
directly the response slopes for the two distributions, thus reflecting
straightforwardly the experimental rationale for adaptive coding. To
confirm the results of the main model, we conducted separate tests
with hierarchical regression models (supplemental Eqs. S1–S3) and
an interactive regression model (supplemental Eqs. S4, S5 in supple-
mental material, available at www.jneurosci.org). The data obtained
with the main and the two supplementary regression models were
almost identical (Table 1; supplemental Tables S1, S2, available at
www.jneurosci.org as supplemental material). The main description
of the results will be largely based on the main model because of its
direct and intuitive comparison of response slopes as substrate of
adaptation.

We used mutual information to measure the effects of adaptation
on neuronal discrimination between juice volumes. Predictable in-
formation of juice volume associated with neuronal responses ( I) was
quantified as decrease in entropy of stimulus occurrence H( J)

I � I� J; X� � H� J� � H� J � X�

� �
J

�p� j�log�p� j�� � ��
J

�p � j � x�log �p� j � x���
x

, (3)

where J is a set of value cues j, X is a set of neuronal responses x, p( j � x) is
the conditional probability of a value cue j given an observed impulse
count x, and p( j) is the a priori probability of value cue j. We corrected
for potential bias in the values of mutual information caused by the
limited number of trials and uneven distribution of data samples (Treves
and Panzeri, 1995; Kobayashi et al., 2002). We calculated encoded reward
information in narrow and wide reward distributions separately in slid-
ing time windows of 200 ms width that moved in 5 ms steps.

Figure 2. Examples of two value-coding orbitofrontal neurons. A, Adaptation in a neuron whose response increases with increasing juice volume. The slopes in the top right regression
plot show the relationships between neuronal responses (ordinate, impulses/s) and predicted juice volume (abscissa, ml), separately for small (black) and large (red) SDs. The slope
changes indicate adaptation of reward sensitivity to predicted reward distribution. B, Lack of adaptation in a neuron whose response decreases with increasing juice volume. The
regression lines for the two reward distributions were parallel, indicating graded coding across all five reward volumes and thus lack of adaptation. Error bar, SEM. For each raster, the
sequence of trials runs from top to bottom. Vertical lines in rastergrams indicate onsets of SD cue (left), value cue (center) and reward (right). Tick marks in rastergrams indicate neuronal
impulses, histograms below rastergrams display mean discharge rates (black, small SD; red, large SD).
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Off-line analysis used MATLAB for Windows (version 7.5, Math-
Works). All impulse analyses used only trials in which the animals made
correct behavioral responses.

Recording positions
During the last recording sessions with each animal, we placed small
marking lesions by passing negative currents (5–10 �A for 5–20 s)
through the microelectrode, while positioning larger lesions (20 �A
for 20 or 60 s) at a few locations higher in the same tracks. This
procedure resulted in distinct patterns of vertically oriented histolog-
ical marks. Animals were killed with an overdose of sodium pento-
barbital (90 mg/kg, iv) and perfused with 4% paraformaldehyde in
0.1 M phosphate buffer through the left ventricle of the heart. Frozen
coronal sections were cut on a cryotome at every 50 �m parallel to the
recording microelectrode tracks. The sections were stained with
cresyl violet.

Results
Behavior in choice saccade task
We measured choice preferences to assess the animals’ discrimi-
nation between the fractal pictures associated with different juice
volumes. In the saccadic choice task, animals chose between small
and intermediate, intermediate and large, or small and large vol-
umes (animal A, 562 trials; animal B, 1581 trials). Overall correct
task performance was 73% (animal A) and 88% (animal B). An-
imals chose the pictures indicating the larger of two juice volumes
significantly more often compared to the smaller volume, both
with the narrow distribution (animal A, � 2 � 31.3; animal B,
� 2 � 221) and the wide distribution (animal A, � 2 � 41.3; animal
B, � 2 � 200, 1581 trials; p � 0.001 for all, � 2 test) (Fig. 1C). Thus,
both animals appropriately preferred the pictures associated with
the larger juice volumes, indicating good discrimination between
the reward predicting pictures.

Behavior in imperative saccade task
The animals performed the imperative task correctly in 71.8%
of trials, overall. Typical errors were premature fixation breaks
and inaccurate saccades. Animals made fewer errors when the
value cue predicted larger juice volumes. The regression slopes
in Figure 1 D depict the relationship between error rate and
predicted juice volume. Interestingly, the slope was steeper
when the reward was given in the narrow range (dotted black
line; slope � �0.41, r 2 � 0.14, p � 0.001) compared with
reward in the wide range (solid red line; slope � �0.23, r 2 �
0.15, p � 0.001).

We found similar behavioral adaptation in saccade responses
to the value cue in correct trials (Fig. 1E). Saccade reaction time
was generally faster when larger volume of juice was predicted, as
indicated by the negative regression slopes. Reaction time
changed within a similar range (240 –260 ms) for both reward
distributions. As a result, 	 reaction time per unit juice volume
was larger (56.6 ms/ml, dotted black line) when juice volume
varied in the narrow range compared with the wide range (29.0
ms/ml, solid red line).

The shifts of regression slopes in the measures for error rate
and saccade reaction time indicate that behavioral responses
adapted to the range of juice distribution predicted by the SD
cue (see supplemental material for further behavioral analysis,
available at www.jneurosci.org). The results suggest that ani-
mals used the cue information to adjust their behavioral re-
sponses and discrimination.

Adaptation of neuronal value signals
We recorded the activity of 876 single neurons from the orbito-
frontal cortex of two monkeys during task performance (animal

Figure 3. Adaptations of orbitofrontal reward sensitivity to predicted reward distribution. A–D, Plots of response slopes for large versus small SD (abscissa vs ordinate). Slopes (�) of
value-coding responses were estimated by linear regression models (Eqs. 1, 2) for each neuron in each task period and reflect discharge rate per unit juice volume. Each circle indicates
significant (open) or insignificant (filled) slope change between the two reward distributions from each value-coding response ( p � 0.05). Symbols above the diagonal unit line in the
upper right quadrant and below the unit line in the lower left quadrant indicate steeper reward slope with smaller compared to larger SD (��narrow� � ��wide�). Shaded ellipses delineate
the distribution contours (2 SD) of all value-coding responses. E–H, Histograms of adaptation scores. The adaptation score quantified the degree of adaptation and is defined as
�narrow/�wide. Distributions of adaptation scores were significantly shifted to �1.0 for responses to value cue and delay periods ( p � 0.05, t test), indicating adaptation to SD. Black
and gray arrowheads indicate median scores of all value-coding activities and statistically significant adaptive responses, respectively.
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A, 464 neurons; animal B, 240 neurons). Of these, 189 neurons
(26.8%) showed activity significantly related to the task (animal
A, 123 neurons [26.5%]; animal B, 66 neurons [27.5%]; p � 0.01,
one-way ANOVA). We examined the sensitivity of these neurons
to the volume of predicted or received reward separately in
four task periods (value cue, delay, saccade, and reward peri-
ods). A total of 149 responses from 86 neurons showed signif-
icant relationships to the juice volume, which we termed value
coding (Table 1) ( p � 0.05, Spearman’s correlation, corrected for
multiple comparisons). The total number of responses was larger
than the total number of neurons, as some neurons showed value
sensitivity in multiple task periods.

The neuron displayed in Figure 2A shows an example of adap-
tive value coding with two different reward distributions tested in
separate blocks of trials. In the first block (black raster-
histograms), an orange circle (SD cue) predicted the narrow dis-
tribution of juice volume (0.20–0.48 ml) and the subsequent

fractal picture (value cue) specified the ex-
act juice volume for each trial (0.20, 0.34,
and 0.48 ml from left to right). The neu-
ron showed higher and more sustained re-
sponses when the value cue predicted
larger juice volume (activity after the
value cue, second vertical line). In the sec-
ond block (red raster-histograms), the
orange square predicted the wider distri-
bution of juice volume (0.06–0.62 ml).
Similar to the value-coding responses ob-
served in the first block, the response of
this neuron showed positive correlation
with predicted juice volume. However,
despite the twofold difference in SD, the
response varied within the same range
(5–35 impulses/s) in both reward distri-
butions. The similar responses to the
different minimal and maximal juice
volumes in the two distributions indi-
cated neuronal adaptation to the pre-
dicted distributions.

To examine adaptive value coding
more closely, we estimated the relationship
between the neuronal response and the pre-
dicted juice volume with linear regressions
(Eqs. 1, 2). The regression slope (�) reflected
the change in impulse activity per unit juice
volume (impulses/s/ml), which is a direct
physiological measure of reward sensitivity.
For this particular neuron, the regression
slope of the value cue response was steeper
for the narrow compared to the wide juice
distribution [100.0 impulses/s/ml (black
dotted line) vs 49.3 impulses/s/ml (red solid
line)] (Fig. 2A, top right). The slope change
indicated higher reward sensitivity in the
more narrow reward distribution as a result
of the adaptation.

In contrast, Figure 2B shows the re-
sponse of an orbitofrontal neuron that
failed to adapt to the predicted reward dis-
tribution. The response to the value cue
decreased monotonically across the five
associated reward volumes. The largely
overlapping regression lines indicate that

the reward sensitivity of this neuron remained constant despite
the change in reward distribution [�42.3 impulses/s/ml (black
dotted line) vs �45.3 impulses/s/ml (red solid line)] (Fig. 2B, top
right).

Population analysis of neuronal adaptation
To assess adaptation of neuronal sensitivity to reward distri-
butions, we compared the response slopes between the two
reward distributions in each individual neuron, using the
slope parameters � obtained from our main regression model
(Eqs. 1, 2).

Figure 3A–D shows response slopes from the narrow distribu-
tion (ordinate) plotted against slopes from the wide distribution
(abscissa), separately for the four task periods. Responses show-
ing positive slopes with juice volume (� � 0) appear in the upper
right quadrants. Importantly, many of these positive value-
coding responses were found above the diagonal line, indicating

Figure 4. Population histograms of discharge rate and reward information. A, B, E, F, Average responses to value cues
that showed significant (A, B) or insignificant (E, F) adaptation to SD of reward distributions. Responses varied positively
(A, E) or negatively (B, F) with reward volume. Thick lines refer to large SD and thin lines to small SD of reward volume. Blue,
gray, and red lines indicate small, intermediate, and large juice volumes. Juice volume increased according to thick blue �
thin blue � thick gray � thin gray � thin red � thick red (inset). With adaptive responses (A, B), thick and thin lines of
same color largely overlapped, indicating slope adaptation to reward range. In the population lacking significant adapta-
tion, responses increased (E) or decreased (F) monotonically across all five physical juice volumes used. C, D, G, H,
Population-averaged reward information. Thick black line, large SD of reward volume; thin gray line, small SD. Adaptive
responses carried similar amount of reward information in two reward distributions (C, D). In contrast, nonadaptive
responses lost reward information with small SD compared to large SD (G, H). Horizontal ticks indicate periods during
which reward information was higher in the wide compared with narrow reward distribution ( p � 0.05, 2-tailed paired t
test, uncorrected). The mutual information was calculated using a sliding window (duration, 200 ms; step size, 5 ms) and
averaged across neurons.
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steeper slopes with the narrow compared
to the wide reward distribution. Re-
sponses showing negative relations with
juice volume (� � 0) appear in the lower
left quadrant. These responses were of-
ten below the diagonal line in the lower
left quadrant, indicating again steeper
slopes with the narrow distribution. The
differences in slope between the two dis-
tributions were significant in 38 of the
149 value-coding responses (Fig. 3A–D:
open circles; Table 1) ( p � 0.05; nor-
malized t-approximation method com-
paring Eqs. 1 and 2). The remaining 111
of 149 responses showed insignificantly
different slopes that fell close to the di-
agonal line, indicating lack of signifi-
cant adaptation (closed circles).

The two other regression models de-
scribed in the supplemental material con-
firmed and extended these results
(available at www.jneurosci.org). The hi-
erarchical regression model allowed us to
identify both presence and absence of ad-
aptation (supplemental Eqs. S1–S3, sup-
plemental Table S1, available at www.
jneurosci.org as supplemental material)
and we found slightly more adaptive (n �
42) than nonadaptive (n � 33) responses.
The remaining unassigned responses had
intermediate characteristics (neither
adaptive nor nonadaptive), adding to an overall adaptive popu-
lation response. We also tested adaptation as an interaction be-
tween reward volume and SD and identified 43 adaptive
responses (supplemental Eqs. S4, S5, supplemental Table S2,
available at www.jneurosci.org as supplemental material). To-
gether, the largely overlapping results from all three regression
models suggest that a sizeable fraction of the sampled value-
coding neurons showed adaptation of reward-response slope to
the SD of reward distributions.

The distribution ellipse of response slopes (gray shade) was
tilted counterclockwise away from the diagonal unit line, par-
ticularly for value cue and delay periods (Fig. 3 A, B) ( p � 0.01,
paired t test). These data indicated a net adaptation of reward
sensitivity in our population of value-coding orbitofrontal
neurons.

We further quantified the degree of adaptation for each neu-
ron by taking the ratio of response slopes from the two reward
distributions (adaptation score � �narrow/�wide) (Fig. 3E–H). Ac-
tivities with high adaptation score were observed mainly during
the value cue and delay periods. The unimodal distributions of
adaptation scores indicate that adaptability was continuously
graded across the value-coding population rather than being re-
stricted to a distinct group of neurons.

Informational aspects of adaptive value coding
Previous studies on visual processing suggested that neuronal
adaptation to probability distributions of inputs resulted in more
efficient coding with increased amount of information transmis-
sion (Wainwright, 1999; Brenner et al., 2000). Adaptation in re-
ward systems may improve coding efficiency by adjusting the
distribution of neuronal responses to the expected reward distri-
bution. To address this issue, we examined input (juice volume)/

output (impulse rate) matching in the populations of adaptive
and nonadaptive neurons.

We grouped neuronal responses with statistically significant
adaptation according to their positive (Fig. 4A, 22 responses) or
negative (Fig. 4B, 16 responses) relationships to juice volume.
The dynamic range of the population response in these neurons
was nearly the same with the narrow (thin line) and wide (thick
line) reward distributions (minimum of 4 –5 impulses/s and
maximum of 18 –23 impulses/s). As a consequence, the neurons
appeared to discriminate juice volumes equally well in the two
distributions, even with the rather smaller volume differences in
the more narrow distribution.

Coding efficiency can be characterized by using mutual
information theory (Golomb et al., 1997), and the method has
been applied to neurophysiological data (Gershon et al., 1998;
Kobayashi et al., 2002). We quantified neuronal discrimination
of juice volume as bits of information, separately for the two
reward distributions. The average reward value information car-
ried by the responses with statistically significant adaptation
peaked at 
0.2 bits (Fig. 4C, positive value-coding; D, negative
value-coding). This value was similar for the narrow (thick line)
and wide (thin line) reward distributions ( p � 0.05, two-tailed
paired t test). Thus, as a result of sensitivity adaptation, these
neuronal responses carried the same amount of information re-
gardless of the distribution of inputs.

These adaptive responses contrasted with responses lacking
adaptation according to the supplementary regression model
(supplemental Eqs. S1–S3 in supplemental material, available at
www.jneurosci.org). When juice volume varied within a wider
range, neuronal responses also changed within a wider range
(thick lines in Fig. 4E,F), as shown by the distinct differences for
the large (red line), intermediate (gray line) and small (blue line)

Figure 5. Neuronal adaptation to reward distribution during schedules of different volatility. A, Top, Narrow and wide reward
distributions changed pseudorandomly in every trial. Middle, Reward distribution changed every 4 –13 trials. Bottom, Reward
distribution changed only between large blocks of trials (�13 trials). B, Proportions of value-coding (black bars) and adaptive
(gray bars) responses in total task-related neurons sampled in each schedule (left, random trial; middle, mini block; right, large
block) during different task periods (value cue, delay, saccade, reward from left to right). Total numbers of task-related neurons
sampled in three schedule types are shown below schedule labels.
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juice volumes. For the narrow reward distribution, the range of
neuronal responses was also narrow (thin lines in Fig. 4E,F).
Correspondingly, the population response showed a loss of discrim-
ination with more narrow distributions (Fig. 4E, 20 responses; F, 13
responses). These neurons lost information when coding the narrow
compared to the wide distribution (horizontal ticks above the histo-
grams indicate p�0.05 by two-tailed paired t test, uncorrected) (Fig.
4G,H). Together, nonadaptive neuronal responses processed re-
ward value less efficiently than adaptive responses.

Speed of neuronal adaptation
Each neuron described above was tested in one of the three ad-
aptation schedules that varied the two reward distributions at
different speeds. In the first, random trial schedule, distributions
changed pseudorandomly in every trial (Fig. 5A, top). Among 66
task-related neurons tested with this schedule, 47 responses en-
coded juice volume in at least one of the four task periods. Only
six of the 47 value-coding responses (12.8%) showed significant
adaptation to the reward distribution. The second schedule in-
volved slower switches between the two distributions. It consisted
of mini blocks with a small number of trials (4 –13 trials, mean 6.4
trials) within which the reward distribution was fixed (Fig. 5A,
middle). Thus narrow and wide distributions alternated less fre-
quently than in the random trial schedule. In 55 task-related
neurons tested with this schedule, only 5 of 32 value-coding re-
sponses showed significant adaptation (15.6%). In the third

schedule, we created a more stable situa-
tion by keeping a reward distribution
fixed for a relatively large block of trials
(14 –93 trials, mean 28.1 trials) (Fig. 5A,
bottom). Thus, neuronal adaptation
could occur not only in response to the
explicit cue in every trial, but also could be
based on the reward distribution sampled
during the preceding trials. In 68 task-
related neurons tested with this schedule, 27
of 70 value-coding responses showed signif-
icant adaptation to reward distribution
(38.6%). Thus, less frequent changes in
value distributions resulted in higher inci-
dence of adaptive coding.

Figure 5B summarizes the proportion
of adaptations in value-coding responses,
separately for each schedule. Neuronal
adaptations were uneven among the three
schedules ( p � 0.01, � 2 test). Post hoc
tests revealed that adaptations occurred
more frequently during the large block
schedule compared to both random trial
and mini block schedules ( p � 0.01, � 2

tests with correction for multiple compar-
isons). The incidence of adaptation did
not differ significantly between random
and mini-block schedules ( p � 0.05).
Thus, the slower switches and longer sta-
bility of each reward distribution with the
large block schedule appeared to favor
neuronal adaptations.

Positions of neurons
Histological reconstruction of recording
sites revealed that the sampled orbito-
frontal neurons were located in areas 11

(74 neurons), 12 (49 neurons), and 13 (66 neurons) (Fig. 6A).
Clusters of neurons in caudal area 11 and rostral area 13 showed
value-coding responses mainly during the value cue and delay
periods. The percentage of value-coding responses was highest
in area 13, although the difference against the other two areas
was insignificant (Fig. 6 B, gray bars) ( p � 0.1, � 2 test with
correction for multiple comparisons). Adaptive neurons were
distributed unevenly across the three anatomical areas (Fig. 6B,
red bars) ( p � 0.02, � 2 test). Pairwise post hoc tests revealed that
adaptive neurons were more common in area 13 than area 11 or
12 ( p � 0.05). The distribution of adaptive neurons differed
insignificantly between areas 11 and 12 ( p � 0.1, � 2 test with
correction for multiple comparisons).

Discussion
The present data show adaptation of response gain to pre-
dicted reward distributions in a population of orbitofrontal
neurons. The tested distributions varied in SD but had con-
stant mean. Adaptive neurons coded the more narrow range of
reward with steeper response slopes, thus “zeroing in” on the
currently valid range. Slope adaptation led to maximal reward
discrimination within each distribution and thus optimal cod-
ing efficiency. In contrast, nonadaptive orbitofrontal neurons
used smaller coding ranges with more narrow distributions,
resulting in fixed reward sensitivity, reduced reward discrim-
ination and less transmitted information. Thus, adaptation

Figure 6. Anatomical locations of sampled orbitofrontal neurons. A, Locations of single neurons are marked with colors
reflecting the adaptation score (ratio of regression slope: �narrow/�wide; compare right color scale). Positions of neurons
sampled from three hemispheres of two monkeys are superimposed and mapped on four coronal sections. A 32, A 34, A 36,
and A 38 denote stereotaxic rostrocaudal coordinates, indicated by blue vertical lines in the inset. Circles, Animal A.
Squares, Animal B. Small black symbols, Neurons related to task but not coding value. AS, Arcuate sulcus; PS, principal
sulcus; LOS, lateral orbital sulcus; MOS, medial orbital sulcus; RS, rostral sulcus; CS, cingulate sulcus. Numbers on gray areas
and in the inset refer to Walker’s cytoarchitectonic areas. B, Proportions of value-coding (gray bars) and adaptive (red bars)
responses in the whole task-related neurons sampled in each orbitofrontal subarea during different task periods (value cue,
delay, saccade, and reward periods from left to right). Numbers of all task-related neurons sampled in the three areas are
shown below the area labels.
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consisted of efficient matching of the neuronal encoding range
onto the predicted reward range. Such neuronal mechanisms
would allow animals to forage successfully for essential re-
sources in variable environmental situations and thus increase
their chances for survival.

Behavioral adaptation to reward distributions
Both monkeys discriminated the value cue reliably during the
saccade choice task based on the size of associated juice reward
(Fig. 1C). Also, error rate and saccade reaction time during the
neuronal recordings varied monotonically with the juice vol-
ume predicted by the value cue. Importantly, the animals
scaled these behavioral responses to the juice range predicted by
the SD cue. These results indicate behavioral sensitivity and ad-
aptation to the explicit reward cues.

Nature of adaptive coding
Earlier studies showed that reward-related responses reflect the
animals’ relative preference among the available rewards rather
than physical reward properties (Tremblay and Schultz, 1999;
Cromwell et al., 2005; Hosokawa et al., 2007). Relative preference
coding could be interpreted as neuronal adaptation to the mean
of reward distributions matching the centers of input/output
ranges; when the reward distribution shifted, the same output
(neuronal response) range covered the new input (reward value)
range (Fig. 7A). This type of adaptation does not necessarily in-
volve changes in response slopes.

The present data demonstrate neuronal adaptation to the
SD of reward distributions, which essentially involves changes
in reward sensitivity slope (Fig. 7B). We kept the mean con-
stant and varied the width of reward distributions. However,

adaptation to the mean and SD could happen at the same time.
Formally, the normalization to the mean and SD of reward
distributions resembles the statistical z-score [(value �
mean)/SD].

Adaptive coding may appear inconsistent with previous stud-
ies that showed cardinal (number-like) value coding indepen-
dent of changes in contexts (Padoa-Schioppa and Assad, 2006,
2008). The discrepancy among the studies might be explained by
differences in the examined neuronal populations within the or-
bitofrontal cortex. Indeed, our adaptive neurons were more com-
monly located in agranular area 13 than in dysgranular areas 11
and 12 (Fig. 6). Another explanation might lie in different task
designs. Tremblay and Schultz (1999) found neuronal adaptation
using a block design. We found that adaptation to the SD in-
creased when reward distributions changed less frequently (see
below for further discussion). Padoa-Schioppa and Assad (2008)
used a random trial design. They required animals to choose
between two different kinds of juice reward (called menu).
The menu and the juice quantity changed randomly in every
trial. The maximum juice quantity was adjusted such that the
juice value varied in largely overlapping ranges across menus.
Thus, the reward distributions were nearly fixed across menus,
which would not have helped to reveal value adaptation. A rela-
tively slow speed of adaptation may explain why Padoa-Schioppa
and Assad (2008) failed to see adaptive coding with the random
trial design. In a recent follow-up study, Padoa-Schioppa (2009)
compared the activity of orbitofrontal neurons tested with differ-
ent value distributions. The experiment varied the maximum
value across separate blocks of trials while keeping the minimum
value constant at zero. In this situation, the range of orbitofrontal
responses stayed constant despite the changes in range and mean
of the value distribution. This adaptation is consistent with the
present results.

Taking the results of the present and the previous studies to-
gether (Tremblay and Schultz, 1999; Padoa-Schioppa and Assad,
2008; Padoa-Schioppa, 2009), value signals of adaptive neurons
would show parametric relationships within the specific reward
distributions but not beyond these bounds. Adaptive value sig-
nals would not reflect value on a common scale across an unlim-
ited range. Adaptive signals would rather provide accurate
discrimination and allow transitivity within the bounds of given
reward distributions. In contrast, nonadaptive neurons would
allow for more stable and transitive value coding over wider value
ranges, as discussed below.

Temporal requirements for adaptation
In the present study, the initial SD cue predicted a particular
distribution with three possible juice volumes, and the subse-
quent value cue predicted the specific volume delivered in
each trial. When trials with different distributions varied
pseudorandomly between trials, neuronal adaptation de-
pended solely on the prediction given by the SD cue. Less than
15% of orbitofrontal responses showed adaptation to the
value cue 
2 s later. However, we found substantially more
adaptive coding when we switched distributions less fre-
quently using the large block schedule (Fig. 5). The block
design afforded additional time and additional reward predic-
tion by the block context. These data suggest that reward ad-
aptations in the orbitofrontal neurons take time in the order of
seconds to tens of seconds. In contrast to these orbitofrontal
processes, dopamine reward prediction error responses adapted
within short delays of 2 s to predicted means and SDs (Tobler et

Figure 7. Schematic forms of adaptation to reward distributions in orbitofrontal neurons.
A, Adaptation to mean reward distribution (approximated from data by Tremblay and Schultz,
1999). Neuronal response slopes shift into the predicted distribution, rather than stretching
across the full range of the two distributions combined. B, Adaptation to SD of reward distribu-
tion (current data). Neuronal response slopes become steeper with more narrow distributions,
and flatten with wider distributions. The two forms of adaptation refer to different parameters
of distributions but represent the same phenomenon, namely matching of neuronal responses
to predicted and currently used reward distributions. The slopes reflect the quasilinear part of
reward response slopes.
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al., 2005). Thus, reward adaptations in different brain structures
may operate at different time scales.

Neuronal adaptations to environments that change without
explicit cues require sampling and estimation of stimulus dis-
tributions (Wark et al., 2007). The sampling and estimation
process will primarily determine the adaptation speed. Thus, it
should be noted that our task conceivably reduced the sam-
pling time by providing explicit predictive stimuli. This is not
a fundamentally different procedure, as explicit predictive
stimuli induced similar visual adaptations as changing envi-
ronments (Hosoya et al., 2005). Despite faster sampling time,
adaptations in the present study were slower than the fastest
visual adaptations with switches between known distributions
(Fairhall et al., 2001), indicating different time courses be-
tween visual and reward adaptations or between the involved
brain structures, or both.

Coding efficiency
Adaptive coding contributes importantly to the efficiency of
neuronal information processing (Barlow, 1961; Laughlin,
1981; Brenner at al., 2000; Maravall et al., 2007). Our data
suggest that adaptation maintains the amount of information
transmitted by neuronal responses, whereas lack of adaptation
results in information loss. Too narrow a sensitivity would
result in miscoding or outright missing of peripheral values,
and too wide a sensitivity would lead to unnecessarily flat
slopes with poor discrimination within the used input range.
Rescaling the response slope to match the relevant reward
range maximizes information transmission within the limited
dynamic range of neuronal responses and thus contributes to
efficient reward coding.

Neuronal adaptation occurs in all major sensory systems
(Laughlin and Hardie, 1978; Dean et al., 2005; Maravall et al.,
2007). The observed adaptations in reward neurons might simply
reflect the known adaptations of sensory inputs that give rise to
reward value signals. However, reward value is a more abstract
parameter defined by behavior rather than being derived simply
from sensory stimulation. Reward value is often subjective, as
shown by temporal discounting (Roesch et al., 2007; Kobayashi
and Schultz, 2008), and includes probability that reflects the
frequency of occurrence rather than direct sensory stimula-
tion (Fiorillo et al., 2003). Therefore, the observed neuronal
adaptations to probability distributions of reward value may con-
stitute a proper mechanism of reward systems.

Value coding without adaptation
A sizeable fraction of orbitofrontal neurons maintained response
slopes constant despite changes in reward distribution. These
neurons reflected reward value by changes in discharge rate on a
fixed scale. As a result, value discrimination and transmitted in-
formation decreased with more narrow value distributions. Sub-
stantial nonadaptive coding occurred also in primary sensory
systems (Hosoya et al., 2005; Maravall et al., 2007). Nevertheless,
nonadaptive coding provides several advantages for reward cod-
ing. It assesses reward value on a constant scale that allows com-
parisons and transitivity across the wide range of possible reward
values regardless of specific distributions (Padoa-Schioppa and
Assad, 2008). Furthermore, nonadaptive coding may serve as an-
choring reference for adaptive coding. It may also constitute a
substrate for ensemble coding of a wide range of reward values in
subpopulations of neurons devoted to particular reward aspects
(Schoenbaum and Eichenbaum, 1995; van Duuren et al., 2008;
Simmons and Richmond, 2008). There may be two mechanisms

for the coding of reward value in orbitofrontal cortex; nonadap-
tive coding that allows reference of reward values across a wide
range and regardless of context, and adaptive coding that allows
optimal discrimination within contexts defined by specific prob-
ability distributions.
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Supplementary material 

 

Behavioral adaptation to reward distributions 

We evaluated adaptation of animal behavior to reward distributions by 

quantitatively measuring the sensitivity of behavioral responses to the 

predicted juice volume in two reward distributions. First, we analyzed the 

errors made after the value cue onset (premature fixation breaks and 

inaccurate saccades). We subjected the error rate data during each recording 

session to the same linear regression model as used for the neuronal 

responses (equations 1, 2 in the main text) and obtained a pair of regression 

slopes from two reward distributions. The regression slopes were mostly 

negative for both βnarrow (ordinate) and βwide (abscissa, Fig. S1A), indicating 

that the animals made fewer errors when the value cue predicted the larger 

juice volume. Importantly, the slopes were significantly steeper in the 

narrow as compared with wide distribution (p < 0.001, 2-tailed paired t-test). 

We also analyzed the saccade reaction time to the value cue in 

correctly performed trials. Saccade reaction time served as the dependent 

variable Y in the linear regression model (equation 1, 2 in the main text). 



The regression slope was mostly negative, indicating shorter reaction times 

after prediction of larger juice volumes (Fig. S1B). Importantly, regression 

slopes were generally steeper in the more narrow reward distribution (p < 

0.001, 2-tailed paired t-test). 

These results suggest that behavioral measures of both error rate 

and saccade reaction time were graded by the predicted size of reward. The 

reward impact on these behavioral responses was normalized to the reward 

distributions, indicating behavioral adaptation. 

 

Relationships between behavioral and neuronal adaptations 

A sizeable fraction of the sampled neurons failed to adapt to the changes in 

reward distributions (Fig 4E, F; see also Table S1). However, it is possible 

that those neurons did have the capacity to adapt but did not exhibit it 

because the behavior of the animal lacked adaptation during those 

particular recordings. To examine this possibility, we analyzed the 

relationship between behavioral and neuronal adaptations by using the 

adaptation scores. We defined behavioral adaptation score as the ratio 

between the two regression slopes (βnarrow / βwide) based on error rate and 



saccade reaction time analyses, analogous to the neuronal adaptation score 

(see Materials and Methods in the main text). Figure S1C, D plots neuronal 

versus behavioral adaptation scores (C, error rate; D, saccade reaction time). 

As expected, neuronal adaptation scores of nonadaptive neurons were low 

(filled symbols). However, behavioral adaptation scores corresponding to 

these nonadaptive neurons were variable as shown by the horizontal stretch 

of their distributions (gray ellipses). Therefore, lack of adaptation in these 

neurons appears to have little direct relation to behavioral adaptation. The 

result supports the view that orbitofrontal cortex initially encodes the 

reward value objectively (filled symbols), and adaptive processes modify the 

coding into more subjective value expressed in animal behavior (open 

symbols). 

 

Positive identification of adaptive and nonadaptive responses by hierarchical 

regression models 

The main regression analysis classified responses as adaptive when their 

regression slopes differed significantly between the two reward distributions 

(equations 1 and 2 in the main text, Table 1). However, insignificant slope 



change would not necessarily indicate significant lack of adaptation. To test 

neuronal responses for significant nonadaptation, we used the following 

models: 

Full model: Y = α + β1(X – μ) + β2(X – μ) / σ   (S1) 

Nonadaptive reduced model: Y = α + β(X – μ)   (S2) 

Adaptive reduced model: Y = α + β(X – μ) / σ   (S3) 

where Y is the discharge rate in each task period, X is an independent 

variable that represents reward volume, σ is standard deviation (SD) and μ is 

mean in each reward distribution, and α, β, β1, β2 are coefficients. The models 

are constrained to the point (μ, α), because μ is the common juice volume 

between the two reward distributions, and value-coding neurons should 

produce similar activity (α) at this point. Equation S3 models the statistical 

z-score. 

 Using a hierarchical approach we compared the full model against a 

reduced model with the F test (p < 0.05) (Snedecor and Cochran, 1989). If 

neuronal activity adapted to the SD of reward distributions, the full model 

(S1) should fit the data significantly better than the nonadaptive reduced 



model (S2) lacking the adaptive term (β2× X / d). By contrast, if neuronal 

activity reflected the physical juice volume without adapting to the predicted 

standard deviation, the full model (S1) should fit the data better than the 

adaptive reduced model (S3) lacking the physical volume term (β1 × X). 

Responses that showed neither significant adaptation nor significant 

nonadaptation were classified as unassigned. 

 The results of this analysis replicated the results of the main 

regression model, showing almost identical numbers of adaptive responses in 

each task period (Table S1, compare with Table 1). As additional result of the 

hierarchical approach, a number of significantly nonadaptive responses was 

positively identified (Table S1). These explicitly nonadaptive responses were 

slightly less frequent than the adaptive responses, particularly in the earlier 

task periods. 

 

 Cue Delay Saccade Reward Total 

# value-coding responses 63 40 19 27 149 

Adaptive responses  

(% of value-coding responses) 

23

(36.5%) 

13 

(32.5%) 

2 

(10.5%) 

4  

(14.8%) 

42 

(28.2%) 



Nonadaptive responses  

(% of value-coding responses) 

12

(19.0%) 

6

(15%) 

7

(36.8%) 

8 

(29.6%) 

33 

(22.1%) 

Unassigned responses 

(% of value-coding responses) 

28

(44.4%) 

21

(52.5%) 

10

(52.6%) 

15 

(55.6%) 

74 

(49.7%) 

 

Table S1. Adaptation of value-coding activity to reward distributions tested 

by hierarchical regression methods (equations S1–S3). The table shows 

explicit adaptive responses (equations S1 versus S2, p < 0.05), explicit 

nonadaptive responses (equations S1 versus S3, p < 0.05, F test), and 

unassigned value coding responses without significant adaptive and 

nonadaptive properties (p > 0.05). 

 

Adaptation assessed by regression with interaction term 

As a separate test to examine the effects of reward distributions on response 

slopes, we constructed the following two models 

Y =β0 + β1X + β2M     (S4) 

Y =β0 + β1X + β2M + β3X·M    (S5) 

where Y is the dependent variable (neuronal response), X is an independent 

variable (juice volume), and X belongs to two dichotomous groups M (low 



and high SDs, modeled as 0 and 1, respectively). Equation S5 has an 

interaction term between juice volume and reward distribution. Neuronal 

adaptation to SD would become manifest as interaction between juice 

volume and distribution (the X·M product term in equation S5) (Zar, 1999). 

When β3 is significant and equation S5 gives significantly better fit than 

equation S4 (p < 0.05, F test), we concluded that interaction is significant 

hence adaptation. This test resulted in very similar numbers of significant 

adaptations of neuronal responses (Table S2) as the main regression model 

with normalized-t approximation (Table 1) and the hierarchical regression 

model (Table S1). 



 

 Cue Delay Saccade Reward Total 

# value-coding responses 63 40 19 27 149 

Adaptive responses  

(% of value-coding responses) 

22 

(34.9) 

13 

(32.5) 

2 

(10.5) 

6  

(22.2) 

43  

(28.9) 

 

Table S2 Adaptation of value-coding activity to reward distributions tested 

by the interaction regression model (equations S4 and S5). 

 

Supplementary figure legends 

Figure S1. Behavioral and neuronal adaptations A, B, Behavioral adaptation 

to predicted reward distributions. Plots of regression slopes for small versus 

large standard deviations (SD) (ordinate versus abscissa). Slopes (β) of error 

rate (A, ⊿error rate / ml) and saccade reaction time (B, ⊿ms / ml) were 

estimated by linear regression models (equations 1, 2 in the main text) for 

each behavioral test (circles, animal A; squares, animal B). Most symbols 

were found in the lower left quadrants, reflecting negative relationships 

between the behavioral measures and the predicted juice volume. Shaded 

ellipses delineate the distribution contours (2SD) of the plots. C, D, 



Relationships between behavioral and neuronal adaptation scores. Neuronal 

adaptation scores are plotted against behavioral adaptation scores for task 

performance (error rate) (C) and saccade reaction time to the value cue (D). 

Open symbols, adaptive neurons; filled symbols, nonadaptive neurons. 

Shapes of the symbols indicate the task period in which neuronal adaptation 

scores were measured (circles, value cue period; squares, delay period; 

triangles, saccade period; asterisks, reward period). Shaded and open 

ellipses delineate the distribution contours (2SD) of nonadaptive and 

adaptive neurons, respectively. 
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