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Neurophysiological, neuroimaging, and lesion studies point to a
highly distributed processing of temporal information by cortico-basal
ganglia-thalamic networks. However, there are virtually no experi-
mental data on the encoding of behavioral time by simultaneously
recorded cortical ensembles. We predicted temporal intervals from the
activity of hundreds of neurons recorded in motor and premotor cortex
as rhesus monkeys performed self-timed hand movements. During the
delay periods, when animals had to estimate temporal intervals and
prepare hand movements, neuronal ensemble activity encoded both
the time that elapsed from the previous hand movement and the time
until the onset of the next. The neurons that were most informative of
these temporal intervals increased or decreased their rates throughout
the delay until reaching a threshold value, at which point a movement
was initiated. Variability in the self-timed delays was explainable by
the variability of neuronal rates, but not of the threshold. In addition
to predicting temporal intervals, the same neuronal ensemble activity
was informative for generating predictions that dissociated the delay
periods of the task from the movement periods. Left hemispheric areas
were the best source of predictions in one bilaterally implanted
monkey overtrained to perform the task with the right hand. However,
after that monkey learned to perform the task with the left hand, its left
hemisphere continued and the right hemisphere started contributing to
the prediction. We suggest that decoding of temporal intervals from
bilaterally recorded cortical ensembles could improve the perfor-
mance of neural prostheses for restoration of motor function.

I N T R O D U C T I O N

Proper timing of actions is essential for the survival of living
organisms (Buhusi and Meck 2005; Durstewitz 2004; Ivry
1996; Ivry and Spencer 2004; Meck and Malapani 2004).
Disorders that affect the processing of time have been linked to
neurological conditions such as aphasia and dyslexia (Kolk
1995; Merzenich et al. 1996; Stein and Walsh 1997), Parkin-
son’s disease (Elsinger et al. 2003; O’Boyle et al. 1996; Riesen
and Schnider 2001), attention-deficit/hyperactivity disorder
(Toplak and Tannock 2005), and schizophrenia (Penney et al.
2005). Furthermore, lesions of cortical areas in humans pro-
duce disturbances in the reproduction of time intervals that are
specific to the site of cortical site damage (Halsband et al.
1993; Wittmann et al. 2001).

The first demonstrations of brain activity reflecting self-
timing of voluntary movements were done in the 1960s using
EEG recordings (Deecke et al. 1976; Kornhuber and Deecke
1964, 1965; Shibasaki and Hallet 2006). It is currently believed
that at least two systems supervise temporal processing in the

brain during motor behavior (Buhusi and Meck 2005). The first
system works in the millisecond range and involves the cere-
bellum. The second system controls behavioral events on the
seconds-to-minutes range. Experimental evidence indicates
that this system is composed of highly distributed cortico-
striato-thalamic networks. Indeed, recent neuroimaging studies
in human subjects confirm the involvement of such neural
circuits in tasks that require temporal processing (Coull et al.
2004; Harrington et al. 2004; Hinton and Meck 2004; Meck
and Malapani 2004; Rao et al. 2001). Animal experiments also
point to a distributed cortico-striato-thalamic network for tem-
poral processing. Lesions of parts of cortico-striato-thalamic
circuit disrupt behavioral timing in rats (Meck 2005). More-
over, our recent neurophysiological study showed temporally
specific modulations in ensembles of cortical and striatal neurons
in behaving rats during self-timed lever presses (Matell et al.
2003). In further support of a distributed mode of time processing,
temporally specific modulations related to reward anticipation
have been shown in the rat posterior thalamus (Komura et al.
2001) and even in primary visual cortex (Shuler and Bear 2006).

A wealth of data linking modulations in cortical, striatal, and
thalamic neurons to behavioral timing has been obtained in
awake, behaving monkeys. The behavioral tasks used in these
studies incorporated delays during which the monkeys had to
withhold movements of the arm or the eye while mentally
timing movement onset or anticipating upcoming trigger stim-
uli that signaled that the movement could be started. These
studies showed that many neurons in different cortical areas
exhibit climbing activity during the task delays (Durstewitz
2004). The neurons with climbing activity nearly monotonically
increase or decrease their activity, as would be expected of a
biological clock. Neurons with this pattern of activity have been
observed in prefrontal cortex (Brody et al. 2003; Fuster 2001;
Genovesio et al. 2006; Goldman-Rakic 1995; Janssen and
Shadlen 2005; Kim and Shadlen 1999; Kojima and Goldman-
Rakic 1982; Lebedev et al. 2004; Miller et al. 1996; Niki and
Watanabe 1979; Quintana and Fuster 1992; Rainer et al. 1999;
Sakurai et al. 2004; Vaadia et al. 1988), premotor cortex (Cram-
mond and Kalaska 2000; Lebedev and Wise 2000; Lucchetti et al.
2005; Mauritz and Wise 1986; Romo and Schultz 1987; Weinrich
and Wise 1982), primary motor cortex (Roux et al. 2003), poste-
rior parietal cortex (Janssen and Shadlen 2005; Leon and Shadlen
2003), frontal eye field (Schall 2001), and striatum (Lee and
Assad 2003; Schultz and Romo 1988; Schultz et al. 1997).

Climbing activity may be related to various functions that
require temporal control. It has been suggested that monotonic
changes in neuronal activity during the task delays have a role
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in motor preparation (Romo and Schultz 1987; Weinrich and
Wise 1982), anticipation of instructing cues (Mauritz and Wise
1986), sensorimotor transformation (Crammond and Kalaska
1994), spatial attention (Lebedev and Wise 2001; Lebedev
et al. 2004), working memory (Fuster 2001; Goldman-Rakic
1995; Miller et al. 1996), motor timing (Niki and Watanabe
1979), anticipation of reward (Roesch and Olson 2005; Schultz
2006), and decision making (Kim and Shadlen 1999; Schall
2001; Sugrue et al. 2005). Recent studies in which monkeys
have been taught to discriminate durations of visual stimuli
indicate that climbing activity reflects time perception in a
context-dependent manner (Janssen and Shadlen 2005; Leon
and Shadlen 2003; Roux et al. 2003; Sakurai et al. 2004). In
addition, in reaction-time tasks, cortical neurons exhibit climb-
ing activity patterns, as well, with higher rates and rate of rise
leading to shorter reaction times (Dorris and Munoz 1998;
Hanes and Schall 1996; Kubota and Hamada 1979; Riehle and
Requin 1993; Roitman and Shadlen 2002). Recently, climbing
activity was reported in the avian prefrontal cortex using an
experimental paradigm in which pigeons performed either
reaction-time or delayed-response movements (Kalenscher
et al. 2006). The overall conclusion from these neurophysi-
ological studies is that neuronal modulations correlated with
behavioral timing are present in many brain areas of several
animal species and that these modulations do not encode
time as a single parameter but rather reflect many additional
variables, such as the properties of sensory stimuli, motor
variables, and behavioral context.

Thus experimental evidence points to a widely distributed
neuronal circuitry as the carrier of temporal computations in
the brain, which raises the need that this circuitry be studied
using neuronal ensemble recording methods. In this study, we
conducted simultaneous multielectrode recordings from multi-
ple cortical areas (Nicolelis et al. 2003) to test the hypothesis
that predictions of motor timing can be extracted from the
activity of large ensembles of cortical neurons recorded in
motor and premotor cortex in rhesus monkeys.

M E T H O D S

Electrode implants and neuronal recordings

All surgical and experimental procedures conformed to the Na-
tional Research Council’s Guide for the Care and Use of Laboratory
Animals (1996) and were approved by the Duke University Animal
Care and Use Committee. Two female rhesus macaques were im-
planted with multielectrode arrays in the arm representation of the
primary motor (M1) and dorsal premotor (PMd) cortices. Each elec-
trode array was composed of 32 electrodes (tungsten, 35 �m diam)
spaced in a square or circular area, 6 mm in diameter, with 1-mm
separation between the adjacent electrodes. Electrode tips were cut
obliquely at 45°, which made them sharp enough to penetrate the brain
without the need for pia removal.

The surgeries were conducted under gas anesthesia, in aseptic
conditions. To gain access to the cortical areas of interest, cranioto-
mies were made based on stereotaxic coordinates. Dura mater over-
lying the brain was removed, and the locations of cortical areas
targeted for the implantation were determined by visual inspection of
the exposed cortical sulci (central sulcus, arcuate sulcus, and superior
precentral dimple). Multielectrode arrays were slowly (�30 min/
array) inserted in the cortex at the depth of 1.5–2 mm. During the
insertion, we monitored the electrical activity of cortical cells re-
corded by the electrodes. Once the electrodes were inserted, the array

was glued to the skull with dental cement. Bone screws were inserted
in the skull to assure the firm attachment of the implant. After all the
arrays were implanted, the assembly of the implanted electrodes and
bone screws was secured with dental cement.

The location of cortical implants is shown in Fig. 1. One 32-
electrode array was implanted in the M1 of left hemisphere in monkey
1, and four 32-electrode arrays, one for each M1 and PMd, were
implanted in monkey 2 (left and right hemispheres). Neuronal wave-
forms were sorted and recorded using a multichannel acquisition
processor (Plexon, Dallas, TX). Although we often recorded from the
same neurons for several weeks, the recorded neuronal set was
generally variable from one recording session to another. Accord-
ingly, we recorded different number of neurons on different days. We
recorded on average from 94 � 6 (SD) neurons in the left M1 in
monkey 1 and from 103 � 4, 87 � 8, 55 � 6, and 72 � 8 neurons,
respectively, in the left M1, left PMd, right M1, and right PMd in
monkey 2.

Behavioral task

During each recording session, a monkey was seated in a primate
chair, which was equipped with a touch button mounted at the
animal’s waist level (Fig. 2A). The working arm was free, whereas the
other arm was restrained with velcro bands. The monkeys started each
trial by touching the button with the working hand. To correctly
execute the self-timing task, the monkey had to maintain contact with
the button for �2.5 s and �4.5 s and release the button. If the monkey
fulfilled this requirement, it received a fruit juice reward immediately
after the button release. Behavioral training in this self-timed task took
�1 mo for each monkey. During the training, it was initially required
that the monkey hold the button for a short period (0.2–0.5 s). Hold
time was gradually increased as training progressed. No external
stimuli other than reward delivery were used to inform the monkey
that it could touch or release the button.

For the final task with the hold requirement of 2.5–4.5 s, we
collected neuronal and behavioral data in 8 experimental sessions in
monkey 1 and in 14 sessions in monkey 2, during which the monkeys
performed the task with the right hand. Monkey 2 was also trained to
perform the task with the left hand. It was initially trained to perform
the task with the right hand. After the recordings were conducted in
this task, a 2-wk break ensued, after which the recordings resumed.
The recording sessions before and after this break were analyzed
separately because the recording quality of the left PMd array abruptly
deteriorated. Therefore for the after-break sessions, we analyzed the
M1 recordings only. During the after-break sessions, monkey 2
continued to perform the task with the right hand for 5 days (used
as a control), and then it was required to perform with the left hand.
During these sessions, the left arm was released from the restraint,
and the right arm was restrained instead. The monkey failed to
perform any trials with the left hand for 2 days, and then it started
to use the left hand. We recorded five sessions in which this
monkey worked with the left hand. During four of these recording
days, after the monkey had performed with the left arm, the right
arm was released, the left arm restrained, and the monkey resumed
the task with the right arm, while the same sample of cortical
neurons were recorded.

The duration of each recording session was 20 – 40 min. To
measure the activity of the monkey’s arm muscles, surface EMGs
were recorded from four to five muscles simultaneously: biceps,
triceps, wrist flexor and extensor muscle groups, and pectoralis
(Fig. 2B).

Predictions

To test our hypothesis that temporal parameters of motor behav-
ior—in particular those encoded before overt motor acts—can be
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predicted from cortical ensemble activity, we implemented a multiple
linear regression model (or Wiener filter; Haykin 2002) in the form

T�t� � b � �
���0.5s

0

w(�)n(t � �) � �(t) (1)

where n(t � �) is a vector of neuronal firing rates (1 rate measurement
per neuron) at absolute time t (e.g., time measured from the beginning
of the recording session) and time-lag � (negative lags correspond to
past events), T(t) is the estimated temporal interval (or, generally, any
other behavioral parameter) at time t, w(�) is a vector of weights for
each neuron at time-lag �, b is the y-intercept, and �(t) is the residual
error. Five time-lags preceding time t spaced at 100 ms were used for
predictions.

This prediction algorithm is shown in Fig. 3. Two intervals were
predicted: the interval that elapsed after the monkey pressed the
button, T1(t), and the interval until the upcoming button release, T2(t).
To predict these temporal variables, the linear model inspected the
neuronal ensemble activity during 0.5 s (i.e., �1/5 of the delay

duration) preceding the time of prediction, t, and computed the
prediction as a weighted sum of the neuronal rates measured within
that time window. The time window width was chosen empirically as
a trade off between the desire to make the prediction instantaneous
(i.e., derived from a short time window that characterizes current
activity of the neurons) and the need to make it accurate, which
required a reasonably sized sample. Shorter time windows produced
less accurate, but qualitatively very similar, results. Following the
Wiener filter algorithm (Haykin 2002), the time window was split into
bins (or tap points), and, accordingly, firing rates were expressed as
spike counts for these bins. The bins corresponded to five lags of Eq.
1. (Note that binning here refers to sampling of instantaneous rate and
not to firing rate averaged across trials and represented as a histo-
gram.) In Wiener filters, using several time points in the past improves
the predictions by taking into account input history. Specifically in our
case, predictions of temporal intervals were obtained based on the
estimation of both firing rate and its derivative (i.e., slope). The later
parameter was accounted for by the model that effectively compared

FIG. 1. Location of cortical implants in monkey 1 (top) and
monkey 2 (bottom). The drawings represent a view from the top
on the macaque cortex. Stereotaxic coordinates are indicated by
the grid. Cortical landmarks such as the central and arcuate
sulci were confirmed during the implantation surgery. Monkey
1 was implanted in the arm representation of the primary motor
cortex (M1) in the left hemisphere. Monkey 2 was implanted in
the arm representations of M1 and dorsal premotor cortex
(PMd) in both hemispheres. Each cortical array consisted of 32
microwires spaced at 1 mm.
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different time points within the window and assigned weights of different
signs to the rates measured at different lags, if such signal differentiation
improved the fitting. The number of bins was selected empirically, and
increasing or decreasing the number of bins did not change the results
qualitatively. To test if binning the time window improved the predic-
tions, we used a control in which the total spike counts within the window
were used for predictions instead of five separate bins. This control model
produced worse predictions than the model with binning (see RESULTS).

In addition to T1(t) and T2(t), the algorithm of Eq. 1 was used to
predict the state of button press as a binary variable that was equal to
1 when the monkey was pressing the button and equal to 0 when the
monkey was not pressing (Fig. 3, bottom). Again, the prediction was
derived from the 0.5-s window preceding the time of estimation. The
prediction of button state allowed us to gate the predictions of T1(t)
and T2(t), which were meaningless outside the hold period of the task.

To analyze the predictions statistically, each neuronal dataset was
divided into consecutive 5-min epochs, which were used for training
the model [i.e., calculation of the weights w(�)] and predicting. The
prediction epochs immediately followed the training epochs, and all
available tandems of these two epochs were analyzed for each record-
ing session. The same 5-min epoch was used for training in one
calculation and for predicting in the other with the exception of the
cases when that epoch started or terminated the record. Only the time
points within the delay interval were used for training the model to

predict T1(t) and T2(t). All time points were used to train the model
to predict the state of button press.

The models were trained and tested for prediction performance for
different neuronal subsets. In the simplest case, the model was
constructed for single neurons taken one at a time. In the other
calculations, we considered neuronal subsets that were either ran-
domly selected from the entire population or selected according to
their individual performance ranks. To characterize the accuracy of
fitting or predicting, we used correlation coefficient, R, for the corre-
lation between the actual and predicted (or fitted) parameters. R was
calculated for the record in question for actual and predicted values,
for example actual and predicted values of T1 for a 5-min record task
performance. This measure is most frequently used in the literature to
characterize the performance of neural decoding algorithms. In addi-
tion to R, we calculated root mean square difference between the
predicted and actual values, E. This measure was linearly related to R
(E � 1.25 � 0.97R; E measured in seconds, r2 � 0.78, P � 0.001)
and therefore gave very similar results.

The numbers of neurons recorded in different cortical areas was
unequal and variable from one recording session to the next. There-
fore to use a neuronal population of the same size in the comparison
of prediction accuracy across cortical areas and recording sessions, we
randomly selected subpopulations of 20 neurons for each area and
computed average R for these subpopulations. This method assured
that equal numbers of neurons were compared per area and provided
a sufficiently large number of statistical samples.

Climbing and descending activity

The neurons whose firing rate increased (Fig. 4, A–D) or decreased
(Fig. 4, E and F) during the self-timed delay period of the task were
of special significance for the predictions of temporal intervals. We
termed the first type neurons with climbing activity and the second
type neurons with descending activity. The neurons were classified as
belonging to the first or second type using a linear regression analysis
of firing rates (sampled using 50-ms binning) on the interval 2–0.25
s before movement onset. The neurons with statistically significant
modulations (P � 0.01, F-statistics for linear regression) were se-
lected. The sign of the rate change determined whether the rate was
climbing or descending and the slope magnitude (normalized by the
SD of firing rate) characterized modulation strength.

R E S U L T S

Neuronal modulations

A single-trial record of the discharges of four representative
neurons (Fig. 2B) shows that, during the self-timed delay
period, motor cortical neurons modulated their rates before the
EMG bursts associated with button release. Raster displays and
perievent time histograms (PETHs) for the same neurons are
shown in Fig. 4. Two neurons exhibited climbing patterns of
firing rate (Fig. 4, A–D), one had a descending rate (Fig. 4, E
and F), and one was modulated shortly before movement onset
but not during the delay (Fig. 4, G and H). Note that the smooth
modulations seen in the PETHs of Fig. 4 describe average
activity patterns. The patterns of neuronal spikes in individual
trials were much more irregular (Fig. 2; also see Okamoto et al.
2007).

In the rasters of neuronal activity shown in Fig. 4, a “rubber
band property” (Renoult et al. 2006) of neuronal modulations
is noticeable during the delay period: the modulation pattern in
the trial with long delays can be produced by “stretching” the
short-delay pattern like a rubber band. In the rasters, the trials
are sorted by delay duration, so the differences in modulations

FIG. 2. Self-timing task and example records of neuronal activity and arm
muscle EMGs. A: schematics of the timing task. The monkey pressed a touch
button with its hand and maintained the press for �2.5 s and �4.5 s to receive
a fruit juice reward. B: EMGs of 4 forearm muscles and discharge patterns of
4 representative neurons recorded during a behavioral trial (Figs. 4 and 5 show
average activity of the same neurons and muscles, respectively).
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for short and long delays can be inspected visually. It can be
seen that the modulations that occurred early in the delay line
up with the button press onset, the modulations later in the
delay line up with the button press offset, and the modulation
in between do not show any clear preferred alignment. For
example, the neuron depicted in Fig. 4, A and B, underwent a
sharp transition from zero firing rate to the rate of �17 spikes/s
once the monkey pressed the button. This rate was maintained
for �1.5 s, and then it started to grow. Although the alignment
of the modulations in the middle of the delay period is not clear
from the plot, the intense modulation �1 s before button
release is clearly aligned on the release onset. In addition, the
activity in this neuron abruptly shut down after the monkey
released the button. Thus this neuron’s modulations were
clearly aligned on the closest behavioral events (button press or
release), and the modulations in between these events showed
intermediate alignment as if they were placed on a rubber band.

Climbing and descending patterns of neuronal activity, char-
acterized by continuous modulations throughout the delay,
were different from the modulations of EMG activity in the
arm muscles, which primarily consisted of phasic bursts asso-
ciated with hand movements that the monkeys produced to
release the button and press it again (Fig. 5). These EMG bursts
started at the earliest �0.25 s before movement onset, contin-
ued while the monkeys’ hands were lifted from the button, and
subsided �0.5 ms after the monkeys pressed the button again.

During the performance with the right hand (i.e., the ses-
sions with the best quality neuronal recordings), neurons with
climbing and descending activity constituted 56% of the pop-
ulation recorded in the left (contralateral) hemisphere and 24%
of the ipsilateral population. Neurons with climbing activity

were more numerous than the ones with descending activity in
the areas contralateral to the working hand but not in the
ipsilateral areas where they were encountered in comparable
numbers. In left M1 of monkey 1, we recorded on average 39 �
12 neurons (mean � SD between daily recording sessions,
41%) with climbing activity and 10 � 4 (11%) neurons with
descending activity. In monkey 2, we recorded the following
number of climbing versus descending neurons: 59 � 11
(58%) versus 11 � 3 neurons (11%) in left M1, 30 � 10
(34%) versus 12 � 4 (14%) in left PMd, 6 � 4 (12%) versus
4 � 2 (6%) in right M1, and 6 � 4 (9%) versus 15 � 4
(21%) in right PMd.

Color-coded PETHs for the whole populations of neurons
recorded in different areas during a representative recording
session are shown in Fig. 6, A–E. In these plots, to facilitate
comparison between the neurons with different average
rates, firing rates were normalized by subtracting the mean
and dividing by SD (both calculated for the delay period).
The neurons were ranked according to the slopes of their
normalized rates: the neurons with strong climbing patterns
are shown on the top of the plot, the neurons with descend-
ing patterns on the bottom, and those unmodulated during
the delay in between (these subpopulations are marked with
color-coded bars to the right of the plots). The plots indicate
much stronger modulations in the areas contralateral to the
working hand (Fig. 6, A–C) compared with the ipsilateral
areas (Fig. 6, D and E) and the presence of rate modulations
throughout the self-timed delay in the majority of the
neurons. The plots clearly show that climbing or descending
patterns occurred in a substantial portion of the recorded
neurons. Generally, climbing patterns were characterized by

FIG. 3. Predicting temporal parameters from neuronal en-
semble activity. Predictions were obtained from a 0.5-s time
window that was subdivided into 5 bins. Spike counts from
these bins provided inputs to several linear models. The 1st
model predicted the time that elapsed from button press onset
(T1). The 2nd model predicted the time until the upcoming
button release (T2). The 3rd model predicted whether the button
was pressed or released.
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a steady rate increase from the beginning of the delay until
the end, with the maximum rate reached shortly before
movement onset. Movement-associated modulations in
these neurons were variable. The firing of some climbing
neurons sharply decreased when the monkey released the
button (Fig. 4B), whereas the others remained active (indi-
vidual traces in Fig. 6, A–C). Neurons with descending
rates, which were less numerous in contralateral areas,
monotonically decreased their rates until movement onset
and often increased their rates during button release (Fig.
4F). Overall, ensemble activity recorded in multiple brain
areas contained rich information about each fragment of the
delay period.

Delay-period modulations of the climbing and descending
type in different cortical areas are further detailed in the
average PETHs shown in Fig. 6, F–J. These plots confirm that
both climbing and descending modulations were the strongest
in the contralateral M1, less strong in the contralateral PMd,
and weakest in the ipsilateral areas.

Neuronal correlate of the variability in self-timed delays

Variability in neuronal rates has been linked to the variabil-
ity in the temporal parameters of behavioral performance
(Hanes and Schall 1996; Renoult et al. 2006; Roitman and
Shadlen 2002). The self-timed delays studied here exhibited
considerable variability from trial to trial, which gave us data
to examine the neuronal substrate of such variability. To
evaluate neuronal activity for different delays, we grouped the
delay durations into four ranges: 2–2.5, 2.5–3, 3–3.5, and
3.5–5 s (Fig. 7, A and B). Some of these trials (i.e., the ones
with the delays �2.5 or 	4.5 s) were not rewarded, which,
however, did not influence this analysis because the monkeys
did not have an advance knowledge of the reward. Population
PETHs (all recording sessions combined) were calculated sep-
arately for each range of delays, separately for each cortical
areas (Fig. 7, C–H). These average PETHs indicated clear
differences in activity of both climbing (Fig. 7, C, E, and G)
and descending (Fig. 7, D, F, and H) neurons for different

FIG. 4. Perievent time histograms (PETHs) and spike ras-
ters for the same 4 M1 neurons that are shown in Fig. 2. A, C,
E, and G correspond to the alignment of behavioral trials on
button press onset. Trials are sorted by the duration of button
press. Open circles in the rasters mark the time of button
release. (To avoid cluttering, every 3rd trial is marked.) B, D, F,
and H represent the same trials aligned on button release. Trials
are sorted the same way as in the panels on the left, and open
circles indicate the time of button press onset. Two neurons
increased their firing rates during the delay period (A–D), and 1
decreased its rate (E and F). These neurons were also modu-
lated shortly before and after the monkey released the button.
The 4th neuron was modulated mostly in association with
button release (G and H).
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self-timed delays. Long delays were associated with slowly
developing changes in firing rates, whereas short delays were
associated with rapid changes in firing rates (or steep slopes;
also note some differences in average rates initially during the
delay). Importantly, firing rates in both types of neurons
reached approximately the same value by the time of move-
ment initiation. We termed this value movement initiation
threshold. The slopes were evaluated individually for each
neuron using a linear regression for the interval 0.5–1.75 s
relative to button press onset. (This interval preceded button
release by �0.25 s even for the shortest delays.) Movement
initiation threshold was quantified as an average firing rate for
the interval 0.25–0.5 s before button release. These intervals
are shaded gray in Fig. 7, C–H, and the average values of these
individual neuron slopes and the thresholds are displayed in the
insets. ANOVA showed that the dependency of the slope on
delay duration was statistically significant, whereas the thresh-
olds were not statistically different for different delays. Aver-
age shifts of neuronal slopes with the delay duration were
common for the majority of climbing and descending neurons.
Thus the slopes were steeper for the 2- to 2.5-s delays com-
pared with 3.5- to 5-s delays in 75% of climbing neurons and
71% of descending neurons, indicating that the neurons
changed their slopes in a massively correlated manner. (De-
tailed analysis of neuronal correlations is beyond the scope of
this paper.) Moreover, the time of threshold crossing in indi-

vidual neurons was well correlated with movement initiation
time. This was shown using the analysis of Maimon and Assad
(2006), in which the time of threshold crossing was plotted
against the time of movement initiation measured from button
press onset (Fig. 8, B–G, left panels; movement initiation time
is matched to the time of threshold crossing by subtracting 375
ms). When the time of threshold crossing was regressed against
the time of movement initiation for individual cells, the distri-
bution of regression slopes was centered on 1.0 (Fig. 8, F and
G, right panels). Regression slopes less than 1.0 were related to
statistical variations in threshold crossing times in the neurons
with less noticeably changing firing rates (data not shown) and
did not represent a special class of neurons as in Maimon and
Assad (2006).

Notably, average firing rate traces for the movement period
were virtually identical for the trials with different delay durations
(Fig. 7; interval �0.25 to 0.25 s relative to button release). This
suggests that the variations in neuronal slopes during self-timing
and motor preparation were not translated into the modulations
associated with motor execution.

Thus the relationship between the firing patterns of the
climbing and descending neurons and the duration of self-
timed delays could be described as gradual increases or de-
creases in neuronal rates until they reach their movement
initiation thresholds. If the firing rates changed slowly, the
thresholds were crossed later, resulting in a late initiation of

FIG. 5. Average rectified EMGs in 2 monkeys from a rep-
resentative recording session. The EMGs were recorded from
several arm muscles (see labels on the plots) using surface
electrodes. The traces represent averages of full-wave rectified
EMGs centered on button press (left in each panel) and release
(right).
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movement. If the firing rates changed rapidly, the thresholds
were crossed sooner, resulting in an early movement onset.
This model of movement initiation is consistent with previous
work (Hanes and Schall 1996; Renoult et al. 2006; Roitman
and Shadlen 2002).

Ensemble predictions of temporal intervals

Climbing and descending modulation pattern (Fig. 6) in
which movement is initiated after the rate reaches movement
initiation threshold (Fig. 7) are well suited for decoding tem-
poral intervals. Ideally for a given threshold, two parameters,
firing rate and its slope, are sufficient for calculating the

intervals. If neuronal firing was free of noise, these parameters
could be derived from just two time points. However, in
reality, the neurons’ firing was noisy, and for better decoding
with the linear model, we used five time points per neurons and
combined many neurons to produce better predictions. The
model improved the predictions by accounting for the changes
in firing rate within the 0.5-s window. This was shown using a
control in which, instead of five bins, an average of the total
spike count within the window for each neuron was entered in
the model. The quality of predictions obtained using this
model, measured as R, was worse compared with the five bin
mode by 11% for the predictions of T1 and T2 and by 8% for

FIG. 6. Ensemble modulations during self-timed delays.
One recording session is shown. All neurons were recorded
simultaneously. The panels show rate modulations in the neu-
ronal populations recorded in 5 cortical areas: M1 in monkey 1
(A and F), and M1 and PMd recorded bilaterally in monkey 2
(B–E and G–J). Neuronal rates are centered on button release.
In A–E, each horizontal line represents trial-average normalized
firing rate for a neuron. Neurons are sorted by the delay-period
modulation strength (with the neurons that exhibited strong
climbing modulations shown on the top, and the ones that
exhibited strong descending patterns on the bottom). Firing
rates are color-coded (see key on bottom left). Neuronal rates
were clearly modulated in M1 and PMd contralateral to the
working hand. Ipsilateral M1 and PMd neurons were less
modulated. In F–J, neurons were grouped into subpopulations
with climbing, descending, and nonsignificant modulations (see
key on top), and average firing rates (in spikes/s) were calcu-
lated for each subpopulation. These population averages show
stronger modulations in the contralateral areas compared with
the ipsilateral areas.
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FIG. 7. Comparison of neuronal modulations for
short vs. long self-timed delays. All recording ses-
sions are combined. In both monkeys, the duration of
self-timed button presses was variable from trial to
trial. The trials were split into 4 groups that corre-
sponded to the following ranges of hold duration:
2–2.5 (green), 2.5–3 (blue), 3–3.5 (red), and 3.5–5 s
(black). Average firing rates were calculated sepa-
rately for each group (color-coded, key on top right).
Subpopulations of the neurons with climbing activity
(C, E, and G) and the neurons with descending
activity (D, F, and H) were analyzed separately.
Population averages are shown for M1 of monkey 1
(C and D) and M1 (E and F) and PMd (G and H) of
monkey 2, all in the left hemisphere, i.e., contralateral
to the working hand. Average rates are aligned on
button press onset (left) and button release (right). In
each subpopulation of neurons selected for this anal-
ysis, firing rate slopes (for the interval 0.5–1.75 s
after button press onset) and motor thresholds (for
the interval 0.25–0.5 s before button release) were
measured for each individual neuron. Averages of
these individual neuron slopes and their SE are dis-
played on the top left. The slopes were steeper in the
trials with shorter self-timed delays. Averages of
individual neuron thresholds and their SE are dis-
played on the top right. The thresholds were inde-
pendent of the duration of self-timed delays. Average
traces of movement-related modulations were also
independent of hold duration.
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the predictions of button state (P � 0.001, Wilcoxon signed-
rank test). Thus the prediction model effectively calculated the
neuronal slopes by assigning different weights to neuronal
rates measured at different delays relative to the current time.

An example of predictions of temporal parameters for seven
consecutive trials is shown in Fig. 9. Looking at neuronal ensem-
bles of 311 simultaneously recorded neurons neurons (M1 and

PMd recorded bilaterally) as a whole, one can notice that the
activity of individual neurons was noisy, but modulated during the
delays, especially in the hemisphere contralateral to the working
hand (Fig. 9A). This noise was averaged out in the predictions of
temporal intervals (Fig. 9B), which were composed of contribu-
tions from many neurons. Three parameters were predicted simul-
taneously (cf. Fig. 3): time from button press onset, T1, time until

FIG. 8. Analysis of threshold crossing time in individual neurons using the analysis of Maimon and Assad (2006). Behavioral trials were split into 4 groups
by button hold duration the same way as in Fig. 7, A and B. For each of these groups of trials, individual neuron PETHs were constructed. The PETHs were
centered on button release. Thresholds were calculated for the same interval as in Fig. 7 (0.25–0.5 s before button release) by grouping all trials together, and
threshold crossings were detected for each PETH (A). In B–G, left panels show average threshold crossing time plotted against the time of movement initiation
measured from button press onset and matched with threshold measurement time by subtracting 375 ms. Regression slopes for these plots are close to 1.0. Right
panels show distributions of regression slopes for individual cells. As in Fig. 7, subpopulations of the neurons with climbing activity (B, D, and F) and the neurons
with descending activity (C, E, and G) were analyzed separately. The results are shown for M1 of monkey 1 (B and C) and M1 (D and E) and PMd (F and G)
of monkey 2. These results show that the time of threshold crossing in individual neurons was in good correspondence with the time of movement initiation.
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button release, T2, and button state (1, button pressed; 0, button
released). It can be seen that the predictions (red traces) closely
follow the actual parameters (blue traces). The predictions of
button state decoded the monkey’s overt behavior, whereas the
predictions of temporal intervals uncovered covert temporal pro-
gramming. The prediction of button state was used to gate out the
predictions of temporal intervals outside the delay interval of the
task. Thus the three predicted variables reconstructed the mon-
key’s behavior in the self-timing task because they estimated for
each moment in time whether or not the monkey was pressing the
button and if it was pressing, how much time elapsed from the
press onset and how long the monkey was going to hold. These
estimations were derived from a relatively short 0.5-s time win-
dow. The model did not have have any memory of the firing rates
outside of that window.

The quality of predictions from each cortical area was in
agreement with the average population modulations shown in Fig.
6. When all neurons recorded in an area were incorporated in the
model, contralateral areas were the best source of predictions (R in
the range of 0.7–0.85), whereas the predictions obtained from the
ipsilateral areas (R of 0.15–0.25) were much less accurate (P �
0.001, Wilcoxon signed-rank test). The values of R for the
contralateral areas are similar to the ones previously reported for
predictions of kinematic parameters (Carmena et al. 2003; Leb-
edev et al. 2005; Wessberg et al. 2000) and EMGs (Morrow and
Miller 2003; Santucci et al. 2005; Westwick et al. 2006).

For neuronal ensembles of different size, predictions of tem-
poral parameters improved with an increase in ensemble size.
Figure 10 shows this dependency for the predictions of T2 for one
recording session. The results for T1 and the state of button press

FIG. 9. Neuronal ensemble activity and predictions of tem-
poral intervals. A: colorplot depicting activity of neuronal en-
semble of 311 neurons recorded in monkey 2 during the per-
formance of the self-timing task. The ensemble is comprised of
neuronal populations recorded bilaterally from M1 and PMd.
Seven consecutive trials are shown. Each horizontal line in the
colorplot corresponds to 1 neuron. Color coding depicts firing
rate normalized by SD (key, bottom). B: actual (blue) and
predicted (red) values task variables: time from button press
onset, T1 (top), time until button release, T2 (middle), and
button state (1, pressed; 0, released). Based on the predictions of
button state, the predictions of T1 and T2 are interrupted for the
period when the monkey was not pressing the button.
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were similar (data not shown). In the scatter plots shown in Fig.
10, A, C, E, and G, each data point represents the accuracy of
predictions for a randomly selected neuronal ensemble. Predic-
tions obtained from small ensembles were on average less accu-
rate and more variable from sample to sample. With the increase
of ensemble size, the predictions improved and were less variable
for different selections. The predictions by contralateral areas
(Fig. 10, A and C) clearly outperformed the predictions by ipsi-
lateral areas (Fig. 10, E and G). Although the predictions by small
ensembles were on average worse than the predictions by large
ensembles, the scatter plots of Fig. 10, A and C, indicate that
certain small ensembles (10–20 best tuned neurons) predicted
the temporal interval almost as well as the whole neuronal
population. This result is consistent with the previous reports
for kinematic (Sanchez et al. 2004) and EMG (Santucci et al.
2005; Westwick et al. 2006) data. As a measure of average
prediction performance of a cortical area, we chose average R
for 20 randomly selected neurons. This measure corresponded
to a variety of ensembles whose R was not saturated because of
the ensemble size.

Figure 10, B, D, F, and H, shows neuron-dropping curves
(Wessberg et al. 2000) that characterize the dependency of
prediction accuracy on the ensemble size for the ensembles
selected based on the degree of tuning of individual neurons.
The “best to worst curves” represent the selection in which the
neuron with the highest R of fit was selected first, then the next
to best neuron was added, and so on. Put differently, this curve
could be constructed starting with the whole population (right-
most point of the neuron-dropping curve), and dropping the
worst tuned neurons until the best tuned was left. Small
populations of neurons selected this way clearly showed the
top performance for all cortical areas analyzed. After a high
prediction level was reached, adding more neurons did not
substantially improve the predictions. If the neuronal subsets
were selected in the opposite way, starting with the worst
performers (worst to best curves), prediction accuracy im-
proved in a much more graded manner. Finally, the conven-
tional neuron dropping curve (Wessberg et al. 2000) for ran-
domly selected populations (i.e., the average of the scatter plots
shown in the left panels of Fig. 10) laid between the rank

FIG. 10. Neuron-dropping analysis of the predictions of
time until button release, T2. One recording session is shown.
A–G: accuracy of predictions by neuronal ensembles recorded
in several cortical areas in monkey 2 (PMd and M1 in the left
and right hemispheres, see labels) expressed as correlation
coefficients, R, plotted against ensemble size. Each point cor-
responds to a randomly selected ensemble. B–H: neuron drop-
ping curves for the same cortical areas. The curves were
calculated using 3 methods. Average curves represent average
R for randomly selected neuronal subpopulations of different
sizes. “Best to worst curves” were calculated by starting with
the best-tuned neuron, adding the 2nd ranked neuron, and so on
(or, starting from the whole population, dropping the worst,
then dropping the next to worst neuron, and so on). These
curves characterizes the performance of small ensembles of
highly tuned neurons. “Worst to best curves” were calculated
by starting with the worst tuned neurons (or dropping the best
tuned neurons 1st). They characterize the performance of en-
sembles of weekly tuned neurons.

177TIME DECODING FROM CORTICAL ACTIVITY

J Neurophysiol • VOL 99 • JANUARY 2008 • www.jn.org

 on M
arch 18, 2008 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


ordered curves. Thus the dropping curve analysis showed that
the predictions by small neuronal ensembles critically de-
pended on the presence of neurons with activity highly corre-
lated with the predicted parameter. With the increase of the
population size, this dependence was less critical because less
correlated neurons could be used for predictions if combined in
large numbers.

The neurons that were best predictors of one behavioral
parameter were not necessarily among the best predictors of a
different parameter. Namely, the subpopulations of neurons
best tuned to T1 and T2 were different from those best tuned to
the state of button press. Figure 11 shows PETHs from a
representative recording session for the neurons best predicting
T2 (left panels) and the neurons best predicting button state
(right panels). Ten top ranked neurons are depicted for each
category. These subpopulations have only one neuron in com-
mon. The neurons best predicting T2 exhibited climbing or
descending patterns during the delay, whereas movement-
related modulations were most pronounced in the patterns of
the neurons best predicting the state of button press. The
subpopulation of 10 neurons best predicting T1 was the same
as the population best predicting T2 (data not shown), with
slight differences in the individual ranks. This result suggests
that, although relatively small subpopulations of highly tuned
neurons can be used for predicting each individual behavioral
parameters, larger neuronal populations have to be used to
predict several parameters simultaneously.

The accuracy of prediction of T1 and T2 was different,
depending on the fragment of the delay interval that was used
to generate the predictions. Generally, the closer the behavioral
event measured by the interval, the better was the prediction
(i.e., short T1 and T2 were decoded better). This was shown by
two analyses. Both were conducted for randomly selected
subpopulations of 20 neurons. In the first analysis (Fig. 12,
A–F), we examined predictions of temporal intervals in behav-
ioral trials grouped by the duration of the self-timed delay (the
same ranges of delays as in Fig. 7). Average prediction traces
were close for T1 and T2 values �1.5–2 s but deviated for
longer interval values. For example, independently of how long
the monkey was going to continue pressing the button, the
model predicted well T1, for �1.5 s from the button press onset
(Fig. 12, A, C, and E). This would not be expected if the model
simply replicated average firing rates (Fig. 7), which had
different slopes depending on the delay duration. However, for
longer T1, the model underestimated this interval in the long-
delay trials, which did resemble the average firing rate traces
(Fig. 7). Similarly, for the predictions of T2 (Fig. 12, B, D, and
F), the model initially started with an assumption that T2
would be �2.5 s and corrected the prediction as the button
release approached. In the second analysis (Fig. 12, G and H),
prediction error E was measured as the function of T1 or T2.
The error increased for longer T1 or T2. Thus early in the delay
the linear model was most informative of T1 and later in the
delay it was most informative of T2.

FIG. 11. PETHs showing 10 simultaneously recorded
neurons top-ranked in predicting the time until button re-
lease, T2 (A), and in predicting the button state (B). The
PETHs are aligned on button release. The best predictors of
T2 (and T1, data not shown) exhibited climbing or descend-
ing activity patterns, whereas the best predictors of button
press had mostly movement-related modulations.
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As a control, we attempted to predict temporal intervals from
arm muscle EMGs using the same algorithm that predicted tem-
poral intervals from neuronal ensemble activity (Fig. 13). The
predictions obtained from the EMGs failed to reproduce the
linear time-course of T1 and T2. Instead, it settled to predicting
a constant value throughout most of the delay with the excep-
tion of the periods adjacent to the EMG bursts, during which
the 0.5-s window intersected these bursts. During these peri-
ods, the model did predict the time progression to some extent.

The changes in prediction accuracy with prolonged training
were subtle. Figure 14 depicts 8 daily recording sessions in
monkey 1 and 14 sessions in monkey 2. Statistically significant
trends (Wilcoxon signed-rank test) were discovered in three
cases. First, predictions slightly improved in M1 neurons
recorded in the hemisphere contralateral to the working hand in
monkey 2, while slightly decreasing for the M1 neurons re-
corded in the ipsilateral hemisphere (Fig. 14B). In addition,
prediction accuracy slightly decreased in the ipsilateral PMd

FIG. 12. Predictions of T1 and T2 for trials with different
durations of self-timed delays and for different fragments of the
delay interval. A–F: average predictions of T1 (A, C, and E) and
T2 (B, D, and F) for trials that fell into different ranges of button
press duraton (key on top right). A and B: traces for left M1 in
monkey 1. C and D: traces for left M1 in monkey 2. E and F:
traces for left PMd in monkey 2. The model well predicted short
(�2 s) T1 and T2. For longer T1 and T2, the model underesti-
mated these intervals for trials with longer delays. G and H:
prediction error for T1 (G) and T2 (H) as the function of interval
duration (T1 and T2, respectively). Similarly to A–F, prediction
error increased for longer intervals.
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(Fig. 14C). These changes, although small, indicated a ten-
dency for an enhancement of temporal interval representation
in the contralateral hemisphere and a decrease of representation
in the ipsilateral hemisphere. At the very least, the results of
Fig. 14, B and C, show a continued confinement of temporal
encoding to the contralateral hemisphere as long as the monkey
was trained to perform with the right hand.

Predictions after learning to perform with the left hand

Predominantly contralateral representation of temporal in-
tervals during self-timed hand movements could be simply
related to cortical involvement in motor aspects of the task as
opposed to putative generic temporal processing. Such strict
linkage to the motor aspects of the task was, however, ques-
tioned by the control experiment in which monkey 2 learned to
perform the same task with the left hand (Fig. 15). During the
execution of the task with one hand (right or left), the monkey
did not contract the muscles of the nonworking arm (Fig. 16).
Therefore if the cortical modulations were strictly motor, they
should have occurred predominantly in the contralateral hemi-
sphere. This was not the case for M1 neurons. (PMd neurons
were not analyzed because their recording quality deterio-
rated.) Indeed, on the third day of training with the left hand,
predominantly contralateral modulations were observed only
when the monkey performed with the overtrained right hand
(Fig. 15, A and D). When the monkey performed with the left
hand, M1 neurons in both hemispheres were modulated (Fig.
15, B and E). Average PETHs for the climbing neurons (Fig.

15, C and F) confirmed this result. The analysis of predictions
of temporal intervals during training to perform the task with
either hand (Fig. 15, G and H) indicated a trend for the
predictions by each hemisphere to converge with training with
both arms. These observations suggest that the overtrained left
hemisphere continued to exhibit a degree of control over the
task performance when the monkey performed the task with
the left hand instead of the overtrained right hand and that with
further training with both hands neural representation of the
self-timed movements became delateralized.

D I S C U S S I O N

Temporal encoding during self-timed behavior

The results of this study are in agreement with the vast
literature that showed modulations in cortical neurons related
to a range of functions that involve temporal processing:
anticipation of behavioral cues (Mauritz and Wise 1986) or
rewards (Roesch and Olson 2005; Schultz 2006), temporal
programming of movements (Niki and Watanabe 1979), motor
preparation (Romo and Schultz 1987; Weinrich and Wise
1982), mental estimation of temporal intervals (Janssen and
Shadlen 2005; Leon and Shadlen 2003; Roux et al. 2003; Sakurai
et al. 2004), memorial processing (Fuster 2001; Goldman-Rakic
1995; Miller et al. 1996), proactive timing (Maimon and Assad
2006), and decision making (Brody et al. 2003; Kim and
Shadlen 1999; Schall 2001; Sugrue et al. 2005). Our results
also agree with the EEG studies in human subjects that date

FIG. 13. Comparison of interval predictions obtained
from neuronal ensemble activity and EMGs. A and C:
predictions of T1 in monkey 1 (A) and monkey 2 (C). B and
D: predictions of T2 in monkey 1 (B) and monkey 2 (D).
Blue traces represent single-trial predictions from neuronal
ensemble activity. Red traces represent predictions from the
EMGs of arm muscles (the same records as in Fig. 5). Note
that the neural predictions follow the linear time course of
T1(t) and T2(t), whereas the predictions from the EMGs fail
to do so.
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back to the 1960s (Deecke et al. 1976; Kornhuber and Deecke
1964, 1965; Shibasaki and Hallett 2006). Using cortical en-
semble recordings that allowed us to record from several
hundreds of cortical neurons during each recording session, we
found that large proportions of M1 and PMd neurons (�55%
in the contralateral hemisphere and �15% in the ipsilateral
hemisphere) exhibited near-monotonic modulations during the
periods of immobility preceding self-timed hand movements.
In the contralateral hemisphere, the activity of such neurons
typically increased during the delay (45% of the total popula-
tion had climbing activity vs. 10% with descending activity),
whereas in the ipsilateral hemisphere, neurons with climbing
and descending activity were found in comparable numbers.

Using population recording methods, we also confirmed the
scaling property of temporal representation previously reported
for serially sampled single units. This property has been
described using a “rubber band” metaphor: during longer
behavioral delays, neuronal activity stretches along the tempo-
ral axis, whereas the pattern of modulations and their ampli-
tude remain virtually unchanged (Renoult et al. 2006). Such
scaling is observed in different brain regions of several animal
species in the experiments in which animals are trained on
different delays (Brody et al. 2003; Komura et al. 2001;
Renoult et al. 2006) or exhibit a considerable variability of
their behavioral delays (Kalenscher et al. 2006; Renoult et al.
2006). Another way to interpret temporally specific neuronal
modulations is to describe them as a gradual increase in firing
rate until peak firing rate is reached. This interpretation came
from the studies of reaction time movements (Hanes and Shall
1996; Roitman and Shadlen 2002), and one study provided
evidence that the threshold crossing mechanism may be uni-
versally true for both reaction time and delayed response
movements (Kalenscher et al. 2006). We compared neuronal
modulations during the short versus long delay trials and found

steeper rates of change in the former compared with the latter,
whereas movement initiation thresholds remained constant
(Fig. 7). This variable rate, constant threshold pattern was
observed in the neurons with both climbing and descending
activity, both in M1 and PMd, and the time of threshold
crossing was well correlated to the time of movement initia-
tion.

It should be noted, however, that the similarity in the
time-course of neuronal modulations in many neurons in M1
and PMd does not necessarily imply the same functional role.
Although informative for decoding temporal intervals, these
neurons in principle could be involved in a diverse range of
functions. Neuronal activity in M1 and PMd is most commonly
described as motor or motor preparatory (Weinrich and Wise
1982). Additionally, these areas have been shown to be in-
volved in programming behavioral goals independently of
motor patterns (Kakei et al. 1999; Shen and Alexander
1997a,b), selective visual attention (Lebedev and Wise 2001),
and cognitive processing (Carpenter et al. 1999). Importantly,
one study (Roux et al. 2003) concluded that M1 represents time
in a manner highly dependent on behavioral context. Thus
temporal information that we observed in M1 and PMd ensem-
bles was likely a component of complex, multiparametric
representations (Brody et al. 2003; Gold and Shadlen 2000)
that coexist in the motor cortical areas and the areas with which
they communicate.

It remains a matter of debate whether or not the brain has
specialized circuits for processing behavioral time (Buhusi and
Meck 2005). From the perspective of the theories of parallel,
distributed processing (Bullier and Nowak 1995; Buonomano
and Karmarkar 2002; Burr and Morrone 2006; Engel et al.
1997; Mesulam 1990; Mitchell et al. 1991; Nicolelis et al.
1995; Prut et al. 2001), representation of time, like represen-
tation of other parameters, does not have to be confined to any

FIG. 14. Predictions of temporal intervals (mean and SD of
R for randomly selected ensembles of 20 cells) for different
cortical areas in successive behavioral sessions. A: prediction
accuracy for M1 of monkey 1 for 8 recording sessions. Points
represent an average of R for T1 and T2. Bars represent SD.
B: R of prediction obtained from contraletaral and ipsilateral (see
key, top right) M1 in 14 recording sessions in monkey 2. C: R of
prediction for contraletaral and ipsilateral PMd in in monkey 2.
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particular area, and instead can be encoded by the combined
activity of large neuronal networks. We suggest that encoding
of time by distributed brain networks can be elucidated by
simultaneous recordings from many areas (cortex, striatum,
thalamus, each suggested to perform specific neuronal compu-
tations during temporal processing; Buhusi and Meck 2005)
combined with independent manipulations of temporal, spatial,
and motor parameters of behavioral tasks, and such recordings
seem to be feasible in light of these results.

Neuronal ensembles predict temporal parameters

Our study made two advances compared with the previous
work on temporal encoding in the cortex. First, we imple-
mented multielectrode, multiarea recordings, which allowed us
to record simultaneously from large cortical ensembles. Sec-
ond, we obtained single-trial predictions of temporal intervals
from the recorded cortical ensemble activity. This finding
extends previous demonstrations of predictions of behavioral
parameters from the activity of neuronal populations. Previous
studies predicted arm kinematics (Carmena et al. 2003; Leb-
edev et al. 2005; Serruya et al. 2002; Taylor et al. 2002;
Wessberg et al. 2000), hand gripping force (Carmena et al.
2003), and muscle activity (Morrow and Miller 2003; Santucci
et al. 2005; Westwick et al. 2006). In addition to parameters of

movements being executed, predictions were obtained for
motor parameters involved planned in advance (Musallam
et al. 2004; Quian Quiroga et al. 2006). Cognitive variables
have been decoded, as well. For example, remembered and
attended locations were decoded from the activity of prefron-
tal-cortex neurons (Lebedev et al. 2004). The significance of
this study is in decoding temporal intervals from neuronal
ensemble activity that occurs before overt motor behavior.

Decoding of behavioral parameters from neuronal activity
can be viewed as an ultimate test for any neurophysiological
hypothesis. Here, we obtained a rather complete decoding of a
relatively simple behavior that consisted of periodic, self-timed
button presses and releases. Three linear models running in
parallel decoded whether or not the monkey was pressing the
button, and if it was pressing, how long elapsed from the button
press onset and how soon the monkey was going to release the
button (Figs. 3 and 8). The latter two variables were not
manifested in covert motor behavior. The neurons with climb-
ing and descending activity were ideally suited for decoding
these covertly represented intervals, and the neurons with
movement-related modulations predicted the overt behavior.
Although there was not a clear separation between the neurons
predicting temporal intervals and those predicting the button
state, separate neuronal subpopulations were the best predic-
tors of each of these parameters (Fig. 11). Using large neuronal

FIG. 15. Neuronal modulations in differ-
ent hemispheres and predictions of temporal
intervals after monkey 2 started to perform
the self-timed task with the left hand. A–F:
modulations in left (A–C) and right M1
(D–F) on the 3rd day of training with the left
hand. A, B, D, and E depict color-coded
PETHs normalized by subtracting the mean
and dividing by the SD. As in Fig. 6, the
PETHs are by tuning strength (firing rate
slope). Tuning strength was measured during
the performance with the contralateral hand,
the same display arrangement was kept for the
performance with the ipsilateral hand. C and F:
average PETHs for the neurons that exhib-
ited climbing activity in at least 1 condition.
PETHs for the performance with the right
hand (black) and left hand (gray) are super-
imposed. G: predictions of temporal inter-
vals during the performance with the right
hand (average R for predictions of T1 and
T2; bars represent SD). Vertical dotted line
marks the day on which the monkey started
performing with the left hand. Open circles
correspond to the predictions obtained from
M1 in the left hemisphere; filled circles rep-
resent the predictions by M1 in the right
hemisphere. H: predictions of temporal in-
tervals by the left and right hemispheric M1
ensembles for the sessions in which the mon-
key worked with the left hand.
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samples for predictions was preferable for several reasons.
First, the larger the neuronal population, the more highly tuned
neurons it contained. Second, more neurons were needed to
predict several parameters simultaneously. Finally, even mod-
erately tuned cells served as good predictors when combined in
large numbers.

Temporal intervals were decoded reasonably well in the
individual trials with different duration of self-timed delays. As
shown by the comparison with the model without binning
within the observation window, our linear model used both the
neuronal rates and their slopes. At the same time, the model
had certain limitations in estimating the intervals related to
remote events. For example, predictions of the time until
button release were initially inaccurate and improved as the
button release approached (Fig. 12). Similarly, the prediction
of the time that elapsed from the button press onset became
inaccurate toward the end of the delay period. We suggest that
this property of predictions is inherent to neural encoding of
temporal parameters and is manifested behaviorally as Weber’s
law: the errors in timing are proportional to interval duration
(Staddon 2005). This dependency has been recently described
by a model of neural timing in which the variability in
behavioral timing is explained by statistical drifts of the climb-
ing activity (Reutimann et al. 2004). Such drifts are likely to
make neural activity less predictive of the past events and more
predictive of the approaching future events.

It is unclear at this point of our research how well the model
predictions of temporal intervals at different time points within
the delay reflected mental estimation of these intervals by the
monkey’s brain. For instance, the model had access to slope
information and could correct temporal predictions accord-
ingly, whereas the brain might not be able to detect slope
fluctuations, which eventually led to performance errors. This
question should be addressed in the future using experimental
designs in which a monkey reports its temporal judgment

midway through the delay. Additionally, the performance of
the model was limited by the 0.5-s observation window, which
may bear similarity with the brain’s limited ability to estimate
its previous states. This issue needs to be examined by further
experimental and modeling studies.

Given the commonality of neuronal modulations during task
delays, decoding of temporal intervals will likely become a
part of any algorithm that decodes overtly represented sensory,
motor, or cognitive parameters. For example, it has been
already suggested that computational models of working mem-
ory can be improved if they incorporate time dependencies
during the delay period (Brody et al. 2003; Rainer and Miller
2002). A similar conclusion has been made for temporal
evolution of decision formation and motor preparation (Gold
and Shadlen 2000).

Ipsilateral representation of temporal information

In this study, cortical areas contralateral to the working hand
provided the best predictions of temporal intervals as long as
the monkey learned to perform the task only with one hand.
However, after the monkey started to perform the task with the
opposite hand, the previously overtrained hemisphere contin-
ued to exhibit neuronal modulations and contribute to temporal
predictions, although it was ipsilateral to the working hand.
With continued training with both hands, there was a tendency
for the temporal representation to become delataralized. This
result is consistent with neurophysiological studies in monkeys
that showed involvement of ipsilateral PMd and M1 in motor
preparation and execution (Cisek et al. 2003; Donchin et al.
1998; Hoshi and Tanji 2000; Kazennikov et al. 1999; Lecas
et al. 1986; Steinberg et al. 2002; Tanji et al. 1988). Activation
of ipsilateral primary and secondary motor areas during prox-
imal movements in humans was shown using functional MRI
(Nirkko et al. 2001). Moreover, transcranial magnetic stimu-

FIG. 16. Average EMGs of 6 muscles recorded in monkey 2
during the performance with either right or left arm (the same
sessions as shown in Fig. 12, A–F). The traces represent
averages of full-wave rectified EMGs centered on movement
onset. A–C: EMGs of the right-arm muscles. D–F: EMGs of the
left-arm muscles. Only the muscles of the working arm were
activated during the task performance.
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lation of the ipsilateral M1 altered the timing of muscle
recruitment in a reaching task (Davare et al. 2007).

The transformation, from the initial predominantly contralat-
eral representation of timing intervals in M1 and PMd to a
bilateral representation after learning with both hands, can be
explained by several mechanisms of cortical plasticity. For
example, assuming there is such an entity as the general
controller of timing behavior that governs climbing activity in
M1 and PMd, the emerging bilateral representation could
reflect the strengthening of the projections from the controller
to the ipsilateral M1 and PMd. Alternatively, without evoking
the notion of the specialized neuronal timer, the network
representing time in a distributed way could grow to accom-
modate the ability to perform the same timing task with both
hands. In the process of such expansion, interconnections
between the areas involved were likely strengthened and the
system as a whole started to take advantage of the new
representations (e.g., started to use ipsilateral modulations).

In humans, bilateral modulations of cortical activity in
self-timed tasks were first shown in the 1960s as slow EEG
potential, termed Bereitschaftspotential, starting over precen-
tral and parietal areas as early as 2 s before EMG onset
(Deecke et al. 1976; Kornhuber and Deecke 1964, 1965;
Shibasaki and Hallett 2006). Currently it is believed that this
bilateral Bereitschaftspotential originates in the supplementary
motor area, followed by the lateral premotor cortex (Ikeda et al.
1992; Yazawa et al. 2000). Contralateral potentials developed
in M1 and lateral premotor cortex �0.4 s before EMG onset.
In the �-frequency band (10–15 Hz), event-related desyncroni-
zation (ERD) started bilaterally in sensorimotor areas �2 s
before the onset of self-paced movements (Nagamine et al.
1996). In the 	-range (16–24 Hz), ERD started in the left
hemisphere and later develops in the right hemisphere before
right hand movements in right-handed movements (Bai et al.
2005). However, when these subjects performed movements of
their left hands, 	-range ERD is bilateral. Thus bilateral acti-
vations are common in human subjects self timing their move-
ments. It can be speculated that bilateral representation of
self-timed processes in humans is related to their higher-order
conceptualization of temporal programming different from
merely preparing an isolated movement. The monkeys studied
in our experiments unlikely conceptualized their timing behav-
ior similarly to humans, but likely developed a more generic
representation of the task when trained with both hands.

Timing-based brain–machine interface

Reconstruction of temporal parameters of movements can be
of practical significance for the design of brain machine inter-
faces (BMIs) that may 1 day drive a new generation of
neuroprosthetic devices for restoring motor functions in se-
verely disabled patients. Many of the BMIs developed so far
(Carmena et al. 2003; Lebedev et al. 2005; Serruya et al. 2002;
Taylor et al. 2002; Wessberg et al. 2000) implement continu-
ous control of an artificial actuator or a computer cursor by
cortical activity. However, continuous movements constitute
only a part of the rich repertoire of human motor behavior.
Movement sequences are often discontinuous. In such se-
quences, periods of movements are intermingled with the periods
of stationary posture during which attention may be shifted to
other tasks. Continuously controlled BMIs require that the user

constantly focus attention on maintaining the actuator in a station-
ary position, which is a difficult task for such BMIs. Indeed,
neuronal modulations occur even in the absence of movements,
which causes instability in the actuator. Human users of a
neuroprosthetic device will benefit from the ability to produce
discontinuous motor patterns with stable no-motion periods.
Therefore we envision future BMIs as versatile systems that
use a highly flexible multiparameter algorithm. Such an algo-
rithm would, for example, stop the actuator movements after
recognizing a delay-period pattern in the activity of the re-
corded neuronal ensemble. Furthermore, this algorithm would
decode temporal judgments made by the subject and prepare
the actuator for the upcoming movement. Such decoding of
timing information can significantly improve the control of a
BMI, effectively splitting it into the epochs during which
movements are executed and stationary epochs during which
movements are prepared and timed.

We propose that delay-period activity be used for recon-
struction of temporal motor plans during the operation of a
BMI. This complements the idea of extracting information on
the prepared movement direction during delay periods of
reaching tasks (Musallam et al. 2004). Given the experimental
evidence that temporal information is integrated with the rep-
resentation of other types of information in the activity of
cortical neurons (Brody et al. 2003; Gold and Shadlen 2000),
we suggest that BMIs will benefit from simultaneous decoding
of motor parameters, such as movement direction, and timing
of the upcoming movement onset. Such a BMI, in principle,
can operate without any continuous control of movements
because, once the target and movement initiation time are
determined, the actuator controller could perform the move-
ment autonomously. Such a mode of operation is similar to the
shared BMI control mode that we previously proposed (Kim
et al. 2006). In the shared-control mode, the signals extracted
from the brain are used to produce generic commands to the
actuator (e.g., where to reach, which object to grasp, when to
initiate movement), whereas the actuator controller supervises
low-level operations, such as applying appropriate forces and
stabilizing the actuator’s operation in different dynamic environ-
ments.

The observation of delateralization of cortical representation
of temporal intervals during task generalization to both hands
is also important for the BMI design because it shows that
information on motor planning can be decoded from the cortical
areas ipsilateral to the working limb. Such delateralization can be
important in cases of brain lesions in which the BMI has to be
controlled from an area normally less involved in the function that
is being restored. This idea is also consistent with parallel, dis-
tributed processing in which relevant information can be extracted
from nearly any part of the distributed network.
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