
WT cells. Finally, we cotransfected SUM149PT
cells with constructs encoding both FBXW7 and
HA-ubiquitin, and found that ubiquitination of
mTORwas restored by exogenousFBXW7 expres-
sion (Fig. 2E). Thus, ubiquitination of mTOR is
largely, if not exclusively, mediated by binding
to FBXW7.

As FBXW7 and PTEN both affect signaling
through mTOR, we examined the genetic status
of both genes in a panel of 53 breast cancer cell
lines (11). Quantitative TaqMan real-time polym-
erase chain reaction (PCR) assays of the num-
ber of copies of FBXW7 and PTEN genes in each
of the cell lines were in good concordance with
data found by bacterial artificial chromosome
(BAC) comparative genomic hybridization (CGH)
microarray (see table S1). Most of the breast can-
cer cell lines that exhibited loss of a single copy of
FBXW7 (23 out of 53, Fig. 3A) did not show cor-
responding loss of PTEN. In contrast, of the 14
lines that showed loss of a single copy of PTEN
(Fig. 3A), only one had also lost a copy ofFBXW7,
which suggested that FBXW7 and PTEN show
some functional redundancy in tumor develop-
ment. Similar results were obtained by examina-
tion of the copy number status of genomic regions
containing FBXW7 and PTEN genes in three in-
dependent human primary breast cancer sets for
which BACCGHmicroarray data were available
(12–14). From a total of 450 tumor and cell line
DNA samples shown in Fig. 3, A to D, only 4
had lost a copies of the regions containing both
genes, a result that is unlikely to be a consequence
of random genetic alterations (P = 4.9 × 10−7).

We also considered the possibility that other
somatic changes such as point mutations or gene-
silencing events could affect the results. TheFBXW7
gene continued to be expressed in all 25 breast
cancer cell lines examined (fig. S8), which in-
dicated that no gene silencing had occurred, al-
though very low levels were found in five cell
lines [lanes 10, 13, 14, 16, and 20 (fig. S8)]. All
of these lines had lost one copy of the FBXW7
gene except one (SUM149PT, lane 16), in which
a point mutation was detected (table S1). The
PTEN gene was found to be silent in two cell
lines (fig. S8, lanes 11 and 12), and both had lost
one copy of the PTEN gene. Three mutations in
PTEN were found (fig. S8 and table S1). Thus,
gene silencing (for example, by promoter meth-
ylation) or point mutations in FBXW7 and PTEN
are relatively rare mechanisms of inactivation of
these genes, in comparison with single-copy dele-
tions. These data are further compatible with the
identification of both genes as haplo-insufficient
tumor suppressors (3, 15, 16).

Because deletion or mutation of FBXW7 in
human breast cancer cells leads to increased levels
of mTOR, we tested the possibility that cells har-
boring these deletions may show increased sensi-
tivity to themTOR inhibitor rapamycin.We treated
twobreast cancer cell lines,SUM149PTcells (homo-
zygous FBXW7 mutations) and MDA-MB453
cells (wild-type FBXW7) with rapamycin and
counted numbers of viable cells. SUM149PTcells

proved to be very sensitive to this treatment [median
inhibitory concentration (IC50) < 200 nM], where-
as MDA-MB453 cells were relatively resistant
(IC50 > 2 mM) (Fig. 4A). In nude mouse xeno-
grafts, groups of fivemice were injected with both
cell lines, one on each flank, and were treated by
intraperitoneal injection with rapamycin over an
11-day period. The SUM149PT cells showed a
relative decrease in size followed by stable tumor
growth, whereas the MDA-MB453 cells were
relatively unaffected by treatment (Fig. 4B).

An additional set of 10 breast cancer cell lines
was treated with rapamycin at concentrations of
200 and 400 nM. Cells with deletion or mutation
of FBXW7 (HBL100, 600MPE, SUM149PT,
HCC3153, and HCC1143) or PTEN (HCC1937
and HCC3153) showed significant sensitivity to
killing by rapamycin, although the magnitude of
the effect varied (17) (Fig. 4C). To establish a
direct link between loss of FBXW7 and rapamy-
cin sensitivity, we down-regulated expression lev-
els of FBXW7 using short hairpin RNA (shRNA)
(18) in the rapamycin-resistantMDA-MB453 cells,
which resulted in an increase in sensitivity to this
drug [IC50< 0.8mM (Fig. 4D)].

Our findings implicate FBXW7 in an evolu-
tionarily conserved pathway that controls regu-
lation of mTOR protein levels. Because FBXW7
is a haploinsufficient tumor suppressor that under-
goes heterozygous loss in a substantial proportion
of human tumors, the data suggest new approaches
to reducemTOR levels in cancers by the use of drugs
thatmay reactivate the remaining copy of FBXW7
in a similarway that nutlins (small-moleculeMDM2-
antagonists) have been shown to activate wild-type
copiesof p53 inhuman tumors (19).LossofFBXW7
may also be a useful biomarker for sensitivity of
human tumors to inhibitors of themTORpathway.
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Unsupervised Natural Experience
Rapidly Alters Invariant Object
Representation in Visual Cortex
Nuo Li and James J. DiCarlo*

Object recognition is challenging because each object produces myriad retinal images. Responses
of neurons from the inferior temporal cortex (IT) are selective to different objects, yet tolerant
(“invariant”) to changes in object position, scale, and pose. How does the brain construct this
neuronal tolerance? We report a form of neuronal learning that suggests the underlying solution.
Targeted alteration of the natural temporal contiguity of visual experience caused specific changes
in IT position tolerance. This unsupervised temporal slowness learning (UTL) was substantial,
increased with experience, and was significant in single IT neurons after just 1 hour. Together with
previous theoretical work and human object perception experiments, we speculate that UTL may
reflect the mechanism by which the visual stream builds and maintains tolerant object
representations.

When presented with a visual image,
primates can rapidly (<200 ms) rec-
ognize objects despite large variations

in object position, scale, and pose (1, 2). This

ability likely derives from the responses of neu-
rons at high levels of the primate ventral visual
stream (3–5). But how are these powerful
“invariant” neuronal object representations built
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by the visual system? On the basis of theoretical
(6–11) and behavioral (12, 13) work, one pos-
sibility is that tolerance (“invariance”) is learned
from the temporal contiguity of object features
during natural visual experience, potentially in an
unsupervisedmanner. Specifically, during natural
visual experience, objects tend to remain present
for seconds or longer, while object motion or
viewer motion (e.g., eye movements) tends to
cause rapid changes in the retinal image cast by
each object over shorter time intervals (hundreds
of ms). The ventral visual stream could construct
a tolerant object representation by taking advan-
tage of this natural tendency for temporally con-
tiguous retinal images to belong to the same
object. If this hypothesis is correct, it might be
possible to uncover a neuronal signature of the
underlying learning by using targeted alteration
of those spatiotemporal statistics (12, 13).

To look for such a signature, we focused on
position tolerance. If two objects consistently
swapped identity across temporally contiguous
changes in retinal position then, after sufficient
experience in this “altered” visual world, the
visual system might incorrectly associate the
neural representations of those objects viewed at
different positions into a single object representa-
tion (12, 13). We focused on the top level of the
primate ventral visual stream, the inferior tempo-
ral cortex (IT), where many individual neurons

possess position tolerance—they respond prefer-
entially to different objects, and that selectivity is
largely maintained across changes in object ret-
inal position, even when images are simply pre-
sented to a fixating animal (14, 15).

We tested a strong, “online” form of the tem-
poral contiguity hypothesis—two monkeys visu-
ally explored an altered visual world (Fig. 1A,
“Exposure phase”), and we paused every ~15
min to test each IT neuron for any change in
position tolerance produced by that altered ex-
perience (Fig. 1A, “Test phase”). We concen-
trated on each neuron’s responses to two objects
that elicited strong (object “P”, preferred) and
moderate (object “N”, nonpreferred) responses,
and we tested the position tolerance of that object
selectivity by briefly presenting each object at 3°
above, below, or at the center of gaze (16) (fig.
S1). All neuronal data reported in this study were
obtained in these test phases: animal tasks un-
related to the test stimuli; no attentional cueing;
and completely randomized, brief presentations
of test stimuli (16). We alternated between these
two phases (test phase ~5 min; exposure phase
~15 min) until neuronal isolation was lost.

To create the altered visual world (“Exposure
phase” in Fig. 1A), each monkey freely viewed
the video monitor on which isolated objects
appeared intermittently, and its only task was to
freely look at each object. This exposure “task” is
a natural, automatic primate behavior in that it
requires no training. However, by means of real-
time eye-tracking (17), the images that played out
on the monkey’s retina during exploration of this
world were under precise experimental control
(16). The objects were placed on the video

monitor so as to (initially) cast their image at
one of two possible retinal positions (+3° or −3°).
One of these retinal positions was pre-chosen for
targeted alteration in visual experience (the
“swap” position; counterbalanced across neu-
rons) (Fig. 1B) (16); the other position acted as a
control (the “non-swap” position). The monkey
quickly saccaded to each object (mean: 108 ms
after object appearance), which rapidly brought
the object image to the center of its retina (mean
saccade duration 23 ms). When the object had
appeared at the non-swap position, its identity
remained stable as the monkey saccaded to it,
typical of real-world visual experience (“Normal
exposure”, Fig. 1A) (16). However, when the
object had appeared at the swap position, it was
always replaced by the other object (e.g., P→N)
as the monkey saccaded to it (Fig. 1A, “Swap
exposure”). This experience manipulation took
advantage of the fact that primates are effectively
blind during the brief time it takes to complete a
saccade (18). It consistently made the image of
one object at a peripheral retinal position (swap
position) temporally contiguous with the retinal
image of the other object at the center of the
retina (Fig. 1).

We recorded from 101 IT neurons while the
monkeys were exposed to this altered visual
world (isolation held for at least two test phases;
n = 50 in monkey 1; 51 in monkey 2). For each
neuron, wemeasured its object selectivity at each
position as the difference in response to the two
objects (P − N; all key effects were also found
with a contrast index of selectivity) (fig. S6). We
found that, at the swap position, IT neurons (on
average) decreased their initial object selectivity

McGovern Institute for Brain Research and Department of
Brain and Cognitive Sciences, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA.

*To whom correspondence should be addressed. E-mail:
dicarlo@mit.edu

Fig. 1. Experimental
design and predictions.
(A) IT responses were
tested in “Test phase”
(green boxes, see text),
which alternated with
“Exposure phase.” Each
exposure phase con-
sisted of 100 normal
exposures (50 P→P, 50
N→N) and 100 swap
exposures (50 P→N, 50
N→P). Stimulus size was
1.5° (16). (B) Each box
shows the exposure-
phase design for a sin-
gle neuron. Arrows show
the saccade-induced tem-
poral contiguity of reti-
nal images (arrowheads
point to the retinal im-
ages occurring later in
time, i.e., at the end of
the saccade). The swap
position was strictly alternated (neuron-by-neuron) so that it was counter-
balanced across neurons. (C) Prediction for responses collected in the test phase:
If the visual system builds tolerance using temporal contiguity (here driven by
saccades), the swap exposure should cause incorrect grouping of two different

object images (here P and N). Thus, the predicted effect is a decrease in object
selectivity at the swap position that increases with increasing exposure (in the
limit, reversing object preference), and little or no change in object selectivity at
the non-swap position.
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for P over N, and this change in object selectivity
grew monotonically stronger with increasing
numbers of swap exposure trials (Fig. 2, A and
C). However, the same IT neurons showed (Fig.
2A) no average change in their object selectivity
at the equally eccentric control position (non-
swap position), and little change in their object
selectivity among two other (nonexposed) con-
trol objects (see below).

Because each IT neuron was tested for dif-
ferent amounts of exposure time, we first com-
puted a net object selectivity change, ∆(P −N), in
the IT population by using the first and last
available test phase data for each neuron. The
prediction was that ∆(P − N) should be negative
(i.e., in the direction of object preference rever-
sal), and greatest at the swap position (Fig. 1C).
This prediction was borne out (Fig. 3A). The
position specificity of the experience-induced
changes in object selectivity was confirmed by
two different statistical approaches: (i) a direct
comparison of ∆(P − N) between the swap and
non-swap position (n = 101; P = 0.005, one-
tailed paired t test); (ii) a significant interaction
between position and exposure—that is, object
selectivity decreased at the swap position with
increasing amounts of exposure [P = 0.009 by
one-tailed bootstrap; P = 0.007 by one-tailed
permutation test; tests were done on (P − N)].

The changes in object selectivity at the swap
position were also largely shape-specific. For 88
of the 101 neurons, we monitored the neuron’s
selectivity among two control objects not shown
to the animals during the exposure phase (chosen
similar to the way in which the P and N objects
were selected, fully interleaved testing in each
test phase) (16). Across the IT population, control
object selectivity at the swap position did not
significantly change (Fig. 2A), and the swap
object selectivity changed significantlymore than
the control object selectivity (Fig. 3B) (n = 88,
P = 0.009, one-tailed paired t test of swap versus
control objects at the swap position).

These changes in object selectivity were sub-
stantial (average change of ~5 spikes/s per 400
exposures at the swap position) (Figs. 2C and
3C) and were readily apparent and highly sig-
nificant at the population level. In the face of
well-known Poisson spiking variability (19, 20),
these effects were only weakly visible in most
single IT neurons recorded for short durations,
but were much more apparent over the maximal
1-hour exposure time that we could hold neurons
in isolation (Fig. 2C, lower panels). To determine
if the object selectivity changes continued to
grow even larger with longer periods of expo-
sure, we next recordedmulti-unit activity (MUA)
in one animal (monkey 2), which allowed us to
record from a number of (nonisolated) neurons
around the electrode tip (which all tend to have
similar selectivity) (21, 22) while the monkey
was exposed to the altered visual world for the
entire experiment (~2 hours) (16). The MUA
data replicated the single-unit results—a change
in object selectivity only at the swap position

(Fig. 2C) (“position × exposure” interaction: P =
0.03, one-tailed bootstrap; P = 0.014, one-tailed
permutation test; n = 10). Furthermore, the MUA
object selectivity change at the swap position
continued to increase as the animal received
even more exposure to the altered visual world,
followed a very similar time course in the rate
of object selectivity change (~5 spikes/s per
400 exposures) (Fig. 3C), and even showed a

slight reversal in object selectivity (N > P in
Fig. 4D).

Our main results were similar in magnitude
(Fig. 3, A and B) and statistically significant in
each of the two monkeys (monkey 1: P = 0.019;
monkey 2: P = 0.0192; one-tailed t test). Each
monkey performed a different task during the test
phase (16), suggesting that these neuronal
changes are not task dependent.

Fig. 2. Change in the population object selectivity. (A) Mean population object selectivity at the swap
and (equally eccentric) non-swap position, and for control objects at the swap position. Each row of
plots shows effect among all neurons held for at least the indicated amount of exposure (e.g., top row
shows all neurons held for more than 100 swap exposures—including the neurons from the lower
rows). The object selectivity for each neuron was the difference in its response to object P and N. To
avoid any bias in this estimate, for each neuron we defined the labels “P” (preferred) and “N” by
using a portion of the pre-exposure data (10 repetitions) to determine these labels, and the reminder
to compute the displayed results in all analyses using these labels. Though there was, by chance,
slightly greater initial selectivity at the swap position, this cannot explain the position specificity of
the observed change in selectivity (table S2). (B) Mean population object selectivity of 10 multi-unit
sites. Error bars (A and B) are SEMs. (C) Histograms of the object selectivity change at the swap
position, ∆(P − N) = (P − N)post-exposure − (P − N) pre-exposure. The arrows indicate the means of the
distributions. The mean ∆(P − N) at the non-swap position was −0.01, −0.5, −0.9, and −0.9 spikes/s,
respectively. The variability around that mean (i.e., distribution along the x axis) is commensurate
with repeated measurements in the face of known Poisson spiking variability (fig. S11). (D) Object
selectivity changes at the multi-unit sites. The mean ∆(P − N) at the non-swap position was 1.6
spikes/s.

12 SEPTEMBER 2008 VOL 321 SCIENCE www.sciencemag.org1504

REPORTS

 o
n 

Se
pt

em
be

r 2
2,

 2
01

0 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 

http://www.sciencemag.org


Because we selected the objects P and N so
that they both tended to drive the neuron (16), the
population distribution of selectivity for P and N
at each position was very broad [95% range:
(−5.7 to 31.0 spikes/s) pooled across position; n =
101]. However, our main prediction assumes that
the IT neurons were initially object-selective (i.e.,
the response to object P was greater than to object
N). Consistent with this, neurons in our popula-
tion with no initial object selectivity at the center
of gaze showed little average change in object
selectivity at the swap position with exposure
(fig. S5). To test the learning effect in the most
selective IT neurons, we selected the neurons
with significant object selectivity [n = 52 of
101 neurons; two-way analysis of variance
(2 objects × 3 positions), P < 0.05, significant
main object effect or interaction]. Among this
smaller number of object-selective neurons, the
learning effect remained highly significant and
still specific to the swap position (P = 0.002 by
t test; P = 0.009 by bootstrap; P = 0.004 by
permutation test).

To further characterize the response changes
to individual objects, we closely examined the
selective neurons held for at least 300 exposures
(n = 28 of 52 neurons) and the multi-unit sites (n =
10). For each neuron and site, we used linear
regression to measure any trend in response to
each object as a function of exposure time (Fig.
4A). Changes in response to P and N at the swap
position were apparent in a fraction of single
neurons and sites (Fig. 4A), and statistically
significant object selectivity change was
encountered in 12 of 38 (32%) instances (Fig.
4C) (16). Across our neuronal population, the
change in object selectivity at the swap position
was due to both a decreased response to object P
and an increased response to object N (approx-

imately equal change) (Fig. 4B). These response
changes were highly visible in the single-units
and multi-units held for the longest exposure
times (Fig. 4D).

These changes in the position profile of IT
object selectivity (i.e., position tolerance) cannot
be explained by changes in attention or by adapta-
tion (fig. S10). First, a simple fatigue-adaptation
model cannot explain the position specificity of
the changes because, during the recording of each
neuron, each object was experienced equally
often at the swap and non-swap positions (also
see additional control in table S2). Second, we
measured these object selectivity changes with
briefly presented, fully randomized stimuli while
the monkeys performed tasks unrelated to the
stimuli (16), which argues against an attentional
account. Third, both of these explanations predict
response decrease to all objects at the swap
position, yet we found that the change in object
selectivity at the swap position was due to an
increase in response to object N (+2.3 spikes/s
per 400 swap exposures) as well as a decrease
in response to object P (−3.0 spikes/s per 400
swap exposures) (Fig. 4). Fourth, neither pos-
sibility can explain the shape specificity of the
changes.

We term this effect “unsupervised temporal
slowness learning” (UTL), because the selectiv-
ity changes depend on the temporal contiguity
of object images on the retina and are consistent
with the hypothesis that the natural stability
(slowness) of object identity instructs the learn-
ing without external supervision (6–11). Our
current data as well as previous human object
perception experiments (12) cannot rule out the
possibility that the brain’s saccade-generation
mechanisms or the associated attentional mech-
anisms (23, 24) may also be needed. Indeed, eye-

movement signals are present in the ventral
stream (25, 26). The relatively fast time scale
and unsupervised nature of UTLmay allow rapid
advances in answering these questions, system-
atically characterizing the spatiotemporal sen-
sory statistics that drive it, and understanding
if and how it extends to other types of image
tolerance (e.g., changes in object scale, pose)
(27, 28).

IT neurons “learn” to give similar responses
to different visual shapes (“paired associates”)
when reward is used to explicitly teach monkeys
to associate those shapes over long time scales [1
to 5 s between images; see, e.g., (29, 30)], but
sometimes without explicit instruction (31, 32).
A top-down explanation of the neuronal selec-
tivity changes in our study is unlikely because
animals performed tasks that were unrelated to
the object images when the selectivity was
probed, and the selectivity changes were present
in the earliest part of the IT responses (~100 ms;
fig S4). But UTL could be an instance of the
same plasticity mechanisms that underlie “paired
associate” learning; here, the “associations” are
between object images at different retinal
positions (which, in the real world, are typically
images of the same object). However, UTL may
be qualitatively different because (i) the learning
is retinal position-specific; (ii) it operates over the
much shorter time scales of natural visual
exploration (~200ms); and (iii) it is unsupervised
in that, besides the visual world, no external
“teacher”was used to direct the learning (e.g., no
association-contingent reward was used, but we
do not rule out the role of internal “teachers” such
as efferent eye-movement signals). These distinc-
tions are important because we naturally receive
orders-of-magnitude more such experience (e.g.,
~108 unsupervised temporal-contiguity saccadic
“experiences” per year of life).

Our results show that targeted alteration of
natural, unsupervised visual experience changes
the position tolerance of IT neurons as predicted
by the hypothesis that the brain uses a temporal
contiguity learning strategy to build that tolerance
in the first place. Several computational models
show how such strategies can build tolerance
(6–11), and such models can be implemented by
means of Hebbian-like learning rules (8, 33) that
are consistent with spike-timing–dependent plas-
ticity (34). One can imagine IT neurons using
almost temporally coincident activity to learn
which sets of its afferents correspond to features
of the same object at different positions. The time
course and task independence of UTL are
consistent with synaptic plasticity (35, 36), but
our data do not constrain the locus of plasticity,
and changes at multiple levels of the ventral
visual stream are likely (37, 38).

We do not yet know if UTL reflects mecha-
nisms than are necessary for building tolerant
representations. But these same experience ma-
nipulations change the position tolerance of hu-
man object perception—producing a tendency
to, for example, perceive one object to be the

Fig. 3. Position specificity, object specificity, and time course. (A) Mean object selectivity change,
∆(P − N), at the swap, non-swap, and central (0°) retinal position. ∆(P − N) was computed as in
Fig. 2C from each neuron’s first and last available test phase (mean ~200 swap exposures). The
insets show the same analysis performed separately for each monkey. (B) Mean object selectivity
change for the (exposed) swap objects and (nonexposed) control objects at the swap position. Error
bars (A and B) are SEMs. The swap object selectivity change at the swap position is statistically
significant (*) in the pooled data as well as in individual animals (P < 0.05, one-tailed t test against
0). (C) Mean object selectivity change as a function of the number of swap exposures for all single-
unit (n = 101) and multi-unit sites (n = 10). Each data point shows the average across all the
neurons and sites held for a particular amount of time. Gray line is the best linear fit with a zero
intercept; slope is mean effect size: −5.6 spikes/s per 400 exposures. The slope at the non-swap
position based on the same analysis was 0.6 spikes/s (not shown).
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same identity as another object across a swap
position (12). Moreover, given that the animals
had a lifetime of visual experience to potentially
build their IT position tolerance, the strength of
UTL is substantial (~5 spikes/s change per
hour)—just 1 hour of UTL is comparable to
attentional effect sizes (39) and is more than dou-
ble that observed in previous IT learning studies
over much longer training intervals (40–42). We
do not yet know how far we can extend this
learning, but just 2 hours of (highly targeted) un-
supervised experience begins to reverse the
object preferences of IT neurons (Fig. 4D).

This discovery reemphasizes the importance of
plasticity in vision (4, 32, 35, 37, 40, 41, 43, 44)
by showing that it extends to a bedrock property
of the adult ventral visual stream—position-
tolerant object selectivity (45–47), and studies
along the postnatal developmental time line are
now needed.
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Fig. 4. Responses to objects P and N. (A) Response data to object P and N at the swap position
for three example neurons and one multi-unit site as a function of exposure time. The solid line
is standard linear regression. The slope of each line (∆S) provides a measure of the response
change to object P and N for each neuron. Some neurons showed a response decrease to P,
some showed a response enhancement to N, and others showed both (see examples). (B)
Histograms of the slopes obtained for the object-selective neurons/sites tested for at least 300
exposures. The dark-colored bars indicate neurons with significant change by permutation test
(P < 0.05) (16). (C) Histograms of the slopes from linear regression fits to object selectivity (P −
N) as a function of exposure time; units are the same as in (B). Arrow indicates the mean of the
distribution [the mean ∆S(P − N) at the non-swap position was −1.7 spikes/s, P = 0.38]. The
black bars indicate instances (32%; 12 of 38 neurons and sites) that showed a significant
change in object selectivity by permutation test (P < 0.05). Results were very similar when we
discarded neurons and sites with greater initial selectivity at the swap position (fig. S8). (D)
Data from all the neurons and sites that were tested for the longest exposure time. The plot
shows the mean normalized response to object P and N as a function of exposure time (compare
to Fig. 1C; see fig. S3 for data at the non-swap position and for control objects). Error bars (A
and D) are SEMs.
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Conformational Switch of Syntaxin-1
Controls Synaptic Vesicle Fusion
Stefan H. Gerber,1*† Jong-Cheol Rah,2,3*‡ Sang-Won Min,1*§ Xinran Liu,1,4 Heidi de Wit,5
Irina Dulubova,6 Alexander C. Meyer,3 Josep Rizo,6,7 Marife Arancillo,2 Robert E. Hammer,6,7
Matthijs Verhage,5 Christian Rosenmund,2,3# Thomas C. Südhof1,4,8¶#

During synaptic vesicle fusion, the soluble N-ethylmaleimide-sensitive factor–attachment
protein receptor (SNARE) protein syntaxin-1 exhibits two conformations that both bind to Munc18-1: a
“closed” conformation outside the SNARE complex and an “open” conformation in the SNARE complex.
Although SNARE complexes containing open syntaxin-1 and Munc18-1 are essential for exocytosis, the
function of closed syntaxin-1 is unknown. We generated knockin/knockout mice that expressed only
open syntaxin-1B. Syntaxin-1BOpen mice were viable but succumbed to generalized seizures at 2 to
3 months of age. Binding of Munc18-1 to syntaxin-1 was impaired in syntaxin-1BOpen synapses, and
the size of the readily releasable vesicle pool was decreased; however, the rate of synaptic vesicle fusion
was dramatically enhanced. Thus, the closed conformation of syntaxin-1 gates the initiation of the
synaptic vesicle fusion reaction, which is then mediated by SNARE-complex/Munc18-1 assemblies.

Intracellular membrane fusion reactions are
carried out by interactions between SNARE
[soluble N-ethylmaleimide–sensitive factor

(NSF)–attachment protein receptor) and SM
(Sec1-Munc18–like) proteins (1, 2). In Ca2+-
triggered exocytosis in neurons and neuroendo-
crine cells, fusion is catalyzed by the formation of
SNARE complexes from syntaxin-1, synaptosome-
associated protein of 25 kDa (SNAP-25), and
synaptobrevin/vesicle-associated membrane pro-
tein and the binding of the SM protein Munc18-
1 to these SNARE complexes (1–3). Syntaxin-1

consists of two similar isoforms (syntaxin-1A
and -1B) that are composed of an N-terminal
a-helical domain (the Habc domain) and a C-
terminal SNARE motif and transmembrane re-
gion. Outside of the SNARE complex, syntaxin-1
assumes a “closed” conformation, in which the
Habc domain folds back onto the C-terminal
SNAREmotif (4, 5). In the SNARE complex, by
contrast, syntaxin-1 is “opened” (6). Munc18-1
interacts with syntaxin-1 alone in the closed con-
formation to form heterodimers (3, 4) and addi-
tionally binds to SNARE complexes containing
syntaxin-1 in the open conformation to form
Munc18-1– SNARE complex assemblies (7, 8),
which are essential for exocytosis (3). The
function of the closed conformation of syntaxin-
1 and its binding to Munc18-1 remain unknown.

We used gene targeting to create mice that
lack syntaxin-1A (syntaxin-1AKO) and contain
the LE mutation in syntaxin-1B, which renders
it predominantly open (syntaxin-1BOpen) (fig. S1)
(9). Studying littermate offspring from crosses
of double-heterozygous syntaxin-1AKO and -1BOpen

mice, we found that homozygous syntaxin-1AKO

mice exhibited no decrease in survival (Fig. 1A)
or other obvious phenotypes (figs. S2 and S3).
The expendability of syntaxin-1A was unex-
pected in view of its high concentrations and
proposed central functions (10–14) and indi-
cated that syntaxin-1A may be functionally
redundant with syntaxin-1B.

Homozygous mutant syntaxin-1BOpen mice
were also viable but severely ataxic and devel-
oped lethal epileptic seizures after 2 weeks of
age (Fig. 1A and fig. S3). The seizure phenotype
of syntaxin-1BOpen mutant mice was recessive
and independent of the syntaxin-1AKO. Thus,

syntaxin-1B was selectively essential, probably
because it is more widely expressed than
syntaxin-1A (15). In Caenorhabditis elegans,
transgenic syntaxin-1Open rescues unc-13 mutant
worms from paralysis (16); however, crossing
syntaxin-1BOpen mice with Munc13-1 knockout
mice did not prevent Munc13-1 knockout–
induced death (fig. S4).

The syntaxin-1AKO mutation abolished
syntaxin-1A expression (Fig. 1B), whereas the
syntaxin-1BOpen mutation decreased syntaxin-1B
levels (Fig. 1C). Both mutations produced a
modest decrease in Munc18-1 levels but no major
changes in other proteins (table S1). The syntaxin-
1Open mutation decreases formation of the
Munc18-1–syntaxin-1 complex but not formation
of SNARE complexes or Munc18-1–SNARE
complex assemblies (fig. S5) (3, 8). Consistent
with this conclusion, less Munc18-1 was coim-
munoprecipitated with syntaxin-1 in syntaxin-
1BOpen mice, whereas other SNARE proteins
coimmunoprecipitated normally (Munc18-1–
SNARE complex assemblies are not stable during
immunoprecipitations, and thus cannot be eval-
uated) (Fig. 1D and fig. S6).

Electron microscopy of cultured cortical neu-
rons from littermate syntaxin-1BOpen and -1BWT

mice lacking syntaxin-1A revealed increased vesi-
cle docking in syntaxin-1BOpen synapses (~25%
increase) (Fig. 2, A to D). The size of the post-
synaptic density also was increased (~20%)
(Fig. 2E), whereas the density of docked vesicles
per active zone length was unchanged (Fig. 2F).
No other structural parameter measured differed
between syntaxin-1BOpen and -1BWT synapses;
in particular, the number and intraterminal dis-
tribution of vesicles were unaltered (fig. S7). In
chromaffin cells, however, the syntaxin-1BOpen

mutation caused a large decrease in chromaffin
vesicle docking, similar to that of the Munc18-1
knockout. Again, neither mutation altered the total
number of chromaffin vesicles (Fig. 2, K and L).
Synaptobrevin-2 knockout mice, analyzed in
parallel as a negative control, did not change
chromaffin vesicle docking but did increase the
total number of chromaffin vesicles (Fig. 2L).
Consistent with earlier findings (17–20), these
results indicate that the Munc18-1–syntaxin-1
complex, but not the SNARE complex, functions
in chromaffin vesicle docking. This function
may not be apparent in vertebrate synapses
because active zone proteins that are absent
from chromaffin cells probably dock synaptic
vesicles independent of their attachment to the
Munc18-1–syntaxin-1 complex.

Measurements of spontaneous miniature ex-
citatory postsynaptic currents (mEPSCs), excit-
atory postsynaptic currents (EPSCs) evoked by
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Materials and methods  
 
Animals and surgery 
 
Experiments were performed on two male rhesus monkeys (Macaca mulatta, 5.6 and 4.3 kg).  
Aseptic surgery was performed to implant a head post and a scleral search coil. After brief 
behavioral training (1-3 months), a second surgery was performed to place a recording chamber 
(18 mm diameter) to reach the anterior half of the temporal lobe. All animal procedures were 
performed in accordance with National Institute of Health guidelines and the Massachusetts 
Institute of Technology Committee on Animal Care. 
 
 
 
Stimuli presentation and behavioral task  
 
Each recorded neuron was probed in a dimly lit room with a set of 100 achromatic images of 
isolated objects (52 natural objects and 48 silhouette white shapes; Fig. S2) presented on a gray 
background (21” CRT monitor, 85 Hz refresh rate, ~48cm away, background gray luminance: 22 
Cd/m2, max white: 46 Cd/m2).  All objects subtended ~1.5º (average of a bounding square and 
the filled area). Custom software controlled the stimulus presentation and behavioral monitoring. 
Eye position was monitored in nearly real-time using standard sclera coil technique (2), and 
saccades >0.2° were reliably detected (1) . 
 
During each Test Phase (~4 minutes), neuronal selectivity at three retinal positions (-3º, 0º, +3º 
elevation; all 0º azimuth) was probed in two different tasks. Monkey 1 freely searched an array 
of eight small dots (size 0.2º) vertically arranged 3º apart (Fig. S1).  The dots never changed in 
appearance, but on each "trial", one dot was randomly baited in that a juice reward was given 
when the animal foveated that dot, and the next "trial" continued uninterrupted.  Typically, the 
monkey saccaded from one dot to another (not always the closest dot) looking for the hidden 
reward.  During this task, objects were presented (100 ms duration) at controlled retinal positions 
(onset time was the detected end of a saccade; approximately one such presentation every other 
saccade, never back-to-back saccades).  The monkey’s task was unrelated to these test stimuli.  
To limit unwanted experience across retinal positions, each such presented object was 
immediately removed upon detection of any saccade, and these aborted presentations were not 
included in the analyses.  Monkey 2 performed a more standard fixation task in which it foveated 
a single, central dot (size 0.2º, ±1.5º fixation window) while object images were presented at a 
natural, rapid rate (5 images/s; 100 ms duration, 100 ms blank intervals).  Reward was given at 
trial end (5-8 images presented per trial).  Upon any break in fixation, any currently present 
object image was immediately removed (and not included in the analyses), and the trial aborted.  
The animal successfully maintained fixation in 75% of the trials.  The presentations before the 
broken fixation were included in the analyses.  To address possible adaptation concerns, we re-
performed the key analysis after discarding the first image presentation in each fixation trial, and 
the result was essentially unchanged (also see Fig, S8).  Aside from the task differences (free-
viewing search vs. fixation), retinal stimulation in the two tasks was essentially identical in that 
each tested object image was presented 3º above, below or on the current center of gaze, for 100 
ms duration (20-30 pseudo-randomly interleaved repetitions of each).  Given equivalent retinal 
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stimulation, IT neuronal responsivity and selectivity are virtually identical when measured 
during free viewing and fixation (1).  Consistent with this, we found comparable exposure-
induced changes in IT object selectivity in each animal (e.g. see Fig. 3).   
 
During each Exposure Phase (~15 minutes), animals freely viewed the monitor while object 
images were intermittently (~13 per minute) presented (pseudo-randomly) at +3º and -3º (always 
relative to the current center of gaze).  The onset of each object was ~65 ms (randomly chosen 
between 30-100 ms) after the end of a saccade (defined by eye velocity < 10º/s). Because 
foveating a suddenly appearing object is a natural, automatic behavior, essentially no training 
was required, and the monkeys almost always saccaded directly to the object (>90%) within 108 
ms (median; range: 66-205 ms) and foveated it for >200 ms (after which it was removed and the 
monkeys received a drop of juice).   For objects presented at the "swap" position (+3º or -3º; 
strictly alternated neuron-by-neuron), the object (e.g. "P") was consistently swapped by another 
object (e.g. "N") upon the detection of saccade onset (eye speed > 60º/s).  We took great care to 
ensure the spatiotemporal precision of the stimuli delivery. The to-be-swapped object was 
always successfully removed before the end of the saccade, and the new object was present at the 
to-be-center of the retina within 1 ms of the saccade end (mean; worst case was 10 ms after 
saccade end). To prevent unintended retinal experience, the object image was automatically 
taken away if the saccade was not directed toward the object, or if the eye landed more than 1.5º 
away from its center. 
 
 
 
Neuronal recordings   
 
The extra-cellular spiking activity of single, well-isolated IT neurons was recorded using 
standard microelectrode methods (1). 101 neurons were randomly sampled over a ~4x6 mm area 
of the ventral STS and ventral surface lateral to the AMTS (Horsey-Clark coordinates: AP 11-15 
mm; ML 15-21 mm at recording depth) from the right hemisphere of Monkey 1 and left 
hemisphere of Monkey 2.  In each daily recording session, we advanced a microelectrode while 
the 100 object images (Fig. S2) were pseudo-randomly presented at the center of gaze while the 
monkey performed either the free-viewing search task or the fixation task (see Test Phase 
above).  All responsive neurons with a well-isolated waveform were further probed with the 
same object set (initial screening of 100 objects, ~5 repetitions per object, all presented at the 
center of gaze).   
 
Main test objects  (“swap” objects):  Among the objects that drove the neuron "significantly" 
above its background response (t-test against 50 ms epoch before stimuli onset, p < 0.05, not 
corrected for multiple tests), the most preferred (P) and least preferred (N) objects were chosen 
as a pair for the Exposure Phase ("swap objects") subject to the condition that both objects were 
either from the "natural" object set or the "silhouette" object set (see Fig. S2). This object 
selection procedure aims to find conditions in which both objects drive the neuron, and object P 
drives the neuron more strongly than object N. For most neurons, object N was not the second 
most preferred object (IT neurons typically respond well to ~10% of object images, which is 
consistent with our online observation that N was roughly the tenth most preferred object in the 
set of 100 tested objects).  Note that, because the procedure for choosing objects P and N was 
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based on limited initial testing, it does not fully guarantee that the selectivity will be found with 
further testing (see main text).  Furthermore, because the initial testing was at the center-of-gaze 
position and IT neurons are not uniformly position tolerant, the procedure also does not 
guarantee that the response to P is greater than N at all three tested positions (i.e. possible 
"negative" object selectivity at some positions).  We use post-hoc analysis and screening to 
examine any unexpected effects of this screening procedure (e.g. post-hoc removal of neurons 
with low or negative selectivity, table S1).  Post-hoc analyses also showed that roughly equal 
numbers of neurons were recorded using swap objects from each set (57 natural, 44 silhouette) 
and neurons showed virtually the same reported changes in object selectivity when sorted by 
object set type.) 
 
Control objects: For each recorded neuron, we also used the initial response testing (above) to 
choose a pair of control objects.  Our goal was to choose these two objects among which the 
neuron was selective, but were very distant from the "swap objects" in shape space.    Because 
we do not know the dimensions of shape space, we cannot strictly enforce this.  In practice, we 
simply insured that the control objects were always chosen from the object set that was not used 
for the swap objects (i.e. when two objects from the "natural" set were used as "swap" objects, 
the two control objects were from the silhouette set, see Fig. S2).   Within this constraint, the 
control objects were chosen using the exact same responsivity and selectivity criteria as the test 
objects (above).  
 
Once the initial screening and object selection were completed, we carried out the Test and 
Exposure Phase in alternation for as long as we could maintain isolate of the neuron’s waveform.  
Both swap objects and control objects were presented (tested) at all three positions during each 
Test Phase but only the swap objects were shown and manipulated during each Exposure Phase.  
 
In addition, multiple-unit activity (MUA) was collected from 10 sites on the IT ventral surface of 
Monkey 2 on 10 different experimental sessions (days). Nearby IT neuron have similar object 
selectivity (3) and, consistent with this, we have previously shown that MUA is shape selective 
and moderately position tolerant (4). MUA was defined as all the signal waveforms in the spike 
band (300 Hz – 7 kHz) that crossed a threshold set to ~2 s.d. of the background activity. The 
threshold was held constant for the entire session.  All other recording procedures were identical 
to the recording procedure used for the single-unit recording except: 1) during the Test Phase, 
more repetitions (~50) were collected per object image at each position; 2) each Exposure Phase 
was approximately twice as long (e.g. 200 "swap" exposures instead of 100). 
 
 
 
Data analysis 
 
To get the most statistical power from the data, average firing rates were computed over a time 
window optimally chosen for each neuron by an algorithm that estimated neuronal response 
onset and offset time (relative to stimulus onset) using all stimuli (see below).  Analyses for the 
single-unit data in the main text were performed using such neuron-specific spike count windows 
(described next).  All analyses were also repeated using a standard, fixed spike count window 
(onset 100 ms; offset 200 ms) with very similar results ( S(P-N) = -5.4 spikes/s per 400 
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exposures at the swap position; -0.3 at the non-swap position; p < 0.01, “position x exposure” 
interaction by permutation test).   
 
Neuronal response window:  Specifically, for the single-unit data, each neuron’s responses to 
each stimulus condition were computed over the same spike count time window. That window 
was optimally chosen for each neuron using the following algorithm (5). Given a neuron, we first 
computed its average firing rate profiles FRobj(t) in overlapping time bins of 25 ms shifted in 
time steps of 1 ms. This averaged firing rate was computed with all the response data to all the 
objects presented in all Test Phases for the neuron. We also computed the neuron’s background 
rate FRbk as the mean spike rate between 0 and 50 ms after stimulus onset.  Because multiple 
images were presented on each trial at a relatively rapid rate (see above), the more standard 
epoch before each stimulus onset was not ideal for computing background because it was 
occupied by the neuron’s response to the previous stimulus.  We previously found that the short 
epoch starting at stimulus onset and ending before the neuronal response (i.e. before the known 
IT latency) provides the most reliable estimate of a “background” firing rate (5).  Then, by 
subtracting this background rate from the averaged object response rate profile, we obtained an 
averaged driven rate profile FRdriven(t) = FRobj(t) - FRbk. Finally, we identified the samples for 
which FRdriven(t) was at least 20% of its peak value. The largest continuous interval of samples 
fulfilling this requirement was always centered on the peak of the neuronal response. If no other 
samples, outside this main “peak” interval, fulfilled the requirement, the extremes of the interval 
were chosen as the extremes of the optimal spike count window for that neuron. If the firing 
profile exceeded 20% of its peak in other regions of the time axis, these were merged with the 
main interval only if they were within 25 ms from it. In this case, the extremes of the merged 
interval were chosen as the extremes of the optimal spike count window.  In principle this 
algorithm could yield a very small response window, so we limited that possibility by imposing a 
minimum response window size of 50 ms at the estimated onset latency.  (In practice, only two 
neurons out of 101 had this minimum window size imposed; neuron1: 30ms; neuron2: 40ms). 
All analyses presented in the main text were carried out by counting spikes in these neuron-
specific optimized time windows. The mean window start time (± s.d.) was 119.5 ± 38 ms, the 
mean window end time was 244 ± 76 ms, and the median duration was 110 ± 50 ms. These time 
windows are consistent with previous work (6) and with animal reaction times in recognition 
tasks (7).   
 
For the multi-unit data, we used a standard, fixed (100-200 ms) spike count time window for all 
recording sites. 
 
For all the results presented in the main text, the object selectivity for an IT neuron was 
computed as the difference in its response to object P and N.  To avoid any bias in this estimate 
of selectivity, for each neuron we defined the labels "P" and "N" by splitting the pre-exposure 
response data and used a portion of it (10 response repetitions to each object at each position) to 
determine these labels ("P" is the preferred object that elicited a bigger overall response pooled 
across position).  The label "P" and "N" for the neuron was then held fixed across positions and 
later Test Phases.  All remaining data were used to compute the selectivity results in the main 
text using these labels.  This procedure ensured that any observed response difference between 
object P and N reflected true selectivity for a neuron, not selection bias. 
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In cases when neuronal response data is normalized and combined (e.g. Figs. 4D, S3, S9), we 
used the same normalization scheme through out all the analyses.  Specifically, each neuron's 
response from each Test Phase was normalized to its mean response to all objects at all positions 
in that Test Phase. 
 
 
 
Statistical tests for the "Position x Exposure" interaction 
 
A key part of the prediction is that any change in object selectivity should be found 
predominantly at the swap position (Fig. 1C).  Individual t-tests show a highly significant effect 
at the swap position, but no significant effect at the non-swap position (see Fig. 3A).  However, 
to directly test for an interaction between position and our independent variable (exposure), we 
applied a general linear model to the response difference (in firing rate) between the object P and 
N.  The formulation is similar to the analysis of variance tests (ANOVA).  However, it is not 
subject to assumptions about the noise distributions. 
 
The model had the following form: 
 

(P N) neuron= n
position= p

exposure= e

= an + (b1 p) + (b2 e) + (b3 (p e))  

 
The three independent variables of the model are: position (p), exposure (e), and their interaction 
(i.e. their product, p e). The position factor has two levels (i.e. p = -1 for swap position, 1 for 
non-swap position) the exposure factor has up to 5 levels depending how long a neuron was held, 
(i.e. e = 0 for pre-exposure, and can be up to 400 exposures in increments of 100's,).  Each an is 
the selectivity offset specific to each neuron; b1, b2, and b3 are slope parameters that are shared 
among all the neurons.  Thus, the complete model for our population of 101 neurons contained a 
total of 104 parameters (101 an’s, b1, b2, and b3) that were fitted simultaneously to our entire data 
set.  The an’s absorb neuron-by-neuron selectivity differences that are not of interest here, and 
the remaining three parameters describe the main effects in the population, with b3 of primary 
interest (interaction). 
 
To test for a statistically significant interaction, we fit the linear model to the data (standard least 
squares), and then asked if the observed value of the interaction parameter (b3) was statistically 
different from 0.  The validity of the significance was verified by two different approaches: 1) 
bootstrap and 2) permutation test. 
 
Bootstrap is widely used to provide confidence intervals on parameter estimates.  However, the 
bootstrap confidence interval can also be used to provide a significance level for a hypothesis 
test (8).  To do this, we estimated the distribution of the b3 estimate via a bootstrap over both 
neurons and repetitions of each neuron's response data. The exact procedure was done as 
follows: for each round of bootstrap over neurons, we randomly selected (with replacement) 101 
neurons from our recorded 101 neurons, so a neuron could potentially enter the analysis multiple 
times. Once a set of neuron was selected, we then randomly selected (with replacement) the 
response repetitions included of each neuron (our unit of data is a scalar spike rate in response to 
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a single repetition of one object at one position). Each neuron’s (P-N) was computed from its 
selected response repetitions.  The linear model was then fit to the data at the end of these two 
random samples to obtain a new b3 value. This procedure was repeated 1000 times yielding a 
distribution of b3 values, and the final p-value was computed as the fraction of times that 
distribution is less than 0 (p = 0.009, 1000 samples). This p-value is interpreted as: if we were to 
repeat this experiment, with both the variability observed in the neuronal responses as well as the 
variability in which neurons were sampled, what is the chance that we would not see the 
interaction observed here?  In effect, the bootstrap analysis determined the confidence interval 
around our originally observed b3 value, and the duality of confidence intervals and hypotheses 
testing allowed us to report that confidence interval as a p value (8).  When the same analysis 
was applied to the pair of control objects that was included in the Test Phase but was not shown 
during the Exposure Phase, we did not observe a significant interaction (p > 0.05). Simulations 
with Poisson spiking neurons have confirmed the correctness of our analysis code. 
 
To further confirm statistical significance level of the interaction (position x exposure) by 
permutation test, we created a null distribution by randomly permuting the position labels of the 
original data points (swap vs. non-swap) from each exposure level.  Following each permutation, 
we fit the linear model to the permuted response data.  Repeating this, we determined the fraction 
of times that the interaction term (b3) was greater the observed value and took this as the p value 
(p = 0.007, one-tailed test, 1000 samples).  Again, when we applied the same test to the response 
data to the control objects, we did not observe a significant interaction (p > 0.05).   
 
Together, our statistical tests point to a position-specific change in object selectivity at the swap 
position that increases with amount of exposure.  The same statistical tests were applied to the 
multi-unit data (n = 10 sites), also yielding a significant interaction between position and 
exposure (p = 0.03 bootstrap, p = 0.014 permutation test) for the swap objects.  Again no such 
interaction was observed for the control objects (p > 0.05 for both bootstrap and permutation 
test).   
 
 
Statistical tests for the response change in single neurons/sites 
 
In Fig. 4B and C, we evaluated each single-unit-neuron/multi-unit-site's response change to P, N 
or (P-N) by fitting linear regression as a function of exposure time to obtain a slope ( SP, SN, 
or S(P-N)).  The statistical significance of the response change for each single-unit neuron or 
multi-unit site was evaluated by permutation test.  Specifically, for each neuron, we randomly 
permutated the exposure level label for each response sample, (i.e. which Test Phase each 
sample of P and N belongs to).  We then re-fit the linear regression to the permuted data and 
repeated the same procedure 1000 times yielding a distribution of slopes (“null distribution”). 
The p value was determined by counting the faction of time the null distribution exceeded the 
linear regression slope obtained from the data.  All neuron/sites with p < 0.05 was deemed 
significant (dark colored bars in Fig. 4B and C). 
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Supporting text  
 

Relationship between learning effect size and IT neurons’ object selectivity at the center of 
gaze 
 
Implicit in our experimental design and hypothesis is that the IT neurons prefer object P over N.  
Indeed, object selectivity at the center of gaze may provide the "driving force" for the temporal-
continuity learning in our experiment. Thus, if all our IT neurons had no selectivity among the 
objects P and N, then the temporal-continuity learning hypothesis makes no clear prediction in 
our data.   On average, our recorded IT neurons did have the desired net positive object 
selectivity (Table S1).  However, even though we aimed to pick objects so that P > N, we used 
an initial screen that mainly sought to insure that both objects P and N tended to drive the neuron 
(see main text and Materials and methods, above).  As a result, the population distribution of 
selectivity for P and N at each position was very broad, and some neurons did not have clear 
object selectivity at the center of gaze.  Here we consider subsets of IT neurons with ever-more 
stringent positive object selectivity at the center of gaze by re-performing our key statistical 
analyses on these subsets.  In sum, the main results are unchanged: 1) as with the entire 
population, these subsets of selective neurons show a significant interaction between position 
and exposure time, (see details of this statistical test in Materials and methods, above); 2) as with 
the entire population, these subsets of selective neurons show a significant shift in their mean 
object selectivity (P-N) at the swap position compared to the non-swap position (pair-wise t-test). 
These results are summarized in Table S1. 
 
To examine whether a relationship exist between the IT neuron’s selectivity at the center of gaze 
and the magnitude of the learning effect, we divided the neurons (n = 101) into sub-populations 
based on each neuron’s selectivity for P and N at the center of gaze (Fig S5). Examining the 
magnitude of the learning effect across these sub-populations of neurons revealed two things: 1) 
neurons with no or negative selectivity, on average, produced no learning effect (effect size = -
0.8 spikes/s per 400 exposures); 2) effect size grew increasingly stronger among neurons with 
higher initial object selectivity at the center of gaze.  This is consistent with the notion that 
selectivity at the center of gaze may be a good estimate of the “driving force” for the learning 
effect.  Expected Poisson spiking variability in the neuronal responses prevented us from 
determining if this measure is a perfect predictor of the learning effect size, but we speculate that 
the learning effect size in each neuron cannot be simply predicted from object selectivity at the 
center of gaze alone, but probably also depends on (e.g.) its initial response magnitudes at the 
swap position. 
 
 
 
The object selectivity change is robust to the choice of selectivity metric 
 
Is the change in object selectivity reported here robust to the choice of metric quantifying it?  In 
the main text, we performed all the analyses by quantifying the object selectivity in raw response 
difference (spikes/s).  Here we explore another standard selectivity metric and show the reported 
results is un-affected by the choice of metric.   
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Specifically, for each neuron we computed a “contrast” object preference index (OPI) at each 
position using a standard metric (9, 10) : 
 

OPI =
P N

P + N
 

 
where P and N is the neuron’s response to object P and N.  OPI ranges from -1 to +1 and 0 is no 
object selectivity.  We computed each neuron’s change in object selectivity magnitude as: 
 

OPI =OPIpost exposure OPIpre exposure  
 
The re-make of main text Fig. 3 using the OPI metric is shown in Fig. S6. To weight all neurons 
approximately equally before pooling, the OPI in Fig. S6 was normalized for each neuron to its 
pre-exposure object selectivity:  
 

Normalized OPI =
OPI

(OPIpre exposure +1)
 

 
Because the OPI metric ([-1 1]) can have occasionally near-zero or negative values, the addition 
of one in the denominator was used to regularize the normalization.     
 
 
 
Dependence of effect size on initial object selectivity 
 
We considered the possibility that the observed change in object selectivity at the swap position 
(but not at the non-swap position) might somehow have resulted from larger (or smaller) initial 
object selectivity magnitude at that position (relative to the non-swap position).  Because we 
changed the swap and non-swap position across each recorded neuron, position is counter-
balanced across neurons so, in the limit, no difference in initial object selectivity magnitude is 
expected.  Indeed, the initial object selectivity was very closely matched between the swap and 
non-swap positions across the neuronal population (Fig S7).  
 
However, even with the counterbalance, it turned out that our recorded population had a slightly 
greater initial selectivity at the swap position (by ~ 2 spikes/s in (P-N); Table S2).  This 
difference between the swap and non-swap position was not significant (p > 0.05, two-tailed t-
test).  Nevertheless, to fully control for any effect of this slight difference on our results, we 
performed a post-hoc analysis to completely match the initial object selectivity.  Specifically, we 
discarded neurons with significantly greater selectivity (P-N) at the swap position (p < 0.05, one-
tailed permutation test), and then re-performed the key analyses on the remaining population.  
This re-analysis was done for the population of all 101 neurons in Fig. 2 & 3 and for the 
population of 38 highly-object-selective neurons/sites in Fig 4C.  The results showed that our 
post-hoc selection had completely eliminated the small bias in initial selectivity at the two 
positions, but the effect size at the swap position in the “equalized” populations was almost as 
the original populations (and still no effect at the non-swap position; see Table S2 and Fig. S8).    
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Finally, by sorting the neurons based on their response profile across positions, we found that 
even neurons that initially were less responsive at the swap position showed a change in object 
selectivity (Fig S9 – especially see panel B). 
 
 
 
The object selectivity change cannot be explained by “adaptation” 
 
When repeatedly probed with visual stimuli, neurons in ventral visual stream have been shown to 
reduce their evoked responses, a phenomenon referred to as “adaptation” (11-15).  Our IT 
neuronal data do show evidence of “adaptation” (outlined below).  However, the key changes in 
IT selectivity we report in this manuscript cannot be explained by “adaptation”.  First, although 
each object was shown equally often at the two key positions (swap and non-swap positions), the 
selectivity change we found was specific to the swap position.  This specificity cannot be 
explained by any standard model of “adaptation”.   Second, approximately half of the selectivity 
change was due to an enhanced response to object N (see main text), which is inconsistent with 
any fatigue-adaptation model. Third, the selectivity change we found continued to grow larger 
and larger for as long as we could measure it (up to two hours),which is suggestive of plasticity, 
rather than cortical fatigue.  
 
Consistent with previous reports on IT “adaptation” (11-15), we observed a reduction in the 
neurons’ responses over short time scales (i.e. within a trial, ~1 sec) and intermediate time scales 
(i.e. within a Test Phase, ~4 min).  Such reduction was not specific to objects or position (Fig 
S10A and B).  However, the change in selectivity we report here emerged slowly over a much 
longer times scale (across multiple Test Phases), and was specific to both the swap position and 
the object (Fig S10 C).  Interestingly, there was virtually no change in response across the longer 
time scale over which the learning effect emerged (e.g. non-swap position, Fig. S10 right panel 
of row C).    
 
 
 
Monte Carlo simulations with Poisson spiking neurons 
 
Beyond the main (net) change in object selectivity reported here, our figures show that many 
individual neurons appear to undergo changes in object selectivity in both the predicted and non-
predicted directions (e.g. scatter of the individual neurons in Fig 2C).  Is this non-predicted 
variability in the observed object selectivity accounted for by Poisson variability (i.e. noise 
effects on repeat measurements)?   
 
To address this question, we ran Monte Carlo simulations using Poisson spiking statistics. We 
first computed each neuron’s mean firing rates to each object at each position before any 
exposure.  Using these estimated firing rates, we simulated Poisson spiking neurons. We then 
took repeated measurements from this simulated population of neurons.  30-50 response 
repetitions were collected from each simulated neuron to constitute a simulated Test Phase, 
(matched to the number of response repetitions collected from real neurons/sites).  Each 
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simulated neuron was then tested across the same amount of exposure time (i.e. number of Test 
Phase) as the real neurons. 
 
In the simulations, we assumed that the object selectivity for P and N at the swap position was 
changing at the rate estimated from the data (5.6 spikes/s per 400 exposures, see Fig. 3C) and not 
changing at the non-swap position.   That is, the simulated neurons’ firing rates at the non-swap 
position were held fixed at each simulated Test Phase, while the firing rates at the swap position 
were undergoing changes at  -0.7 spikes/s for object P and +0.7 spikes/s for object N across each 
Test Phase (100 exposures). 
 
This simulation allowed us to determine the expected variability in a real neuronal population’s 
selectivity under Poisson firing statistics.  Finally, we compared this expected variability to that 
observed in our data by plotting the results together (Fig. S11).  These Monte Carlo simulations 
showed that the magnitude of the non-predicted changes in object selectivity is comparable to 
that expected from well-established cortical neuron Poisson spiking statistics (16, 17). 
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Supporting figure S1 
 
 
 

 
 
 
 

Fig. S1. Monkey tasks during neuronal testing. During the Test Phase of the experiment, 
Monkey 1 performed a free-viewing search task, searching for a reward "hidden" beneath one of 
eight, spatially fixed dots; Monkey 2 performed a standard, fixation task while stimuli were 
presented at a rate of 5 per second (100 ms duration, 100 ms gaps).  In both cases, retinal 
stimulation for the presentation of each object image was identical in that object images were 
presented 3° above, 3° below, or at the center of gaze for 100 ms.  In both cases, these object  
image presentations were fully randomized and unrelated to the animals’ tasks.  Each animal also 
performed its Test Phase task while we advanced a microelectrode to search for neurons, but 
object images were only presented at the center of gaze in that case. 
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Supporting figure S2 
 
 
 

 
 
 
 

 
Fig. S2.  Set of 100 object stimuli. The figure reflects the true relative size of the objects shown 
in the experiment.  The first 52 images are referred to as the "natural" object set, the latter 48 
images as the "silhouette" object set.  We only swapped pairs of objects draw from within the 
same set (see Materials and methods). 
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Supporting figure S3 
 
 

 
 
 

Fig. S3.  Mean normalized population response to object P and N as a function of exposure time.  
(A) Single-unit population data.  Each row of plots show neurons held for different amounts of 
time, (e.g. the top row shows all neurons held for over 100 swap exposures -- including the 
neurons from the lower rows; the second row shows the neurons held for over 200 exposures; 
etc). Each neuron's response from each Test Phase was normalized to its mean response to all 
objects at all positions in that Test Phase.  (B) Multi-unit population data.  Note the scale change 
on the x-axes between (A) and (B).  Though, by chance, there turned out to be slightly greater 
initial selectivity at the swap position than the non-swap position, our reported effect was still 
strongly present even when post-hoc analysis was used to eliminate this initial selectivity 
difference  (see Table S2 and Fig S8).  
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Supporting figure S4 
 
 
 

 
 
 
 

Fig. S4.  The response time course of the IT selectivity (measured in the Test Phase, see 
Materials and methods) before and after at least one hour of experience in the altered visual 
world.  The plot shows the averaged PSTH difference between object P and N. Colored area 
indicates the standard error of the mean.  Only the neurons (n = 17) and multi-unit sites (n = 10) 
held for the longest exposure time are included in the plot.  Each neuron’s PSTH was computed 
by smoothing the response data with a Gaussian window (s.d. 10 ms).  The responses are aligned 
at the onset of the stimulus.  The black bar on the top indicates the duration of the stimulus.   
Note that the change in selectivity following experience was present even in the earliest part of 
the response (~100 ms).   The same neurons showed no change for objects presented at the 
equally eccentric (non-swap) retinal position (time course not shown; see Figs. 2, 3).  
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Supporting figure S5 
 
 
 

 
 
 
 

Fig. S5.  Relationship between the magnitude of the learning effect and the IT neurons’ object 
selectivity at the center of gaze.  The abscissa shows neurons grouped by the amount of object 
selectivity at the center of gaze (“Non-selective neurons” are those with object selectivity (P-N) 
less than 1 spike/s; the remaining neurons were split into three even groups).  The mean 
selectivity among the particular tested two objects (P and N) in the three groups was: 2, 5, and 15 
spikes/s.  The ordinate shows the mean experience-dependent effect size for the neurons in each 
group.  Effect size was estimated for each neuron using regression analysis that leverages all the 
available data for each neuron (same as in Fig. 4C), so it reflects an unbiased estimate of effect 
size that is not confounded by any differences in total duration of exposure.  There was no 
correlation between this effect size estimate and the duration of exposure (r = 0.05, p = 0.62).  
The plot shows the mean effect size in each group of neurons and s.e.m. When the same analysis 
was carried out at the non-swap position, the effect sizes were near zero for all four groups of 
neurons (not shown).   
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Supporting figure S6 
 
 
 
 
 

 
 
 
 
 
Fig. S6.  Results in another selectivity metric. Here, results from all the neurons are re-plotted in 
the format of Fig. 3 but in normalized OPI metric. ( ** significantly less than 0 at p < 0.001, 
one tailed t-test;  N.S. p > 0.05;  † approaching significance, p = 0.058). 
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Supporting figure S7 
 
 
 

 
 
 
 

Fig. S7.  Initial object selectivity (OPI) of all the neurons at the swap position and non-swap 
position. Because the object P and N are determined from the summed response across all 
positions using separate data, and IT neurons are not perfectly position-tolerant, the object 
selectivity at any given position (swap or non-swap) could have initially negative values. The 
inset shows the histogram of the object selectivity difference between the swap and non-swap 
positions. Though, by chance, there turned out to be slightly greater initial selectivity at the swap 
position than the non-swap position, our reported effect was still strongly present even when 
post-hoc analysis was used to eliminate this initial selectivity difference  (see Table S2 and Fig 
S8).  This plot also illustrates the broad distribution of selectivity in the full population, including 
some neurons with weak or negative selectivity (see Fig.S5 above).  
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Supporting figure S8 
 
 
 

 
 
 
 
 
Fig. S8.  Post-hoc selection to eliminate the initially greater selectivity at the swap position 
among the 38 highly object selective neurons/sites tested for at least 300 exposures (see main 
text).  (A)(B) Data from the original set of 38 neurons.  (A) mean selectivity at the swap and 
non-swap position before exposure.  (B) is a re-plot of Fig 4C.  Red arrow indicates the mean 

S(P-N).  Black arrow indicates the mean S(P-N) from the non-swap position (individual neural 
data not shown).  (** significantly less than 0 at p < 0.001, one tailed t-test;  n.s. p > 0.05;)  
(C)(D) Re-make of (A) and (B) after neurons/sites with significantly greater selectivity at the 
swap position were discarded.  
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Supporting figure S9 
 
 
 

 
 
 
 

Fig. S9.  Population response averages before and after exposure for those neurons preferring 
either the swap or non-swap position. Neurons were sorted by their receptive field profiles. 
Neurons in (A) were selected as those for which their maximum response (among either object) 
was evoked at the swap position and their minimum response at the non-swap position (n = 14; 
max and min taken among all three tested positions). Neurons in (B) were selected as those that 
had a maximum response at the non-swap position and minimum response at the swap position 
(n = 17).  Neurons in (A) and (B) underwent, on average, ~200 exposures (~30 min). Each 
neuron's response was normalized to its averaged response to all objects at all positions before 
being combined in the group average. Error bars indicate the standard error of the mean. 
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Supporting figure S10 
 

 
 

 
Fig. S10.  Response changes across different time scales for the swap objects.  (A) Population 
mean response changes within a trial (n=111, single-unit data and multi-unit data combined).  
For each neuron, the mean responses to each object at each position were subtracted before 
averaging.  Responses were binned by the order in which the image (object at a position) 
appeared in the sequence of stimuli shown in the trial.  (B) Population mean response changes 
within a Test Phase.  For each neuron, the mean responses to each object at each position from 
the Test Phases were subtracted before averaging. Responses were binned by the order they 
appear in a Test Phase (20 - 30 repeats of each object at each position were tested during each 
Test Phase; see Materials and methods). These plots are smoothed with a sliding window (4 data 
point wide).  (C) Population mean response changes across multiple Test Phases (the left plot in 
this row illustrates one view of our reported learning effect).  For each neuron, the mean 
responses from the first Test Phase (pre-exposure) were subtracted before averaging.  Red and 
gray traces show responses to object P; blue and black traces show responses to object N. 
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 Supporting figure S11 
 

 

 
 
 

 
Fig. S11.  Simulations to compare the expectations of Poisson spiking variability predictions 
with our experimental observed variation in object selectivity.  The left panels show the average 
effect size (change in object selectivity) at each time point estimated from our data at the swap 
position (red bars and arrows, based on 5.6 spikes/s per 400 exposures, see Fig. 3C) and at the 
non-swap position (black bars and arrows, assuming no-change, see Fig. 2A).  The smooth 
curves show the averaged histogram expected under the assumption of Poisson spiking statistics 
(using 100 Monte Carlo runs assuming: the same distribution of mean firing rates as that 
observed in the recorded population, the same number of response repetitions as that collected in 
our experiments: 30 for single-unit, 50 multi-units).  The right panel shows the data from the 
recorded population.  (The red histograms for the single-unit data is a re-plot of Fig. 2C).  
Arrows indicate the mean object selectivity changes observed in the data. The over-laid dash 
lines are the distributions generated from the simulations (left), simply re-plotted on top of the 
data. Note that the dashed curves are quite broad (the effect of Poisson spiking “noise”) and are 
approximately matched to the empirical distributions (solid histograms).  
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Supporting figure S12 
 
 
 

 

 
 
 
 
 

Fig. S12.  Responses to objects P and N from example neurons in Fig. 4A.  (A) Response data to 
object P and N at the swap position (This is a re-plot of the neurons in Fig. 4A).  (B) Response 
data from the non-swap position for these neurons.  The object P and N are determined from the 
summed response across all positions using separate data before exposure.  In both panels, the 
solid lines are the best-fit linear regression. 
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Supporting table S1 
 
 
 

Mean response rates under each 
screen (spikes/s) 

Center of 
gaze  

Swap 
position  

Non-swap 
position 

Permutation Test for 
“position x exposure” 

interaction  

t-Test swap vs. 
non-swap position  

Screen criteria based on 
responses at the center of 

gaze 

P N P N P N   
Full population (no screen) 

n=101 
 

20 14 21 16 20 16 *p = 0.007 *p = 0.005 

Statistically selective  
(i.e. P>N at p<0.05) 

n=56 
 

25 16 27 19 25 19 *p = 0.010 *p = 0.023 

Statistically selective AND  
(P-N)>3 spikes/s 

n=48 
 

29 18 29 20 27 20 *p = 0.016 *p = 0.041 

Statistically selective AND  
(P-N)>5 spikes/s 

n=38 

33 20 32 21 30 22 *p = 0.039 *p = 0.025 

 
 
 
Table S1. Summary of key statistical tests on different subsets of center-of-gaze-selective 
neurons.  Left table columns show the mean responses of all the neurons in each subset to objects 
P and N.  The selectivity screens were done after the “P” and “N” labels were determined using 
separate data to avoid bias (that is, a positive response difference implies real selectivity for P 
over N, not selection bias).  The P-N differences are greater at the swap position for all groups of 
neurons because a few most foveal selective neurons (3/38) had much greater selectivity at the 
swap position.  The right columns show the outcome of the two key statistical analyses. These 
results are robust to removal of outlier points (Fig 2C top panel, left-most bar).  Though the 
overall mean effect size per neuron is larger for more selective neurons (i.e. going from the top 
to the bottom of the table, see Fig. S5), the statistical significance level (p values) is slightly 
smaller (slightly larger p value) due to the drop in the number of neurons.   
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Supporting table S2 
 
 
 

Effect size 
(spikes/s) 

 Difference in 
(P-N) pre-exposure 
Swap – Non-swap 

(spikes/s) 
Swap position Non-Swap position 

 
Full population in Fig. 2, 3 
(n=101) 
 

2.05 -5.6 * 0.9 (n.s.) 

Matched (P-N) pre-exposure 
(n=84) 
 

-0.01 -4.2 * 0.73 (n.s.) 

 
Effect size 
 (spikes/s) 

 Difference in 
(P-N) pre-exposure  
Swap – Non-swap 

(spikes/s) 
Swap position Non-Swap position 

Object-selective 
neurons/sites in Fig. 4C 
(n=38) 
 

2.70 -8.3 ** -1.7 (n.s.) 

Matched (P-N) pre-exposure 
(n=33) 
 

-0.34 -6.5 ** -0.1 (n.s.) 

 
 
 
Table S2.  Summary of the key results after the initially greater selectivity at the swap position 
were adjusted for post-hoc.  Effect size, S(P–N), was estimated for each neuron using 
regression analysis that included all the available data for each neuron (same as in Fig. 4C).  

S(P–N) was significantly different from 0 only at the swap position (* p<0.05; ** p<0.001;  one 
tailed t-Test). 
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