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SUMMARY

Intelligence relies on our ability to find appropriate
sequences of decisions in complex problem spaces.
The efficiency of a problem solver depends on the
speed of its individual decisions and the number of
decisions it can explore in parallel. It remains un-
known whether the primate brain can consider multi-
ple decisions at the same time. We therefore trained
monkeys to navigate through a decision tree with
stochastic sensory evidence at multiple branching
points and recorded neuronal activity in visual
cortical areas V1 and V4. We found a first phase of
decision making in which neuronal activity increased
in parallel along multiple branches of the decision
tree. This was followed by an integration phase
where the optimal overall strategy crystallized as
the result of interactions between local decisions.
The results reveal how sensory evidence is inte-
grated efficiently for hierarchical decisions and
contribute to our understanding of the brain mecha-
nisms that implement complex mental programs.

INTRODUCTION

To solve a complex problem, we generally need to execute a

nested sequence of actions. These problems are usually repre-

sented concisely as a decision tree, with a branching point for

every decision (Anderson and Lebiere, 1998; Newell, 1990).

Consider the eight-puzzle of Figure 1, where a sequence of

two correct decisions leads to the goal state. To solve the prob-

lem, one has to a find an appropriate path in the problem space

that corresponds to a sequence of decisions. Classical ap-

proaches such as breadth-first (starting with an evaluation of de-

cisions at the top of the tree) and depth-first search (first

following branches into the depth of the tree) examine the conse-

quences of one decision at a time (Russell et al., 1995), but the

efficiency of the problem solver can increase substantially

when multiple decisions are explored in parallel. Here we asked

how the visual cortex of monkeys forms complex, hierarchical

decisions. Recent studies in human observers addressed the

learning of hierarchical tasks and distinguished between

model-based and model-free learning (Beierholm et al., 2011;

Daw et al., 2005, 2011; Lee et al., 2014; Smittenaar et al.,

2013). This study is different because we addressed the forma-

tion of hierarchical decisions in monkeys at the timescale of trials

of a familiar task, and we did not examine the learning process.

Previous studies have demonstrated that single perceptual

decisions may unfold over tens to hundreds of milliseconds

(Gold and Shadlen, 2007; Romo and Salinas, 2003; Schall,

2001). The neuronal mechanisms for a single decision are well

characterized by diffusion models that accumulate sensory evi-

dence up to a bound, which signals the commitment to a choice

(Drugowitsch et al., 2012, 2014; Huang et al., 2012; Ratcliff and

McKoon, 2008). Previous studies that uncovered the neuronal

processes for single decisions did not examine the neuronal

mechanisms for hierarchical decision-making problems where

the output of one decision is the input to the next (Anderson

and Lebiere, 1998; Duncan, 2010; Zylberberg et al., 2011). We

were particularly interested in problems where the decision

maker has to consider multiple sources of stochastic evidence.
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In this situation, serial decision-making strategies might be

prohibitive because the delays associated with successive deci-

sionswould add up.Will the brain use itsmassively parallel archi-

tecture to speed up problem-solving by considering multiple de-

cisions at the same time?

To answer this question, we recorded neuronal activity in

cortical areas V1 and V4 of monkeys that had to solve an explicit

decision tree with stochastic evidence at every branching point.

We found that the decision-making process was accompanied

by neuronal selection signals in these areas because branches

in the decision tree that were selected by the animal elicited

stronger neuronal responses than branches that were not.

Both behavioral and neuronal data revealed that multiple local

decisions initially formed in parallel but were later integrated

into a single global strategy. Furthermore, the data revealed in-

teractions between the local decisions, which enabled a global

strategy that maximized the reward income under uncertain

sensory conditions.

RESULTS

Behavioral Performance
We trained threemonkeys to solve an explicit decision treewith a

series of bifurcation points (levels L1 and L2, Figure 2A; Movie

S1). To solve the task, the monkeys had to select the brightest

segment at the first bifurcation point (L1) and then the brightest

segment at the second L2 bifurcation. The animals could ignore

the third bifurcation (we will use L20as notation) connected to the

darkest path at the L1 bifurcation. The monkeys were rewarded

for making a single eye movement to the circle at the end of the

correct path after a fixation delay of 500 ms. The sensory evi-

dence for every decision was stochastic because the luminosity

of the L1/L2 contour elements fluctuated around a base lumi-

nance at 20 Hz (50 ms/sample, Figure 2B). We adjusted the dif-

ficulty of the task by varying the difference in base luminance

between the target (T) and distractor branches (D) (Figures 2A

and 2B), which was highest in easy trials, smaller in intermediate

trials, and smallest in difficult trials. In most trials, both decisions

were correct (branch TT, Figure 2C). In error trials, we inferred

whether mistakes were made at the L1 (eye-movement to DT)

or L2 bifurcation (TD) or both (DD). The monkeys made slightly

more erroneous eye movements to the TD than to the DT target

(Figure 2C). We determined the psychometrical functions at the

L1 and L2 bifurcations by computing the strength of evidence in

each trial (abscissa, Figure 2D). We weighted the luminance time

series with psychophysical kernels (derived below) to emphasize

time points with a stronger influence on the decision. As pre-

dicted by the lower error rate, the psychometric curve for the

L1 decision was steeper than that for the L2 decision (Figure 2D).

Time Course of the Formation of the Decisions
We used a logistic regression analysis to assess the influence of

sensory evidence at different time points on the decisions (Ahu-

mada, 1996; Neri and Heeger, 2002; Figure 2E). Positive fluctu-

ations in luminance should increase accuracy when they occur

on the target branch and decrease accuracy when they occur

on the distractor branch, but the influence of luminance ceases

when the decision has beenmade. As found previously in studies

of single decisions (Kiani et al., 2008; Ludwig et al., 2005), we

observed that the first few samples of the target and distractor

branches were most influential and that the impact of later sam-

ples on the animal’s choice faded out gradually, presumably

because they occurred when the decision had already been

made. Importantly, the psychophysical kernels were similar for

the L1 and L2 decisions, which suggests that they were taken

in parallel (Ludwig et al., 2014). In trials with reaction times

(RTs) longer than the median, the L1 and L2 kernels were pro-

tracted in time, but their shape remained similar (Figure S1D).

We devised a bootstrap analysis to test the difference between

the time courses of the L1 and L2 decisions. This test did not

reveal a significant difference (p > 0.2, Figure S1A). Although

this result is indicative of parallel decisions in the visual cortex,

it is not conclusive. Specifically, it is possible that the monkeys

take both decisions sequentially in each trial but that the order

varies across trials (we will call this a ‘‘mixed strategy’’). To

address this possibility, we ran a control experiment with a single

bifurcation (Figure 2F). According to a mixed strategy, the ani-

mals would start with L20 in a portion of trials and then proceed

to L1 and L2, implying a total of three sequential decisions in

these trials. The mixing of trials with decision orders should

cause a protracted accumulation of evidence compared with

the control task. However, we found that the kernels of the con-

trol and hierarchical tasks were similar (L1, p > 0.4; L2, p > 0.5;

Figures S1B and S1C). This result is incompatible with a mixed

strategy (wewill present neuronal evidence againstmixed strate-

gies below).

A Hierarchical or a Flat Decision Strategy?
We also considered the possibility that monkeys did not evaluate

the hierarchical structure of the branching task but used a

simpler heuristic instead. They might ignore the hierarchical

structure altogether and treat the problem as a ‘‘flat’’ competition

between four eye movement targets, as proposed recently for

tasks with multiple alternatives without a hierarchical structure

(Bollimunta and Ditterich, 2012). To test the plausibility of such

a flat heuristic, we compared two models. The first (flat) model

Figure 1. Example of a Sequential Decision-Making Task

This eight-puzzle is solved by a sequence of two decisions. It is important to

consider the deeper levels of the decision tree before making the first decision.

Note that the figure represents a small fraction of the overall problem space.
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is a diffusion-to-bound model with four decision variables, one

for each choice (Figures 3A and 3B). Each decision variable

(dv1–dv4, Figure 3B) summed luminance information across

the two relevant branching points until it reached the bound. In

the second (hierarchical) model, the accumulation of evidence

for each bifurcation proceeded independently, followed by a

second stage in which the output of the local accumulators

was combined into a strategy (Figure 3D). To fit the models,

we exploited the stochastic nature of the sensory stimulus using

the sequence of luminances shown to themonkeys (as in Zylber-

berg et al., 2012). As expected, bothmodels provide an accurate

fit to the psychometric functions at the two bifurcations (Figures

3C and 3E; R2 > 0.99 for every fit). However, the models make

different predictions about how accuracy at one bifurcation influ-

ences accuracy at the other one. The flat model combines evi-

dence for the L1 and L2 decisions and it therefore predicts that

strong evidence at one bifurcation leads to a lower accuracy at

the other one (Figure 3F; see Figure S2 for data of the individual

monkeys; p < 5.10�4, permutation test). Instead, the hierarchical

model predicts that evidence for L1 and L2 accumulates inde-

pendently (p > 0.5, permutation test) before they are combined

to determine the eye movement target. Therefore, L1 difficulty

should not affect accuracy at L2. The monkeys’ strategy was

compatible with the hierarchical model and incompatible with

the flat model because the L2 accuracy did not depend on L1 dif-

ficulty (permutation test, p > 0.5; see Experimental Procedures;

Figure 3F).

Neuronal Correlates of Decision Making in the Visual
Cortex
What are the neuronal mechanisms underlying this parallel deci-

sion-making process? Previous studies have examined decision

making in the parietal and frontal cortex (Ding and Gold, 2012;

Gold and Shadlen, 2000; Kiani and Shadlen, 2009; Peck et al.,

2009; Shadlen and Newsome, 2001), but in these areas, recep-

tive fields (RFs) are large, which would make it difficult to monitor

the L1 and L2 decisions separately. Therefore, in this study, we

focused on areas V1 and V4 of the visual cortex, where RFs

are smaller. We measured multi-unit spiking activity (MUA) with

chronically implanted electrode arrays at a total of 109 recording

sites in V1 in three monkeys and 40 sites in V4 in two of these

monkeys. We constructed the stimuli so that the neurons’ RFs

A

B

E F

C D

Figure 2. Hierarchical Decision-Making

Task and Performance

(A)Behavioral taskused to testhierarchical decision

making in monkeys. After a fixation epoch, a stim-

ulus appeared, with three bifurcations (L1, L2, and

L20) leading toward four circular markers. The two

line segments beyond every bifurcation varied in

luminance, andonewasonaveragebrighter (target)

than the other (distractor). Themonkey had to trace

the curve from the fixation point (while maintaining

fixation) and select the brightest path at each

bifurcation. After 500 ms, the fixation point dis-

appeared, cueing the monkey to make an eye

movement to a marker (blue arrow). White contour

segments and markers had a constant luminance,

and the flickering segments are shown in gray. The

letters at the right indicate the possible choices

at the bifurcations: TT, correct choice at both bi-

furcations; TD,correct at L1buterror at L2;DT,error

at L1 but correct at L20; DD, both choices wrong.

(B) Example luminance fluctuations (50 ms/sam-

ple) at the flickering segments.

(C) Distribution of choices at the three difficulty

levels.

(D) Psychometric curves that estimate sensory ev-

idencebyconvolving the luminancesignals (mean+

fluctuations) with the psychophysical kernels (see

Experimental Procedures). We constructed 39 bins

with approximately equal numbers of trials based

on the strength of evidence (�4,000 trials/data

point). Curves are fits to the behavioral data.

(E) Influence of luminance fluctuations of the target

(orange) and distractor (blue) segments at different

time points on the L1 (left) and L2 decisions (right)

as measured with a logistic regression. Shades

indicate 95% confidence intervals for the regres-

sion coefficients. norm, normalized.

(F) The same analysis in a control task with a single

decision.

See Movie S1 for an example stimulus and Figures

S1 and S8.
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fell on contour elements of constant luminance, downstream of

the L1 bifurcation or the L2 bifurcation in the decision tree (Fig-

ures 4A and 4B). Figure 4A illustrates neuronal activity down-

stream of the L1 bifurcation. The target branch evoked stronger

neuronal activity than the distractor branch in a time window of

200–500 ms in V1 and in V4 (V1: p < 10�6, n = 92 recording sites;

V4: p < 5.10�5, n = 27, Wilcoxon signed-rank test). There was a

weak 60-Hz oscillation visible in the average response in V1 (but

not in V4), reflecting entrainment to the 60-Hz monitor refresh

A

B

D

F

E

C

Figure 3. Comparison between a Flat and a

Hierarchical Decision-Making Model

(A) In the flat model, the decision process is

modeled as a direct competition between the four

alternative choices as a race between decision

variables (one shown here). Each accumulator in-

tegrates luminance evidence across the L1 and the

relevant L2 branching points with weights k1 and

k2, respectively.

(B) Sketch of the flat model. The four decision

variables (one for each possible shape of the target

curve) are supported by different combinations of

luminance evidence at the relevant bifurcations.

(C) Fits of the flat model to the psychometric

functions for the first- (red) and second-level (cyan)

decisions. Curves show data, and circles model

fits.

(D) Sketch of a hierarchical model where decisions

are made independently at each bifurcation. Two

accumulators compete at each bifurcation, inte-

grating luminance information (with opposite

signs) and independently sampledGaussian noise.

The equation refers to the decision variable of the

accumulator.

(E) Fits of the hierarchical model to the psycho-

metric functions.

(F) Split of the second-level psychometric function

by the strength of the evidence at L1 (median split).

The flat model predicts higher accuracy at L2when

the evidence at L1 is low. The hierarchical model

and the data do not show this bias. Shaded regions

indicate SEM.

See Figure S2 for the data of individual monkeys.

rate (Williams et al., 2004). Figure 4B illus-

trates neuronal activity elicited by the

target and distractor branch downstream

of the relevant L2 bifurcation. Again, the

response evoked by the target branch

was stronger (TT versus TD, Figure 4B;

V1: p < 10�6, n = 95; V4: p < 5.10�6, n =

31). Therefore, V1 and V4 neurons carry

signals related to the selection of target

branches downstream of the L1 and L2

bifurcations.

To confirm that these response modu-

lations were caused by the selection of

target branches and not by a direct effect

of flicker in the vicinity of the RF, we

compared V1 responses elicited by the

flickering segments to those elicited by

the static contours with a constant luminance (n = 33 sites).

We sorted trials based on the luminance of the first flicker sam-

ple. When the RFs of V1 neurons fell on a flickering segment, the

influence of luminance appeared early, with a latency of �40 ms

(Figure 4D), and neuronal activity was entrained by the flicker

(Williams et al., 2004). Furthermore, the V1 response increased

with contrast irrespective of whether it was caused by luminance

values lower or higher than the background (15 cd/m2). The V1

responses evoked by the static segments were qualitatively

Neuron 87, 1344–1356, September 23, 2015 ª2015 Elsevier Inc. 1347



different. Here the V1 activity increased monotonically with lumi-

nance in accordance with the selection rule that the monkeys

had learned, and the influence of luminance appeared after a

delay (Figure 4D; Figure S3). Therefore, the activity elicited by

the static segments (Figures 4A–4C) depended on the selection

of branches and not on a direct influence of flicker near the RF.

To investigate whether the late modulation of visual cortical

activity is informative regarding different stages of decision mak-

ing, we capitalized on the fact that we could deduce the locus of

errors in the decision tree (Figure 5). When the monkey made an

error at the L1 bifurcation, V4 activity evoked by the distractor

segment downstream of this bifurcation was stronger than that

evoked by the target (p < 0.05, Wilcoxon signed-rank test), and

there was a trend for stronger distractor activity in V1 (p =

0.054) (Figure 5A). Similarly, when the monkey made an error

A

B

C

D

Figure 4. Time Course of Selection Signals

in V1 and V4

(A–C) Receptive fields of neurons in V1 and V4 fell

on the target (orange) or distractor curve (purple)

beyond the L1 bifurcation (A), the relevant L2

bifurcation (B), or the irrelevant L20bifurcation (C).

In correct trials, the average MUA response in V1

(left) and V4 (right) evoked by the target branches

was stronger than that evoked by the distractor

branches. The bottom panels show the selection

signal computed as the difference in activity

evoked by the target and distractor branches. We

fitted a curve to this difference signal to estimate

the latency. Colored horizontal lines on the x axis

indicate 95% confidence intervals of the latency

estimate.

D) Responses recorded from 33 V1 sites with

RFs on the flickering segment (top) or on the

static segment (bottom) were split according to

the luminance of the first flicker sample in each

trial. Colors indicate the luminance level of the

first flicker sample (numbers on the right)

and the Weber contrast (numbers on the

left; j(Lsegment � Lbackground)j/ Lbackground; where

Lbackground = 15 cd/m2).

See also Figures S3–S6.

at the L2 bifurcation, V1 and V4 activity

elicited by the corresponding distractor

segment was stronger than that evoked

by the target segment (p < 0.05 for both)

(Figure 5B). Therefore, visual cortical

neurons indeed convey information about

the branches that are selected during the

task.

To investigate whether the neurons also

tracked the time course of decision mak-

ing, we compared neuronal activity be-

tween trials where the first luminance

sample pointed in the correct or wrong di-

rection (luminance target higher/lower

than distractor). The responsemodulation

was strongest (L1 decision: V1, p < 10�6

and V4, p < 0.05; L2 decision: V1, p <

0.005 and V4, p < 0.006; Wilcoxon signed-rank test) and ap-

peared earliest (L1 decision: V1, p < 10�6; L2 decision: V1, p <

0.005 and V4, p < 0.0005; not significant for the L1 decision in

V4, p = 0.13; permutation test) when the first luminance sample

pointed in the right direction (Figure S4). This result implies that

the modulation of activity in V1 and V4 does not only reflect

the outcome of the decisions but that it tracks the unfolding de-

cision process at a high temporal and spatial resolution (because

of the small RFs). Therefore, early andmid-level visual areasmay

contribute to the selection of contour elements, but our results

are not incompatible with scenarios where feedback from higher

brain regionsmodulates activity in V1 and V4 (Khayat et al., 2009;

Pooresmaeili et al., 2014).

Previous studies usually attributed themodulation of activity in

the early and mid-level visual cortex to shifts of attention (Ghose
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and Maunsell, 2002; Luck et al., 1997; Moran and Desimone,

1985; Motter, 1994; Roelfsema et al., 1998). The present results

suggest that decision making causes a similar modulation of

neuronal activity. The enhanced representation of contour ele-

ments in V1 and V4 appears to reflect the monkey’s belief that

they are part of the relevant path (Nienborg and Roelfsema,

2015). We can interpret this response modulation as a shift of

attention and as a decision about the bifurcation point, and we

do not know whether it is possible to dissociate these interpreta-

tions. In what follows, we will use the neutral term ‘‘neuronal se-

lection signal’’ to describe the difference in activity evoked by

selected and ignored contour elements.

Time Course of the Neuronal Selection Signals
Our behavioral results suggested that evidence for multiple deci-

sions accumulates in parallel. To estimate the time course of the

L1 and L2 decisions at the neuronal level, we subtracted the

response evoked by the distractor branch from that evoked by

the target branch, fitted a curve to the response difference,

and estimated latency as the time point where the fitted function

reached 33%of its maximum (Roelfsema et al., 2003; Figures 4A

and 4B; see Figure S5 for data on individual monkeys). The la-

tency of the L1 decision was 177 ms (95% confidence interval,

159–205 ms) in V1 and 184 ms in V4 (149–212 ms), and the la-

tency of the L2 decision was 142 ms in V1 (126–156 ms) and

172ms in V4 (153–193ms) (Figures 4A and 4B).We could directly

compare the latencies of the two decisions for a subset of

recording sites and found that the latency of the L2 decision

was slightly earlier than that of the L1 decision (V1, p < 0.02;

V4, p < 0.05; permutation test). Nevertheless, the time courses

of the selection signals at the two bifurcations overlapped

strongly. Because the time point where the modulation reaches

33% of its maximum is somewhat arbitrary, we also used other

criteria, including measures for the onset of modulation, but

A

B

Figure 5. Population Responses for Error

Trials under the Difficult Condition

(A) Errors at L1. During error trials, V4 activity

evoked by the L1 distractor branch was stronger

than that evoked by the target (p < 0.05, Wilcoxon

signed-rank test), and in V1 there was a trend in

the same direction (p = 0.054). The arrows in the

left panel indicate the erroneous saccade.

(B) Errors at L2. We included trials with a correct L1

decision and an incorrect L2 decision. In V1 and

V4, the L2 distractor branch elicited stronger ac-

tivity in error trials (p < 0.05 for both). The analyses

only included trials from sessions with at least eight

incorrect trials.

these methods yielded similar results

(Supplemental Experimental Procedures;

Figure S6).

A prediction of parallel models is that

evidence should accumulate for all deci-

sion points, even for branches that are

not part of the correct path. In contrast,

a serial algorithm would first take the L1

decision and then trim the tree, focusing

on the relevant L2 decision (TT versus TD, Figure 2A) and

ignoring the irrelevant L20 decision. We therefore examined

whether evidence accumulated for the irrelevant L20 decision

(DT versus DD).We found that neuronal activity for the DT branch

was indeed stronger than for the DD branch, both in V1 (p < 10�6,

Wilcoxon signed-rank test) and V4 (p < 5.10�3) (Figure 4C), in

accordance with a parallel decision-making process.

Integration of the L1 and L2 Decisions into a Strategy
How are the three decisions integrated into a strategy? That is,

how does the monkey select the eye-movement based on these

local selection signals? Above, we mentioned the possibility of a

flat strategy that predicts parallel evidence accumulation for

each of the four possible shapes of the target curve. However,

it is also conceivable that the decision process leverages on spe-

cific interactions between selection signals because committing

to the L1 decisionmight have an effect on the two L2 decisions. A

direct comparison of selection signals between the relevant L2

and irrelevant L20decisions revealed that the initial time courses

of these decisions were similar, but, at a latency of 229 ms in V1

(with a 95% confidence interval of 175–273ms) and 225ms in V4

(95% confidence interval, 175–261 ms), the selection signal for

the L2 branches became stronger than that for the L20branches

(Figure 6; V1, p < 5.10�6; V4, p < 5.10�5; Wilcoxon signed-rank

test; Figure S7). The difference between the latencies of the

influence of L1 on the L2 decisions (TT-TD-[DT-DD]) and the L2

decision itself was significant (p < 0.05 in V1 and V4, Montecarlo

procedure; Supplemental Experimental Procedures).

These results imply that committing to one of the L1 choices

amplified the selection signals for the corresponding L2 deci-

sion. Therefore, after the initial phase of parallel decisionmaking,

V1 and V4 neurons started to code the outcome of the entire de-

cision process after �230 ms. The delayed influence of the L1

decision, which amplified the relevant L2 selection signal relative
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to the irrelevant L20decisions, supports a hierarchical decision-

making strategy and cannot be explained by a flat competition

between four alternatives (Figures 3A and 3B).

An important advantage of the first phase of parallel decision

making, in addition to its speed, is that it permits ‘‘backward in-

fluences’’ of decisions deeper in the tree onto earlier ones. Spe-

cifically, if sensory evidence is weak at the L1-bifurcation, then it

is optimal to compare the relative difficulties of the two L2 bifur-

cations and select the L1 branch leading to the easier L2 deci-

sion. As an extreme example, consider the case where the evi-

dence for the L1 decision is ambiguous, evidence for the left

L2 decision is ambiguous too, but the right L2 decision is easy.

In this situation, choosing one of the two targets on the left yields

a reward with a probability of 25%, whereas choosing the target

on the right yields a reward with a probability of 50%. We there-

fore investigated whether the monkeys’ choices at the L1 bifur-

cation were sensitive to the relative difficulty of the two L2 deci-

sions (Fleming et al., 2013). We estimated the quality of evidence

Evðtr;L
X

Þfor each trial tr at a bifurcation L

X

during the epoch of

evidence integration, weighting the time series of luminance dif-

ferences between target and distractor by the psychophysical

kernels. Therefore, luminance samples at the start of the trial

received a stronger weight in our estimate of the quality of the ev-

idence than samples that were presented later (Figure 2E):

A

B

Figure 6. Selection Signals at L2 Are Ampli-

fied by L1 Choices

(A) Selection signals for the relevant L2 (cyan) and

irrelevant L20 (dark blue) decisions. The selection

signal for the relevant L2 decision became stronger

at a latency of 229 ms in V1 and 225 ms in V4,

reflecting the influence of L1 on the L2 selection

signals (inset).

(B) Comparison of the decision-related activity for

the relevant L2 decision (TT-TD) and irrelevant L20

decision (DT-DD) across individual recordings

sites in V1 (left) and V4 (right). Neuronal activity was

averaged in a windowof 200–500ms after stimulus

onset.

See also Figures S6 and S7.

Evðtr;LxÞ=
X

t

w

norm

ðtÞðLum
T;Lxðtr;tÞ� Lum

D;Lxðtr;tÞÞ;

(Equation 1)

where Lum

T;Lxðtr;tÞand Lum

D;Lxðtr;tÞare
target and distractor luminance at branch

L

x

in trial tr, and w

norm

ðtÞ is the psycho-

physical kernel at time t.

Wemeasured the difference in difficulty

between the L2-decisions as

DiffðtrÞ= jEvðtr;L2Þj � jEvðtr;L20Þj
(Equation 2)

and computed the L1 psychometric func-

tion for the highest and lowest quartiles of

the DiffðtrÞdistribution (Figure 7A). This

analysis revealed a bias at L1 toward the easier L2 bifurcation

(p < 10�6, likelihood ratio test, nested logistic regression), which

was most pronounced when the L1 decision was difficult. We

estimated the time course of the backward influencewith a logis-

tic regression and found that it was similar to the time course of

the L1 and L2 decisions themselves (Figure 7C). Therefore, the

backward influence of the L2 decisions onto the L1 decision is

an intrinsic feature of a strategy that builds on a parallel deci-

sion-making process. To determine the optimality of the result-

ing strategy, we fitted a model to the psychometric curves for

the L1 and L2 decisions (continuous curves, Figure 2D) and

used it to estimate the reverse influence that would maximize

reward (Figure 7B). The reward maximization strategy required

that the backward influence of L2 evidence is strongest when

the L1 decision is difficult, just as observed in the monkeys’

behavior.

A prediction of this tradeoff is that the neuronal selection signal

at the (relevant) L2 bifurcation should not only depend on the

local evidence (Figure S4) and the L1 decision (Figure 6) but

also on the evidence at the (irrelevant) L20bifurcation. We there-

fore examined whether the luminance difference (T-D) of the first

sample at the L20 bifurcation influenced the neuronal selection

signal at the L2 bifurcation. Specifically, we selected the 50%

of trials with highest or lowest difference between target and
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distractor luminance (median split). A large luminance difference

at the L20bifurcation indeed reduced the V1 selection signal at

the L2 bifurcation (n = 95, p < 0.05, paired t test across recording

sites). Vice versa, a large luminance difference at the L2 bifurca-

tion weakened the V1 selection signal at the L20 bifurcation

(p < 0.05) (Figure 7D). This effect failed to reach significance in

V4 (p > 0.2 for both, n = 31), possibly because of the smaller sam-

ple size. The backward influence of the L2 decisions onto the L1

decision is in accordance with the slightly shorter latency of the

L2 selection signals (Figure 4) and provides additional evidence

against a flat competition between four alternative shapes of the

target curve (Figures 3A and 3B).

Neuronal Evidence against Mixed Strategies
The neuronal data do not only allow us to compare flat and hier-

archical strategies. We also used the data to further examine the

possibility of mixed strategies where the monkeys take the two

decisions sequentially but in different orders across trials. If the

monkeys first evaluate L1 in some of the trials but start with L2

in other trials, strong early neuronal selection signals at L1 should

be associated with protracted evidence integration at L2. To test

this possibility, we carried out two additional analyses. First, we

repeated the behavioral reverse correlation analysis of Figure 2E

separately for trials with strong and weak selection signals at L1

(median split of the neuronal response) in a time window of 200–

300 ms. The psychophysical kernels of the two types of trials

were largely overlapping (Figure S8A), which is not in accor-

dance with a mixed strategy. Second, in trials in which monkeys

evaluated L1 before L2, the activity at the L1 target branch

should increase early but decrease later when they evaluate

L2. The reversed order of events is predicted for trials in which

the monkeys start with L2. Therefore, this mixed strategy pre-

dicts a negative correlation between activity in early and late

time windows. When we computed the correlation between

the neuronal responses in V1 and V4 between an early (200–

300 ms) and late (400–500 ms) time window, we only observed

positive correlations for L1 and L2 decisions (Figure S8B). These

analyses support our conclusion based on the psychophysical

kernels (Figure 2) that the monkeys’ behavior is not in accor-

dance with a mixed strategy.

DISCUSSION

The computational power of the primate brain is thought to

derive from its massively parallel architecture and not from its

speed because elementary cognitive operations are relatively

slow (Anderson and Lebiere, 1998; Newell, 1990; Roelfsema,

2005). A key cognitive process is making a sensory decision.

Previous studies have explored the mechanisms for single

perceptual decisions and found that they involve computations

in distributed brain regions. Sensory cortices represent the evi-

dence bearing on alternative actions (Fetsch et al., 2014; Salz-

man et al., 1990), and areas of the parietal and frontal cortices

integrate the evidence as persistent activity during motor plan-

ning (Churchland et al., 2011; Kim and Shadlen, 1999; Roitman

and Shadlen, 2002; Shadlen and Newsome, 2001). The decision

process terminates when the integral of the evidence reaches a

threshold, in accordance with normative models of decision for-

mation in simple tasks (Drugowitsch et al., 2012; Rao, 2010;

Smith and Ratcliff, 2004; Wald and Wolfowitz, 1948).

In this study, we went beyond single decisions and investi-

gated the mechanisms for hierarchical decisions. We obtained

a number of convergent results, indicating that the exploration

of a small decision tree can initially take place in parallel. First,

A

D

B C Figure 7. L1 Decisions Are Biased by L2 Dif-

ficulty

(A) We determined the difference in difficulty

between the two L2 decisions in every trial

(Equation 2) and selected 25% of trials for which

the left (red) or right L2 decision (green) was easiest

and calculated L1 psychometric functions for

these trials. The bottom panel shows the difference

between the psychometric functions (and a

Gaussian fit).

(B) Same as (A) but for a model that optimally

weighs the evidence at the three bifurcations to

maximize reward.

(C) Time course of the backward influence of

L2 difficulty on the L1 decision as estimated with

logistic regression (black). The grey region in-

dicates 95% confidence intervals for the regres-

sion coefficients.

(D) Neuronal correlates of the cross-talk between

the two L2 decisions. Selection signals at L2 and

L20 are stronger when the sensory evidence

conveyed by the first sample at the other L2 de-

cision is weak (median split; blue curve, weaker

evidence; green curve, stronger evidence at the

other L2 decision).
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the reverse correlation analysis revealed that information for all

decisions was integrated at the same time, and we observed

the simultaneous development of neuronal selection signals for

multiple target branches in the visual cortex. Second, the neu-

rons initially also selected the target branch of the irrelevant

bifurcation, which was eventually discarded. Third, the decision

at the initial bifurcation was biased by sensory evidence at

deeper bifurcations to yield an overall strategy that optimized

the total amount of reward.

Information about the individual branches was eventually

combined into a strategy through interactions between neuronal

selection signals for the three decisions. The L2 and L20 deci-

sions influenced each other as well as the L1 decision, and,

vice versa, the L1 decision amplified the neuronal selection

signal for the relevant L2 decision (Figure 8). As a result, the

reward income was higher than what can be achieved by

schemes that make the L1 decision before considering L2. Our

results therefore demonstrate how the primate brain can navi-

gate efficiently through problem spaces. It is equipped with a

parallel and context-sensitive process that integrates hierarchi-

cal decisions into an optimal strategy, thereby compensating

for the protracted time course of individual decisions.

Alternative Strategies for Hierarchical Decisions
Classical methods in computer science explore a decision tree

by considering one decision at a time. In contrast, the monkeys

accumulated evidence for the decisions at the three branching

points in parallel. Furthermore, evidence deeper in the decision

tree influenced their first decision, particularly when the evidence

was ambiguous.

We also considered alternative decision strategies. The first is

a serial, mixed strategy where the monkeys start with one deci-

sion in some trials but with another decision in others. We ob-

tained three sources of evidence against mixed strategies: the

shape of the psychophysical kernel in a task with a single deci-

sion did not differ from that in the hierarchical decision task (Fig-

ure 2); the strength of the L2 psychophysical kernel was similar in

trials with strong and weak early L1 selection signals; and there

was a positive correlation between selection signals in early and

late time windows for each of the branches (Figure S8). These re-

sults, taken together, imply that it is extremely implausible that

the overlapping kernels result from mixing trials in which L1

and L2 decisions are performed sequentially but in different

orders.

The second alternative strategy is a flat four-alternatives

choice that disregards the hierarchical nature of the decision

tree. The data did not support such a flat strategy either, for a

number of reasons. First, the accuracy of the L2 decision did

not depend on the strength of evidence for the L1 decision, as

predicted by a flat model (Figure 3). Second, an early phase of

parallel evidence accumulation was followed by a later integra-

tion phase when the selection signal for the L2 decision was

amplified relative to that for the L20 decision, which is not

compatible with a flat competition model. Third, the relative dif-

ficulty of the L2 decisions exerted a backward influence on the

L1 decision, and evidence at one L2 decision influenced the se-

lection signal at the other one, again not in accordance with a flat

model. Taken together, the results revealed a genuine hierarchi-

cal decision-making process characterized by a first parallel de-

cision-making phase followed by an integration phase enabling

an optimal eye movement decision.

Does the Visual Cortex Contribute to Decision Making?
Most previous studies on sensory decisionmaking examined the

activity of neurons in the parietal and frontal cortex (Churchland

et al., 2011; Ding and Gold, 2012; Gold and Shadlen, 2000; Kiani

and Shadlen, 2009; Kiani et al., 2008; Kim and Shadlen, 1999;

Roitman and Shadlen, 2002; Shadlen and Newsome, 2001).

This study differs because we recorded neuronal activity in areas

V1 and V4, where neurons have smaller receptive fields, so that

we could measure the selection of individual branches of the

decision tree. Previous studies with the curve-tracing task sug-

gested that the response modulation in the visual cortex is

caused by shifts of object-based attention (Pooresmaeili et al.,

2014; Roelfsema et al., 1998). The relationship between atten-

tional selection signals and the neuronal correlates of decision

making have, to our knowledge, not been explored extensively,

although it is conceivable that the selection signals in the parietal

and frontal cortex in previous decision-making tasks were

also associated with shifts of spatial-, feature-, or object-based

attention.

We do not know if these selection signals are generated in the

visual cortex or in higher cortical areas. One possible scheme is

that they formed within the visual cortex because they depended

on luminance information. However, our results are also compat-

ible with a schemewhere the visual cortex provides the evidence

but where the decision-making process takes place in higher

brain regions (Law and Gold, 2008). This second scheme

would imply a sophisticated feedback process, with early feed-

back from the decision areas selecting three branches in parallel

and later feedback signals focusing on the chosen path

Figure 8. Summary of the Results

After the initial visual response (elicited in V1 at a latency of 40ms, white curve),

there is an early phase of parallel decision making (orange shading). After

225 ms, neurons start to reflect the interactions between the three decisions,

which are required for the optimal strategy, so that the selected curve is

highlighted with increased activity (yellow shading) in the visual cortex.

Bottom: the neural activity elicited by the stimulus (white curve), whereas the

orange and yellow curves show the time courses of the initial parallel decision-

making phase and the final strategy, respectively.
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(Figure 8). Although our results cannot distinguish between these

alternatives, they do provide an upper bound on the timing of the

decisions. If the decision process occurs in higher cortical areas,

then it needs to occur early enough so that there is sufficient time

for the feedback signal to reach the visual cortex.

It is therefore remarkable that the first selection signals in V1

emerged early, after �140 ms, during a phase when evidence

accumulation was ongoing according to the behavioral results.

Furthermore the V1 selection signals did not lag those in V4, un-

like in other tasks with a clear backward progression of selection

signals from higher to lower visual areas (Buffalo et al., 2010;

Mehta et al., 2000) but in line with a recent curve-tracing study

(Pooresmaeili et al., 2014), showing that selection in the frontal

eye fields and V1 occurs at approximately the same time. These

early selection signals are compatible with an active participa-

tion of the visual cortex in the decision. An advantage of such

a participation is that the visual cortex provides an accurate

map of the decision tree and can select one of a number nearby

branches at a high spatial resolution (Mumford, 1992). Future

studies could elucidate the contribution of the parietal and frontal

cortex to hierarchical decision making, although this may require

a paradigm that is better suited for neurons with large receptive

fields.

Limits to Parallel Decision Making
Our data show, for the first time, that evidence for multiple deci-

sions in a small, hierarchical problem space can initially form in

parallel, before a second phase when the strategy is formed.

Previous studies have indicated that multiple decisions are not

always taken simultaneously. The brain switches to a serial deci-

sion-making strategy when individual decisions are more

demanding (Moro et al., 2010), when the number of them ex-

ceeds a limit (Zylberberg et al., 2012), or when the sampling of

evidence for different decisions requires eye movements (Chen

et al., 2013).

Some of the limits to parallel decision making could be related

to the maximum number of items that can be held in working

memory (Luck and Vogel, 1997) because a sensory decision im-

plies a neuronal memory element for integrating evidence.

Indeed, the areas in the frontal and parietal cortex that have

been implicated in perceptual decision making are also involved

in workingmemory (Funahashi et al., 1989; Gnadt and Andersen,

1988), and it has been proposed that the neuronal substrates for

decision making and working memory overlap (Soltani and

Wang, 2010). Testing the limits of parallel decision making and

identifying the relation between working memory and decision

making may prove to be interesting topics for future research.

EXPERIMENTAL PROCEDURES

All experimental procedures complied with the NIH Guide for Care and Use of

Laboratory Animals and were approved by the Institutional Animal Care and

Use Committee of the Royal Netherlands Academy of Arts and Sciences.

Three male macaque monkeys (Macaca mulatta; D, J, and A) participated in

this study. In a first surgery, a head holder was implanted for head fixation dur-

ing the experiments. In a separate surgery, microelectrode arrays (Blackrock

Microsystems ‘‘Utah probes’’ with 4 3 4, 4 3 5, or 5 3 5 electrodes with a

length of 1 or 1.5 mm) were implanted chronically in areas V1 and V4 under

aseptic conditions and general anesthesia. Details of the surgical procedures

and postoperative care have been described elsewhere (Roelfsema et al.,

1998, 2007).

Task and Stimuli

The monkeys were seated at a distance of 84 cm from a 21-inch cathode ray

tube (CRT) monitor with a frame rate of 60 Hz. Trials started with a blank screen

with a fixation point (green, diameter = 0.2�) in the center of the display (Fig-

ure 2A; Movie S1). The stimuli appeared when the monkey kept his gaze on

the fixation point for 300 ms. The monkeys maintained the gaze within a fixa-

tion window of �1� diameter, and trials were aborted when the animal broke

fixation. The monkeys had to mentally trace a curve that bifurcated two times.

The average eccentricities of the first and second bifurcation were 0.36� and

3.8�, respectively. When the stimulus had been in view for 500 ms, the fixation

point disappeared, cueing the animal to make an eye movement to one of the

four markers. If the animal maintained fixation after fixation point offset, then

the stimuli remained on the screen for maximally 1,500 ms. However, in

most trials, the animals responded within a few hundred milliseconds, and

they were rewarded with a drop of juice when they chose the target marker

(TT, Figure 2A). In case of an error, we added 500 ms to the inter-trial interval.

We stochastically varied the luminance of the two line segments beyond the

bifurcation points every 50 ms (Figure 2B), adding luminance sampled from a

Gaussian distribution (s = 10 cd/m2) to the base luminance. The base lumi-

nance of the distractor segment was equal to that of the gray background

(15 cd/m2). The base luminance of the target branch was higher and varied

with difficulty. In easy trials, the base luminance of the target branch was

45 cd/m2. It was 28 or 35 cd/m2 in intermediate trials, and 22 or 28 cd/m2 in

difficult trials (the precise value for intermediate and difficult trials was adjusted

across days to the monkeys’ accuracy). The non-varying contours and target

circles (with a diameter of 0.7�) were white. We varied the position and size of

the stimuli across recording sessions to ensure that the center of the receptive

fields fell on the static segments in the recording sessions that were included in

the analysis. The location of the static segments was constant within sessions

so that a receptive field could fall either on an L1 or an L2 segment during the

entire session. Monkeys J and A also performed the task with only the L1 bifur-

cation (Figure 2F). We included a total of 176,185 trials in the analysis of the

main task and 17,933 trials in the task with a single bifurcation.

Recording and Analysis of Multi-unit Activity in Areas V1 and V4

MUA was recorded in areas V1 and V4 as in previous studies (Cohen and

Maunsell, 2009; Legatt et al., 1980; Logothetis et al., 2001; Xing et al., 2009)

as the envelope of the signal filtered between 750 and 5,000 Hz. In short,

the MUA signals were amplified, band-pass-filtered (750–5,000 Hz), full

wave-rectified, low-pass-filtered at 500 Hz, and sampled at a rate of 763 Hz.

The MUA signal represents the pooled activity of a number of neurons in the

vicinity of the electrode tip. The population responses obtained with MUA

recording are identical to those obtained by pooling across single units (Cohen

and Maunsell, 2009; Supèr and Roelfsema, 2005).

We only included recording sites with a clear visual response. We required

that the trial-averaged difference between the maximum visual response (win-

dow from 0–300 ms after stimulus onset) and the spontaneous activity (�150–
0 ms from stimulus onset) in V1 (V4) was at least 150% (75%) of the SD of the

trial-to-trial variation in spontaneous activity. In V1,MUAwas recorded at a total

of 92 recording sites with receptive fields beyond the L1 bifurcation (n = 59, 19,

and 14 for D, J, and A, respectively) and from 95 sites with receptive fields

beyond the L2 bifurcation (n = 62, 14, and 19 for D, J, and A, respectively). In

V4, MUA was recorded from 27 sites beyond L1 (n = 14 and 13 in D and J,

respectively) and 31 sites beyond L2 (n = 13 and 18 in D and J, respectively).

The average eccentricities of receptive fields on the segments beyond the L1

bifurcation were 4.7� (V1) and 5.8� (V4), and the average eccentricity of the

receptive fields beyond the L2 bifurcation were 4.9� (V1) and 5.6� (V4). The V1

and V4 recordings in monkeys D and J were obtained in interleaved sessions.

Themonkeys performed between 800 and 3,000 trials per recording session

(mean, 1,299; SD, 380; sessions with <800 trials were excluded). The neuronal

responses were normalized to the average peak response after subtracting

spontaneous activity. Population responses were computed by averaging

across the normalized responses at individual recording sites. Data from a

recording site were used only once, first averaging across days for that
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recording site before averaging across recording sites. The MUA analysis for

the L1 decision included all trials with a correct L1 decision irrespective of

the L2 decision (TT and TD, Figure 4A). The MUA analysis for the L2 decision

included only correct trials (TT, Figure 4B), except for the analysis of Figure 4C,

which included trials with a correct L1 decision irrespective of the L2 decision.

The statistical significance of the selection signal was testedwith aWilcoxon

signed-rank test in a window between 200–500 ms after stimulus onset. We

described the method to determine the latency of the selection signals in V1

and V4 in the Supplemental Experimental Procedures.

Estimation of the Influence of Luminance Fluctuations on Behavior

We used a logistic regression model to measure the influence of luminance

fluctuations on the decisions made at each bifurcation. We modeled the accu-

racy of the decision at the first bifurcation L1 as

Y =
�
1+ exp

�
�
�
b0 + b1;tFT;t + b2;tFD;t + b3;tFdif;t + b4L+ b5;kMk

����1;
(Equation 3)

where b represents the fitted coefficients, Y indexes the accuracy of the deci-

sion, L is the base luminance of the target segment (candelas per square me-

ter), M
k

is a dummy variable identifying the monkey, F
T,t

and F

D,t

represent

the luminance fluctuations (candelas per square meter) of the target and

distractor segments at time t, and F

dif,t

measures the ease of the relevant

L2 decision relative to the ease of the irrelevant L20 decision; i.e.,

F

dif;t = ðFT2;t � F

D2;tÞ� ðF
T20;t � F

D20;tÞ. To test the significance of the influence

of L2 on L1 (Figure 7C), we performed a likelihood ratio test for nested logistic

regression models with and without the b
3

term. We used the same model for

the analysis of the single-decision task but without the b
3

term.

The regression model for the decision at the second bifurcation L2 was

Y =
�
1+ exp

�
�
�
b0 + b1;tFT;t + b2;tFD;t + b3;tFfirst;t +b4L+ b5;kMk

����1:
(Equation 4)

F

first;t = ðFT1;t � F

D1;tÞmodeled the possible influence of the luminance differ-

ence at the first bifurcation on the L2 decision, but we found that this term was

negligible. In Figures 2E and 2F and 7C, the regression coefficients for the lumi-

nance fluctuations are shown relative to the base luminance (coefficients are

divided by b
4

).

Psychometric Curves

Weconstructed the psychometric curves (Figures 2D and 7A) by collapsing the

time-varying luminance information to a single value per trial and branch. The

weight of the luminance information presented at time t was measured by a

regression analysis. For branch x (L1 or L2), the regression model was

Y

x

=
�
1+ exp

�
�
�
b0 + b1;tðFTx;t � F

Dx;tÞ+ b4L+ b5;kMk

����1: (Equation 5)

b represents the fitted coefficients, Y
x

indexes the accuracy of the decision

made for branch x, L is the base luminance of the target segment (candelas per

square meter),M
k

is a dummy variable identifying themonkey, and F

T,t

and F

D,t

represent the luminance (candelas per square meter) of the target and distrac-

tor segments at time t of branch x. Because we found that the effects of target

and distractor luminance were of equal magnitude but opposite polarity (Fig-

ures 2E and 2F), Equation 5 evaluated the luminance difference F

T,t

-F
D,t

(unlike

Equations 3 and 4). We included the first ten samples (500 ms) in the regres-

sion. The weightsw
norm

(t) in Equation 1 were obtained from the regression co-

efficients b
1,t

, dividing each coefficient by the sum over the first ten samples:

w

norm

ðtÞ= b1;t

,
X10

t = 1

b1;t: (Equation 6)

We used the normalizedweightsw
norm

(t) to transform the time series of lumi-

nance values into a single value measuring the strength of the evidence (Ev) at

the decision point Lx:

Evðtr;LxÞ=
X

t

w

norm

ðtÞðLum
T;Lxðtr;tÞ� Lum

D;Lxðtr;tÞÞ; (Equation 7)

where Lum

T,Lx

(tr,t) and Lum

D,Lx

(tr,t) are target and distractor luminance at time

t in trial tr.

To fit the psychometric curves of Figure 2D (and model optimal decisions,

see below), we assumed that the binary decision at each bifurcation was

made by computing the sign of an internal representation of the external evi-

dence Ev

int

ðtrÞ= fðEvðtrÞÞ. According to this model, the internal representation

Ev

int

ðtrÞdepends stochastically on the external evidence EvðtrÞ, as in the

Weber-Fechner law (Krueger, 1989). For simplicity, the model holds that the

noise in Ev

int

ðtrÞhas a Gaussian distribution with an SD that scales linearly

with EvðtrÞ:

Ev

int

ðtrÞ� NðEvðtrÞ+bias;sÞ

s = a+b:EvðtrÞ; (Equation 8)

where Nðm;sÞis a normal distribution with mean mand standard deviation s.
We fitted the a,b, andbiasparameters to the psychometric curves in Figure 2D.

The fits of the model were excellent because the fraction of unexplained

variance was lower than 0.2% for both L1 and L2. Simpler models (e.g., if s
does not depend on EvðtrÞ) provided much poorer fits to the psychometric

curves.

Model of Reward Maximization

We used a model to estimate the optimal decision strategy, simulating the

same number of trials as the monkeys performed while sampling from the

probability distributions of Ev

int

ðtr;L1Þ, Ev

int

ðtr;L2Þ, and Ev

int

ðtr;L20Þ, as

defined in Equation 8. The model used the relative difficulty of the two L2

decisions to make the L1 decision that maximized the reward probability.

The probability of obtaining a reward R depends on the L1 decision as follows:

pðR;L1= LeftÞ=p1ðEvintðtr;L1ÞÞp2ðEvintðtr;L2a

ÞÞ
pðR;L1=RightÞ= ð1 � p1ðEvintðtr;L1ÞÞÞp2ðEvintðtr;L2b

ÞÞ;
(Equation 9)

where L2a and L2b are the L2 bifurcations contingent on choosing left and

right at the L1 bifurcation, respectively, and p

1

and p

2

are the psychometric

functions for the L1 and L2 decisions, respectively. In each trial, the model

selected the L1 decision associated with the higher reward probability in

Equation 9.

Bounded Accumulation Models

To compare the flat decision model to the hierarchical model (Figure 3), we

fitted both models to the psychometric functions of Figure 2D. The flat model

instantiates a race between four accumulators, one for each choice, and the

decision variable that reaches the bound first dictates the choice. The state

of each accumulator at time t is given by the sum of momentary evidence

up to time t:

dv

i

ðtÞ=
Xt

t =0

me

i

ðtÞ: (Equation 10)

The momentary evidence for each accumulator depends on the combina-

tions of the luminance at the different branches as follows (Figure 3B):

2
664

me1ðtr;tÞ
me2ðtr;tÞ
me3ðtr;tÞ
me4ðtr;tÞ

3
775 =

2
664

+ k1 + k2 0
+ k1 �k2 0
�k1 0 + k2
�k1 0 �k2

3
775 3

2
4

l

T

L1ðtr;tÞ� l

D

L1ðtr;tÞ
l

T

L2ðtr;tÞ� l

D

L2ðtr;tÞ
l

T

L20ðtr;tÞ� l

D

L20ðtr;tÞ

3
5 +

2
664

N 1ð0;sÞ
N 2ð0;sÞ
N 3ð0;sÞ
N 4ð0;sÞ

3
775;

(Equation 11)

where me1-4 is the momentary evidence for the four choices, k
1

and k

2

are

scaling parameters, and s is the standard deviation of the Gaussian noise

added independently to each decision variable per time step (Figures 3A

and 3B). The equation in Figure 3A shows the state of the decision variable

for one of the races, dv
1

, with momentary evidence me

1

expanded according

to Equation 11. The state of the accumulators is updated at 20 Hz, the rate of

the external (known) noise. The process continues until one of the accumula-

tors reaches a bound (set at an arbitrary value). We fitted k1, k2, and s to the

accuracy data (Figure 2D) by minimizing the root-mean-square error between

the psychometric functions for data and model.

The hierarchical model differs from the flat model because the decisions for

each bifurcation are made independently; i.e., the accuracy at one bifurcation

is independent of the luminance at other bifurcations. Themodel implements a
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race between two accumulators for every bifurcation. The two streams of

momentary evidence that drive the two accumulators are given by

me

T

ðtr;tÞ= k
x

�
l

T

Lx

ðtr;tÞ� l

D

Lx

ðtr;tÞ
�
+Nð0;s

x

Þ
me

D

ðtr;tÞ= � k

x

�
l

T

Lx

ðtr;tÞ� l

D

Lx

ðtr;tÞ
�
+Nð0;s

x

Þ; (Equation 12)

whereme

T/D

is the evidence for the local choice, x equals 1 or 2 for the L1 and

L2 decisions, respectively, and the Gaussian noise was sampled indepen-

dently for each decision variable. The state of the decision variable at time t
is given by the sumofmomentary evidence up to that time. The equation in Fig-

ure 3D illustrates the state of a decision variable at bifurcation Lx at time t. The
final choice is determined at a second stage that combines the local decisions

at each bifurcation. As for the flat model, we fit k1, k2, s 1, and s 2 to the psycho-

metric curves of Figure 2D.

We used a permutation test to determine whether the strength of the evi-

dence at L1 had a significant influence on the accuracy at L2 (Figure 3F; Fig-

ure S2). We computed the sum of differences in accuracy between the two

psychometric curves in Figure 3F; i.e.,
P

i

ðplow L1
correct

ðiÞ� p

high L1
correct

ðiÞÞ, where i

indexes the evidence at L2 (x axis in Figure 3F). The significance of this differ-

ence was determined by a comparison of this statistic to a distribution ob-

tained by shuffling the L1 difficulties 2,000 times. p Values correspond to the

fraction of the shuffled distribution that is at least as extreme as the test

statistic.
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