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SUMMARY

Sensory selection andmovement locally and globally
modulate neural responses in seemingly similarways.
For example, locomotion enhances visual responses
inmouseprimaryvisual cortex (V1), resembling theef-
fects of spatial attention on primate visual cortical ac-
tivity. However, interactions between these local and
global mechanisms and the resulting effects on
perceptual behavior remain largely unknown. Here,
we describe a novel mouse visual spatial selection
task in which animals either monitor one of two loca-
tions for a contrast change (‘‘selective mice’’) or
monitor both (‘‘non-selective mice’’) and can run at
will. Selective mice perform well only when their
selectedstimuluschanges,giving rise to local electro-
physiological changes in the corresponding hemi-
sphere of V1 including decreased noise correlations
and increased visual information. Non-selective
mice perform well when either stimulus changes,
giving rise to global changes across both hemi-
spheres of V1. During locomotion, selective mice
have worse behavioral performance, increased noise
correlations in V1, and decreased visual information,
while non-selective mice have decreased noise
correlations in V1 but no change in performance or vi-
sual information. Our findings demonstrate that mice
can locally or globally enhance visual information,
but the interaction of the global effect of locomotion
with local selection impairs behavioral performance.
Moving forward, thismousemodelwill facilitate future
studies of local and global sensorymodulatorymech-
anisms and their effects on behavior.

INTRODUCTION

Accurate perception is supported by a combination of local and

global neural mechanisms, such as selective attention and

arousal. These local and global effects are most often studied
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in isolation and in different species, so we know little about

how they interact to affect neural responses and behavior.

In rodent studies, global arousal and its correlates are strongly

associated with movement, including locomotion and active

whisking. Global neural effects of locomotion in mouse resemble

local effects of spatial attention in primates [1–3]. Similar neural

effects include reduced spike count correlations [4–7], reduced

low-frequency (<10 Hz) and changes in gamma (30–80 Hz) local

field potential (LFP) power [7–11], increased stimulus-evoked

firing rates [6, 7, 11–16], and reduced trial-to-trial spiking

variability [6, 17]. The combination of reduced spike count corre-

lations (rsc) and reduced low-frequency LFP power amounts to a

desynchronized brain state [1], which is often associated with

improved perceptual behavior. Reduced rsc, in particular, may

increase the information coding capacity of a neural population,

though it depends on task specifics and the particular correlation

structure [18–21].

While the behavioral effects of attention are well established

[12, 13, 22], behavioral effects of locomotion in themouse remain

largely untested, with the exception of one study in which

locomotion improved the behavioral performance of mice [23].

Locomotion was also shown to improve visual information in

neural responses outside the context of a task [24, 25]. More

recent studies have shown that a great deal of cortical activity

in awake mice can be explained solely by the animals’ move-

ments [26, 27], and that movement-related activity dominates

task-related activity [27]. Effects of this broad movement-related

activity on behavioral performance have not been directly

examined, though one study found that a global desynchronized

state was more related to task engagement than task perfor-

mance [28].

We sought to develop a mouse model for spatial selection and

to use it to investigate interactions between local and global

mechanisms of sensory modulation, the effects of locomotion

on task performance and sensory representations in primary

visual cortex (V1), and whether and how local and global

mechanisms affect neural representations of visual information

in V1. We show that selecting a single location in space locally

modulates neural responses, while monitoring two spatial

locations symmetrically modulates neural responses. Locomo-

tion has a global effect on neural responses in both groups

and impairs the behavioral performance of selective mice, while
td.
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not significantly affecting the behavior of non-selective mice.

Consistently, visual information in V1 population activity

improved on correct trials in the selected hemisphere and

decreased during locomotion for selectivemice. In non-selective

mice, visual information in V1 was lower compared to selective

mice and was not modulated by locomotion.

Our results show that on a trial-to-trial basis mice can enhance

cortical representations of visual information in V1 in a spatially

selective manner. Contrary to previous proposed models, loco-

motion does not generally enhance visual information process-

ing and behavior. Instead, the effect of locomotion depends on

behavioral context, and its largest effect is to impair spatially

selective behavior.

RESULTS

A Mouse Spatial Selection Task
We developed a spatial selection task for mice in which one

group selectively monitored one of two locations for a contrast

change (80-20mice), and a separate groupmonitored both loca-

tions for a contrast change (50-50 mice). Water-restricted mice

were head-fixed and able to run freely on a wheel, with a com-

puter monitor centered in each visual hemifield (Figure 1A). At

the start of each trial, screens were gray, and then randomly ori-

ented drifting square wave gratings appeared simultaneously on

both sides (see STAR Methods for detailed grating parameters).

After a 2 s initial delay, the contrast of one of the two gratings

changed after a random additional time governed by a flat haz-

ard function, to ensure a constant change probability and atten-

tional demand [29] and prevent mice from using timing strategies

to perform the task. To receive a sucrose water reward, the mice

were required towithhold licking prior to the contrast change and

then lick within a short duration after the change. This was clas-

sified as a correct trial (Figure 1B). Early licks prevented water

delivery and initiated a timeout by increasing the inter-trial inter-

val. Trials during which the mouse did not lick were classified as

miss trials and were neither rewarded nor punished.

The only difference between the training regimens of the two

groups of mice was the probability of the contrast change occur-

ring in each hemifield (for more details, see STAR Methods).

Selective (80-20) mice were trained with asymmetric change

probabilities, 80% and 20% so that one side was always more

likely to change. Non-selective (50-50) mice were trained with

symmetric change probabilities so that each side changed

50% of the time. Importantly, both groups of mice were re-

warded when correctly responding to a contrast change on

either side. As we will show, this simple difference in the proba-

bility of target appearance was enough to produce dramatic

differences in behavior and neural activity. A similar paradigm

for macaque monkeys demonstrated that animal performance

was best when a cue indicated the location of a high probability

orientation change (80% of trials), worst when the uncued loca-

tion changed (20% of trials), and intermediate in blocks when

both locations were simultaneously cued and equally likely to

occur (50%of trials each) [30]. In our case, the cue is the animal’s

experience of learning the change probabilities, and the neutral

and cued conditions are trained with separate groups of mice.

Due to individual variability and the structure of the task not

conforming to typical signal detection theory analysis, we devel-
oped a measure of performance called detection index that

compares each animal’s performance each day to its chance

performance (see STAR Methods and Figure S1 for details).

80-20 and 50-50 Mice Performed Differently
We began by comparing behavioral performance between the

two target locations and between running and stationary condi-

tions. When stationary, 80-20 mice performed well above

chance on trials when the more likely change occurred (9.74

SDs above chance [detection index], p < 0.0001; Figure 1C)

and performed no better than chance when the unlikely change

occurred (0.22, p = 1.0; Figure 1C), due to a difference in z(cor-

rect), but not z(early) (Figure S1). In contrast, 50-50 mice per-

formed well when the change occurred on either side (detection

index of 7.52 and 6.89, p < 0.01 relative to chance; Figure 1C).

Performance of 50-50 mice was aligned to their best side, and

there was a slight but significant difference in performance be-

tween the two sides on stationary trials (p = 0.023; Figure 1C).

Additionally, 80-20 mice were more likely to respond to likely

changes than unlikely changes (attributable to differences in

z(correct)), while 50-50 mice were likely to respond to either

change (Figure S1). Mean reaction times were not significantly

different between the two groups (80-20, 475 ± 39 ms; 50-50,

435 ± 81 ms; SD, p = 0.479, Wilcoxon rank-sum test; Figure S1).

We also found that behavior was dependent on the magnitude

of the contrast change. 80-20 mice performed better on likely

change trials than 50-50 mice did when either side changed,

particularly at larger contrast changes, but did not perform

above chance when the unlikely stimulus changed, even with

large contrast changes (Figure S1). 80-20 mice were either

completely ignoring the unlikely change or failed to learn to

respond to them. In either case, the behavioral differences be-

tween 80-20 and 50-50 mice are robust, and that 50-50 mice

were outperformed suggests that dividing perceptual resources

limits their maximum performance.

We then examined locomotion trials, during which the mouse

moved >0.5 cm/s in the 1 s prior to the contrast change. Interest-

ingly, 80-20 mice performed much worse during locomotion

(detection index of 4.39 versus 9.74, p = 0.0011; Figure 1C),

which was due to both a decrease in correct trials and an in-

crease in early lick trials (Figure S1). In contrast, locomotion

did not significantly affect the detection index of 50-50mice (Fig-

ure 1C). Both groups responded less often while running versus

while stationary (Figure S1). Higher speeds were less common

and associated with increasingly worse performance by 80-20

mice, but no change in performance by 50-50 mice (Figure S1).

Neural mechanisms of locomotion-induced modulation are well

established and not lateralized, which we later show to be true

in both groups of mice. Therefore, this difference in the effect

of locomotion suggests that 80-20 and 50-50 mice support their

behavioral states with different configurations of neural activity,

or brain states.

Pupil Diameter Increases on Correct Trials for 50-50,
but Not 80-20, Mice
Pupil diameter and global arousal are closely linked. In mice,

pupil diameter increases dramatically with locomotion, though

it has been correlated with arousal and task performance sepa-

rately from locomotion [7, 31–33]. We measured pupil diameter
Current Biology 29, 1592–1605, May 20, 2019 1593
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Figure 1. Spatial Selection Task and Behavioral Performance

(A) Schematic of behavioral rig. Mice were head-fixed on a wheel and allowed to walk or run at will. Computer monitors for displaying visual stimuli were angled to

the left and right sides of the mouse, centered in each hemifield and avoiding the binocular zone.

(B) Spatial selection task. Mice were water restricted, and to receive a water reward they had to lick in response to a contrast change in an oriented drifting grating

stimulus that could occur on either the right or left side (correct trial). If mice licked prior to (early) or too late after the change (miss) or failed to respond (miss), they

did not receive water on that trial. We trained two groups of mice with different change probabilities for the left and right sides: asymmetric (80%–20%) or

symmetric (50%–50%). This simple difference in change probabilities produced differences in behavior between the two groups.

(C) Differences in behavior between groups. 80-20 trained mice performed well above chance only when the change occurred on the more likely side. Perfor-

mance was at chance levels when the unlikely change occurred. (The detection index represents the number of SDs away from chance performance. For further

explanation of detection index, see main text or STAR Methods.) In addition, 80-20 mice performed much worse while running than while stationary. 50-50 mice

performedwell when either change occurred, and performance was unaffected by running. Some 50-50mice performed slightly better on one side; when aligned

to this bias, there was a significant difference in performance between different side change trials. 80-20, N = 11 mice; 50-50, N = 7 mice. Error bars, SEM.

Asterisks directly above or below individual bars indicate statistical tests relative to zero.

(D) Changes in pupil diameter. Running reliably increased pupil diameter in both groups, so we normalized to the average diameter during running (magenta line).

We also report pupil diameters during stationary trials (black line) and further separate stationary trials into correct (green line) and miss (blue line) trials. Data are

aligned to trial time points and averaged across trial types. Pupil diameter in 80-20 mice was not different between correct and miss trials, while pupil diameter in

50-50 mice was larger on correct than miss trials across all time points. Comparisons between correct and miss trial pupil diameters using Wilcoxon rank-sum

test. 80-20, N = 3,249 trials, 4 mice; 50-50, N = 2,752 trials, 4 mice. Error bars, SEM.

(E) Optogenetic inactivation of V1 impairs performance. To determine the necessity of V1 to the task, we expressed ChR2 in PV+ inhibitory neurons in both

hemispheres of V1 allowing optogenetic V1 silencing (see STAR Methods and main text). Optogenetic silencing in the hemisphere contralateral to the change

significantly impaired behavior in both groups of mice. Ipsilateral silencing also impaired behavior, though this could be due to light spread across hemispheres.

80-20, N = 45 sessions, 2 mice; 50-50, N = 34 sessions, 2 mice. Error bars, SEM. Statistical test relative to zero.

All plots: *p < 0.05, **p < 0.01, ***p < 0.001; +p < 0.05 before Bonferroni adjustment. Unless otherwise noted, we performed a Shapiro-Wilk test for a normal

distribution. If the null hypothesis of a normal distribution held, we used a one-sample or paired t test. Otherwise, if the sample was not normal, we used a non-

parametric Wilcoxon signed-rank or rank-sum test. We then performed a Bonferroni adjustment for multiple comparisons. All adjustments in this plot used n = 4.

See also Figures S1 and S7.
and found that, consistent with previous studies, pupil diameter

increased reliably with locomotion in both groups (Figure 1D). By

examining stationary trials separately, we found a curious

difference between the two groups. 50-50 mice had larger pupil

diameter on correct trials than on miss trials both before and

after the initial stimulus onset (p < 0.05 before Bonferroni

adjustment) and the contrast change (p < 0.01 after Bonferroni
1594 Current Biology 29, 1592–1605, May 20, 2019
adjustment; Figure 1D), consistent with studies linking larger

pupil diameter to task engagement and arousal. However, in

80-20 mice there was no difference in pupil diameter between

correct and miss conditions on likely or unlikely change trials

(Figure 1D). This suggests that 50-50mice were aided by recruit-

ing global arousal mechanisms to perform the task, while 80-20

mice refrained from recruiting global arousal, perhaps because



A B

DC

E F

G

Figure 2. Local and Global Modulation of Correlated Variability

(A) Schematic of hemisphere comparisons and terminology. In 80-20 mice, the

likely hemisphere represents the more likely contrast change, and the unlikely

hemisphere represents the less likelychange. In50-50mice,weexaminedactivity

in both hemispheres, aligning the sides to their behavioral bias if they had one.

(B) Illustration of examined time points: pre-stimulus onset, just after stimulus

onset, just prior to the contrast change, and just after the contrast change.

(C) Local reduction of spike count correlations (rsc) in 80-20 mice. Prior to the

contrast change, rsc in the likely hemisphere decreases selectively on correct

trials (solid red line) relative to miss trials (dotted red line), while pre-change rsc in

the unlikely hemisphere slightly increases (blue lines). Black line shows rsc
calculated with shuffled trials. Likely hemisphere, N = 4,786 pairs; unlikely,

N = 3,187 pairs.

(D) Global reduction of rsc in 50-50 mice. Across all time points and in both

hemispheres, rsc is decreased on correct (solid lines) relative to miss trials

(dotted lines). When aligned to the slight behavioral biases of these 50-50

mice, the hemisphere corresponding to higher performance had lower rsc
it, like locomotion related effects, disrupts the neural activity

required to perform the task.

Optogenetic Inactivation of V1 Impairs Performance
To test the involvement of V1 in the task, we expressed ChR2 in

V1 parvalbumin-positive (PV) inhibitory neurons and optogeneti-

cally activated them to silence V1. Previous studies have demon-

strated the effectiveness of this strategy for inactivating cortex

[34]. We injected Cre-dependent AAV1-DIO-ChR2 bilaterally

into V1 of PV-Cre mice. Expression of the ChR2 protein selec-

tively in PV+ neurons was confirmed either electrophysiologically

or histologically. We found that optogenetic activation of PV neu-

rons effectively silenced V1 and impaired detection of the

contralateral contrast change in both groups of mice (80-20,

detection index decrease of 7.21, p < 1e�5, 45 sessions; 50-

50, decrease of 3.90, p < 1e�9, 34 sessions; Figure 1E). This

shows that V1 is necessary for optimal performance of the

task. The change in performance was due to both a decrease

of correct trials and an increase in early licks (Figure S1). In 80-

20 mice, silencing the likely hemisphere caused an increase in

early licks in general and a relative increase in response ten-

dency on unlikely change trials. Interestingly, inactivation of V1

also somewhat impaired detection of the ipsilateral contrast

change (80-20, decrease of 2.87; 50-50, decrease of 1.23;

Figure 1E), which could be explained by light leakage across

hemispheres but may also suggest a role for the ipsilateral

hemisphere in task performance, or simply a broad effect of

the strong and artificial optogenetic manipulation.

Local and Global Effects of Spatial Selection and
Locomotion on Spike Count Correlations
To investigate how neural activity relates to the behavior of these

animals, we performed simultaneous bilateral recordings in the

monocular region of V1 using high-density silicon laminar micro-

probes. We recorded simultaneously from up to 70 isolated

single units in each hemisphere and identified cortical layers

using current source density analysis. We compared neural

activity between recordings from the two hemispheres, likely

and unlikely, which represent the locations of likely and unlikely

changes (Figure 2A) at distinct time points during the trial
(p < 0.05,Wilcoxon rank-sum test). Hemisphere contra to bias, N = 2,891 pairs;

ipsi, N = 7,412 pairs.

(E) Locomotion globally increases rsc in 80-20 mice. Across both hemispheres,

locomotion (‘‘running’’ solid lines) increased rsc in 80-20 mice relative to sta-

tionary trials (dotted lines).

(F) Locomotion globally decreases rsc in 50-50mice. Across both hemispheres,

locomotion (solid lines) decreases rsc relative to stationary trials (dotted lines).

(G) Variations in overall rsc (not separated by trial) across sessions are correlated

with variations in detection index across sessions. Data combined betweenboth

80-20 and 50-50 groups of mice. Red, rsc versus contralateral behavioral per-

formance, N = 36 sessions. Blue, rsc versus ipsilateral behavioral performance,

N = 33 sessions. 80-20 unlikely trials excluded because of low performance.

Plots in (C)–(F): *p < 1e�2, **p < 1e�4, ***p < 1e�8, Wilcoxon signed-rank test.

Error bars, SEM. Red asterisks reflect comparisons in the likely hemisphere in

80-20 mice, and in the contra hemisphere of 50-50 mice. Blue asterisks reflect

comparisons in the unlikely hemisphere of 80-20 mice, and in the ipsi hemi-

sphere of 50-50 mice. Cross-hemisphere comparisons on correct or running

trials denoted with purple asterisks below plots, computed with Wilcoxon

rank-sum test. Bonferroni adjustment was performed with n = 4. +p <

0.05, ++p < 0.01 before Bonferroni adjustment). See also Figures S2 and S7.
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(Figure 2B). We also compared activity within unit on correct

versus miss trials and running versus stationary trials. With this

strategy, we can compare how neural activity changes due to

behavioral state in each hemisphere, and whether those

changes were symmetric or asymmetric. Unless otherwise

noted, we show analyses of only likely change trials due to

very few unlikely change correct trials.

Decreased pairwise spike count correlations (rsc) are often

associated with increased behavioral performance [4, 5]. We

calculated Pearson’s correlations for each pair of simultaneously

recorded single units at each time point across trial types, using

spike counts from 400 ms time windows. Performance-related

differences were not affected by the time window used to calcu-

late rsc (Figure S4). We found that, in 80-20 mice, rsc decreased

selectively on correct versus miss trials in the hemisphere repre-

senting the likely change just prior to the time the change

occurred (rcorrect = 0.050, rmiss = 0.068, p < 1e�8, Wilcoxon

signed-rank test; Figure 2C). This change occurred in pairs of

lower-layer neurons, but not in pairs of upper-layer neurons,

perhaps in part because we recorded relatively few simulta-

neous upper-layer pairs in 80-20 mice (Figure S2). In the unlikely

hemisphere, rsc did not differ between correct and miss trials

prior to the contrast change (rcorrect = 0.077, rmiss = 0.068, p =

0.378, Wilcoxon signed-rank test; Figure 2C). However, when

we separately examined pairs of upper- and lower-layer neu-

rons, rsc in lower layers of the unlikely hemisphere was slightly

but significantly higher on correct versus miss trials (Figure S2).

Importantly, rsc was significantly lower in the likely versus unlikely

hemisphere on correct trials just prior to the change (rlikely =

0.050, runlikely = 0.077, p = 0.0011, Wilcoxon rank-sum test; Fig-

ure 2C), but rsc did not significantly differ between the two hemi-

spheres on miss trials. The spatially and temporally selective

changes in rsc in 80-20 mice are consistent with their selective

behavior and suggest a local brain state that follows the task

structure.

In contrast to the asymmetry between hemispheres in 80-20

mice, the 50-50 mice had reduced rsc on correct versus miss

trials in both hemispheres and at all time points (p < 1e�33, Wil-

coxon signed-rank test; Figure 2D), and across upper and lower

layers (Figure S2), consistent with their non-selective behavior.

When aligned to their behavioral bias, rsc was lower in the contra-

lateral hemisphere (pre-change: contra, rcorrect = 0.043, rmiss =

0.103; ipsi, rcorrect = 0.063, rmiss = 0.136; contra versus ipsi

correct, p < 0.02; miss, p < 1e�5; Wilcoxon rank-sum test;

Figure 2D), again consistent with the association of higher

behavioral performance and lower correlations. Despite the

slight bias, the largely non-spatially and non-temporally selective

modulation in 50-50 mice is consistent with our finding that pupil

diameter in these animals is larger across all time points on

correct trials (Figure 1D), suggesting they use a global mecha-

nism to improve sensory representations.

We then examined the effect of locomotion on rsc. Previous

studies have shown that locomotion decreases correlations in

V1 [6, 7]. Our data from 50-50 mice were consistent with the

literature, as locomotion decreases correlations (contra, rrunning =

0.047, rstationary = 0.056, p < 2e�3; ipsi, rrunning = 0.056, rstationary =

0.088, p < 1e�70; Wilcoxon signed-rank test; Figure 2F), except

in lower-layer pairs in the hemisphere contralateral to the slight

behavioral bias (Figure S2). In contrast, we found that in 80-20
1596 Current Biology 29, 1592–1605, May 20, 2019
mice, locomotion globally increases correlations prior to the

contrast change (likely, rrunning = 0.059, rstationary = 0.042, p <

1e�10; unlikely: rrunning = 0.078, rstationary = 0.047, p < 1e�17;

Wilcoxon signed-rank test; Figure 2C), across both upper and

lower layers (Figure S2), which is consistent with their impaired

performance during locomotion. The effect of locomotion,

though different across groups of mice, was present in both

hemispheres and therefore global in 80-20 and 50-50 mice.

This shows that while selection and locomotion alone each

decrease rsc, these effects do not simply combine in 80-20

mice; instead, they interfere with each other.

Even among well-trained mice, performance was variable

from day to day. We tested whether these global changes in

performance were associated with rsc by plotting behavioral

performance for each session versus rsc among simultaneously

recorded neurons across all trials from that session. A similar

association has been shown over the course of learning in

primates [35]. We found a significant negative correlation be-

tween rsc and performance in both the hemispheres contralateral

and ipsilateral to the contrast change, when collapsed across all

recordings in both groups of mice, indicating that globally

decreased pairwise correlations are associated with improved

performance in general, not just at a particular location (contra,

r = 0.360, p < 0.05; ipsi, r = 0.463, p < 0.01; contra versus ipsi,

p = 0.6599, Fisher z-transformation; Figure 2G).

Local andGlobal Effects of Selection and Locomotion on
Firing Rates
Studies of attention, arousal, and locomotion have all reported

associated changes in firing rates. To investigate changes in

firing rates in our data, we first Z scored the firing rates of each

recorded single unit across 50 ms bins to its baseline firing

rate during a gray screen. We then compared correct versus

miss and running versus stationary trials by subtraction to cap-

ture changes associated with each condition (Figures 3A and

S3). For statistical comparisons we pooled neurons from layer

4 and above (superficial and granular) versus neurons below

layer 4 (deep).

In both 80-20 and 50-50 groups, locomotion globally

increased the stimulus-evoked response across all layers (p <

1e�5, Wilcoxon signed-rank test; Figures 3B–3D and S3). The

difference peaked at Z-scored firing rates of 0.5 for 80-20 mice

and 1 for 50-50 mice. This is consistent with previous findings

that locomotion increases stimulus-evoked firing rates in V1

[6, 7, 11, 15]. Baseline firing rates also increased with locomotion

across layers in 50-50mice and in deep layers in 80-20mice (Fig-

ures 3B–3D and S3).

We next examined how firing rates changed with task perfor-

mance by comparing correct and miss trials. Contrast change

responses were larger on correct versus miss trials in deep

layers of 80-20mice and across all layers of 50-50mice, with dif-

ferences peaking at Z-scored firing rates of approximately 0.5

(p < 1e�11, Wilcoxon signed-rank test; Figures 3E–3G and

S3). This increase in firing rate largely preceded licks (Figure S3)

and could represent a detection signal the mouse uses to

perform the task. Interestingly, in both groups of mice this signal

is present even in the hemisphere not directly representing the

location of the change: in 80-20 mice, the unlikely hemisphere

(Figure 3F), and in 50-50 mice, the ipsilateral hemisphere
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Figure 3. Changes in Firing Rate across Conditions

(A) Example Z-scored firing rates averaged from deep-layer (infragranular, below layer 4) neurons in the likely hemisphere of 80-20 mice. Different trial conditions

are shown and aligned to stimulus start and contrast change: correct (green line), miss (blue line), running (magenta line), and stationary (black line) trials. To

compare conditions, we subtracted correct minus miss (correct-miss) and running minus stationary (running-stationary) Z-scored firing rates. Example corre-

sponds to average of deep layer units (B and E). Significant differences are shown in Figure S3.

(B–D) Effect of locomotion on stimulus-aligned Z-scored firing rates versus recording depth. Color indicates magnitude of firing rate difference. Locomotion

increases stimulus-evoked firing rates relative to stationary trials across layers in 80-20 likely (B) and unlikely (C) hemispheres and 50-50 mice (D), which is

sustained until the contrast change, but the increase is not sustained after the contrast change.

(E and F) Selection affects firing rates differently to locomotion. On correct versus miss trials in 80-20 mice, stimulus-evoked firing rates increase slightly in deep

layers and decrease slightly in superficial layers in the likely hemisphere (E), while firing rates decreasemore in superficial layers in the unlikely hemisphere (F). The

response to the contrast change is selectively enhanced on correct trials versus miss trials in both superficial and deep layers in the likely hemisphere (E), but only

in deep layers in the unlikely hemisphere (F).

(G) In 50-50 mice on correct trials, both stimulus-evoked activity and change-evoked activity are increased across layers in 50-50.

80-20 likely hemisphere, N = 643 neurons; unlikely, N = 403 neurons; 50-50, N = 658 neurons.

See also Figures S3 and S7.
(Figure S3). Even though these neurons do not directly represent

the contrast change, they may perform a role in the task, consis-

tent with our finding that optogenetically inactivating the unlikely

hemisphere in 80-20 or the ipsilateral hemisphere in 50-50 mice

impairs task performance (Figure 1E).

In contrast, stimulus onset responses differed between the

two groups of mice. While in 50-50 mice the onset responses

were enhanced across all layers on correct versus miss trials

(p < 1e�5, Wilcoxon signed-rank test; Figures 3G and S3), in
80-20 mice the onset responses were only enhanced slightly in

deep layers of cortex (p < 0.03, Wilcoxon signed-rank test;

Figures 3E and S3). Furthermore, in the unlikely hemisphere of

80-20 mice, both baseline activity and responses to the onset

of the stimulus in superficial and granular layers were decreased

on correct versus miss trials (stimulus onset mean value �0.21;

p < 1e�6,Wilcoxon signed-rank test; Figures 3F and S3), reflect-

ing a suppression of the representation of the unlikely-change

stimulus. Stimulus onset responses in superficial and granular
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A B C Figure 4. Specific Effects on Responses to

Preferred Stimuli

Average difference across neurons between ab-

solute change in firing rate in response to preferred

versus orthogonal orientation.

(A and B) In 80-20 mice at pre-change and post-

change time points and in both likely (A) and un-

likely (B) hemispheres, the change in response to

the preferred versus orthogonal stimulus is larger

for correct versus miss trials (green) than for

running versus stationary trials (magenta) (likely,

N = 303; unlikely, N = 217 significantly tuned

neurons). Error bars, SEM.

(C) In 50-50 mice, effects of selection (correct versus miss trials) and locomotion (running versus stationary) were not significantly different (N = 177 significantly

tuned neurons). *p < 0.05, **p < 0.01, Wilcoxon signed-rank test between (correct-miss) and (running-stationary).
layers of the likely hemisphere were also somewhat suppressed

(p < 0.02, Wilcoxon signed-rank test; Figures 3E and S3),

perhaps reflecting a broad suppression of the behaviorally irrel-

evant stimulus onset. However, correct versus miss suppression

was significantly stronger in the unlikely than the likely hemi-

sphere at the prechange time point (unlikely mean:�0.211, likely

mean: �0.106, p = 0.023, Wilcoxon rank-sum test), further

demonstrating asymmetric task-related neural activity changes

in 80-20 mice. In contrast, in 50-50 mice correct versus miss

firing rates on contralateral versus ipsilateral change trials were

not significantly different, consistent with global task-related

neural activity changes.

We then compared effects of locomotion and selection on

changes in neural responses to preferred versus non-preferred

orientations. By subtracting jDpreferredj � jDorthogonalj, we

found that in both hemispheres of 80-20mice, the gain due to se-

lection is larger than that of locomotion (Figures 4A and 4B). In

contrast, gain in 50-50 mice was not different between selection

and locomotion (Figure 4C). This indicates that in 80-20mice, the

effect of selection is more specific to neurons’ preferred stimuli,

while the effect of locomotion is less specific, suggesting selec-

tion and locomotion may employ different gain mechanisms in

these mice. On the other hand, in 50-50 mice locomotion and

task performance are not significantly different, consistent with

these mice recruiting similar global mechanisms to perform the

task.

These results show that 80-20 and 50-50 mice modulate V1

firing rates in different ways. 80-20 mice selectively and asym-

metrically modulate firing rates while 50-50 mice globally

increase stimulus-evoked firing rates, similar to the broad effect

of locomotion and consistent with a recruitment of global arousal

mechanisms.

Task Performance Is Associated with Decreased
Trial-to-Trial Variability
Another reported effect of both spatial attention in monkeys

and locomotion in mice is a decrease in trial-to-trial variability

[6, 17]. For each unit across different trial types, we calculated

Fano factor, the variability across trials divided by the mean, in

100 ms time bins and then averaged across 400 ms time

windows. In 80-20 mice, Fano factor decreased selectively in

the likely hemisphere on correct versus miss trials (prechange,

fanocorrect = 1.205, fanomiss = 1.280, p < 0.05, Wilcoxon

signed-rank test; Figure 5A), and this effect was restricted to
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lower-layer neurons (Figure S4). In 50-50 mice, the Fano factor

decreased in both hemispheres on correct versus miss trials

(prechange, p < 0.02, Wilcoxon signed-rank test; Figure 5B),

though when separately examining layers there was no change

in lower-layer neurons in the hemisphere contralateral to the

contrast change (Figure S4). Locomotion slightly increased

Fano factor in the likely hemisphere of 80-20mice at the stimulus

onset time point but not at the contrast change (Figure 5C), and

locomotion slightly decreased Fano factor in 50-50mice after the

contrast change (Figure 5D), but overall effects of locomotion on

Fano factor were not nearly as striking as its effects on other

measures, in contrast to a previous study that showed locomo-

tion decreased Fano factor [6]. These results provide further

evidence that 80-20 mice produce a spatially selective brain

state.

Locomotion and Selection Reduce Low-Frequency LFP
Power in Both Groups
Previous studies report decreases in low-frequency and

changes in high-frequency LFP power with both attention in

primates and locomotion in rodents [7–9, 11]. We found consis-

tent decreased delta (1–5 Hz) and alpha band (6–15 Hz) power

with locomotion selectively in the 80-20 likely hemisphere (Fig-

ure 6A), increased gamma band (30–80 Hz) power in the 80-20

unlikely hemisphere (Figure 6B), while both delta decreases

and gamma increases were present in 50-50 mice (Figure 6C).

Interestingly, changes in LFP power with locomotion were

different across hemispheres in 80-20 mice, perhaps a result

of their asymmetric modulation of V1 to perform the task (Fig-

ures 6A and 6B).

Task-related changes in LFP power were restricted to low fre-

quencies (Figures 6D–6F). On correct versus miss trials, delta-

band LFP power decreased significantly in 50-50 mice (p <

0.05, Wilcoxon signed-rank test; Figure 6F) and decreased in

the likely hemisphere of 80-20 mice but only when mice were

also running (p < 0.05 before Bonferroni correction, Wilcoxon

signed-rank test; Figure 6D), while no task-related changes

were observed in the unlikely hemisphere (Figure 6E). That the

effects of running and task performance on LFP power in

50-50 mice are similar suggests similar global mechanisms. An

unexpected finding is that, while locomotion decreases low-fre-

quency LFP power in 80-20 mice, it also increases rsc and is

associated with poorer performance. Low-frequency LFP power

and rsc usually tend to change in the same direction, but our



A B

DC

Figure 5. Local and Global Decreases in Individual Variability

(A) Comparison of mean Fano factor (variability/mean) across time points on

correct (solid lines) versus miss (dotted lines) trials in likely (red) and unlikely

(blue) hemispheres of 80-20 mice. Fano factor in the likely hemisphere on

correct trials is selectively decreased relative to other conditions. Likely

hemisphere, N = 303 neurons; unlikely, N = 217 neurons.

(B) Correct versus miss Fano factor in 50-50 mice. Fano factor decreases in

both hemispheres on correct versusmiss trials. Hemisphere contra to bias, N =

91 neurons; ipsi, N = 121 neurons.

(C and D) Locomotion has inconsistent effects on Fano factor. Locomotion

slightly increases Fano factor in the likely hemisphere of 80-20mice, only at the

time of stimulus onset (C), while locomotion slightly decreases Fano factor in

50-50 mice only after the contrast change (D).

All plots: *p < 0.05, **p < 0.01, ***p < 0.001, Wilcoxon signed-rank test. Error

bars, SEM. Red asterisks reflect comparisons in the likely hemisphere in 80-20

mice, and in the contra hemisphere of 50-50 mice. Blue asterisks reflect

comparisons in the unlikely hemisphere of 80-20 mice, and in the ipsi hemi-

sphere of 50-50 mice. Bonferroni adjustment performed with n = 4. +p < 0.05

before Bonferroni adjustment. See also Figure S4.
findings suggest that these effects are not always linked.

Furthermore, under our experimental conditions, rsc reflects

behavioral performance better than low-frequency LFP does.

Selection Improves and Locomotion Impairs Visual
Information in 80-20 Mice
To assess how changes in neural responses affected task-

relevant information in the brain, we trained a linear classifier to

distinguish between V1 population activity 400 ms before and

after the contrast change for each recording in each hemisphere

(for other time windows, see Figure S6). We also independently

trial-shuffled neural activity within each neuron to remove the

correlation structure but maintain the relationship between pre-

and post-change firing rates on average. By training the classifier

on these shuffled data, we could compare performance to the
unaltered dataset to assess the contribution of trial-to-trial corre-

lated variability. Since we classified between just two time

points, pre- and post-change, chance performance was 50%.

A similar approach has been used previously to decode visual

stimuli from neural activity in both primates andmice [25, 36–38].

Not surprisingly, the classifier performed best at distin-

guishing pre-change versus post-change activity on likely

trials when using the full population activity from the likely

hemisphere of 80-20 mice (67.2% accuracy; Figure 7A). It per-

formed significantly worse when using the shuffled activity

(62.4%; p < 0.002 relative to intact) but still above chance

(Figure 7A). The classifier generated from activity in the

unlikely hemisphere performed worse overall with likely

changes, but still above chance (full, 57.0%, p < 0.001 relative

to chance; p < 0.001 relative to likely hemisphere; Figure 7A),

while shuffling did not affect classifier performance (shuffled,

55.4%, p = 0.161 relative to intact). However, shuffling did

affect the performance of a classifier trained on unlikely hemi-

sphere data for unlikely changes (intact, 59.0%, p = 0.009

relative to chance; shuffled, 53.2%, p = 0.167 relative to

chance).

With activity recorded from 50-50 mice, trial shuffling also

significantly reduced classifier performance using the contralat-

eral hemisphere (full, 58.2%; shuffled, 53.6%; p < 0.005; Fig-

ure 7B). However, shuffling did not affect classifier performance

using ipsilateral hemisphere data (full, 53.6%; shuffled, 53.5%).

This shows that, in both groups, the correlated variability of the

task-relevant neural population activity contributes information

about the visual stimulus, but only in the neural population that

directly represents the visual stimulus. In addition, classifier

performance was worse using 50-50 activity versus 80-20 likely

hemisphere activity (p < 0.005; Figure 7A), suggesting that

dividing perceptual resources between the two locations limits

visual information.

To determine whether information encoded in the neural

activity changed along with the behavioral state, we assessed

the performance of each classifier on the different trial types

(correct, miss, running, and stationary) and averaged across re-

cordings. We found that the classifier trained with 80-20

likely hemisphere data performed far better on correct trials

than miss trials (72.6% versus 64.0%, p < 0.001) and worse

on locomotion trials than stationary trials (65.4% versus

69.1%, p < 0.05 before Bonferroni correction), consistent with

behavior (Figure 7C). The classifier trained with unlikely hemi-

sphere data on likely change trials performed better on correct

versus miss trials (60.4% versus 55.8%, p < 0.05 before Bonfer-

roni correction) though did not differ between running and sta-

tionary trials, and performance on correct trials was significantly

worse compared to the likely hemisphere (p < 0.001). This is

consistent with our finding of increased firing rates in the unlikely

hemisphere following a likely change on correct versus miss tri-

als. However, the classifier trained with unlikely hemisphere

data on unlikely change trials did not perform differently be-

tween trial types, as would be expected if that activity was not

task relevant (Figure 7C). In 50-50 mice, the classifier trained

on either contralateral or ipsilateral hemisphere data also per-

formed best on correct trials, but it did not perform significantly

differently between running and stationary trials (Figure 7D).

Thus, in both groups of mice, the neural activity in the
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Figure 6. LFP Power Changes Consistently with Locomotion

(A) LFP power differences in different frequency bands between running and stationary trials in the likely hemisphere of 80-20 mice. Data from pre-change time

point, a time window of 1,000 ms was used. Running versus stationary differences were separately calculated on correct (green bars) and miss trials (blue bars).

Running reduces low-frequency (1–5 and 6–15 Hz) LFP on both correct and miss trials. N = 15 included recordings. Error bars, SEM. Statistical comparison

relative to zero indicated directly above each bar in the matching color. *p < 0.05, **p < 0.01, **p < 0.001, Wilcoxon signed-rank test. Bonferroni correction

performed with N = 4; +p < 0.05 before Bonferroni correction.

(B) Same as (A) but for the 80-20 unlikely hemisphere. Running increases high-frequency (31–80 Hz) LFP. N = 14 included recordings.

(C) Same as (A) but for 50-50 mice. Running reduces low-frequency (1–5 Hz) and increases high-frequency (31–80 Hz) LFP. N = 19 total recordings (both

hemispheres, contralateral changes).

(D) LFP power differences in different frequency bands between correct and miss trials in 80-20 mice. Differences between correct and miss LFP power were

separately calculated on running (magenta bars) and stationary trials (gray bars).

(E) Same as (D) but for the 80-20 unlikely hemisphere.

(F) Same as (D) but for 50-50 mice.

See also Figure S5.
hemisphere ipsilateral to the behaviorally relevant change en-

codes task-relevant information, consistent with our finding

that optogenetic silencing of the ipsilateral hemisphere impairs

performance.

To summarize, on correct trials, the 80-20 mice selectively

enhance visual information in V1 about the likely change location,

but locomotion decreases that information, while the visual

information in the unlikely hemisphere about the unlikely change

location is not altered from trial to trial. The 50-50 mice also

enhance visual information to perform the task, but locomotion

does not affect overall visual information. Shuffling affects only

the neural population information about a directly represented

stimulus, suggesting that correlated variability is tied to improving

direct stimulus representation. In contrast, on correct trials,

information is improved about behaviorally relevant stimuli,

whether they are represented or not, consistent with our
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observed changes in firing rate. These changes in information

are consistent with changes in behavior, suggesting that the

classifier performance reflects changes in neural population

information in V1 that are important for the perception and

behavioral performance of these animals.

Performance-Matched Sessions from 80-20 and 50-50
Mice Recapitulate Results
As described above, task performance on stationary trials was

better (for likely change trials) for 80-20 mice than for 50-50

mice (Figure S1). While these differences are consistent with se-

lective versus distributed attention [30], they raise the possibility

that differences in electrophysiological measures in 80-20

versus 50-50 mice might reflect differences in task difficulty

rather than local versus global effects related to spatial selection

and/or locomotion. To address this possibility, we analyzed the
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Figure 7. Local and Global Effects on Linear Clas-

sifier Performance

Linear classifier performance decoding pre- versus post-

change population activity.

(A) Classifier performance when using raw spike counts

(red bars) and trial-shuffled spike counts (blue bars) in

80-20 mice. The classifier performed best using raw

spike counts from the 80-20 likely hemisphere on likely

change trials. Trial shuffling decreased performance in

the 80-20 likely hemisphere on likely change trials, and in

the unlikely hemisphere on unlikely change trials. Error

bars, SEM 80-20 likely, N = 18 recordings; 80-20 unlikely,

N = 15 recordings.

(B) Same as (A) but using data from 50-50 mice. Trial

shuffling reduced classifier performance only on contra-

lateral change trials. N = 19 recordings (both hemi-

spheres’ responses to contralateral change trials

combined).

(C) Linear classifier performance using spike counts from

80-20 mice on different subsets of trials: correct (green),

miss (blue), running (magenta), and stationary (gray).

Performance differed across different trial conditions in

the likely, but not unlikely hemisphere of 80-20 mice.

Error bars, SEM 80-20 likely, N = 18 recordings; 80-20

unlikely, N = 15 recordings.

(D) Same as (C) but using data from 50-50 mice. Perfor-

mance differed between correct and miss trials when

either contralateral or ipsilateral changes occurred. N =

19 recordings (both hemispheres’ responses to contra-

lateral change trials combined). Statistical comparisons

between correct andmiss or running and stationary trials.

All plots: comparisons to chance shown directly above

each bar. Comparisons across conditions shown above a

horizontal line corresponding to the conditions

compared. *p < 0.05, **p < 0.01, ***p < 0.001; +p < 0.05

before Bonferroni adjustment. Unless otherwise noted,

we performed a Shapiro-Wilk test for a normal distribu-

tion. If the null hypothesis of a normal distribution held, we

used a one-sample or paired t test. Otherwise, if the

sample was not normal, we used a non-parametric

Wilcoxon signed-rank or rank-sum test. We then per-

formed a Bonferroni adjustment for multiple compari-

sons. Adjustments for (A) and (B) used n = 2; (C) and (D)

used n = 4. See also Figure S6.
changes in rsc and firing rates for a subset of recording sessions

where 80-20 and 50-50 mice performed equally well. Perfor-

mance of 80-20 mice was better on average, but more variable

than 50-50 mice, with at least 2 sessions where an 80-20 mouse

performed worse than any 50-50 mouse (Figure S7). This

allowed us to select a subset of behavior-matched recording

sessions from 80-20 and 50-50 mice, with a detection index

range of 8–13 (n = 8 sessions for both groups; Figure S7).

50-50micewere only included if they performedwithin this range

in response to changes in both locations. Analyzing this subset

of data recapitulated our results that in order to perform the

task (correct versus miss comparisons), 80-20 mice selectively

and asymmetrically modulate neural activity while 50-50 mice

symmetrically modulate neural activity (see Figure S7 for details).
Cu
Furthermore, the opposite effects of locomo-

tion on rsc for 80-20 versus 50-50 mice persist

for this subset of recording sessions. This

shows that differences observed between 80-
20 and 50-50 groups are not simply due to the level of perfor-

mance of the mice or the task difficulty.

DISCUSSION

Our results reveal novel interactions between local and global

modulatory mechanisms in mouse V1 and their differential mod-

ulation by locomotion. Despite the many similarities, locomotion

in mice is not the same as attention. We show that the effects of

locomotion on behavior and visual information representation

vary with the task. Importantly, we find a consistent relationship

between correlated neural variability, behavioral performance,

and visual information encoded in V1. Our mouse model of

spatial selection will facilitate future studies into the roles of
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different cell types in the neural circuitry supporting both selec-

tive and non-selective brain states and the extent to which

they differ.

How the Spatial Selection Task Relates to Attention
Tasks
A simple difference in contrast change probability at different

locations was enough to produce striking differences in behavior

and brain states between 80-20 and 50-50 mice. Interpreting our

results requires examining how this spatial selection task relates

to previously described attention tasks. We demonstrated a

spatially specific behavior in the 80-20 mice, though, unexpect-

edly, the 80-20 mice did not perform above chance on unlikely

change trials, even with very large contrast changes (Figure S1).

In a typical attention task, one would expect detection of the

unattended stimulus to be decreased, but not to fall to chance.

This asymmetric behavior of the 80-20 group of mice could

potentially be explained by asymmetric learning, perhaps not

representing spatial attention in the traditional, dynamic sense.

These two possibilities would be difficult to distinguish, given

evidence that learning and attention cause similar electrophysi-

ological changes [35].

Despite this possibility, our data do demonstrate spatially

selective trial-to-trial dynamic changes at the behavioral and

electrophysiological levels. Previous studies have used similar

80-20, 100-0, or 50-50 attention tasks in primates and found

similar behavioral and electrophysiological results [30, 39].

Broadly, those studies show that, with a neutral or non-cued

paradigm (50-50), behavioral performance and electrophysio-

logical correlates of attention are intermediate compared to a

cued paradigm (80-20), which is consistent with our results

even though our different tasks were performed by separate an-

imals. The 80-20 brain state may not be a perfect analog of

spatial attention, but our findings demonstrate that it selectively

enhances representations of one hemifield and actively sup-

presses the other, while 50-50 mice enhance representations

of both hemifields but cannot match the behavioral performance

of 80-20 mice.

Correlated Variability and Behavioral Performance
Our findings are consistent with recent studies of correlated vari-

ability and offer some new insights. Decreases in spike count

correlations (rsc) were associated with improved performance

(except for locomotion-induced decreases in 50-50 mice), and

increases in rsc were associated with impaired performance.

Importantly, in 80-20mice task-related decreases were selective

to the target, occurring in the likely hemisphere, while locomo-

tion-related increases occurred in both hemispheres, showing

how this form of selection has a local effect while locomotion

has a global effect (at least in V1). Furthermore, we observed

slight increases in rsc in the unlikely hemisphere where themouse

did not detect changes. While consistent with previous studies

linking rsc and behavioral performance, our results demonstrate

that different mechanisms that alone decrease rsc—selection

and locomotion—do not necessarily combine additively. Rather,

these interactions are complex and task dependent.

As further evidence of complex interactions, we show both

global and local components of rsc associated with behavioral

performance. On a session-to-session basis, mean spike count
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correlations were negatively correlated with performance, even

in the hemisphere of V1 that did not represent those changes

(Figure 2G). This suggests that a component of the rsc decrease

is attributable to changes in global arousal from session to

session, consistent with a recent study [35]. However, there is

also clearly a local, trial-to-trial component of correlations, as

evidenced by the local decrease in 80-20 mice (Figure 2C).

Further complexity is evidenced by the surprising observation

that locomotion decreases low-frequency LFP activity in the

likely hemisphere of 80-20 mice but increases rsc (discussed

further below).

Neural Population Information
Previous studies have shown that changes in rsc do not neces-

sarily affect population information [18–21]. To address this,

we more directly assessed changes in population information

by using a linear classifier to decode pre- versus post-change

population activity. Our finding that the classifier performed

best on 80-20 likely hemisphere correct trials, but worse on

running trials, shows that those mice can dynamically improve

information in V1 about the behaviorally relevant stimulus, and

that locomotion decreases that information.

To determine the contribution of different aspects of neural

activity to population information, we also trained the classifier

on trial-shuffled population activity, which removes correlated

variability. Trial-shuffled activity did not perform as well as the

full population activity, demonstrating that in this task and exper-

imental setup, spike count correlations contribute to information

encoding in mouse V1. However, the shuffle only impacted

classifier performance when the neural activity directly repre-

sented the contrast change. In contrast, on correct trials infor-

mation about the behaviorally relevant stimulus was improved

regardless of whether the neural population directly represented

the stimulus, likely in part due to increased firing rates in both

hemispheres following a contrast change. This suggests that

correlated variability is important for directly encoding sensory

information but firing rates could be sufficient for change detec-

tion in this task.

Most neurons in V1 increase their firing rates in response to

changes in contrast, so simply summing or averaging across

the firing rates of many neurons could be an effective coding

strategy for this change detection task. This may be why the

effect of locomotion has such a negative effect on behavioral

performance of 80-20 mice in this task—the firing rate increase

due to locomotion could be conflated with an actual stimulus-

related increase. This is consistent with our observation of a

higher rate of early lick trials when 80-20 mice run. However,

the lack of increased early licks in 50-50 mice with running sug-

gests that they may use a different decoding strategy to detect

contrast changes.

Locomotion Reliably Influences LFP
Reduced rsc is typically associated with specific changes in the

LFP, but we found these LFP changes to be more reliably asso-

ciated with locomotion. Task performance, particularly in atten-

tion tasks, is often linked with decreases in low-frequency LFP

and sometimes increases in high-frequency or gamma LFP

[8, 9]. In 80-20 mice, we found a significant decrease in delta-

band LFP power between correct and miss trials, but only



when the mouse was also running (Figure 6D). This was surpris-

ing; since 80-20 mice perform better on stationary trials, we

would have expected a larger difference in LFP on those trials.

In 50-50 mice, delta band LFP power decreased on correct trials

whether or not the mouse was running, consistent with their abil-

ity to perform the task well when running or stationary.

Nevertheless, themost reliable driver of changes in LFP power

was locomotion. It decreased both delta and alpha band LFP in

the likely hemisphere of 80-20 mice, decreased delta band LFP

and increased gamma band LFP in 50-50 mice, and increased

gamma LFP in the unlikely hemisphere of 80-20 mice. The differ-

ence in the effect of locomotion on LFP power in the two hemi-

spheres of 80-20 mice may reflect that the two hemispheres

have asymmetric brain states for task performance. Locomo-

tion-induced changes in LFP appear to be larger and more reli-

able than task-related changes. Perhaps locomotion is simply

a more reliable driver of synchronization; locomotion causes

increased firing rates in all interneuron subtypes [40, 41],

which are thought to be major drivers of oscillatory activity in

cortex [42].

Furthermore, in 80-20 mice, locomotion decreases low-fre-

quency LFP power yet increases spike count correlations, con-

trary to previous findings. This shows that low-frequency power

and correlated variability are not necessarily linked and can

change independently.

Movement-Related Activity
Our results are also consistent with recent studies showing

that animal movement accounts for a great deal of cortical ac-

tivity [26, 27] and demonstrate the importance of recording

multiple movement variables in any experiment with an awake

animal. This raises the possibility that some effects on re-

corded electrophysiological activity could be due to movement

or at least some combination of movement and task related

neural activity. During training sessions, we only recorded

locomotion, pupil diameter, and licking, but occasionally the

mice performed several other distinct behaviors such as

grooming. Our task design did not incorporate a delay period,

making it difficult to fully separate detection from response,

but we did reliably see increases in activity prior to the typical

reaction times of approximately 450 ms (Figures S1 and S3).

We largely confined our analyses of post-change activity to

time windows before the mice responded, so the act of licking

was not primarily responsible for the increases in response to

the contrast change on correct trials. Future studies should re-

cord more movement variables to disentangle movement-

related from task-related activity.

Conclusion
To a coffee or tea drinker, these complex and task-dependent

local and global interactions should be familiar. One cup of

coffee may provide the optimal state for writing a scientific pa-

per, while two cups may impair writing but enhance a less

cognitively demanding task such as checking spelling or

grammar. In this way, each task or category of tasks has its

own optimal state to produce optimal behavior. Our results

shed light on why this extra dimension affects behavior. Local

selection mechanisms, generally associated with more difficult

behaviors, are more specific and likely more vulnerable to
perturbation. Too much global arousal may disrupt the local

optimal state by injecting noise into the system, such as an

overall increase in firing rate with locomotion in our experi-

ments. In other circumstances, these same global perturba-

tions could improve behavior, but it depends a great deal on

the task specifics.

Many questions remain. What are the neural circuits and cell

types that facilitate and control these local and global modula-

tions of visual information? Which brain areas participate in

thismodulation and how, including extrastriate visual areas, thal-

amus, and superior colliculus? Do the local and global effects

use the same or different modulatory mechanisms? Moving for-

ward, this mouse spatial selection task will enable the use of

available genetic tools to investigate these questions and eluci-

date the neural circuit mechanisms of local and global sensory

modulation.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal procedures followed institutional and national guidelines and were approved by the Salk Institute IACUC. 13 C57/Bl6 mice

(Jackson Laboratory stock # 000664) and 5 PV-Cre mice (Jackson Laboratory stock # 008069) were used, comprised of both male

and females. Due to length of training, mice aged 4-14 months were used. Mice were group housed with littermates when possible

and given wheels in their cages. Littermates were randomly assigned to the different training paradigms.

METHOD DETAILS

Surgery
Before behavioral training, all mice were implanted with a metal head post for head fixation during training. Briefly, animals were

anesthetized with 2% isoflurane in oxygen and were placed on a heating pad in order to maintain their body temperature. A small

patch of skull was exposed and the head post was attached with dental cement (C&B-Metabond, Parkell) posterior to the known

location of V1, with the remaining exposed skull covered by additional dental cement. The location of bregma was marked with a

small piece of plastic embedded in the cement for future reference. Carprofen (5mg/kg) and ibuprofen (0.11mg/mL in ad-lib water)

were given for postoperative analgesia for all procedures, and for craniotomies dexamethasone (2mg/kg) was also delivered.

For virus injections, at least one week after mice recovered from headframe surgery, we again anesthetized the mice and made

small crainiotomies over the center of V1 using coordinates from bregma (3mm posterior, 2.5mm lateral), and pressure-injected

100nl of AAV1.EF1a.DIO.hChR2(H134R).EYFP.wPRE.HGH (AAV1-DIO-ChR2; Addgene 20298; from UPenn vector core) at depths

of both 300mm and 600mm. Following injections, the craniotomy was first sealed with a clear silicone elastomer (Kwik-Sil, World

Precision Instruments) or gel (3-4680, Dow Corning), then the site was covered with clear dental cement (C&B-Metabond, Parkell)

and a 3mm coverslip was placed over the injection site to create a window through which light for optogenetics could be directed.

Finally, we built small wells with dental cement around these windows and painted the cement with black nail polish to minimize the

spread of optogenetic light (though we could not completely rule out the possibility that light from one brain hemisphere could reach

the other, particularly with higher light levels).

To prepare for subsequent electrophysiological recordings, we anesthetized mice and made 1-2mm diameter craniotomies over

the center of V1 to provide space for up to 5 consecutive recordings. Dura was left intact. Recordings were performed on awake

animals on the day of the craniotomy and up to 4 additional consecutive days. Before the craniotomy and before each subsequent

day of recording, micewere given carprofen as an analgesic and dexamethasone to limit brain swelling. After each recording session,
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the craniotomies were covered first with non-bioreactive silicone elastomer (Kwik-cast, World Precision Instruments), then a thin

layer of dental cement to ensure the silicone stayed in place and the mouse could not inadvertently remove it.

Behavior rigs and visual stimuli
Mice were trained on custom behavior rigs, which used customMATLAB software to present visual stimuli with Psychtoolbox based

on visual stimulus software described previously [46, 47], with extensive modifications to record behavioral variables and deliver

rewards using Arduinos. The rigs consisted of a running wheel attached to a base plate, with clamps to hold the headframe above

the wheel. A rotation encoder was attached to the wheel to record locomotion, and an infrared sensor was used to record licking,

while a metal tube was positioned just behind the sensor to deliver rewards. Two monitors controlled by a dedicated visual stimulus

computer were positioned in the center of the mouse’s hemifield and were calibrated to ensure linear gamma response. The elec-

trophysiology recording rig had monitors placed 17cm away from each eye of the mouse. A second, master computer controlled the

stimulus computer and the Arduinos by sending relevant parameters and saving behavioral data during each trial. All components

were synchronized by a digital pulse generated by the stimulus computer once the graphics card built and started to play the stimulus

for that trial (the rate-limiting step). Visual stimuli were full-field square-wave drifting gratings with 8 possible different directions, a

temporal frequency of 1.5Hz, and a spatial frequency of 0.05 cycles/degree. For all but one mouse, stimulus onset contrast was

25% of the maximum contrast (the other began at 50%). Mice experienced a variety of contrast changes during training, but for

recording sessions, all experienced a 20% change, and all but one were shown an increment. All reported contrasts are relative

to the maximum of 100%, in which white corresponded to a 255 value and black a 0 value in Psychtoolbox. Random stimulus

time was determined by a hazard function. After a consistent 2 s delay, every 25ms the stimulus had a 1% chance of changing in

contrast. On trial times greater than 10 s, the mouse was automatically delivered a reward if it refrained from licking, to encourage

waiting. These trials comprised less than 5% of total trials and were excluded from analysis, along with any other trials in which an

automatic reward was delivered.

Behavioral task and training
In order to motivate mice to perform the task, we restricted their water intake. Water restrictions began after mice fully healed from

head-post implant surgery (�1 week). Each mouse received �1 mL water per day until 15% ad libitum weight was lost (1-2 weeks).

During training days, mice received all water during training (0.5-2 mL), but excess water was given after training if the animal did not

drink enough to sustain health (at least 0.5mL). On break days, we gave enough water to maintain health and thirst, which depended

on weight (minimum 0.5 mL).

We acclimated mice to being handled by hand-delivering water during initial days of water restriction, and habituated mice to

the behavior rig by placing their cages between the two monitors and playing stimuli for 0.5-1 hour. During the first 1-2 sessions,

mice were briefly anesthetized with isoflurane prior to head fixation. Once water-restricted mice had lost at least 15% of their body

weight, and after 1-2 days of habituation, mice were trained in four main phases. In the first phase, rewards were associated with a

large contrast change (increase of 40%–50%). During this phase, rewards were automatically delivered at the same time as the

contrast change, with no punishment for early licks. Rewards dispensed approximately 4mL of 10% sucrose water. We also grad-

ually increased the duration of training sessions from approximately 0.5 to 2 hours. Once mice began to anticipate the reward by

licking, we moved to the next phase. In the second phase, mice had to lick within the correct window to receive the reward, but

were still not penalized for early licks. At this point, some mice began to restrict their licks to the response window, others licked

throughout the trial, and a few never learned to lick on their own (these last ones usually did not move on to the next phase). Once

mice reliably licked to receive rewards on their own, we moved them to the third phase. In the third phase, an early lick would

prevent a reward on that trial, even if the mice subsequently licked in the correct window. In addition, on those early lick trials

the mice would be punished with a timeout, which would elongate the inter-trial-interval by 5-15 s. This was often the hardest

part for mice to learn. Some mice performed above chance within 30 sessions but only gradually reduced early licks over the

next 30-60 sessions. Once mice were able to withhold licking to the initial stimulus onset and then lick in response to the contrast

change, they were moved to the final phase. In the final phase of training, the magnitude of the contrast change and the length of

the response window were gradually decreased until the mouse performed well with the target contrast change of 20% and

response window of 750ms.

In most cases we used additional parameters to aid in training. We observed that most mice would lick at the initial stimulus onset,

so we implemented a one second forgiveness period after the stimulus onset so that these licks would not trigger an early response

and a timeout. In addition, we delayed the response window by at least 100ms to ensure that the mouse could not lick and receive a

reward before the visual information could have possibly been perceived.We also observed a great deal of variability betweenmice in

terms of tendency to lick and rate of licking, so we varied the definition of a ‘‘response’’ depending on themouse’s licking tendency. A

single lick in the response windowwas counted as a correct response, but only if no licks occurred before the contrast change. If the

mouse did lick prior to the contrast change, it only counted as an early response if the mouse licked twice within a certain time

window, usually 300ms. However, if the mouse did lick just once prior to the change on a trial, the mouse could still earn a reward

with a double lick in the response window. In this way, what counted as a ‘‘response’’ could dynamically adjust to individual

tendencies of the mice, even varying between days.
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Optogenetic stimulation
For optogenetics experiments, we used two Thorlabs LED drivers (LEDD1B) with 470nm LED modules (M470F3), positioned with

micromanipulators (17011702, M€arzh€auser Wetzlar GmbH & Co). LEDs were controlled through the same Arduino used to record

behavioral variables and deliver reward, using digital-to-analog converters to enable precise light stimulation at different intensities.

Light intensities used ranged from 20mW to 40mW, measured at the tip of the optic fiber with a handheld power meter (1098293,

Coherent LaserCheck). In behavioral only experiments, optic fibers were positioned above each implanted chronic window. In com-

bined electrophysiology and optogenetics experiments for confirmation of ChR2 expression, both electrodes and optic fibers were

positioned near the craniotomies (see below for electrophysiology methods). Optic fibers were positioned such that the light cone

covered as much of the craniotomy as possible, and always covered the recording site. This was sufficient since with the skull

removed, much less light power (< 10mW) was required to activate ChR2.

Electrophysiology
For electrophysiological recordings, we used the Intan system and software with 64-channel laminar silicon probes from Sotiris

Masmanidis at UCLA (64D configuration) [48, 49]. Before craniotomies were performed, wells were built using dental cement and

silver epoxy (8331-14G, MG Chemicals) was applied to the headframe and to surrounding surfaces near the future recording sites

to provide a ground. Once craniotomies were performed (as described above), the mouse was placed on the wheel and clamped

into the headframe holder, then electrodes were positioned with micromanipulators (1760-61, David Kopf Instruments) above sites

both clear of blood vessels and stereotactically determined to be within V1. Electrodes were advanced to the brain surface, then

agarose (A6138, Sigma-Aldrich) in ACSF was applied to the craniotomy wells to provide both stability and electrical grounding.

Once the agarose solidified, a thin layer of transparent silicone gel (3-4680, Dow Corning) was added to the surface of the agarose

to prevent drying. (In some cases, drying agarose moved electrodes). Once the silicone was set, we slowly advanced each electrode

approximately 1mmwhile watching and listening for spikes. Once both electrodes were at 1mm, we determined the receptive field of

neurons to make sure it was in the relative center of the screens. We then performed a current course density (CSD) analysis (see

below) to determine if the electrodes were advanced far enough and also to confirm that this location looked like V1. If we could

not distinguish layer 4 in the CSD, we tried removing and re-placing the electrode, but if the recording on the other hemisphere

was good, we limited ourselves to only 1-2 additional tries because each retry risked a bump that could ruin the quality of the other

recording. 15/66 electrode penetrations were ultimately excluded because we could not distinguish layer 4.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavior analysis
This behavior was difficult for mice to learn, taking between 30-90 days (Figure S1). 5/23 mice did not learn the task, likely due to a

failure to lick frequently enough to receive reinforcement. Even oncemice reached proficiency, therewas still a great deal of variability

in performance between individuals, thus we developed a detection index to normalize animals’ performance to chance in order to

better assess their performance. Since this task is neither a Go-NoGo nor a two-alternative forced choice task, the assumptions

underlying typical calculation of d-prime were inaccurate (namely, that chance = 50%). Thus, we bootstrapped percent chance

by shuffling lick responses relative to stimulus time within each training session for each mouse, and averaging over 1000 shuffles

(chance = �15%). We also separately shuffled running and stationary trials to compare performance under those conditions to

what would be expected by chance. We chose 0.5 cm/sec as the running threshold to ensure adequate running trials for analysis,

since 80-20 mice ran on fewer trials than 50-50 mice (80-20: 30.8% of trials, 50-50: 45.3% of trials; p = 0.0346, Wilcoxon rank-sum

test, Figure S1). We then computed a z-score by comparing the actual proportion correct z-scored to the shuffled proportion correct

for each training session, and did the same for early lick trials.

zðcorrectÞ= ðcorrect� correctshuffÞ=stdðcorrectshuffÞ
Our detection index is the z-scored proportion of correct trials with the z-scored proportion of early lick trials subtracted. Detection

index roughly corresponds to the number of standard deviations away from chance performance (Figure S1).

detection index= zðcorrectÞ�zðearlyÞ
We also computed the tendency of a mouse to respond, whether correct or not, by adding the z-scored proportions of correct and

early trials.

response tendency= zðcorrectÞ+ zðearlyÞ
Subsequent behavior analyses used detection index under different conditions. For contrast change sensitivity, we computed

detection index for subsets of trials each day corresponding to different magnitudes of contrast change. For effects of optogenetic

stimulation on behavior, we computed changes in detection index in light-on versus light-off conditions in each hemisphere.

Pupil recording and analysis
Pupil videos were recorded using an infrared USB camera (DMK 21BU04.H, The Imaging Source) with infrared illumination and the

MATLAB image acquisition toolbox. Acquisition occurred at 7.5Hz or 15Hz and was triggered using the synchronization signal sent
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by the stimulus computer. Before analysis, images were rotated so that the horizontal axis of the eye was horizontal in the image.

Pupil diameter was determined by using custom MATLAB software (generously shared by Dr. C�eline Mat�eo in Dr. David Kleinfeld’s

lab and modified to fit our requirements). Briefly, videos were cropped to include only the eye, then manually thresholded to segre-

gate the pupil from the rest of the eye. Then the MATLAB image processing toolbox was used to connect areas of the pupil that were

occasionally separated by an out-of-focus eyelash. Finally, the horizontal and vertical diameters were extracted by summing in either

the vertical or horizontal directions, then plotting these sums across time, and cropping out any confounding dark areas, such as

shadows in the corner of the eye. Diameters were manually verified by viewing every other frame of the video at 10x speed with

the diameters superimposed on the eye. Horizontal diameter was most reliable, because sometimes the eyelid would occlude

part of the vertical extent of the pupil. In cases of eyelid closure or other obstruction of the pupil, those frames were excluded

from analysis. Due to individual differences in eye size and slight differences in camera angle and zoom,we normalized pupil diameter

to the average pupil diameter observed during > 1 s bouts of locomotion within the same session because locomotion pupil diameter

was reliably large. If there were no bouts of locomotion long enough, we excluded those sessions from analysis.

Field potential data processing and analysis
Analyses were performed on both the low-frequency (LFPs, CSDs) and high-frequency (spikes) components of the signal recorded

from electrodes. For 80-20 mice we examined only likely change trials unless otherwise noted, because the small number of correct

trials on unlikely change trials prevented useful analyses. Thus, we largely compared activity in the likely and unlikely hemispheres on

likely trials in 80-20 mice. For 50-50 mice, we combined data from the two hemispheres in one of two ways. We either combined the

neurons from both hemispheres in response to the contralateral change to examine changes in the stimulus response (spike rate

analyses, local field potential analyses, linear classifier analyses), or kept hemispheres separate and combined responses on

both contralateral and ipsilateral change trials to examine whether and how responses in the two hemispheres differed (spike count

correlations, Fano factor).

As mentioned above, for each recording in each hemisphere, we performed a current source density (CSD) analysis to determine

the laminar position of the electrode contacts. CSD was performed using CSDPlotter [50], and involves taking the second spatial

derivative of the low-pass-filtered (< 1000Hz) local field potential across all channels during transitions from black to white and white

to black on the screen [51]. This allowed identification of supragranular, granular, and infragranular layers, which we used to identify

effects in these different layers. If we could not discern layer 4 in the CSD, we excluded that recording from analysis (15/66 were

excluded).

To analyze the local field potentials, we first downsampled raw voltage traces to 1000 Hz and low-pass filtered at 1000Hz. We then

used amultitapermethod included in an open-source package forMATLAB (Chronux, http://chronux.org [43]) to compute LFP power

spectra between 2 and 80Hz. To examine changes in spectral power in different trial conditions, we separately computed spectra

with subsets of LFP trials corresponding to when the mice correctly responded, missed the change, or were running or stationary.

We restricted analyses to the one second time window prior to the contrast change on each trial, and excluded spectral peaks cor-

responding to 60Hz line noise from further analyses. To avoid inclusion of trials with either movement or electrical artifacts, we

removed trials where the LFP amplitude deviated more than one standard deviation of the average LFP voltage deviation for all trials.

Group analyses were performed on the average spectra from each recording in each condition, using either a Wilcoxon sign-rank or

rank-sum test.

Spike data processing and analysis
To extract spike times from raw voltage traces, we used the open source automated spike sorting package Kilosort [44] and manual

curation with phy [45]. Subsequent analyses were performed with custom MATLAB software. We only included units that had clear

refractory periods and neuronal-like waveforms. For most analyses, spike times were binned into either 50ms bins for peri-stimulus

time histograms (PSTHs) or larger bins for spike count correlations, Fano factor, or linear classifier analyses. Spikes were aligned to

three events: initial stimulus onset, contrast change, and time of the first lick. For all analyses, we only included units with significantly

altered spiking relative to the baseline firing rate following either the initial stimulus onset or the contrast change (Wilcoxon sign-rank

test, p < 0.01), 1709 of 2218 total units or 77.05%. We also occasionally observed drift in our recordings, and on a few occasions a

neuron would either drop out or appear. For these units we only analyzed the subset of trials when the unit was present.

To compute the pairwise correlated variability, we used spike counts from 400ms time windows. We then z-scored spike counts

across orientations to remove the effect of different orientations on spike count variability. We then found the Pearson’s correlation

between the z-scored firing rates of every pair of simultaneously recorded single units across different conditions (subsets of trials).

Effects of different window sizes are shown in Figure S2. For population measures, we averaged these correlation values across all

pairs from all recording sessions. To examine how the correlated variability changed across sessions, we averaged the Pearson’s

correlation computed in 800ms time windows between pairs of simultaneously recorded neurons across all trials during each ses-

sion, and correlated those values with the behavior of the recorded mice the corresponding sessions.

We compared how different conditions affected firing rates by first binning spike rates into 50ms bins, then z-scoring each unit’s

firing rate relative to its baseline firing rate, then subtracting averages between correct and miss and running and stationary trials to

compare the relative impact of each condition. To visualize these changes across layers, we averaged z-scored firing rates of units

that were recorded at the same depth relative to the base of layer 4, and concatenated the layer-delineated activity aligned to the

initial stimulus onset and the contrast change. Heatmap values were smoothed with a Gaussian kernel. We performed statistical
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comparisons on average firing rate differences in upper layer versus lower layer units by pooling according to whether the units were

in layers 2-4 or 5-6 (Figure S3). Comparisons were relative to zero and were performed over a 750ms time window for the post-

contrast change time point, and a 1000ms time window for all other time points.

To examine how responses to preferred stimuli changed relative to responses to non-preferred stimuli, we first determined which

units had a significant orientation preference by performing Hotelling’s T-squared test for equality of means across firing rate re-

sponses to differently oriented stimuli. We included units with p < 0.05 for further orientation-tuning related analyses (697 of 1709

single units).We then compared changes in responses (in 500mswindows) to the preferred orientation, which triggered themaximum

average firing rate, to changes in responses to the adjacent orthogonal orientations, across correct versus miss and running versus

stationary conditions. If responses to the preferred orientation changed more than responses to the orthogonal orientation, the

neuron experienced a more multiplicative gain, whereas if the changes were equal, the neuron experienced an additive gain.

Thus, we calculated jDpreferredj-jDorthogonalj for correct-miss and running-stationary changes in the different groups and

hemispheres.

We also examinedwithin-unit variability with Fano factor, the ratio of variance of spike counts across trials to themean spike count.

To calculate the Fano factor, we binned spike rates into 100ms bins and divided the variability andmean spike counts in those bins for

each unit in response to its preferred orientation. Only units that were significantly tuned, as described above, were included in Fano

factor analysis. We then computed the average Fano factor in different conditions across 400ms time windows (or 4 bins), and

directly compared either correct versus miss trials or running versus stationary trials.

For the linear classifier, we binned pre- and post-change spike counts within differently sized windows for each recording. We

trained a linear classifier to decode pre- versus post-change counts from the population activity with custom MATLAB code using

a regularized support vector machine with leave-one-out cross validation. We then averaged classifier performance across record-

ings, either including all trials or a subset such as correct trials to determine if classifier performance changed in different conditions.

We also trained the linear classifier on trial-shuffled activity, where we individually shuffled spike counts within each neuron to remove

correlated variability structure while keeping intact the pre-post change firing rate relationship. This allowed us to compare perfor-

mance to the classifier trained on unaltered population activity and determine the contribution of correlated neural variability to

classifier performance and neural population information.

For performance-matched sessions, we selected the recording sessions where mice performed at a detection index between

8-13. For 80-20 mice, they had to perform at this level only in response to likely changes, while 50-50 mice had to perform at this

level for both changes. We then ran the same analyses as described above on that subset of recordings.

DATA AND SOFTWARE AVAILABILITY

Available upon reasonable request.
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