
The resolution of stereoscopic depth discrimination is extreme-
ly fine1. To achieve this, the binocular correspondence prob-
lem—which results from the slightly different inputs to each
eye while viewing a scene—must first be solved. That is, the
matching features in both eyes must be combined to recon-
struct an accurate three-dimensional view of the scene. Spa-
tial scale must be taken into account, as neurons respond to a
limited range of disparities and spatial frequencies. Neurons
that are tuned to low spatial frequencies code a relatively wide
range of disparities, but with poor resolution. Conversely, cells
tuned to high spatial frequencies have fine resolution, but are
limited to processing a narrow range of disparities2–4. A lead-
ing theory concerning stereoscopic processing is that coarse
disparity information constrains that of fine detail5. Given that
coarse spatial scale covers the entire range of disparities to
which the system responds, it is advantageous to first produce
a global solution to the correspondence problem. This initial
estimate of disparities across the visual field can then be refined
by neurons that have better resolution over a narrower range.
Different underlying mechanisms have been suggested for this
coarse-to-fine process5–15. Although there is also an apparent
role for fine-to-coarse processing13, it is clear that a coarse spa-
tial scale constrains the correspondence solution at finer val-
ues6,8,13,14. An implicit extension of this idea is that a
coarse-to-fine sequence applies to all stereoscopic neural pro-
cessing, from establishing binocular correspondence to per-
ceiving differences in depth.

Here, we report three types of neurophysiological data that are
consistent with a stereoscopic mechanism in which coarse-to-fine
processing is a major component. Some of our data also indicate
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For binocular animals viewing a three-dimensional scene, the left and right eyes receive slightly
different information, and the brain uses this ‘binocular disparity’ to interpret stereoscopic depth. An
important theoretical conjecture in this mechanism is that coarse processing precedes and constrains
finely detailed processing. We present three types of neurophysiological data from the cat’s visual cor-
tex that are consistent with a temporal coarse-to-fine tuning of disparity information. First, the dispar-
ity tuning of cortical cells generally sharpened during the time course of response. Second, cells
responsive to large and small spatial scale had relatively shorter and longer temporal latencies, respec-
tively. Third, cross-correlation analysis between simultaneously recorded pairs of cortical cells showed
that connections between disparity-tuned neurons were generally stronger for coarse-to-fine process-
ing than for fine-to-coarse processing. These results are consistent with theoretical and behavioral
studies and suggest that rapid, coarse percepts are refined over time in stereoscopic depth perception.

that there is a fine-to-coarse process involved. For the first two
types of data, we analyzed response characteristics of complex
cells in the cat’s striate cortex. We limited the analysis to complex
cells because they are considered primary disparity detectors16,17.
For the third category of data, we assessed cross-correlation results
from both simple and complex cells to maximize sample size. For
the first analysis, we examined temporal characteristics of 
disparity-tuning functions for each cell to determine if disparity
frequency (resolution) and range (size) change over time. Dis-
parity frequency refers to the modulation of each cell’s response for
different binocular disparities. Disparity range specifies the extent
of disparities that produces a response from the neuron. Togeth-
er, frequency and range characterize the degree of fine or coarse
tuning of a cell’s disparity response. High frequencies and small
range correspond to relatively fine tuning. For the second type of
evidence, we determined latencies of the strongest responses and
compared them with preferred disparity frequencies for each cell.
The third type of evidence is derived from simultaneous recording
of responses of pairs of disparity-tuned cortical cells. We used
cross-correlation analysis to examine timing patterns between
cells and relative strengths of interaction.

Our findings are as follows. First, disparity tuning of most
cortical cells sharpened during responses. Second, population
analysis showed that cells with low disparity frequency prefer-
ences tended to have relatively short response latencies. Third,
cross-correlation analysis showed that more cell pairs showed
fine-to-coarse cortical connections than coarse-to-fine, but the
coarse-to-fine connections were generally stronger. Taken togeth-
er, these results are consistent with a stereoscopic coarse-to-fine
process that has a fine-to-coarse component.
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RESULTS
We calculated the relative magnitude and shape of disparity tun-
ing curves for time slices before, during and after optimal response
(data for one cell shown in Fig. 1). The progressive changes in the
disparity tuning curves from 20 ms before to 20 ms after the opti-
mal time delay show that the disparity tuning curves sharpened
over this time. There was a 71% increase in disparity frequency
(resolution) and a 25% decrease in disparity range (size). The
optimal disparity (the disparity value where the largest peak
occurred) remained at a constant value for all three time slices.
By integrating information across different disparity scales while
maintaining the same optimal disparity, neurons become more
selective for one disparity7. It is a coarse-to-fine mechanism
because of the temporal order of processing.

We examined the disparity tuning dynamics for several neu-
rons and confirmed that tuning became sharper with increasing
correlation delay (data from three neurons shown in Fig. 2).
Responses were normalized to facilitate comparisons of wave-
form shape and responsivity relative to optimal time delay. Two
response curves are shown for each cell; they represent the
responses 20 ms before (dashed lines) and 20 ms after (solid lines)
the optimal ones. These values were chosen because the tempo-
ral resolution of the stimulus is 40 ms, and it is desirable to use
values that are symmetric around optimal time to compare time
slices with nearly equal spike rates. In this case, differences in
waveform shape cannot be attributed to variations in spike rates.
Time slices of an additional 40 ms before and after these values
did not produce a sufficient number of spikes to obtain a reliable
disparity tuning curve. For each cell (Fig. 2a–c), the temporal
slices before and after optimal have nearly identical peaks. Opti-
mal disparity remained constant for different correlation delays.
In each case, however, tuning was narrower and disparity range
was smaller for the time slice following the optimal value. Dis-
parity frequency (resolution) increased and range (size) decreased

with increasing temporal correlation delay. The examples shown
(Fig. 2a–c) represent a range of changes that we have observed
from relatively small (a) to large (c). One functional implication
of these changes is that the subregions, characteristic of complex
cells, become smaller and closer together with time. This is shown
clearly in (c). These characteristics—constant optimal disparity,
increasing frequency and decreasing range—indicate a coarse-
to-fine disparity mechanism.

A summary of the dynamics of disparity tuning is shown for a
population of 74 complex cells (Fig. 3). We plotted the change in
disparity frequency (resolution) and range (size) over a 40 ms
time scale (Fig. 3a). The two distributions were weighted on oppo-
site sides of zero: the mean increase in disparity frequency was
25%, and the mean decrease in disparity range was 8.4%. Both
values were significantly different from zero (P < 0.001 and 
P < 0.001, standard normal, central limit theorem). An alterna-
tive method of analysis is to examine whether the changes in a
parameter (frequency or range) are significant on a cell-by-cell

articles

–1

0

1

a

b

c

N
or

m
al

iz
ed

 r
es

po
ns

e 
am

pl
itu

de

Disparity (°)

45 ms

65 ms

85 ms

0° 2°  

Fig. 1. An example of the temporal coarse-to-fine disparity tuning of
complex cells. Disparity tuning data (open circles) are shown on a nor-
malized amplitude scale where the disparity tuning at optimal time delay
(b) has a maximum amplitude of 1.0. Relative disparity values are given
on the abscissa. Responses curves 20 ms before (a) and 20 ms after (c)
the optimal response (b) are shown. The data are fit with a Gabor func-
tion (solid lines), and the parameters of interest are the disparity fre-
quency (the frequency of response modulation along the disparity axis)
and disparity range or size (the range of disparities to which the cell
responds). (a) The local maxima and minima at 20 ms before optimal
delay are indicated by three vertical lines (two troughs, one peak). Note
that the optimal disparity (center vertical line) did not change with cor-
relation delay. However, the adjacent minima moved closer to the opti-
mal disparity with time. This cell shows a 25% decrease in disparity
range and a 71% increase in disparity frequency when comparing
responses of (c) with those of (a).

Fig. 2. Three examples of complex cells show that disparity tuning
becomes sharper with increasing correlation delay. (a–c) Disparity tun-
ing data (open circles, 20 ms before optimal time delay; filled circles, 
20 ms after optimal) are shown on a normalized amplitude scale where
the disparity tuning at optimal delay has a maximum amplitude of 1.0.
The full disparity range tested is not shown, so as to emphasize the
range of disparities to which the cells respond. As the direction of eye
gaze is unknown, the disparity units are relative to an arbitrary zero (the
closest disparity tested). The data are fit with a Gabor function (dashed
lines, 20 ms before optimal delay; solid lines, 20 ms after optimal), and
the parameters of interest are the disparity frequency (frequency of
response modulation along the disparity axis) and disparity range (range
of disparities within which the cell responded). (a) A typical example, in
which the optimal disparity (position of positive peak) did not change,
but the disparity frequency was slightly greater (27%) and disparity range
slightly smaller (10%) at the later correlation delay. (b) A second cell
that shows a quantitatively larger effect: a 43% increase in frequency and
a 36% decrease in range. (c) A third cell with a still greater change: 79%
increase in frequency and a 40% decrease in range.
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basis, given the confidence intervals for these fitted parameters
from the Levenberg-Marquardt algorithm18. Of 74 cells, 59
showed a significant increase in disparity frequency, 15 were not
significantly different, and none showed a significant decrease in
frequency. For disparity range, 41 cells showed no significant dif-
ference, 28 showed a significant decrease, and 5 had a significant
increase. Whereas the frequency parameter was well constrained
by the fit, the range parameter was relatively less constrained. The
change in disparity range was not as strong an effect as the change
in disparity frequency. Finally, we measured the change in opti-
mal disparity over the same 40-ms time span during which the
disparity frequency and disparity range measurements were made.
Out of 74 cells, 64 had a change in optimal disparity of <0.1°,
seven showed a change between 0.1° and 0.2°, and one cell had a
change of 0.2–0.3°. The change in optimal disparity was minimal.

Taken together, these data are consistent with a neural mech-
anism in which cells make an initial, relatively coarse disparity

judgment, which is refined during the response as the range is
narrowed. If a single mechanism is responsible for both the
increase in frequency and decrease in range, then these two
changes should be correlated. Cells with larger increases in fre-
quency tended to have larger decreases in range (Fig. 3b). How-
ever, the correlation was relatively weak (correlation coefficient,
–0.24). The weakness of the correlation suggests the presence of
more than one mechanism.

Coarse-to-fine dynamic disparity tuning could be the result
of pooling from cells in which relatively lower-frequency cells
have shorter latencies. To test this hypothesis, we examined the
disparity frequency and disparity range at optimal time delay
(Fig. 4a). Cells with higher disparity frequency were clearly more
time-delayed. The slope (solid line; 0.0085 cycles/°/ms) was sig-
nificantly different from zero (P = 0.0001). A similar result was
found for disparity range (Fig. 4b). This slope (solid line; 
–0.017 °/ms) was also significantly different from zero 
(P = 0.001). Neurons with smaller ranges tended to have greater
time delays. These results are consistent with a process in which
disparity tuning becomes finer over time.

The third type of analysis we report here is that of simulta-
neously recorded pairs of disparity-tuned neurons. For this analy-
sis, we included both simple and complex cells to increase our
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Fig. 3. A population summary of changes in disparity frequency and dis-
parity range. (a) Distributions of disparity frequency (filled bars) and dis-
parity size (unfilled bars) dynamics are presented for 74 complex cells.
The position of the dashed vertical line (at zero) shows that the means
of these distributions are shifted away from zero. Change in a parameter
is considered as a percent difference between 20 ms before optimal
time delay and 20 ms after. A positive value indicates an increase with
greater time delay, and a negative number signifies a decrease. The aver-
age increase in frequency is 25%, and the average decrease in range is
8.4%. These values are significantly different from zero (P < 0.001, 
P < 0.001). (b) A relationship is shown between the changes in range and
in frequency over a 40 ms time period. Dashed vertical and horizontal
lines indicate no change. The robust regression (solid line) has a slope of
–0.22 and is significantly different from zero (P = 0.0097). The Pearson
correlation coefficient (–0.24) and regression indicate a weak correla-
tion such that cells with a large increase in frequency tend to have a
large decrease in size.
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Fig. 4. Neurons with higher disparity frequency and smaller disparity
range tend to have greater optimal correlation delays. (a) Relationship
between disparity frequency tuning and optimal time delay is given for
84 complex cells. The optimal disparity frequency measured at the opti-
mal time delay is plotted against the optimal time delay for these cells.
Higher-frequency cells were relatively more time delayed compared to
lower-frequency cells. The robust regression (solid line) has a slope
(0.0085 cycle/°/ms) that is significantly different from zero (P = 0.0001).
(b) The disparity range parameter (the standard deviation of the
Gaussian envelope from the Gabor fit) measured at the optimal time
delay is plotted against optimal time delay. These are the same cells as
shown in (a). Cells with relatively smaller ranges tended to have greater
delays. The robust regression (solid line) has a slope (–0.017 °/ms),
which is significantly different from zero (P = 0.001).©
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sample size. We analyzed data for 20 pairs of disparity-tuned sim-
ple and complex cells: 17 pairs were recorded from the same elec-
trode, and 3 pairs were from different electrodes. Three
combinations of monosynaptic and polysynaptic connections
(see Methods for classification criteria) were included: simple-
to-simple, complex-to-simple and complex-to-complex. The 
simple-to-complex connection was not used because it is a spe-
cial case in which we believe that simple cells are the subunits of
complex cells3,4; it should therefore be considered separately. Rep-
resentative cross-correlation data are shown for two pairs of com-
plex cells (Fig. 5). For the first pair, the shuffle-subtracted
cross-correlogram indicates that cell 1 drove cell 2, and the dis-

parity frequency and range data indicate that this cell combina-
tion represents a fine-to-coarse connection (Fig. 5a and b). The
second cell pair showed a stronger cross-correlation peak. In this
case, cell 2 drove cell 1 (both complex cells). Disparity frequency
and range data indicate that this cell combination represents a
coarse-to-fine connection (Fig. 5c and d).

For the pairs of neurons from which we derived cross-
correlogram data, the type of connectivity between the cells was
assessed according to either disparity range (size) or disparity
frequency (resolution). If the disparity range was larger for the
pre-synaptic cell compared to the post-synaptic cell, we consid-
ered the connection to be coarse-to-fine. Conversely, a smaller
pre-synaptic cell range signified a fine-to-coarse connection. To
derive a quantitative measurement, we considered the difference
in range expressed as a percentage of the average range (Meth-
ods). Similarly, if the disparity frequency was lower for the pre-
synaptic cell, then the connection was considered coarse-to-fine.
Cell connectivity was asymmetrical (Fig. 6). Whether evaluated by
disparity range or disparity frequency, there were more fine-to-
coarse than coarse-to-fine connections. This difference was sta-
tistically significant only for frequency (P = 0.021, binomial sign
test; Fig. 6b and d). This type of asymmetry indicates that the
quantities of connections are not equal. Another type of asym-
metry involves the strength of connections and firing rates. In
Fig. 6a and b, we show the relationship between the strength (that
is, area) of the cross-correlation peak and the type of connectiv-
ity. Coarse-to-fine connections, whether defined by range or fre-
quency, tend to be stronger (robust regressions, P = 0.001 and 
P = 0.005, respectively). The firing rates of our pairs of cells were
generally not equal. Relative firing rates (firing rate of the post-
synaptic cell divided by that of the pre-synaptic cell) instead of
correlation strength are also shown (Fig. 6c and d). Firing rate is
a much simpler, more intuitive measure of neural response than
shuffle-subtracted, normalized, cross-correlogram peak area.
Coarse-to-fine connections, whether defined by range or fre-
quency, tend to have higher post-synaptic firing rates compared
to those of the pre-synaptic cells (robust regressions, P = 0.0098
and P = 0.039, respectively). If the fine-to-coarse connections
have weak synaptic strengths, it follows that their post-synaptic
firing rates are low compared to those at pre-synaptic sites. Sim-
ilarly, it is logically consistent that strong coarse-to-fine connec-
tions result in more robust post-synaptic firing rates compared
to those at pre-synaptic levels. Two clear points emerge from these
data. First, there were more cell pairs with fine-to-coarse con-
nections. Second, the coarse-to-fine connections (to the left of
the dashed lines for range plots Fig. 6a and c and to the right for
frequency plots Fig. 6b and d) were generally stronger with post-
synaptic cells that had higher firing rates.

Combining information across spatial scale is most useful
if the neurons are tuned to the same optimal disparity. There-
fore, it is important to note whether disparity-tuned neurons
that are connected are tuned to the same optimal disparity, even
though their disparity frequencies and disparity ranges may be
different. We found that many connected pairs had nearly oppo-
site disparity tuning curves. The ‘similarity index’ (SI) of tuning
curves can be quantified by taking the Pearson correlation coef-
ficient of the pair (where +1 and –1 indicate identical and exact-
ly opposite tuning, respectively). Our 20 pairs of cells were
evenly split, such that half had an SI > 0, and the other half had
an SI < 0. Connections between neurons are likely to have mul-
tiple purposes. The resolution of horizontal disparity across
spatial scale is one possibility. It is not clear what functional
role is performed by cell pairs with nearly opposite tuning 
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Fig. 5. Examples of fine-to-coarse and coarse-to-fine connections
between disparity-tuned complex cells. (a) Spike 1 disparity tuning data
(open circles), Gabor fit (dashed line); Spike 2 disparity tuning data
(closed circles), Gabor fit (solid line). (b) Shuffle-subtracted, cross-
correlogram of the neurons in (a), normalized by the number of pre-
synaptic spikes (‘effectiveness’)30. The two horizontal lines are the mean
± 3 s.d. of the response in the range 50–100 ms. Bins that exceeded this
were considered significant. Spike 1, which has a disparity frequency of
0.31 cycle/° and size of 1.48° is clearly pre-synaptic to spike 2, which has
a frequency of 0.23 cycle/° and a range of 1.8°. This is a fine-to-coarse
connection and the effective connectivity (area of the peak) is relatively
weak. (c) The disparity tuning function of a different pair of cells is shown
here. (d) The cross-correlogram of the pair in (c) shows a coarse-to-fine
connection. Pre-synaptic spike 2 has a frequency of 0.17 cycle/° and a
range of 2.1°, whereas the post-synaptic spike 1 Gabor function fit yields
a frequency of 0.21 cycle/° and a range of 1.3°. This coarse-to-fine con-
nection displays a much stronger effective connectivity compared to the
fine-to-coarse connection in (b) (12.5 versus 5.6).
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(SI < 0). However, among the ten pairs with an SI > 0, the dif-
ference in optimal disparity was less than 10% for eight of these
pairs (difference in optimal disparity expressed as a percentage
of the average disparity period of the pair, where disparity peri-
od is the inverse of disparity frequency and has units of degrees).
In the example shown above (Fig. 5a), the optimal disparities
defined by the positive peaks differed by 13% (this example is
one of only two with differences greater than 10%), but the
inhibitory troughs were almost perfectly aligned. In the ‘tuned
inhibitory’ type of cells (Fig. 5b), the location of the troughs
differed by 8%. Thus, for a subclass of connected cells, the dis-

parity tuning peaks are approximately aligned, whereas the
other parameters (notably disparity frequency and disparity
range) may differ considerably.

DISCUSSION
The three types of neurophysiological evidence presented here
are consistent with coarse-to-fine sequential processing as a major
component of the neural mechanism of stereopsis. The improve-
ment in resolution with greater correlation delay is similar to that
for other parameters such as orientation19 and spatial frequen-
cy20,21. A previous investigation also shows direction tuning
changes of medial temporal (MT) neurons during a similar tem-
poral window (60 ms)22. There is some behavioral evidence that
supports coarse-to-fine temporal processing of information. For
example, low-pass and high-pass spatially filtered versions of
images have been studied23. The spatially filtered versions were
presented in different temporal sequences: low-to-high and 
high-to-low frequencies. The subject’s task was to discriminate
a full-bandwidth image from the spatially filtered versions. The
low-to-high temporal sequence was more often mistaken for the
full bandwidth presentation than the high-to-low sequence. These
perceptual and neurophysiological results are consistent with our
findings in support of a general, temporal coarse-to-fine pro-
cessing mechanism in the visual cortex.

A model of neural connectivity that is compatible with all of
our results consists of a post-synaptic neuron that pools over
many neurons of slightly different spatial scales (some larger and
others smaller). All of the neurons are tuned to approximately
the same optimal disparity. The pre-synaptic neurons of rela-
tively lower disparity frequency and larger disparity size have
shorter latencies that would dominate the early response of the
post-synaptic neuron. Pre-synaptic neurons with relatively larg-
er disparity range (size) form stronger connections compared to
the more numerous pre-synaptic neurons with smaller disparity
range. Considered together, the post-synaptic neuron performs a
weighted averaging across spatial scale, with greater and earlier
weight given to coarse-to-fine connections.

The concept of weighted averaging across spatial scale with
the same optimal disparity is also consistent with theoretical and
behavioral studies. For example, it has been proposed that aver-
aging disparity signals across spatial scales helps to determine the
correct disparity, reducing the ambiguity inherently present in
any one spatial scale7. Psychophysical studies that show both 
fine-to-coarse and coarse-to-fine interactions are also compatible
with weighted disparity averaging, which incorporates both types
of connections. Perceptual weighted disparity averaging across
spatial scales is a well-known phenomenon when the stimulus
consists of multiple disparities in the same location24.

Our results are consistent with other neurophysiological stud-
ies in which the dynamics of neural tuning have been exam-
ined19,20,21. They are also compatible with psychophysical studies
that support a temporal coarse-to-fine processing system, and
with theoretical models that advocate the advantages of com-
bining information across spatial scale. Together, these neuro-
physiological results and the behavioral studies in stereopsis
suggest that coarse spatial scales constrain finer scales, but there
is also a role for fine-to-coarse processing.

METHODS
Isoflurane. (2–4%) was used to anesthetize animals during surgery. After
surgery, anesthesia was switched to thiopental sodium (continuous infu-
sion as required of around 1.4 mg per kg per h). Paralysis was maintained
with pancuronium (continuous infusion of 0.2 mg per kg per h). Arti-
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Fig. 6. Asymmetries in coarse-to-fine and fine-to-coarse connections.
(a, b) Strength of neural cross-correlation (area of the peak) is given
between monosynaptic and polysynaptic pairs of disparity-tuned cells
(all combinations of simple/complex except simple-to-complex).
Coarse-to-fine and fine-to-coarse connections are defined by either the
difference in disparity range (a) or disparity frequency (b) between the
pairs, expressed as a percentage of the average value for the pair. The
dashed vertical lines indicate that pre and post-synaptic cells are not dif-
ferent with respect to the given parameter (frequency or range). 
(a) This plot defines the relationships of the cells in terms of differences
in disparity range. To the left of the vertical dashed line, the pre-synaptic
cell has a larger range (coarse-to-fine); to the right, the pre-synaptic cell
has a smaller range (fine-to-coarse). The most common type of connec-
tion is fine-to-coarse. The robust regression (solid line) is significantly
different from zero (P = 0.001). The Pearson correlation coefficient is
–0.62. Coarse-to-fine connections tend to be stronger than fine-to-
coarse connections. (b) This plot defines the relationships of the cells in
terms of differences in disparity frequency. To the left of the vertical
dashed line, the pre-synaptic cell has a smaller frequency (fine-to-
coarse); to the right, the pre-synaptic cell has a larger frequency
(coarse-to-fine). There are far more fine-to-coarse connections. The
robust regression (solid line) is significantly different from zero 
(P = 0.005). The Pearson correlation coefficient is 0.40. Consistent with
the results in (a), coarse-to-fine connections tend to be stronger. 
(c, d) The relationship between relative firing rate (firing rate of the
post-synaptic cell divided by that of the pre-synaptic cell) and coarse/fine
connectivity, as defined above. The stronger coarse-to-fine connections
defined either by range differences (c) or by frequency differences 
(d) tend to have a relatively higher postsynaptic firing rates (robust
regression, P = 0.0098, P = 0.039, respectively).
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ficial respiration was maintained with 30% O2 and 70% N2O at 
25 breaths/min, and the stroke volume was adjusted according to the
cat’s weight. All procedures complied with the National Institutes of
Health Guide for the Care and Use of Laboratory Animals and were
approved by the University of California Animal Care Committee. Visu-
al stimuli were generated by a computer with two high-resolution graph-
ics boards that ran custom software. Images were displayed on a pair of
video monitors that the cat views dichoptically by means of beam split-
ters (mean luminance, 23 cd/m2). Action potentials were discriminated
by custom-made software and time-stamped with 40 µs resolution.

Receptive field mapping. The results from drifting grating runs were
used to determine optimal stimulus parameters for receptive field map-
ping with dichoptic, one-dimensional, binary m-sequence noise. Sixteen
adjacent bars were presented to each eye at optimal orientation. The
width of the bars was approximately one-fourth the period of the optimal
spatial frequency. The length of the bar was equal to sixteen times the
width. This square pattern was centered over the receptive field. Each of
the sixteen bars was either bright or dark, and the mean luminance of
the bars constituted the background. One stimulus pattern lasted for
three frames (39 ms).

Each spike train was cross-correlated with the stimulus sequence at
each location of binocular combination of stimuli (which varies in depth
and position along a fronto-parallel plane) to obtain a two-dimensional
binocular interaction map for a particular time delay. Excitatory response
to bars of the same contrast or of opposite contrast was represented as a
positive or a negative number, respectively. The two-dimensional binoc-
ular interaction maps were reduced to one-dimensional disparity tuning
data by integration along lines of equal disparity. This was repeated for
all time delays of interest (0–200 ms) in increments of 5 ms. Time delay
was measured relative to the middle point in the three frame pattern. The
optimal time delay was defined as that which produced the greatest root
mean squared (RMS) signal strength. The time slices that preceded and
followed optimal by 20 ms were chosen for further analysis. These time
slices were chosen because the temporal resolution of the stimulus is 
40 ms, and symmetrical slices on either side and close to optimal yield
high signal-to-noise values and best represent receptive field dynamics.
A detailed description of these procedures is provided elsewhere2–4,25.

Curve fitting. The disparity tuning curves were fitted with a Gabor func-
tion:

S(d) = exp(–(d – do)2/2σs
2)cos(2πfds(d – do) + φ),

where d is disparity, do is the center position, σs is the disparity range
(size) parameter, fds is the disparity frequency, and φ is the phase. If there
were insufficient spikes (the Gabor fit was not good), that neuron was
not included in the data set. The criteria for a good fit were that (i) 
R2 > 0.8, where R2 is the coefficient of determination, and (ii) the dis-
parity frequency and disparity range parameters were well-constrained
based on the confidence interval provided by the Levenberg-Marquardt
algorithm18. These criteria are more suitable than the signal/noise ratio
or the total quantity of spikes. The percentage changes in disparity reso-
lution (frequency) and range (size) with correlation were calculated as

[100 × (P+20ms – P–20ms)/P–20ms]

where P is either a frequency or a size parameter used to measure dynam-
ic alterations in the coarseness of disparity tuning. The maximum ampli-
tude of the signal at optimal time delay was used to normalize all
amplitudes from the other time delays (Figs. 1 and 2). Summary data in
scatter plots were fit with robust regressions, which minimize the influ-
ence of outliers26.

Neural cross-correlation. Two or more cells were recorded from either
the same electrode or adjacent electrodes for which the difference in cor-
tical depth did not exceed 500 µm. Data for this study includes two or
more binocular disparity tuned cells with similar orientation and spa-
tial frequency tuning, and adjacent or overlapping receptive field loca-

tions. Cell pairs included in the analysis had clear structure in their neur-
al cross-correlograms and were either mono- or polysynaptic27.

Disparity tuning curves were fit with a Gabor function at optimal delay
only. Differences in the range or frequency parameters  between pre- and
post-synaptic cells were normalized by the average value as follows:

100 × (Spost – Spre)/((Spost + Spre)/2),

where S is either the size or frequency parameter of the pre (pre-synaptic)
or post (post-synaptic) neuron. This is a measure of the magnitude of
the coarse-to-fine and fine-to-coarse connections.

All raw neural correlograms were shuffle-subtracted to eliminate 
stimulus-based correlations28. Shuffle-subtraction was obtained by first
taking the cross-correlogram between pairs of cells from all the repeti-
tions of a stimulus. Cross-correlation between repetitions, which can only
be stimulus-based, were then subtracted out. The result was a neurally
based cross-correlogram. In this study, we need to distinguish common
input connections from those of a mono- or polysynaptic nature. In
mono- and polysynaptic connections, there was a relatively narrow peak
shifted away from zero so that one cell (e.g. spike 1) can be said to con-
sistently fire before another (e.g. spike 2)27. From this, we infer that spike
1 is presynaptic to spike 2. If the peak was broad and straddled zero, then
the pair of cells was assumed to be receiving a common input27. These
categories are somewhat arbitrary, as there is a continuum of interactions.
It is also possible for one cell to be pre-synaptic to another while they both
receive common input. Three quantitative criteria were used for elimi-
nating a common input type of cross-correlogram from the analysis. First,
the correlogram asymmetry index [(AI = (R – L)/(R + L), where R and
L are the areas of the bins to the right and to the left of zero (by ± 5 ms,
respectively)], is a measure of how much the correlogram peak was shift-
ed from zero29. Second, the latency of the cross-correlogram peak is the bin
of maximum amplitude. Third, the width of the peak is defined as the
width at half-maximum amplitude. Common input connections were
defined as having a latency of ≤5 ms and an AI of <0.2. Some common
input connections can have narrow widths, so this criterion was not
included. As noted above, common input connections were excluded from
this study. To be included, cells must be classified as either monosynap-
tic or polysynaptic. Monosynaptic connections were defined as having a
peak latency <3.5 ms, a width <5 ms, and an asymmetry index >0.2. Poly-
synaptic connections were defined as non-monosynaptic connections
having a peak latency <10 ms and an AI > 0.2. These quantitative crite-
ria are consistent with the known properties and characteristics of mono-
synaptic and polysynaptic connections27. The strength of cross-correlation
is the area of the peak between half-heights of maximum amplitude
(width) normalized by the number of pre-synaptic spikes (‘effectiveness’)30

and multiplied by 100 to give percentage.
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