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SUMMARY

To deepen our understanding of object recognition, it
is critical to understand the nature of transformations
that occur in intermediate stages of processing in the
ventral visual pathway, such as area V4. Neurons in
V4 are selective to local features of global shape,
such as extended contours. Previously, we found
that V4 neurons selective for curved elements exhibit
a high degree of spatial variation in their preference.
If spatial variation in curvature selectivity was also
marked by distinct temporal response patterns at
different spatial locations, then it might be possible
to untangle this information in subsequent process-
ing based on temporal responses. Indeed, we find
that V4 neurons whose receptive fields exhibit intri-
cate selectivity also show variation in their temporal
responses across locations. A computational model
that decodes stimulus identity based on population
responses benefits from using this temporal informa-
tion, suggesting that it could provide a multiplexed
code for spatio-temporal features.

INTRODUCTION

Visual information impingingon thephotoreceptors in the retina is

initially processed in the retinal circuit (Field and Chichilnisky,

2007) before being relayed via the lateral geniculate nucleus

(LGN) on to the primary visual cortex. Processing of visual shape

continues downstream in a set of cortical areas in the ventral

cortical pathway in the temporal lobe (DiCarlo et al., 2012). At

the earliest stages of visual processing in the retina, systems

identification techniques, such as reverse correlation, have

spurred progress for understanding of how visual inputs are

pooled to give rise to the receptive fields (RFs) of visual neurons

(Field et al., 2010; Schwartz et al., 2012). Similar approaches

have provided key insights about the population RFs of LGN af-

ferents that make monosynaptic connections to neurons in the

primary visual cortex (V1) (Jin et al., 2011) and the detailed spatial

structure of RFs in the secondary visual cortex (V2) (Anzai et al.,

2007; Tao et al., 2012). At later stages of processing along the

ventral stream it has been much more difficult to constrain such

mechanistic models of receptive field structure. However, there
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has been considerable progress toward understanding what in-

formation is encoded based on decoding population responses

(Pasupathy and Connor, 2002; Rust and Dicarlo, 2010). Area V4

lies at a critical intermediate juncture in the transformations that

occur between V1/V2 and the final stages of shape processing

in the inferotemporal cortex (areas TEO and TE). Earlier studies

in V4 found that many neurons were selective to extended con-

tours that form curved shapes (Pasupathy and Connor, 2001,

1999). A detailed understanding of RF organization in V4 remains

crucial for understanding the more invariant forms of object

recognition that then follow in inferotemporal cortex.

In a recent study (Nandy et al., 2013), we examined the fine

spatial structure of V4 RFs using reverse correlation techniques

to estimate the tuning for curvature. We found that V4 neurons

exhibit a tradeoff between curvature selectivity and spatial

invariance. Neurons tuned to curved shapes exhibited very

limited spatial invariance, while those that preferred straight con-

tours tended to show spatially invariant tuning. This diversity was

explained by the fine-scale RF structure: fine-scale maps of

orientation tuning across the RF for neurons preferring curved

contours showed heterogeneous local variation, whereas tuning

was homogeneous and thus translation invariant for neurons

preferring straight contours.

This previous analysis examined a temporally averaged static

picture of the RF structure. Here we investigate whether the

homogeneity/heterogeneity observed in the spatial domain

extended to the temporal domain as well. We find that the fine-

scale RFs in V4 often show previously unappreciated spatio-

temporal structure. Some neurons have progressively shifting

spatial kernels. Others show distinct temporal signatures in

different RF sub-regions, while others have spatial kernels that

dissipate over time from the center to the edges.

As in the spatial domain, the complexity of these temporal pat-

terns varied with the heterogeneity of the fine-scale receptive

field map: neurons with spatially varying shape tuning have

distinct temporal response patterns that unfold across RF loca-

tions. In contrast, neurons with spatially invariant shape tuning

have similar temporal response patterns across RF locations.

We find that computational models that use this temporal infor-

mation to decode stimulus identity far outperform simpler

models based on time-averaged spike counts. We suggest

that this tradeoff between simple/complex shape selectivity

and homogeneity/heterogeneity in both the spatial and temporal

domains could potentially reflect a spatio-temporal shape code

in area V4.
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Figure 1. Stimuli and Selectivity

V4 receptive fields were probed with fast reverse correlation sequences drawn

randomly from a set of bars or bar-composite shapes while the animal main-

tained fixation for 3 s. Bars were presented at 8 orientations on a fine 15315

location grid centered on the neuron’s receptive field (red dashed circle, drawn

for illustrative purposes only). The composite stimuli was composed of 3 bars.

The end elements were symmetrically linked to the central element at 5

different conjunction angles (0�, 22.5�, 45�, 67.5�, and 90�). These 5

conjunction levels (straight, low curvature, medium curvature, high curvature,

and ‘‘C’’), together with 16 orientations, yielded a total of 72 unique stimuli

(although shown for aesthetic completion, the lower half of the zero curvature

shapes [dotted box] is identical to the upper half and was not presented). The

composite shapes were presented on a coarser 535 location grid that span-

ned the finer grid. A pseudo-random sequence from the combined stimulus set

was shown in each trial. The stimulus duration was 16mswith an exponentially

distributed mean delay of 16 ms between stimuli.
RESULTS

We analyzed responses from 86 well-isolated neurons in area V4

of two awake, behaving male macaques (see Experimental Pro-

cedures). The stimuli consisted of oriented bars that served to

map each neuron’s RF and orientation preference at a fine

spatial scale, as well as composite contours that served to

map the neuron’s shape preference at a coarser spatial scale

(Figure 1). The temporal evolutions of the fine-scale RF structure

of four example neurons are shown in Figure 2 (upper panels).

Each panel depicts the fine-scale structure of the receptive field

at different time points after stimulus onset (non-overlapping

8.33 ms time bins). Neuron I has two distinct spatial sub-regions

(‘‘sub-fields’’ with different orientation preferences, color-coded

with different hues, upper panels) with very different temporal

patterns. The red sub-field emerges earlier and persists longer

as compared to the yellow sub-field, which emerges later and

has a much shorter duration. Neuron II exhibits a clear and pro-

gressive spatial shift in the spatio-temporal RF (STRF) over time.

These temporal patterns in the evolution of the RFs are not corre-
lated to systematic drifts in fixational eye movements (Figures

S1A and S1B). Example neuron III illustrates a third STRF pattern

that we observe in our data: receptive fields that dissipate out-

ward over time from a central region. Finally, neuron IV is an

example in which the receptive field remains fixed in place

over time.

To capture these spatial excursions, we tracked the center of

mass of each RF as it unfolded over time. We generated

response contours from the fine-scale STRFs (Figure 2, lower

panels; see Experimental Procedures) and calculated contour

centroids. By connecting successive centroids, we could

generate spatial trajectories of the fine-scale STRFs. Figure 3A

illustrates the spatial trajectory of the centroids over time (yellow)

superimposed over the time-averaged spatial RFs for the four

example neurons in Figure 2 (centroid trajectories shown only

for the 80% response level). There are 20 trajectories in each

panel, each corresponding to a jackknifed subset of the data.

This pattern of stability holds for all response levels (Figure S1C)

and for completely disjoint subsets of the data (Figure S1D; first

50% of trials compared to last 50% of trials). Thus, V4 neurons

exhibit very stable, repeatable patterns in the temporal evolution

of their RFs.

We next quantified whether these temporal patterns were

significantly different from the range of temporal patterns ex-

pected from stationary RFs. For each trajectory, we identified

the pair of STRF time bins that contributed to a maximum spatial

separation ðDmaxÞ among the corresponding pair of centroids. To

facilitate comparison across the population of neurons with

varying RF sizes, we calculated a normalized measure of the

maximum spatial excursion ðDnormÞ. This was done by dividing

Dmax by the major axis of an elliptical fit ðDRFÞ to the time-aver-

aged spatial RF (Figure 3A; see Experimental Procedures). Tra-

jectories with minimal spatial excursions will have Dnorm values

close to 0, while those with excursions spanning the width of

the RF will have values close to 1. This normalized measure,

Dnorm, is plotted in rank order for every unit in our population in

Figure 3B (example units in Figure 2 are highlighted with corre-

sponding numerals). Several units have large spatial excursions

compared to the size of the RF, some exceeding half the width of

the RF. These findings were robust across time and not due to

any non-stationarities in recordings, as reflected by similar re-

sults when we repeated the analysis using the first and second

halves of the data (Figure S1E). To compute whether these

spatial excursions were statistically significant, we compared

Dnorm to those obtained from a null distribution. The null distribu-

tion,Dnorm�shuffled, assumed that the spatial RF remained station-

ary throughout the temporal response such that temporally shuf-

fling response bins per location would have no appreciable effect

on the computation of the centroid and thus our Dnorm measure.

Because the average temporal response varies over time, often

with a sharp transient to start, we first normalized responses per

time bin before shuffling. A bootstrap procedure was then used

to compute the null distribution (see Experimental Procedures).

We reasoned that if the trajectories in the data were not due to

any underlying temporal structure, then the statistics of the

temporally shuffled data would not be significantly different

from the statistics computed on the unshuffled data. The null dis-

tribution for each unit is also shown in Figure 3B (gray error bars).
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Figure 2. Fine-Scale Spatio-Temporal Receptive Fields

For 4 example neurons. Upper panels, temporal evolution of smoothed fine-scale orientation maps. Smoothing was achieved by linear interpolation of the

respective fine-scale maps obtained using the oriented bars on the 15315 grid (Figure 1). The maps are color-coded as follows: hue indicates local orientation

preference, saturation indicates sharpness of orientation tuning, and value indicates normalized average response. The color cone in the inset illustrates the hue-

saturation-value color-coding scheme. Time points indicate the center of non-overlapping time bins relative to stimulus onset (bin width = 8.33ms). Lower panels,

response contours at 5 response levels (90%, 80%, 70%, 60%, and 50% of local peak) are shown superimposed on orientation-averaged fine-scale maps

(shown in grayscale). Contour lines are only shown for significant time bins (see Experimental Procedures). The response contours are color coded as in the inset.

The red ‘‘+’’ depicts the centroid of the 90% contour. The 4 example neurons illustrate representative temporal patterns in our data: I has different spatial sub-

fields (red, yellow) with different temporal dynamics; II shows a progressively shifting spatial kernel; the spatial kernel for III emerges at the center and dissipates

over time toward the edges in a ring-like fashion; neuron IV has no appreciable spatial excursion over time.
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Figure 3. Fine-Scale STRF Trajectories

(A) Spatial trajectories of the 80% contour centroids over time are shown superimposed on the temporally averaged receptive fields (gray) for the four example

neurons in Figure 2. Each yellow trajectory shows the temporal progression of the centroids for a jackknifed subset of the data. There are 20 trajectories cor-

responding to 20 jackknives (each using 95% of the data). The yellow circle depicts the centroid location for the first significant time bin. The gray trajectories in

the background are a subset of null trajectories obtained by random temporal permutations of the data (see Experimental Procedures). Gray polygons depict the

convex hulls of the entire set of null trajectories (1,000, obtained using a bootstrap procedure). The blue ellipse is the least-squares best-fit ellipse to the 50%

response contour of the temporally averaged receptive field.

(B) The normalized spatial excursion of the trajectories, Dnorm, is plotted for each neuron in our population (n = 86; mean ± SD). The normalized distance was

calculated by dividing themaximumEuclidean distance between any two points on a trajectory by the length of the major axis of the best-fit ellipse to the RF (blue

ellipses in A). Also shown in gray are the normalized distances obtained from the null trajectories (mean ± SD). The 4 example neurons are marked with Roman

numerals. The neurons with normalized distances that were not significantly different from chance ðp= 0:05Þ are marked with a red ‘‘x’’.
By this measure, 67 out of the 86 units were significantly different

from chance (p< 0:05; non-significant units marked with ‘‘x’’ in

the figure). Thus, a majority of units (78%) had spatial patterns

in the temporal evolution of their RFs that could not be attributed

to chance.

In an earlier study (Nandy et al., 2013), we found that V4 neu-

rons selective for curved composite shapes exhibited consider-

able spatial heterogeneity in their tuning. The above analysis re-

veals that the center of mass of V4 RFs undergoes considerable

excursions in visual space as the RF unfolds over time and that

these excursions cannot be attributed to chance. This raises

the possibility that the shape tuning heterogeneity in the spatial

domain that was reported in the earlier study might extend to

the temporal domain as well. In particular, we wondered if neu-

rons with spatial heterogeneity in their shape tuning might also

exhibit heterogeneity in their temporal response profiles. We
thus investigated the temporal response properties of our popu-

lation to the composite shape stimuli. We examined the coarse-

scale STRFs (obtained from the composite shape stimuli) and

first observed that shape selectivity at a particular RF location re-

mained stable over time (Figures 4A, 4B, and S2). To quantify

this, we computed a dispersion metric of peak shape selectivity

in shape space (see Experimental Procedures). Across the pop-

ulation, the dispersion metric is highly skewed toward low values

(Figure 4C). We compared the dispersionmetric for each unit to a

null distribution obtained from temporally shuffled data. 82 out of

86 units had dispersion metrics that were not significantly

different from null ðp> 0:05Þ. Shape tuning across time was

thus highly conserved for the population.

However, the temporal response profiles were different in

different parts of the RF for some neurons (example unit shown

in Figure 4A). To investigate this further, we extracted the
Neuron 91, 920–930, August 17, 2016 923
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Figure 4. Coarse-Scale STRFs Show Stable Shape Selectivity across Time

(A) Neuronal response maps to the set of composite shapes are shown for two spatial locations (on the 535 coarse grid) for an example neuron (neuron I in

Figure 2). The spatial locations are marked by numbers on the temporal average RF (left panel). The composite stimuli are overlaid on the responsemaps for ease

of reference.

(B) Summary plots showing the dispersion of peak shape selectivity across significant temporal bins for seven example neurons at their maximally responsive

spatial location. The error bars show the mean and standard deviation of peak response locations (centroid of contour at 90% of peak response) across time in

shape space. The dotted polygon is the convex hull of the peak response locations. The neuron marked with an asterisk is the same example neuron in (A). The

STRFs for the other neurons (i–vi) are shown in Figure S2.

(C) Histogram of dispersion of peak shape selectivity for the population. Dispersion is plotted as the area of the convex hull of the peak response locations (dotted

polygons in B) as a fraction of shape space. Mean of the distribution is 0.11 or 11% of shape space, illustrating the temporal stability of shape selectivity.
temporal response patterns (temporal kernel) to the composite

stimuli at different locations within each neuron’s spatial RF

(see Experimental Procedures). Temporal kernels are illustrated

for two example neurons in Figures 5A and 5B. The first example

neuron has spatially varying shape selectivity (Figure 5A, top

row) and diverse temporal kernels in different parts of its RF (Fig-

ure 5B, top row). In contrast, the second example neuron has
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spatially homogeneous shape selectivity and very similar tempo-

ral kernels in different parts of the RF (Figures 5A and 5B, bottom

row).

To quantify the diversity of temporal kernels, we extracted four

purely temporal aspects of each response kernel: the time point

at which the response first reaches significance, tsig; the duration

over which the response remained significant, DTsig; the time
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Figure 5. Neurons with Spatially Diverse Shape Selectivity Have Distinct Temporal Responses across Spatial Locations

(A) For two example neurons (rows), the location-specific shape or set of shapes to which the neuron responded preferentially, at all spatially significant locations.

Shapes are superimposed at each grid location. The example neuron in the top row is neuron II in Figures 2 and 3.

(B) Normalized temporal response profiles (red, mean ± SEM) to the composite shapes at the spatial locations marked with asterisks in (A). The temporal re-

sponses were calculated across all stimuli whose responses were above 70% of local peak response. The black solid line indicates baseline response, and the

black dotted line indicates four standard deviations above baseline. Four purely temporal aspects of the response profiles are indicated: tsig, the time point at

which the temporal kernel first reaches significance; DTsig, the period over which the temporal kernel remains significant; tpeak, the time point at which the

response reaches its peak; and DTmid, the duration over which the response remains at a level greater than half-way between the peak and baseline response

levels.

(C) The average pairwise temporal kernel distance (see Experimental Procedures; average of all values in right column in Figure S4) is plotted against the average

pairwise pattern correlation (average of all values in middle column of Figure S4) for our entire population of neurons. There is a significant negative correlation

(Spearman’s r= � 0:28; p= 0:01) between the two quantities. The vertical bars mark the ranges for the lower, middle, and upper third percentiles of the temporal

kernel distances used for the analysis in Figure 6C.
point at which the response reached its peak, tpeak; and the dura-

tion over which there was a sustained response at a level above

the half-waymark between peak and baseline,DTmid (Figures 5B

and S3A; see Experimental Procedures). Because several of

these temporal measures are related (Figure S3B), we performed

a principal components analysis (PCA) on this four dimensional

space to reduce its dimensionality (Figure S3). The first principal

component is dominated by DTsig, a measure of response dura-

tion, while the second gets roughly equal contributions from the

other three parameters and is related to response latency (Fig-

ure S3D). These two components accounted for 88% of the vari-

ance (Figure S3E). Each kernel could then be represented as a

point in the 2D plane defined by the first two principal compo-

nents. The Euclidean distance between two such points gives

a measure of similarity between the corresponding pair of tem-

poral kernels (Figure S4, last column).

To quantify the diversity of shape tuning, we calculated a

measure of the similarity of shape tuning between pairs of spatial

locations within the RF (pattern correlation; see Experimental

Procedures). High pattern correlation values indicate spatially

homogeneous tuning, while low values indicate spatially hetero-

geneous tuning (Figure S4, middle column).

To investigate the relationship between spatial diversity of

shape tuning and the spatial diversity of temporal kernels, we
computed the average pairwise pattern correlation and tempo-

ral kernel distance for each neuron across all pairs of RF

locations with significant response. Figure 5C shows the scat-

terplot of average temporal kernel distance versus average

pattern correlation for all neurons in our population. Neurons

with high pattern correlation show a relatively low temporal

response distance. Neurons with low average pattern correla-

tion exhibit a wide range of temporal kernel distances. Overall,

we find that pattern correlation and temporal kernel distance

are inversely correlated across the neural population (Spear-

man’s r= � 0:28; p= 0:01). Spatial and temporal heterogeneity

are thus correlated with one another. Neurons with spatially

invariant tuning tend to have similar temporal kernels across

RF locations. Although neurons with spatially varying tuning

exhibit a large scatter in their average temporal kernel dis-

tances, a large subset have diverse temporal kernels. This in-

verse relationship is even stronger if we restrict our analysis to

the subset of units whose Dnorm values are in the top 50th

percentile (top 43 units in Figure 3B; Figure S3F; Spearman’s

r= � 0:43; p= 0:005). Temporal kernel distance is positively

correlated with Dnorm ðr= 0:19; p= 0:04Þ, suggesting the in-

volvement of the fine-scale STRF dynamics in shaping the

temporal kernels; conversely, pattern correlation is negatively

correlated with Dnorm ðr= � 0:16; p= 0:03Þ.
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Figure 6. A Population Code of Temporal

Response Patterns Far Outperforms One

with Only Rate Information

(A) Schematic illustrating the three different cate-

gories of population codes that were used to train

classifiers to identify composite shapes. The

snapshot classifier (gray) had access to the

response for a particular time bin. The temporal

pattern classifier (blue) had access to the temporal

response pattern across multiple time bins. The

rate classifier (orange) was given the sum total

response across multiple time bins.

(B) Classification performance for different popula-

tion codes (n = 86) using a random forest classifier.

The gray symbols are the performance for the

snapshot classifiers for 15 time bins after stimulus

onset (non-overlapping 8.33 ms time bins; time bin

centers indicated on x axis). Performance peaks at

�60 ms, which corresponds to the latency of V4

responses. The blue symbols are the temporal

pattern classifier performances. Each successive

open blue symbol is for a classifier with incremental

temporal pattern information. The first has informa-

tion from the time bin at 59.2 ms, the second from

time bins at 59.2 ms and 67.5 ms, and so on. The

solid blue symbol is for the classifier that has the

entire temporal pattern from 59.2 ms to 117.5 ms.

The orange symbol is for the rate classifier that is

given the total response for all time bins from

59.2 ms to 117.5 ms. The rate classifier is only

marginally better than the peak snapshot classifi-

cation performance at 59.2 ms. The full temporal

pattern classifier is �33 better than the rate classi-

fier. The purple cross symbol is for the full temporal

pattern classifier, but with scrambled temporal

patterns. The dotted line represents chance perfor-

mance of 1/72. Symbols are mean ± SD of classifi-

cation performance across 100 classifier runs.

(C) Improvement in performance of the temporal

pattern classifier over the rate classifier for neu-

rons divided into three sub-populations according

to their average temporal kernel distance (vertical

bars in Figure 5C indicate corresponding ranges):

low, neurons whose temporal kernel distances lie

in the lower third percentiles (n = 29); medium,

middle third percentile (n = 28); high, upper third

percentiles (n = 29).
Finally, we investigated the potential role of the observed tem-

poral dynamics in neural coding. We took the neural response of

all 86 units as a population code and asked whether a temporal

code can outperform a mean-rate-based code. We trained clas-

sifiers (random forest classifiers, see Experimental Procedures) to

perform a 72-way classification of the shape data (corresponding

to the 72 composite shapes, Figure 1) in a position-invariant

manner. Classifiers were trained on three categories of population

codes (Figure 6A). The snapshot classifiers (Figure 6A, gray) were

trained on data from individual time bins. The temporal pattern

classifier was trained on the temporal patterns of responses

across a subset of time bins (Figure 6A, blue). The rate classifier

was trained on the sum total response across the same subset

of time bins as the temporal pattern classifier (Figure 6A, orange).

As expected, the snapshot classifiers (Figure 6B, gray symbols)

exhibit chance performance at time bins less than 50 ms. Perfor-
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mance for these classifiers peaks at around 60ms, which corre-

sponds to the expected latency of V4 neurons. The rate classifier

(Figure 6B, orange symbol), which was trained on the total

neuronal responses in the 8 time bins between 50 and 120 ms,

performs only marginally better than peak snapshot performance

at V4 latency. However, the temporal pattern classifier (Figure 6B,

solid blue symbol) with access to the pattern of responses in

these 8 time bins far outperforms the rate classifier with about a

33 improvement in performance. This shows that there is rich in-

formation contained in the temporal response patterns that a

decoder can potentially exploit in decoding shape information.

By shuffling the temporal response patterns (random shuffle for

each sample provided to the classifier), we verified that the

improved performance was not due to the larger number of fea-

tures used by the temporal pattern classifier as compared to

the rate classifier (Figure 6B, purple ‘‘x’’ symbol).



We verified this improvement in performance using two other

kinds of classifiers: decision tree and support vector machine

(SVM). Absolute performance values for the decision tree classi-

fiers are lower compared to the random forest, as expected, but

the pattern of improvement remains the same (Figure S5A).

Since SVM does not directly support multi-way classification,

we used a standard method (one-versus-one, see Experimental

Procedures) to adapt SVM for multi-way classification. As with

the other classifiers, the SVM-based classifier shows a similar

pattern of improvement, with the temporal pattern classification

exhibiting improved performance over the rate and snapshot

classifiers (Figure S5B).

We next subdivided our population into three sub-populations

based on their average temporal kernel distances: neurons

whose distances lay in the lower third, middle third, and upper

third percentiles (ranges indicated by vertical bars in Figure 5C).

Performance improvement of the temporal patterns classifiers

over the rate classifier increases with increasing diversity of

temporal kernels in the sub-population (Figure 6C), further sup-

porting the idea that temporal response patterns in V4 are infor-

mation rich.

Control Condition
We recorded from a small subset of neurons ðn= 6Þ where the

stimuli were presented for longer duration (200 ms) in addition

to the fast reverse correlation (16 ms) method. As in our previous

study (Nandy et al., 2013) where we found virtually identical shape

tuning for both slow and fast stimuli, here we find that the tempo-

ral response patterns within 120 ms of stimulus onset are essen-

tially similar for both stimulus durations (Figure S6). To quantify

this, we extracted the temporal kernel parameters (used in the

PCA analysis above) from the responses to both the slow and

fast stimuli. This was done for all spatially significant response lo-

cations among the subset of units (n = 36). The temporal kernel

parameters for the two stimulus conditions are highly correlated:

rtsig = 0:79; rtpeak = 0:93; rDTsig
= 0:69; rDTmid

= 0:65, all p � 0:01.

DISCUSSION

The current findings show significant variation in the temporal

response of V4 neurons across their receptive fields. We find

that in addition to their diverse spatial selectivity (Nandy et al.,

2013), neurons that are tuned to curved contours also exhibit

diverse temporal response patterns and that a decoder with ac-

cess to such response patterns can outperform a rate code

decoder. This improvement is larger for neurons with greater di-

versity of temporal response patterns. This suggests that V4

neurons may employ the temporal domain to encode shape in-

formation. Although the importance of a temporal code in the

shape processing pathway has been appreciated for a long

time (McClurkin et al., 1991), our study provides the first quanti-

fication of this benefit in area V4, which is a critical locus in this

pathway. Diverse temporal kernels could allow a neuron tomulti-

plex information about multiple features. This finding also sug-

gests a possible disambiguation of the V4 shape code. We pre-

viously found that V4 neurons tuned to curved shapes exhibit

very limited spatial invariance (Nandy et al., 2013). These neu-

rons preferred different curved shapes in different parts of their
RF. If such neurons employed a purely spatial code, then their

output signal (input to a recipient area such as the posterior in-

fero-temporal cortex) would necessarily be ambiguous, since

the code will not contain any additional information about the

particular curved shape that the neuron was responding to.

Such ambiguity could be partially resolved if different sub-fields

in the RF had different temporal kernels (Figure 5). The temporal

response patterns would then contain information about the

particular shape that the neuron was signaling. This proposal is

purely hypothetical, though here we have demonstrated the ex-

istence of neurons in V4 with the requisite heterogeneity in space

and time. It is important to note that our classification analysis is

based on the full temporal pattern of the neuronal response and it

therefore assumes a perfect memory or storage of the response

patterns. Memory for these patterns may in fact be leakier than a

mean rate code. To the extent that this holds, on the timescale of

the classifier (120 ms), our model may overestimate the relative

advantage of the temporal code. Further studies, both empirical

and theoretical, are necessary to investigate whether these

neurons serve to support this type of spatio-temporal code,

what role they play in perception, and how such a code could

be decoded in a recipient area such as the infero-temporal

cortex.

A related question is how these differential temporal patterns

may emerge. Parafoveal V4, from which our neurons were re-

corded, receives inputs from both areas V1 and V2 (Ungerleider

et al., 2008). Segregated inputs from different functional do-

mains, both within and across these earlier visual areas, into

sub-domains of V4 RFs, along with the dynamics of feature

selectivity in these earlier visual areas (Hegdé and Van Essen,

2004; Ringach et al., 1997), are candidate mechanisms for the

differential temporal dynamics we observe in our data. Our pre-

vious results concluded that the homogeneity/heterogeneity in

shape selectivity could be accounted for by pooling over more

or less homogeneous pools of orientation signals (Nandy et al.,

2013). Our new analysis shows that V4 neurons that pool over

homogeneous pools of orientation signals show the most ho-

mogenous temporal kernels. This suggests that the diversity of

pooling in the orientation domain is reflected in the diversity of

temporal response patterns across the RF. The patterns of V1

and V2 innervations that contribute to a V4 RF remain exciting

avenues for future research.

It has been proposed that curvature selectivity in V4 is refined at

longer latencies due to possible recurrent or feedback connec-

tions (Yau et al., 2013). The rapid reverse correlation procedure

that we usedmay havemainly captured the feed-forward compo-

nent of the neural response. These data suggests that the intricate

spatio-temporal structure in the feed-forward sweep contains

enough rich dynamics to enable rapid object recognition (Potter

andLevy,1969;Thorpeetal., 1996).Theshifting temporalpatterns

that we observe in our data could also serve as the neural under-

pinnings of the reports of direction selectivity in V4 (Desimone and

Schein, 1987; Ferrera et al., 1994; Li et al., 2013; Tolias et al., 2005)

and suggest a role of V4neurons inmotionprocessing aswell. Our

study suggests that V4 neurons might possess the requisite spa-

tio-temporal dynamics to participate in more complex and

perhaps more informative forms of perception such as form from

motion, e.g., biological motion (Blake and Shiffrar, 2007).
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EXPERIMENTAL PROCEDURES

Electrophysiology

Neurons were recorded in area V4 in two rhesus macaques. Surgical and elec-

trophysiological procedures have been described previously (Nandy et al.,

2013; Reynolds et al., 1999). In brief, a recording chamber was placed over

the prelunate gyrus, on the basis of preoperative MRI imaging. All procedures

were approved by the Institutional Animal Care and Use Committee and con-

formed to NIH guidelines. Neuronal signals were recorded extracellularly,

filtered, and stored using the Multichannel Acquisition Processor system

(Plexon). Single units were isolated in the Plexon Offline Sorter based on wave-

form shape and were included only if they formed an identifiable cluster, sepa-

rate from noise and other units, when projected into the principal components

of waveforms recorded on that electrode.

Task, Stimuli, and Inclusion Criteria

Experimental procedures have been described in detail previously (Nandy

et al., 2013). In brief, stimuli were presented on a computer monitor placed

57 cm from the eye. Eye position was continuously monitored with an infrared

eye tracking system. Trials were aborted if eye position deviated more than 1�

from fixation. Experimental control was handled by NIMH Cortex software

(http://www.cortex.salk.edu/). At the beginning of each recording session,

preliminary neuronal RFs were mapped using subspace reverse correlation

in which Gabor (eight orientations, 80% luminance contrast, spatial frequency

1.2 cpd, Gaussian half-width 2�) or ring stimuli (80% luminance contrast) ap-

peared at 60 Hz.

For the main task, the monkey began each trial by fixating a central point for

200 ms and then maintained fixation through the trial. Each trial lasted 3 s dur-

ing which neuronal responses to a fast-reverse correlation sequence (16 ms

stimulus duration, exponential distributed delay between stimuli with mean

delay of 16 ms, i.e., 0 ms delay p = 1/2, 16 ms delay p = 1/4, 32 ms delay

p = 1/8 and so on) were recorded. The stimuli were comprised of oriented

bars (8 orientations) or bar composites (16 orientations3 5 conjunction angles,

total of 72 unique stimuli; Figure 1). The five conjunction levels created five cat-

egories of shapes: zero curvature/straight, low curvature, medium curvature,

high curvature, and ‘‘C.’’ A pseudo-random sequence from the combined

stimulus sets was presented in each trial. The composite stimuli were pre-

sented on a uniform 535 location grid (‘‘coarse grid’’) centered on the esti-

mated spatial RF based on the preliminary mapping. The grid locations were

separated by one-fourth of the RF eccentricity (e.g., for a RF centered at 6�,
the grid-spacing was 1.5� and the grid covered a visual extent of 3�–9�). The
oriented bar stimuli were presented on a finer 15315 location grid (‘‘fine

grid’’) that spanned the larger 535 grid in equal-spaced increments. Stimuli

were scaled by RF eccentricity such that each single bar element spanned

approximately the diagonal length of the fine grid. The receptive fields of all

neurons reported in the study were in the parafoveal region between 2� and

12� in the inferior right visual field.

Only well-isolated units were considered as potential candidates for the

analysis. Among these, only those neurons that were significantly spatially

responsive and shape selective were selected for further analysis (n = 86).

The details of inclusion criteria have been described previously (Nandy et al.,

2013). In brief, we first determined a spatial Z score for each location on the

535 grid based on the average response across all composite stimuli at the

spatial location. A grid location was marked as spatially significant if it ex-

ceeded the significance level of 0.05 (corrected for 25 multiple comparisons).

We next determined if the neuron was significantly shape selective at that

spatial location by calculating a shape Z score for each composite shape.

The spatial location was considered as shape selective if the maximum among

the shape Z scores exceeded the 0.05 significance level (corrected for 723M

multiple comparisons, where M = the number of spatially significant grid loca-

tions). A neuron was considered significantly shape selective if it had at least

one spatially significant grid location that was also significantly shape

selective.

Data Analysis

Spatio-temporal receptive fields (STRFs) were computed as follows: a tempo-

ral window between 30 and 120 ms after stimulus onset was used to identify a
928 Neuron 91, 920–930, August 17, 2016
temporal interval of significant visual response, Tsig. The temporal windowwas

divided into non-overlapping 8.33 ms bins for determining the peri-stimulus

time histogram (PSTH). Tsig was taken as those PSTH bins where the mean

firing rate averaged across all stimulus conditions exceeded the baseline

rate by 4 standard deviations. The baseline rate was determined from a tem-

poral window between 0 and 20 ms after stimulus onset. For each significant

time bin, we determined the neuronal response, rðx; y; s; ti ; ti ˛TsigÞ to a partic-

ular stimulus, s, at grid location ðx; yÞ, as the average firing rate across stimulus

repeats. This was done separately for the composite stimuli and the oriented

bars to yield STRFs at both the coarse (Figure 4) and fine (Figure 2, upper

panels) spatial scales.

Estimation of Temporal Trajectories of the Fine-Scale STRFs

The fine-scale STRF was first averaged across all eight orientations for each

spatial location, brðx; y; ti ; ti ˛TsigÞ. This orientation averaged STRF was

spatially interpolated using 2D nearest neighbor interpolation (20 interpolation

points, Figure 2, lower panels). We calculated response contours at 90%,

80%, 70%, 60%, and 50% of local peak at each significant time bin (Figure 2,

lower panels), and further, the centroid of each contour. The trajectory of the

centroids across the spatial extent of the RF (Figures 3A and S1C) was then

used to compute the spatial excursion of the temporal response (Figure 3B).

The spatial excursion was quantified as follows: for each trajectory, we calcu-

lated the maximum Euclidean distance ðDmaxÞ between any pair of points on

the trajectory. We also estimated the spatial extent of the RF as the length

of themajor axis ðDRFÞ of the least-squares best-fit ellipse to the 50% response

contour of the temporally averaged RF (i.e., average across all STRF significant

time bins). We used the normalized maximum Euclidean distance as a mea-

sure of the spatial excursion of the temporal response:

Dnorm =
Dmax

DRF

:

To obtain error bounds on this estimate, we performed a jackknife analysis

on the data (Nj = 20 jackknifes, each using 95% of trials). For each jackknife,

we calculated contour centroids at each response level (90%, 80%, .,

50%). We thus obtained 20 centroid trajectories for each response level (Fig-

ures 3A and S1C; colored lines). We then estimated Dnorm by calculating Dmax

(using the same time bins that contributed to Dmax in the full dataset) and DRF

for each jackknife.

To estimate whether these spatial excursions were statistically significant,

we calculated a distribution of null trajectories as follows: we reasoned that

if spatial selectivity within the RF did not have temporal structure, then the sta-

tistics of trajectories obtained by temporal shuffling will not be significantly

different from the original (unshuffled) trajectories; if, on the other hand, spatial

selectivity had specific temporal signatures, then the shuffled trajectories will

be markedly different. We first generated temporally shuffled versions of the

orientation averaged STRF, brshuffledðx; y; ti ; ti ˛Tsig�permuteÞ, by random permu-

tations of the response values across time for each spatial location ðx; yÞ. To
avoid non-stationarity in the mean temporal responses (averaged across

spatial positions) due to shuffling, we first normalized the data per time bin

prior to shuffling. For each shuffled STRF we obtained the temporal trajectory

of the contour centroids (gray trajectories in Figures 3A and S1C) and the

normalized maximum distance ðDnorm�shuffledÞ as with the original unshuffled

data (using the same time bins that contributed to Dmax in the unshuffled

data). This was repeated 1,000 times to obtain a distribution of null temporal

excursions.

Temporal Stability of Shape Tuning

To examine the stability of the coarse-scale STRFs over time, we computed

the peak shape selectivity (centroid of contour at 90% of peak response)

across significant temporal bins at the maximally responsive spatial location

on the 535 grid (Figures 4A and 4B). We computed a dispersion metric for

shape selectivity as the ratio of the area of the convex hull of the peak response

locations across time in shape space (dotted polygons in Figure 4B) over the

area of the entire shape space (Figure 4C). Stability of shape tuning would

imply a low dispersion metric. To estimate whether the dispersion was statis-

tically significantly different from a null distribution, we performed a bootstrap

analysis on temporally shuffled data that was essentially similar to the

Dnorm�shuffled procedure described above, but performed on the coarse-scale

http://www.cortex.salk.edu/


data. We thus obtained a null distribution of the dispersion metric against

which to compare the metric from the empirical data in order to assess statis-

tical significance.

Pairwise Pattern Correlation for Composite Stimuli

As described previously (Nandy et al., 2013), for each neuron we first deter-

mined the spatial locations with significant response on the 535 coarse grid.

For each pair of spatially significant coarse grid locations, we then estimated

the empirical distribution of correlation coefficients between the response pat-

terns to the composite stimuli at the two locations using a bootstrap procedure

(Efron and Tibshirani, 1993). The response patterns were calculated from the

average response to each composite shape across all significant time bins,

Tsig. The pairwise pattern correlation ðrÞ was taken as the expected value of

a Gaussian fit to this empirical distribution (see Figure S4 in Nandy et al.,

2013). Pairwise pattern correlations for example neurons are shown in Fig-

ure S4 (middle column).

Pairwise Temporal Kernel Distance for Composite Stimuli

For each significant spatial location ðx; yÞ on the 535 grid, we calculated the

temporal kernelKx;yðtÞ as the average time course to the set of composite stim-

uli, which elicited responses that were above 70% of local peak in the tempo-

rally averaged responses brðx; y; sÞ (averaged across all significant time bins).

For each temporal kernel, we calculated (a) the time point, tsig, at which the

response first reached significance (4 standard deviations above baseline;

baseline calculated from a time window between 0 and 20 ms from stimulus

onset), (b) the duration, DTsig, over which the response remained significant,

(c) the time point, tpeak, at which the response reached its peak, and (d) the

duration, DTmid, over which the response was above the half-way mark be-

tween peak response and baseline (Figure 5B). Each temporal kernel can be

represented as a point in a 4D space defined by tsig, DTsig, tpeak, and DTmid.

We then performed a principal components analysis (PCA) on this 4D space

(Figures S3D and S3E). The first two principal components accounted for

88% of the variance in the data (Figure S3E). We then projected each point

in the 4D space to the lower dimensional 2D plane defined by the two principal

components (Figure S3D). The Euclidean distance, D, between pairs of points

in this 2D plane serves as a measure of similarity between temporal kernels.

Such pairwise distances for example neurons are shown in Figure S4 (right

column).

Shape Classification

For each neuron in our population, we calculated the empirical distribution of

firing rates in 8.33ms non-overlapping time bins within a temporal window 0 to

120 ms after stimulus onset, using a bootstrap procedure (resampling with

replacement, 1,000 iterations) (Efron and Tibshirani, 1993). This was done

separately for each of the 72 composite stimuli on each of the 25 spatial loca-

tions in the 535 coarse grid. Firing rates were normalized to a neuron’s peak

response. Each of the empirical distributions was very well fit with a Gaussian.

In this fashion, we obtained a statistical description of the firing rate for

each {neuron [n = 86], spatial location [n = 25], stimulus [n = 72], time bin

[n = 16]}-tuple. We chose the resampling approach since stimulus repeats var-

ied across neurons due to varying durations of isolation and also due to the

pseudo-random presentation sequences for the fast reverse-correlation pro-

cedure (28:3± 4:2 presentations across all neurons, locations, and stimuli).

We next trained classifiers to perform a 72-way classification of stimulus iden-

tity in a position-invariant manner as follows. For each sample that was input to

the classifier, we first chose a random location on the 535 grid and a random

stimulus identity from the set of 72. For this combination of location and

stimulus, we generated a population response vector, which along with the

stimulus identity (scalar, [1.72]) served as a training or a test sample for the

classifiers. We assessed classification performance for three categories of

population codes. (a) Snapshot classifier: for this classifier, the population

response vector consisted of responses (drawn from the empirical distribu-

tions) from a particular time bin for each neuron (Figure 6A, gray). We had 16

such classifiers for each of the 16 time bins. (b) Temporal pattern classifier:

here the population response vector consisted of the train (or pattern) of re-

sponses across a subset of time bins for each neuron (Figure 6A, blue). (c)

Rate classifier: here the population response vector consisted of the sum of

the responses across a subset of time bins for each neuron (Figure 6A, orange).

For each classification run, 3,000 such population vector samples along with

the corresponding stimulus identities were given to the classifier for training
and testing with cross-validation. We assessed classification performance us-

ing both an ensemble-based random forest classifier (Breiman, 2001) (Fig-

ure 6B) and a decision tree classifier (Rokach andMaimon, 2008) (Figure S5A).

A random forest is a meta-estimator that fits a number of decision tree classi-

fiers on various sub-samples of the dataset and uses averaging to improve the

predictive accuracy and control over-fitting. The sub-sample size is always the

same as the original input sample size, but the samples are drawn with

replacement. Classification performance for the random forest classifiers

was reported as 1�OutOfBagError (Breiman, 1996). We used random for-

est classifiers with 50 decision trees, as this was the number of trees for which

the OutOfBagError was saturated. Classification performance for the deci-

sion tree classifiers was the 10-fold cross-validated performance (90% of

samples used for training, 10% for test; 10 such runs leaving out independent

sets for test).

We also assessed classification performance using a more traditional sup-

port vector machine (SVM) approach with a linear kernel (Figure S5B).

Since SVM does not directly support multi-way classification, we used a

one-versus-one (OVO), also known as an all-versus-all, approach (Hastie

and Tibshirani, 1998) to build a bank of binary classifiers whose predictions

are combined using hamming decoding to generate the multi-way classifica-

tion (Allwein et al., 2000). For each stimulus pair, we trained a binary classifier

to perform a positive-class versus negative-class categorization. With 72

unique stimuli, we thus had a total of

�
72
2

�
= 2;556 binary classifiers whose

predictions were combined as described in Allwein et al. (2000) to achieve

the multi-class classification. The number of training samples was reduced

from 3,000 to 500 in order to prevent boosting due to the large number of

binary classifiers in the multi-way SVM. Classification performance was as-

sessed with 10-fold cross validation. Machine learning software for all three

types of multi-way classification analyses was implemented in MATLAB

(r2014b) using the Statistics Toolbox.
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