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Integrating What and When Across
the Primate Medial Temporal Lobe
Yuji Naya1* and Wendy A. Suzuki1

Episodic memory or memory for the detailed events in our lives is critically dependent on
structures of the medial temporal lobe (MTL). A fundamental component of episodic memory is
memory for the temporal order of items within an episode. To understand the contribution of
individual MTL structures to temporal-order memory, we recorded single-unit activity and local
field potential from three MTL areas (hippocampus and entorhinal and perirhinal cortex) and
visual area TE as monkeys performed a temporal-order memory task. Hippocampus provided
incremental timing signals from one item presentation to the next, whereas perirhinal cortex
signaled the conjunction of items and their relative temporal order. Thus, perirhinal cortex
appeared to integrate timing information from hippocampus with item information from visual
sensory area TE.

Episodic memory, or the ability to mental-
ly reexperience a previous event in one’s
life, is formed when individual events or

items become bound to the specific temporal
context in which the event took place (1, 2). The
human medial temporal lobe (MTL) is critical
for episodic memory presumably because of its
role in binding individual stimuli or events to
their temporal and spatial contexts (3–5). Com-
putation models (6, 7) have proposed that cor-
tical association areas signal information about
items, parahippocampal regions signal informa-
tion about items along with their temporal con-
text, whereas hippocampus (HPC) supervises
these item-context associations. Consistent with
these model predictions, functional magnetic res-
onance imaging (fMRI) studies in humans re-
port both HPC and parahippocampal activation
during tasks of temporal-order memory (8, 9).
Recent neurophysiological studies in the rodent
have highlighted the role of HPC in signaling
either a particular time within a trial (10, 11) or

incremental timing across the entire recording
session (12). However, little is known about the
neurophysiological basis of how item and timing
information is integrated within MTL. We there-
fore recorded neural activity from MTL areas and
a control visual area (fig. S1) (13–16) as nonhu-
man primates performed a temporal-order mem-
ory task (17, 18) that required encoding of two
visual items and their temporal order (Fig. 1,
A and B) (19).

A total of 644 neurons were recorded in the
two macaques (table S1). We evaluated the ef-
fects of “time” and “item” on the cue responses
separately for each neuron. We referred to neu-
rons whose responses differentiated between the
cue 1 and cue 2 periods on a two-tailed paired t
test (P < 0.01) as “time cells” that could signal
relative timing between cue presentations or tem-
poral order of cue presentations. The neurons
that showed significant stimulus-selective activ-
ity during either cue 1 or cue 2 on a one-way
analysis of variance with the eight stimuli as a
main factor (P < 0.005 for each cue) were
referred to as “item cells.” Numbers of these
task-related neurons (time or item cells) were
significantly greater than expected by chance
(~2% of the recorded neurons) in all areas [53/193,

HPC; 29/143, entorhinal cortex (ERC); 68/231,
perirhinal cortex (PRC); 50/77 TE; P < 0.0001
for each area, c2 test]. We compared the pro-
portions of time and item cells across areas and
found the highest proportions of item cells in
visual area TE, with gradually decreasing pro-
portions seen in PRC, ERC, and HPC (Fig. 1C,
open bars). In contrast, we observed the highest
proportions of time cells in HPC (solid bars). The
proportions of time cells and item cells were
significantly different across areas (P < 0.0001,
c2 test). These results suggest the possibility that
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Fig. 1. (A) Schematic diagram of the temporal-
order task. A sequence of two cue stimuli was
presented in the encoding phase. The two cue items
and one distracter were presented at three different
positions randomly in the response phase. Dashed
circles indicate correct targets. (B) The eight visual
stimuli used in the task. (C) Relative proportions of
time cells and item cells in each area.
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time information flows from HPC to ERC and
PRC, whereas item information flows from TE to
PRC and ERC.

We first examined the prominent time sig-
nals in HPC. Figure 2A shows an example of a
typical time cell in HPC that showed stronger
responses during cue 2 relative to cue 1. This cell
started to respond in the middle of the delay
period between cue 1 and cue 2 (i.e., cue 1 delay
period) and continued firing strongly during cue
2. We also observed HPC time cells with high
firing rates during cue 1 that decreased their ac-
tivity substantially during the cue 1 delay period
(Fig. 2B). This characteristic timing signal was
also seen at the level of the local field potential
(LFP). HPC started to increase its gamma band
activity (>30 Hz) during the cue 1 delay period
(Fig. 3A), and the gamma band activity in HPC
was significantly stronger during cue 2 than cue
1 (P < 0.0001, two-tailed paired t test) (table
S3). No such difference was observed in the
other three areas (Fig. 3, B to D).

To characterize the temporal dynamics of time
cells observed throughout the MTL, we applied
a population vector analysis (12, 20). We con-
structed n-dimensional vectors from the responses
of time cells for 40-ms time bins throughout the
cue 1 delay period, where “n” is the number of
time cells in each area (19). In HPC, the distance
of this vector from a “template” defined as the
cue 1 state increased at a constant rate during the
cue 1 delay period (Fig. 2C, solid circles) as eval-
uated by a polynomial curve fitting approach
(table S4), whereas the distance to the cue 2 state
(open squares) decreased at a constant rate. This
pattern of activity was confirmed in both animals
(fig. S3). These results indicated that, as a pop-
ulation, HPC time cells provide an incremental
timing signal that gives an estimate of the relative
time from the last cue presentation as well as an
estimate of the relative time to the next cue pre-
sentation (fig. S7B). An incremental timing signal
was not present in PRC, where there was a more
sudden shift in the distance measures from both
the cue 1 and cue 2 states early in the cue 1 delay
period that then remained relatively constant for
the remainder of the delay period (Fig. 2E). ERC
appeared to exhibit an intermediate pattern such
that the distance measures from the cue 1 state
changed in a gradual manner but the distance to
the cue 2 state did not (Fig. 2D). Principal compo-
nent analysis of neuronal activity during the en-
coding phase also supported the idea of a strong
incremental timing signal in HPC and a similar
but weaker such signal in ERC (fig. S4). To de-
termine which area provided the most accurate
representation of the cue 2 state before the pre-
sentation of cue 2, we asked which of the three
areas exhibited the shortest distance to the cue 2
state during the last quarter (240 ms) of the cue
1 delay period. We found that HPC exhibited the
shortest distance to cue 2 (Fig. 2F).

We next examined the information carried
by item cells in TE, PRC, and ERC. We first
asked whether item cells represented the same

Fig. 2. (A) An example of an HPC time cell showing greater responses during cue 2 than cue 1. Shown
is the average spike density function (SDF, s = 20 ms) across all trials in the encoding phase. (B) An
example of an HPC time cell showing greater responses during cue 1 than cue 2. (C to E) Normalized
distances (NDs) from the cue 1 states (solid circles) and the cue 2 states (open squares) in each area. (F)
Comparison of NDs to the cue 2 states during the last 240 ms (six bins) of the cue 1 delay period. The
values at the same time points are connected by lines. The NDs were significantly different in the three
areas (Friedman test).

Fig. 3. (A to D) Two-dimensional plots of the population average LFP spectrogram in HPC (n = 62), ERC
(n = 54), PRC (n = 49), and TE (n = 29). Time is on x axis; frequency is on y axis. Red pixels indicate time-
frequency domains in which activity was stronger than that in control period (pixels centered on 150 ms
and 100 ms before cue 1 onset). Blue pixels indicate the opposite pattern. The differential activities were
evaluated by t values (paired t test).
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items across the two cue periods. To address this
question, we analyzed the correlation coefficient
between response amplitudes of all eight stimuli
during cue 1 and cue 2 (21). The correlation coef-
ficients in ERC (median = 0.62) were significant-
ly smaller than either PRC (median = 0.86; P =
0.0077,Kolmogorov-Smirnov test) or TE (median=
0.90; P = 0.0017). The small correlation coeffi-
cients in ERC can be explained by the lack of
stimulus selectivity in one of the two cue periods
(fig. S5). This differential level of stimulus se-
lectivity between cue periods can serve to in-
tegrate item information with a relative timing
signal [supporting online material (SOM) text].
In contrast, PRC and TE represented the same
items across the two cue periods. Closer exami-
nation of these responses revealed a time effect
in PRC such that the response to the neuron’s
preferred stimulus differed across cue 1 and
cue 2 (Fig. 4, A and B). This temporal modula-

tion for preferred items was observed for the en-
tire population of PRC item cells (fig. S6A),
suggesting that these cells may integrate item and
temporal order information by modulating their
stimulus-selective response properties across the
cue periods.

To test this hypothesis, we defined two vec-
tors consisting of the response amplitudes to the
eight stimuli presented during cue 1 or cue 2.
The distance between the two vectors was nor-
malized by the sum of the two vectors’ lengths.
The normalized distances were significantly greater
for item cells in PRC compared with those in
TE (Fig. 4C, P = 0.022, Kolmogorov-Smirnov
test), suggesting a more prominent time effect in
PRC. This differential time effect between PRC
and TE could be explained either by general in-
creases or decreases in firing rates or by changes
in tuning curve sharpness across the two cue
periods. When we compared the mean responses

to all eight stimuli between the two cue periods,
we found no differential time effect between the
two areas (Fig. 4D, P = 0.59). By contrast, when
we examined the sharpness of the tuning curve
during the two cue periods using a kurtosis mea-
sure (21, 22), we found the absolute difference
of the measures between the two cue periods
was significantly greater in PRC compared with
TE (Fig. 4E, P = 0.0027). This suggests that
PRC differentiates between the cue 1 and cue 2
periods by changing the sharpness of its stimulus-
selective response.

The present study provides insight about how
individual MTL structures may integrate item
and timing information (i.e., “what” and “when”)
in the service of episodic memory (6–9) (fig. S7).
HPC provides a robust incremental timing sig-
nal (10–12) that may serve to anchor the timing
to events within an episode (23). Consistent with
predictions from previous computational models
(6, 7), our data show that PRC neurons integrate
time and item information by modulating their
stimulus-selective response properties across tem-
porally distinct stimulus presentations. ERC neu-
rons can signal incremental timing information as
well as integrate item and time information, albeit
at a lower magnitude than HPC or PRC, respec-
tively. We hypothesize that the incremental timing
signal in HPC is conveyed to PRC via ERC, where
it is integrated with item information from TE
and converted into a discrete item-based tempo-
ral order signal.
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Fig. 4. (A) An example of a PRC item cell. (Top) SDFs to stimulus 7 for cue 1 superimposed with cue 2.
(Bottom) Mean discharge rates and SEM during cue 1 and cue 2. Double asterisk, significantly different
responses between cue 1 and cue 2 (P = 0.002, two-tailed t test). (B) Another example of a PRC item cell.
(Top) SDFs to stimulus 3. (Bottom) The same formats as (A). Asterisk, P = 0.012. (C) Cumulative frequency
histograms of normalized vector distances between cue 1 and cue 2 for PRC (n = 54; light blue) and TE
(n = 48; red). (D and E) The same formats as (C) but for absolute differences of normalized mean
discharge rates and kurtosis, respectively.
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Google Effects on Memory:
Cognitive Consequences of Having
Information at Our Fingertips
Betsy Sparrow,1* Jenny Liu,2 Daniel M. Wegner3

The advent of the Internet, with sophisticated algorithmic search engines, has made accessing
information as easy as lifting a finger. No longer do we have to make costly efforts to find the
things we want. We can “Google” the old classmate, find articles online, or look up the actor
who was on the tip of our tongue. The results of four studies suggest that when faced with
difficult questions, people are primed to think about computers and that when people expect to
have future access to information, they have lower rates of recall of the information itself and
enhanced recall instead for where to access it. The Internet has become a primary form of external
or transactive memory, where information is stored collectively outside ourselves.

In a development that would have seemed
extraordinary just over a decade ago, many
of us have constant access to information. If

we need to find out the score of a ball game,
learn how to perform a complicated statistical
test, or simply remember the name of the actress
in the classic movie we are viewing, we need
only turn to our laptops, tablets, or smartphones
and we can find the answers immediately. It has
become so commonplace to look up the answer
to any question the moment it occurs that it can
feel like going through withdrawal when we
can’t find out something immediately. We are
seldom offline unless by choice, and it is hard to
remember how we found information before the
Internet became a ubiquitous presence in our
lives. The Internet, with its search engines such
as Google and databases such as IMDB and the
information stored there, has become an external
memory source that we can access at any time.

Storing information externally is nothing par-
ticularly novel, even before the advent of com-
puters. In any long-term relationship, a team
work environment, or other ongoing group, peo-
ple typically develop a group or transactive mem-
ory (1), a combination of memory stores held
directly by individuals and the memory stores
they can access because they know someone
who knows that information. Like linked com-
puters that can address each other’s memories,

people in dyads or groups form transactive mem-
ory systems (2, 3). The present research explores
whether having online access to search engines,
databases, and the like, has become a primary
transactive memory source in itself. We investi-
gate whether the Internet has become an ex-
ternal memory system that is primed by the need
to acquire information. If asked the question
whether there are any countries with only one
color in their flag, for example, do we think
about flags or immediately think to go online
to find out? Our research then tested whether,
once information has been accessed, our internal
encoding is increased for where the information
is to be found rather than for the information
itself.

In experiment 1, participants were tested
in two within-subject conditions (4). Partic-
ipants answered either easy or hard yes/no
trivia questions in two blocks. Each block was
followed by a modified Stroop task (a color-
naming task with words presented in either
blue or red) to test reaction times to matched
computer and noncomputer terms (including
general and brand names for both word groups).
People who have been disposed to think about a
certain topic typically show slowed reaction times
(RTs) for naming the color of the word when the
word itself is of interest and is more accessible,
because the word captures attention and inter-
feres with the fastest possible color naming.

Paired within-subject t tests were conducted
on color-naming reaction times to computer and
general words after the easy and difficult ques-
tion blocks. Confirming our hypothesis, com-
puter words were more accessible [color-naming
RT mean (M) = 712 ms, SD = 413 ms] than
general words (M = 591 ms, SD = 204 ms) after

participants had encountered a series of ques-
tions to which they did not know the answers,
t(68) = 3.26, P < 0.003, two-tailed. It seems that
when we are faced with a gap in our knowledge,
we are primed to turn to the computer to rectify
the situation. Computer terms also interfered
somewhat more with color naming (M = 603 ms,
SD = 193 ms) than general terms (M = 559 ms,
SD = 182 ms) after easy questions, t (68) =
2.98, P < 0.005, suggesting that the computer
may be primed when the concept of knowl-
edge in general is activated.

Comparison using a repeated measures anal-
ysis of variance (ANOVA) of specific search
engines (Google/Yahoo) and general consumer-
good brand names (Target/Nike) revealed an
interaction with easy versus hard question blocks,
F(1,66) = 5.02, P < 0.03, such that search engine
brands after both easy questions (M = 638 ms,
SD = 260 ms) and hard questions (M = 818 ms,
SD = 517 ms) created more interference than
general brands after easy questions (M = 584 ms,
SD = 220 ms) and hard questions (M = 614 ms,
SD = 226 ms) (Fig. 1). Simple effects tests showed
that the interaction was driven by a significant
increase in RT for the two search engine terms
after the hard question block, F(1,66) = 4.44,
P < 0.04 (Fig. 1). Although the concept of knowl-
edge in general seems to prime thoughts of
computers, even when answers are known, not
knowing the answer to general-knowledge ques-
tions primes the need to search for the answer,
and subsequently computer interference is par-
ticularly acute.

In experiment 2, we tested whether people
remembered information that they expected to
have later access to—as they might with infor-
mation they could look up online (4). Partic-
ipants were tested in a 2 by 2 between-subject
experiment by reading 40 memorable trivia state-
ments of the type that one would look up online
(both of the new information variety, e.g., “An
ostrich’s eye is bigger than its brain,” and infor-
mation that may be remembered generally, but
not in specific detail, e.g., “The space shuttle
Columbia disintegrated during re-entry over Texas
in Feb. 2003.”). They then typed them into the
computer to ensure attention (and also to pro-
vide a more generous test of memory). Half the
participants believed the computer would save
what was typed; half believed the item would be
erased. In addition, half of the participants in
each of the saved and erased conditions were
asked explicitly to try to remember the infor-
mation. After the reading and typing task, par-
ticipants wrote down as many of the statements
as they could remember.
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1. Materials and methods 

Subjects: Two male rhesus monkeys (8.1 kg, monkey B; 10.3 kg, monkey G) were used 

for the experiments. All procedures and treatments were done in accordance with NIH 

guidelines and approved by the New York University Animal Welfare Committee.  

Behavioral task: We trained the two animals on a temporal-order task with visual 

objects (Fig. 1A). The task started with an encoding phase which was initiated by the 

animal fixating on a fixation point on a video monitor for 0.42 s. Eye position was 

monitored by infrared digital camera. Then, a sequence of two cue stimuli was presented 

for 0.32 sec each with a 0.92 sec delay interval between them (cue 1 delay period).  The 

additional 0.02 s added to each trial event derived from the design of software controlling 

the behavioral task.  Cue stimuli were pseudo-randomly chosen out of a pool of eight 

well-learned visual items (Fig. 1B), resulting in 56 (8X7) different 2-stimulus sequences. 

The same eight stimuli were used during all recording sessions. Following the second cue 

stimulus, another 0.52 s delay interval requiring fixation was shown. If fixation was 

successfully maintained, the encoding phase ended with the presentation of a single drop 

of water. The encoding phase was followed by a blank inter-phase delay interval of 0.7-

1.5 s where no fixation was required. The response phase started with a pre-response 

delay period of 1.02 s with fixation required. Then, three choice stimuli were presented 

simultaneously on the screen: two of them were the items that had been presented as cue 

stimuli in the encoding phase, and the third was a distracter stimulus chosen from the 

pool of the remaining 6 possible items. If the animal touched the two cue items in the 

same temporal order as they were presented in the encoding phase, six or seven drops of 



 
 

water were given as a reward.  Following behavioral training, the two monkeys 

performed the task at 87.9 ± 5.3 % (mean ± standard deviation; monkey B, n = 359 

sessions) and 88.1 ± 5.0 % (monkey G, n = 199 sessions) for the 1st cue choice, and 83.1 

± 12.3 % (monkey B) and 77.8 ± 8.6 % (monkey G) for the 2nd cue choice. 

Electrophysiological recording: Following initial behavioral training, the animals were 

implanted with a head post and recording chamber under aseptic conditions using 

isoflurane anesthesia. To record single-unit activity, we used individual tungsten tetrodes 

or single-wire tungsten microelectrodes advanced into the brain with a hydraulic 

microdrive. The microelectrodes were inserted through a stainless steel guide tube 

positioned in a grid system on the recording chamber. Neural signals for single-units 

were collected (low-pass, 8 kHz; high-pass, 250 Hz) and digitized (40 kHz). These 

signals were sorted by an off-line sorter. We made no attempt to prescreen isolated 

neurons. Instead, once we succeeded in isolating any neuron, we started a new recording 

session. To record LFPs, we used neural signals from the same tetrodes or single-wire 

electrodes as we used for the recording of spikes.  However, the signals were collected 

using different filters (low-pass, 170 Hz; high-pass 0.7 Hz), and digitized at 1 kHz.  Here, 

we focused on the LFP data gathered with a pre-amplifier gain setting of X1000 which 

provided a favorable signal to noise ratio.  

Placement of microelectrodes into the target areas was guided by the individual 

brain atlases from MRI scans (3T). We also constructed individual brain atlases from the 

electrophysiological properties around the tip of the electrode (e.g. gray matter, white 

matter, sulcus, lateral ventricle, and bottom of the brain). The recording sites were 

estimated by combining the individual MRI atlases and the physiological atlases. After 



 
 

the recording sessions, we confirmed recording sites in the right hemisphere of Monkey 

G by MR images identifying the position of a single tungsten electrode placed in a central 

recording position. The recording sites in the right hemisphere of Monkey B were 

confirmed by MRI-detectable metal deposits (fig. S1) (24, 25) made by passing anodic 

current of 5µA for 5 min from a tip of a single-wire stainless steel microelectrode. We 

made a total of 15 deposits along 7 penetrations of the microelectrodes. The metal deposit 

marks appeared as hypointense spots on MR images using a FLASH sequence.  

The recording sites covered between 14 and 23 mm anterior to the interaural line 

(fig. S1). The recording sites in HPC appeared to cover all of its subdivisions (i.e., 

dentate gyrus, CA3, CA1, and subicular complex). The recording sites of ERC focused 

on approximately lateral 2/3 of the anterior portion of ERC.  The recording sites in PRC 

appeared to cover both area 35 and 36 from the fundus of rhinal sulcus to medial lip of 

anterior middle temporal sulcus (amts). The recording sites in TE were limited to anterior 

ventral area of TE including both banks of amts.  A final determination will require 

histological verification (both animals are currently still being used). 

Data analysis for all recorded neurons: All neuronal data were analyzed with custom-

written Matlab programs including the statistics toolbox. We defined a cue response as 

the firing rate during the period extending from 80 to 400 msec after the cue onset; we 

used an 80 msec shift to compensate for the latency of visual response. We evaluated the 

effects of ‘time’ and ‘item’ separately for each neuron. To examine the effect of item, we 

tested differential stimulus selectivity for cue 1 and cue 2 separately using a one-way 

ANOVA with the 8 stimuli as a main factor. We analyzed the time and item effects 

separately to better characterize the heterogeneous nature of the signals seen across the 4 



 
 

brain areas (HPC, ERC, PRC and TE).  To correct for the effect of multiple comparisons 

on the item effects, we set the significance level to P < 0.005 for each cue period.  This 

matched the significance level we used to identify time effects (P < 0.01).  While we did 

not find a clear laterality effect in the proportions of item and time cells across the areas 

(table S2), the majority of the neurons were recorded in the right hemispheres in both 

monkeys (84% for monkey B, 62% for monkey G), precluding a strong conclusion.  Our 

time cell analyses focused on HPC, ERC and PRC (too few time cells in TE) and our 

analyses of item cells focused on TE, PRC and EC (too few item cells in HPC).   Neural 

activity in the response phase will be described in a separate publication.             

Data analysis for time cells: We constructed a population vector from the responses of 

all individual time cells in each area and characterized their temporal dynamics during 

the cue 1 delay period relative to two “template” time periods defined as the cue 1 and 

the cue 2 presentation periods.  Previous studies used a direct calculation of the distance 

between population vectors during equivalent time periods in two separate trials (12).  

However, the present study handled qualitatively distinct time periods within single trials: 

two cue presentations (“templates”) and a delay period between them (“target”).  In this 

situation, distance measures are influenced by 1) the ratio of activity between the 

“template periods” and the “target period” and 2) the difference in the level of activity 

between the “template periods”.  To evaluate these two factors independently, we first 

compared the population vector activity during the cue 1 delay period with 1) the sum of 

the activity during the two cue periods and 2) the difference of the activity between the 

two cue periods.   



 
 

We calculated mean firing rates of consecutive 40 ms time bins across all 

completed trials from cue 1 onset to cue 2 offset (39 bins) for each neuron. Using the 39 

bins, we calculated a set of z-scores and assigned a point to each time bin in n-

dimensional space for each area, where ‘n’ was the number of time cells in the 

corresponding area. The n-dimensional vector at each time-bin was then projected onto a 

two-dimensional space constructed by two unit-vectors:  

 
1)  “sum”,  Xs = (Rcue1 + Rcue2)/| Rcue1 + Rcue2|  

2)  “difference”,  Xd = (Rcue2 – Rcue1)/| Rcue1 - Rcue2| 

 
Where Rcue1 and Rcue2 are n-dimensional vectors consisting of average z-values during the 

120-320 ms after the onset of cue 1 and cue 2, respectively. The positions on the two-

dimensional space were represented by β coefficient estimates for a generalized linear 

regression (26):  

 
Y(t) = β0(t) + βs(t)*Xs + βd(t)*Xd 

Xs and Xd act as predictors. Y(t) is a set of z-values at time ‘t’ and are dependent 

variables.  βs(t) and βd(t) were calculated as coefficient estimates for the predictors of 

“sum” and “difference” at each time ‘t’, respectively.  β0(t) is a coefficient estimate for a 

constant term. 

After evaluating the effects of “sum” and “difference” on the population vector 

activity during the cue 1 delay period (fig. S2 and supporting text 2.1), we combined 

these two measures to estimate the distances from the cue 1 or cue 2 states (Fig. 2, C-F). 

The distances from the cue 1 or cue 2 states were defined by the equations: ‘| (βs(t) - 

βs1)*Xc + (βd(t) – βd1)*Xd |’ or ‘| (βs(t) - βs2)*Xc + (βd(t) – βd2)*Xd |’, respectively.  



 
 

These distances were normalized by the distance between the two cue states, ‘| (βs2 - 

βs1)*Xc + (βd2 – βd1)*Xd |’ (Fig. 2, C-F).  Note that the present results were consistent 

with those from a direct calculation of distance between each template and the population 

vectors during the cue 1 delay period. 

Data analysis for item cells: To evaluate the time effect for each item cell, we first 

prepared two vectors: FRc1 = (fr11 ⎯ fr18) and FRc2 = (fr21 ⎯ fr18), where frij denotes the 

mean cue response for the j-th stimulus during the i-th cue period. The correlation 

coefficient between FRc1 and FRc2 was defined as r = Σ[(fr1j – μ1)( fr2j – μ2)]/{ [Σ (fr1j – 

μ1)2)][ Σ (fr2j – μ2)2)]}1/2 (j = 1 ⎯ 8). μ1 and μ2 are the averages of fr1j and fr2j. The 

distance between FRc1 and FRc2 was calculated as d = [Σ (fr1j – fr2j)2]1/2 (j = 1 ⎯ 8) for 

each neuron. It was normalized as d’ = d/{[Σ (fr1j )2]1/2 + [Σ (fr2j )2]1/2} (j = 1 ⎯ 8).  

Kurtosis was defined for each of FRc1 and FRc2 as ki = E[(frij– μi)4]/σi
4 (i = 1 or 2, j = 1 

⎯ 8) where σi is the SD of frij and E(X) is the expected value of X. The kurtosis of the 

normal distribution is 3. Greater value of the kurtosis indicates greater effect of outliers. 

The absolute difference of normalized mean discharge rates between the two cues was 

defined as | μ1 – μ2 | / (μ1 + μ2). 

Data analysis for local field potential: For the spectral analysis of the LFPs, we used 

the CHRONUX toolbox developed by P. Mitra at Cold Spring Harbor Laboratories (27, 

28).  Multi-tapering method is useful for spectral estimation on finite time segments 

because it can maximize spectral concentration in a given frequency band by using an 

appropriate set of orthogonal tapers.  We used the discrete prolate spheroidal sequences 

or Slepian sequences, which are defined by the property that they are maximally 

localized in the frequency band.  In the multitaper method, we first calculated spectra 



 
 

estimates for individual tapers as Fourier transforms of the data multiplied by them.  We 

next averaged the tapered Fourier transforms.  Using five Slepian tapers, we estimated 

LFP spectrum on a 300 ms window with 10 Hz resolution.  The time windows were 

stepped at 50 ms intervals.   

 We examined LFP activity during cue 1 and cue 2 in the beta band, in the low 

frequency gamma band and in the high frequency gamma band. We first calculated 

mean values of log-scaled powers for each recording site, from pixels centered on 15 Hz 

to 25 Hz for the beta band, from 35 Hz to 50 Hz for low-frequency gamma band and 

from 70 Hz to 90 Hz for high-frequency gamma band. We then averaged the values 

along the time axis during the period centered on 0 ms to 300 ms after the cue onset. 

These values were compared with the mean values during the control period centered on 

150 ms and 100 ms before the cue 1 onset in the corresponding frequency band (table 

S3). If there was a significant change of activity from the control period to cue 1 or cue 

2 (P < 0.05, two-tailed paired t-test), we then compared the activity between cue 1 and 

cue 2 (two-tailed paired t-test). Note that the differential gamma band activities of HPC 

across the two cue periods cannot be explained by the activity of single-units because 

the average responses for the time cells in HPC were not different (P = 0.11, two-tailed 

paired t-test) between cue 1 (mean ± s.e.m. = 7.0 ± 0.8 Hz) and cue 2 (8.5 ± 1.1 Hz).  

We also note that HPC gamma-band activity showed a trough after cue 2 offset (Fig. 

3A), suggesting that the increased activity during cue 1 delay was not consistent with 

the reward expectancy.   



 
 

 
2. Supporting text 

2.1 Population vector analysis: The results of our regression analysis (see materials and 

methods) showed that β coefficients for the predictor “sum” [βs(t)] showed negative 

values during the cue 1 delay period in HPC, ERC and PRC (fig. S2, left column, open 

squares) and the values were more close to zero in HPC (median = -0.21 during the last 

600 ms) compared with the other two areas (-0.40 for ERC and -0.37 for PRC), indicative 

of the differential visual response effects across the areas. We also found differences in 

the time courses of β coefficients for the predictor “difference” [βd(t)] across the areas 

(fig. S2, left column, filled circles). In HPC, βd(t)  exhibited a prominent gradual increase 

from negative to positive values during the cue 1 delay period (fig. S2A). The βd(t) 

values in ERC also showed a gradual increase after the cue 1 offset, though the slope of 

the increase appeared less steep than in HPC (fig. S2C). In PRC, after a sudden shift 

following cue 1 offset, the βd(t) values did not show a clear increase during the remainder 

of the cue 1 delay period (fig. S2E).  

We plotted the two coefficients on a 2-dimensional scatterplots (fig. S2, right 

column). The states of cue 1 and cue 2 on the two-dimensional space were defined as the 

averages of βs(t) and βd(t) during 120-320 ms after the onset of cue 1 (βs1, βd1) and cue 

2 (βs2, βd2). The HPC showed a trajectory of the population-state that was straight and 

gradually progressed from cue 1 to cue 2 on the two-dimensional space (fig. S2B). In 

contrast, the population states seen in ERC and PRC moved away from the cue 1 state 

quickly after cue 1 offset, and remained far from the cue 2 state during the cue 1 delay 

period (figs. S2, D and F).   



 
 

2.2 Evaluating the temporal dynamics of the normalized distance measures: The 

temporal dynamics of the normalized distances from cue 1 (NDcue1) and cue 2 (NDcue2), 

and their sum (NDcue1 + NDcue2) during the cue 1 delay period were evaluated by 0th, 1st 

and 2nd polynomial curves (table S4). Norms of the residuals to the polynomial fitting 

curves for NDcue1 and NDcue2 in HPC were greatly reduced from the 0th order to 1st order 

(1.3 → 0.28 for NDcue1, 1.1 → 0.23 for NDcue2, P < 0.0001 for both, f-test). The fits to the 

1st order of polynomial curves were good (R2 = 0.95 for NDcue1, 0.96 for NDcue2) and the 

fits were not improved by the 2nd order polynomial curves (P = 0.39 for NDcue1, 0.50 for 

NDcue2).  These results indicated that NDcue1 and NDcue2 changed at constant rates in 

HPC. The norm of the residuals to the 0th order of polynomial fitting curves for the sum 

of NDcue1 and NDcue2 was small (0.28), and was not significantly improved by the higher 

order polynomial curves. This result indicated that the sum of the distances from the cue 

1 states and the cue 2 states did not change during the cue 1 delay period. In contrast to 

HPC, NDcue1 and NDcue2 in PRC were not well fitted by the 1st order of polynomial curve 

(R2 = 0.64 for NDcue1, 0.30 for NDcue2). In ERC, the fit of NDcue1 was significantly (P = 

0.0006) improved by the 1st order of polynomial curve (R2 = 0.78) compared with the 0th 

order of polynomial curves (R2 = 0.10), but not for NDcue2 (P = 0.45).                 

2.3 Principal component analysis: We examined the temporal features of time cells in 

each area using a principal component analysis (29). The population-vector analysis 

shown in Figures 2, C to F, S2 and S3 characterized a population state during the cue 1 

delay period by relating it to the cue 1 and cue 2 states. By contrast, the principal 

component analysis simply extracts common features of the temporal dynamics across a 

neuronal population. Similar to the population vector analysis, we first calculated mean 



 
 

firing rates of consecutive 40 ms time bins across all completed trials for each time cell. 

Using the firing rates from 320 ms before cue 1 onset to 400 ms after cue 2 offset (57 

bins), we calculated a set of z-scores for each neuron. Using ‘n’ sets of z-scores, we 

conducted a principal component analysis and got the first and second principal 

component scores for each time bin, where ‘n’ is a number of time cells in each area. We 

also got proportions of corresponding principal components in each area and their 

coefficients for each time cell. In HPC, scores of the first principal component 

(proportion = 50.5%) changed gradually during the cue 1 delay period (fig. S4). The 

scores during the cue 1 delay period were well fitted (R2 = 0.99) by a 1st order 

polynomial curve. This result is consistent with the results of the population-vector 

analysis (Fig. 2C). The scores remained relatively constant after cue 2 including the cue 2 

delay period (P = 0.50, 0th vs. 1st order of polynomial curve fittings), suggesting that the 

incremental HPC timing signal during the cue 1 delay period is not related with reward 

expectancy. The distribution of the coefficients showed that the time cells in HPC were 

separable into two groups, one with positive signs (n = 29) and the other with negative 

signs (n = 19). These tendencies were also observed for time cells in ERC. The scores of 

the first component in ERC during the cue 1 delay period were well fitted by a 1st order 

polynomial curve (R2 = 0.86) although its proportion of the first component (35.6%) was 

smaller than that of HPC.  These findings suggest that while the ERC provides some 

incremental timing information, this signal is less prominent than that seen in HPC.  

In PRC, we conducted the principal component analysis for time only cells (n = 

14) and time & item cells (n = 7) separately.  In both cases, the scores of the first 

components changed rapidly after the cue 1 offset but remained at relatively constant 



 
 

values until the cue 2 presentation. The scores during the cue 1 delay period were well 

fitted by the 2nd order polynomial curves (R2 = 0.87 for both) but not by the first order 

curves (R2 = 0.54 for time only, R2 = 0.50 for time & item). These results are consistent 

with the results from the population vector analysis (Fig. 2E) and indicate that both the 

PRC time only cells and the PRC time & item cells are distinct from HPC and ERC time 

cells.  Note that we found no time & item cell in HPC and only one time & item cell in 

ERC (table S1). 

2.4 Correlation analysis: When we examined the correlation coefficients between the 

response amplitudes to the 8 stimuli during cue 1 and cue 2 for item cells in TE, PRC 

and ERC, an effect of two different categories of item cells emerged.  Type 1 item cells 

showed stimulus selectivity during both cue 1 and cue 2 periods while Type 2 item cells 

showed stimulus selectivity during only one of the two cue periods.  For all areas 

examined, the magnitude of the correlation coefficient was higher for Type 1 compared 

to Type 2 item cells (fig. S5).  However, ERC was unique in that it exhibited a much 

larger proportion of Type 2 item cells (69%) relative to Type 1 item cells (31%) 

compared to either PRC or TE (fig S5).  These ERC Type 2 item cells provide a relative 

timing signal by showing stimulus-selectivity in only one of the two cue periods.  Thus, 

ERC can signal item and temporal order information by modulating its stimulus 

selective responses across the two cue periods.  Note that this seems to be a variation of 

the same stimulus-selective response modulation that integrates item and temporal order 

information observed in PRC (See main text and Fig. 4).    

2.5 Further examination of the time effects of PRC item cells:  Examples of PRC 

item cells shown in figures 4, A and B exhibited a striking time effect such that the 



 
 

response to the neuron’s preferred stimulus differed between cue 1 and cue 2. We asked 

if this pattern was seen for the entire population of the item cells in PRC. We calculated 

a mean of cue 1 and cue 2 responses to each item for each neuron. The 8 items were 

ranked from best (highest firing rate) to worst (lowest firing rate) and the responses 

during cue 1 and cue 2 were compared using a two-tailed t-test (P < 0.05).  These time 

effects were most often observed for the best items (26%; fig. S6A).  We also found 

significant numbers of neurons that showed the time effects to the second-ranked items 

(20.3%, P = 0.034). In contrast to the best and second best items, the frequencies of item 

cells with significant time effects were not different from the chance level for the 

remaining 6 items. These results indicate that the time effect in PRC item cells is 

specific for preferred items. 

 We compared the number of PRC item cells that showed stronger responses 

during cue 1 relative to cue 2 with cells that showed stronger responses during cue 2 

relative to cue 1 (fig. S6B). The number of cue 1-preferring neurons (n = 23) did not 

differ from the number of cue 2-preferring neurons (n = 31) (P = 0.44, chi-square test), 

suggesting that this time effect cannot be explained by a simple attention effect to either 

of the cues. Next, we examined the time-course for the time effect in PRC item cells.  

Figures S6, C and D show the time course of responses to the best items for the total 

population of PRC item cells (n = 54) and for the item cells showing significant time 

effect (n = 14). In contrast to the incremental timing signal in HPC which spanned the 

entire cue 1 delay period (Fig. S7B), PRC item cells showed the time effect only 

associated with the cue presentation (fig. S7D). 



 
 

2.6 Time and item representation in MTL: HPC provides an incremental timing signal 

during the cue 1 delay period between two item presentations and distinguishes the state 

of first item presentation from the second one regardless of item identity (fig. S7B).  This 

suggests that HPC represents time between the two cue events in a continuous manner.   

PRC doesn’t provide such an incremental timing signal during the cue 1 delay period 

(fig. S7D).  Instead, PRC provides a strong representation of item identity during the cue 

periods and this strong item-based response is modulated as a function of temporal order 

(i.e., first, versus second; fig. S7D).  Like HPC and PRC, ERC exhibits both an 

incremental timing signal as well as provides temporally modulated item signals.  

However, the magnitudes of both these signals are weaker than those seen in HPC or 

PRC (fig. S7C).  We hypothesize that item information from TE and incremental timing 

signals from HPC via ERC converge on PRC where item and time information are 

integrated.  In addition, weak direct projections from HPC directly to PRC (30) may also 

participate in this integrative information processing.  

2.7 Spatial distributions of task-related neurons within each MTL area: While we 

are not able to specify the exact hippocampal recording locations with histology because 

both animals are still being used for experiments, we examined the gross topographic 

locations and relative proportions of the time cells along the dorsal-ventral and anterior-

posterior axes of HPC from the MRI-based recording locations (fig. S1).  To address this 

question, we first divided the HPC region on each coronal MRI section into a dorsal 

subdivision mainly including area CA3 and a ventral subdivision including mainly area 

CA1 and the subicular complex and next divided our HPC recording site into 3 anterior-

posterior subdivisions.  We didn’t find a significant difference in proportions of the time 



 
 

cells across the six subdivisions (table S5; P = 0.40, chi-square test), indicating that the 

time signal is represented by several subregions within HPC.  Moreover, proportions of 

the time cells did not differ along either the dorsal-ventral axis (P = 0.42) nor the 

anterior-posterior axis (P = 0.92).  These findings suggest that neurons throughout HPC 

subdivisions including both CA3 and CA1 participate in coding the incremental timing 

signal.  

This observation is inconsistent with previous studies that showed CA1, but not 

CA3 plays a major role in temporal-order memory for non-spatial information (31).  This 

inconsistency may arise from the different time scale used across studies (32).  For 

example, a recent rodent lesion study showed that CA3 does play a role in temporal-order 

memory for odor information when the time interval between the items are small (3-10 s) 

(33).  Farovic, Dupont and Eichenbaum suggested that both CA3 and CA1 are engaged in 

temporal-order memory for items, but they may play different roles.  Further studies will 

be needed to test the latter hypothesis.  

In other MTL areas, the item cells tended to distribute in a cluster at anterior ~20 

for PRC (21) and at anterior ~22 for ERC.  The time cells tended to overlap these item-

cell clusters but they distributed more widely compared with the item cells. 
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