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SUMMARY

Animals acquire behaviors through instrumental
conditioning. Brain-machine interfaces have used
instrumental conditioning to reinforce patterns of
neural activity directly, especially in frontal andmotor
cortices, which are a rich source of signals for volun-
tary action. However, evidence suggests that activity
in primary sensory cortices may also reflect internally
driven processes, instead of purely encoding ante-
cedent stimuli. Here, we show that rats and mice
can learn to produce arbitrary patterns of neural ac-
tivity in their primary visual cortex to control an audi-
tory cursor and obtain reward. Furthermore, learning
was prevented when neurons in the dorsomedial
striatum (DMS), which receives input from visual
cortex, were optogenetically inhibited, but not during
inhibition of nearby neurons in the dorsolateral
striatum. After learning, DMS inhibition did not affect
production of the rewarded patterns. These data
demonstrate that cortico-basal ganglia circuits play
a general role in learning to produce cortical activity
that leads to desirable outcomes.

INTRODUCTION

Behavioral flexibility is essential for survival in changing and un-

certain environments. Task-relevant modification or enhance-

ment of sensory representations can be important to improve

behavioral outcomes: for example, attentional resources can

be used to amplify activity related to salient stimuli while ignoring

distractors. Many sensory areas of the cortex, including primary

sensory areas, display activity that reflects task parameters,

changing behavioral contexts, and shifts of attention, suggesting

that computations in these regions are influenced by ongoing in-

ternal processes (Keller et al., 2012; Martı́nez et al., 1999; Niell

and Stryker, 2010; Shuler and Bear, 2006; Steinmetz et al.,
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2000; Zhang et al., 2014). These task-relevant modulations

of ongoing sensory representations can emerge and evolve

following repeated training or association with a salient stimulus

(Makino and Komiyama, 2015). An important question is how

modulatory inputs to functionally diverse cortical circuits are

tuned such that their outputs contribute positively to the behav-

ioral outcomes of an individual. The basal ganglia, through the

striatum, receives input from most cortical areas (Hintiryan

et al., 2016; Kemp and Powell, 1970; McGeorge and Faull,

1989; Webster, 1965), feeds back to the cortex via multiple

recurrent pathways (Redgrave et al., 2010), and dynamically en-

codes action-outcome contingencies (Samejima et al., 2005; Tri-

comi et al., 2004), making this structure a likely candidate to

shape cortical activity based on behavioral experience (Barnes

et al., 2005; Graybiel, 2008; Hinterberger et al., 2005; Swanson,

2000). Previous work has demonstrated the importance of the

striatum for voluntary behavior and instrumental learning (Hiko-

saka et al., 1999; Yin et al., 2005, 2006, 2009). Similarly, we

have shown that a brain-machine interface controlled by neu-

rons in the primary motor cortex also requires cortico-striatal

plasticity in order for animals to learn a novel neuroprosthetic ac-

tion (Koralek et al., 2012, 2013). However, in addition to overt

motor behaviors driven by motor cortices, cortico-striatal cir-

cuits have been theorized to also support abstract forms of

learning, such as cognitive associations (Graybiel, 1997; Middle-

ton and Strick, 1994). Furthermore, damage to basal ganglia

structures in human patients, either through stroke or in diseases

like Parkinson’s, have been associated with deficits in sensory

perception and the control of visual attention (Brown et al.,

1997; Husain et al., 1997; Mercuri et al., 1997; Wright et al.,

1990; Yamaguchi and Kobayashi, 1998). These data suggest

that basal ganglia circuits may be involved in learning modula-

tory signals that influence many forms of cortical processing

based on experience. However, observing and measuring these

influences can be difficult, especially when their contributions to

overt behavior may not be immediately apparent.

One strategy to overcome this difficulty is to use brain-ma-

chine interfaces (BMIs) that directly map a subject’s internally

generated neural activity to themovement of an artificial effector.

By explicitly defining the behavioral relevance of observable
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patterns of neural activity, BMI can be an important tool for

studying how these patterns are generated. In clinical applica-

tions, the activity of cortical neurons in humans and non-human

primates has been decoded as a proof-of-principle control

signal to replace lost motor function by controlling prosthetic de-

vices (Aflalo et al., 2015; Bouton et al., 2016; Collinger et al.,

2013; Gilja et al., 2015; Hochberg et al., 2012). However, an

important observation is that populations of cortical neurons

whose activity is remapped to the movement of an artificial

effector can undergo marked learning-related changes, and

observing this learning process provides a unique window into

how learning proceeds in the cortex (Arduin et al., 2013; Ganguly

and Carmena, 2009; Ganguly et al., 2011; Hwang et al., 2013;

Jarosiewicz et al., 2008; Prsa et al., 2017; Sadtler et al., 2014).

In order to better facilitate such observations, BMI studies can

thus be designed to observe the acquisition and evolution of voli-

tional control signals, rather than to optimize the performance

and control of a complex effector.

Here, we asked whether neurons in the primary visual cortex,

an area involved in processing low-level visual features, could

be instrumentally conditioned to produce arbitrary modulations

of ongoing spike activity, and whether this abstract form of

learning was dependent on the basal ganglia. To address this

question, we trained rats and mice to perform a neuropros-

thetic task that virtually re-routed spike activity from the pri-

mary visual cortex (V1) into the frequency of an auditory cursor.

This allowed us to facilitate and observe learned modulations of

V1 activity with a known relationship to behavior. Animals

trained on the task successfully learned to produce this novel

action by voluntarily modulating spike activity in V1. Then, us-

ing the red-shifted inhibitory opsin Jaws (Chuong et al., 2014)

to inactivate striatal neurons on a trial-by-trial basis, we then

investigated to what degree this instrumental learning process

in V1 was also dependent on activity in dorsomedial and dorso-

lateral striatum.

RESULTS

A V1-Driven Closed-Loop Brain-Machine Interface
We adapted our previously developed neuroprosthetic task for

rodents (Koralek et al., 2012) in order to directly study abstract

reinforcement learning in V1 (Figure 1A). Briefly, 10 rats (and 12

mice, see later) were implanted chronically with microwire elec-

trode arrays positioned in V1 layer 5 (L5), allowing us to isolate

and record individual units (Figure 1A; Figures S1A and S1B).

In addition to V1, 8 rats were also implantedwith electrode arrays

in the dorsomedial striatum (DMS) near the projection target of

V1 (Hintiryan et al., 2016; Khibnik et al., 2014; McGeorge and

Faull, 1989) (Figures S4A and S4B). During the course of the

experiment, animals were placed in a totally dark or lighted

behavioral chamber and allowed to move freely while listening

to auditory feedback that reported their neural state in real

time. Each day, two neural ensembles, consisting of two well-

isolated units each, were randomly chosen to directly control

the continuous auditory cursor (direct units), while the remaining

units recorded in V1 had no defined relationship to cursor control

(indirect units, Figure S1B). Activity of the two direct-unit ensem-

bles had an opposing relationship, such that spikes produced by
ensemble 1 (E1) moved the cursor closer to the rewarded

frequency, while spikes in ensemble 2 (E2) moved the cursor

away from the rewarded frequency and toward the unrewarded

frequency (Figures 1A–1C; Movie S1). The highest and lowest

possible tones were randomly assigned to be rewarded or unre-

warded for each animal, and this association remained constant

for the duration of training. Prior the start of every session, a

baseline distribution of neural states (binned E1-E2 spike counts)

was used to initialize the target values such that the chance rate

of attaining each target (rewarded and unrewarded) within a trial

periodwas approximately 30% (Figures S1C andS1D; see STAR

Methods). Animals were given 30 s to reach either target; other-

wise the trial was considered a miss and animals received a

white noise burst followed by a time out.

Rodents Learn to Control V1 Activity Patterns
Over the course of 7–12 training sessions (average 9.11 ses-

sions), rats learned to perform the task well above chance level

(Figures 1F and 1G). Animals in the late phase of learning,

considered here the final 3 training sessions, exhibited signifi-

cant improvements in the percentage of rewarded targets

compared to their performance in the early phase (during the first

three sessions of training) (Figure 1G). Additionally, over this

same interval, latencies to rewarded targets decreased signifi-

cantly, while changes in latencies to unrewarded targets were

non-significant (Figure S2A). We observed that simply pairing

particular auditory tones with reward was not sufficient to drive

V1 activity. After 5 days of performance above chance level,

we decoupled auditory tones from neural activity mid-session

by playing back the sequence of tones generated in the first

part of the session. Although rewardwas still delivered in tandem

with the rewarded tone, modulation of the direct unit ensembles

was markedly decreased when animals’ neural activity was not

driving the cursor (Figures 1D and 1E). This suggests that the

learning that we observed was not an effect of classical condi-

tioning and instead resulted from an intentional modulation of

V1 activity. Because the chance rate for each target was reset

at the start of each session to approximately 30%, increases

in performance seen as animals progressed from early to late

phases reflected greater improvements within single training

sessions across days. We quantified this by comparing perfor-

mance in the first 10 min of a session (first trials) and the last

10min (last trials) (Figure 2A). This suggests that the learned abil-

ity to control V1 activity was retained between training sessions,

even though animals needed to perform some de novo learning

to adjust to the initial parameters of the transform in any given

day. We observed that in late learning, over the course of single

training sessions, animals acquired a strong preference for the

rewarded target relative to the unrewarded target (Figures 2C

and 2D). This was reflected in the shift of the distribution of audi-

tory cursor values in the direction corresponding to the rewarded

target tone (Figure 2B). Additionally, we observed that auditory

feedback was necessary for learning: sessions in which the

feedback tones were muted resulted in no significant difference

between the number of rewarded and unrewarded targets

(p = 0.738, Figures S2B and 2C), even though these no-feedback

sessions were conducted after several days of successful

normal training. These data demonstrate that closed-loop
Neuron 97, 1356–1368, March 21, 2018 1357
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Figure 1. Learning to Operantly Control

Activity in Primary Visual Cortex Using a

Closed-Loop BMI Paradigm

(A) Schematic of V1-BMI paradigm. Activity of well-

isolated V1 units (top left) were used to generate

auditory tones using a differential transform (top

right). Animals were rewarded for producing a

target tone (red). A second tone (black) at the

opposite end of the frequency range terminated

the trial but was not rewarded. For more detail

on the calculation of the transform, see Figures

S1B–S1D.

(B) Average Z scored firing rates of V1 neurons

arbitrarily assigned to ensemble 1 (green),

ensemble 2 (blue), or unassigned (indirect; black),

time locked to rewarded targets. Shaded areas

show SEM.

(C) Same as in (B) but time locked to the unre-

warded target. Increased activity in ensemble 1

units moved the tone frequency in the opposite

direction as increased activity in ensemble 2 units.

(D) Ensemble 1 (green) and ensemble 2 (blue)

modulations during passive playback of tones

decoupled from ongoing neural activity, time

locked to the rewarded target tone. Shaded areas

represent SEM.

(E) Modulation depth of ensemble 1 and ensemble

2 during online control compared to tone playback.

Mean modulation depth online control = 4.341;

mean tone playback = 1.739; p = 0.000348 (paired

t test). Black bars show mean and SEM. Lines

show data from individual animals.

(F) Time course of learning across training days.

Bold line shows the mean and SEM across 9 rats;

gray lines show learning curves for animals indi-

vidually. One animal only completed 4 sessions;

data for this animal have been excluded from this

plot. Dashed lines bound the range of chance

performance levels. Orange highlighted region

shows data range classified as the early learning

phase for all animals; red region shows range for

late learning phase.

(G) Comparison of performance between early

learning phases and late learning phases (N = 9

animals, mean for the first 3 days = 39.6%

rewarded; mean for the last 3 days 67.2%;

p = 0.00162 [paired t test]). Black bars show mean

and SEM, lines show data from individual animals.
neurofeedback-based reinforcement training can be used to

condition the activity of neurons in the primary visual cortex.

V1 Modulation Is Sensitive to Task Contingency
We next investigated the sensitivity of performance to changing

task conditions. In late learning, animals were able to quickly shift

their neural activity to produce the rewarded tone frequency once

the auditory feedback began (Figures 2C and 2D). We asked

whether animals’ behavior was habitual, and therefore insensitive

to changes in action-reward contingencies, or goal-directed, in

which performance remains sensitive to changing task contin-

gencies (Dias-Ferreira et al., 2009). To test whether performance

of the V1-controlled task fit either of these regimes, we degraded

the task contingency so that animals received randomly timed re-

wards irrespective of target hits but at a similar rate. Similar to our
1358 Neuron 97, 1356–1368, March 21, 2018
observations of abstract skill learning in M1 (Koralek et al., 2012),

task performance during degradation dropped significantly (Fig-

ure 2E) but returned to pre-manipulation levels once the reward

contingency was reinstated. These results suggest that modula-

tionofV1activitywas intentional andgoaldirected.To testwhether

the association between neural activity and rewarded cursor

movement could be flexibly adapted to a new task contingency,

we reversed the transform after animals had achieved saturating

performance. This manipulation caused the cursor to move in

the opposite direction for a given spike rate modulation than

what animals had initially learned. Although this manipulation

caused an initial decrease in performance, animals were able to

learn the reversedbehaviorwhengivensufficient training time (Fig-

ure 2F; FigureS2E), showing that animals could dynamically adapt

tochanges in the relationshipbetweenneural patternsand reward.
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Figure 2. Operant Modulation of V1 Activity

Is Sensitive to Changes in Contingency

(A) Comparison of within-session improvements

during the early learning period (first 3 days) of

training relative to the late learning period (last

3 days) for each animal (N = 9 animals), expressed

as the ratio of rewarded to unrewarded targets.

Data to compute the ratio for first trials (shaded in

cyan) were averaged over the first 10 min of each

session, while data for the last trials (shaded in

blue) were averaged over the last 10 min. During

the early learning period, the mean rewarded/un-

rewarded ratio for first trials was 1.12, last trials

session = 3.848; p = 0.275 (paired t test). For the

late period, mean ratio early in session = 1.195,

mean late in session = 11.667; p = 0.00130 (paired t

test). Black bars show mean and SEM, lines show

data from individual animals.

(B) Mean distribution of cursor values for all ani-

mals for the first trials (first 10min) compared to the

last trials (last 10 min) of sessions during the late

period. Cyan bars show the initial distribution,

based on baseline activity, used to set the task

parameters, while blue bars show the distribution

at the end of the training session for the last trials.

Dashed lines show the thresholds corresponding

to the rewarded and unrewarded targets.

(C) Time course of mean within-session task

learning during the late period (last 3 sessions) of

training for all animals. Shaded areas represent

SEM. Chance rates for rewarded and unrewarded

targets were set at approximately 30% at the start

of each training session. Comparisons in perfor-

mance were made during over first 10 min of each

session (first trials, cyan bar) and over the last

10 min (last trials, blue bar) of each session. N = 10

animals, mean of 3 sessions per animal.

(D) Quantification of rewarded and unrewarded

target hits for the first trials compared to the last

trials; data same as (C). N = 10 animals,mean of the

late period (last 3 sessions) for eachanimal. Paired t

test between first trials and last trials for rewarded

targets: p = 0.00055; mean early = 36.9%, mean

late = 59.1%. Paired t test between first trials and

last trials for unrewarded targets: p = 0.00145;

mean early = 33.0%, mean late = 20.6%. Red and

blue indicate the rewarded and unrewarded tar-

gets, respectively (**p < 0.001). Black lines show

mean and SEM. Lines show data from individual animals.

(E) Percentage of rewarded trials for contingency degradation sessions. Bars show means, lines show individual animals. N = 8 animals, mean of 2 sessions per

animal. P, pre-degradation, mean = 64.5%. CD, peri-degradation (reward decoupled from cursor), mean = 43.1%. R, reinstatement of reward, mean = 61.4%.

Paired t test between pre- (P) and peri- (CD) degradation, p = 0.0038. Paired t test between CD and reinstatement (R), p = 0.0283. Paired t test between pre-

degradation (P) and reinstatement (R), p = 0.289. Error bars show SEM.

(F) Quantification of performance in contingency reversal sessions; N = 7 animals; average of 1.57 sessions per animal (range 1–2). P, pre-reversal

(mean = 85.8%); Rev, peri-reversal (mean = 47.8%); R, recovery of performance with the decoder still reversed (mean = 81.2%). Paired t test between P and Rev,

p = 0.0435; paired t test between Rev and R, p = 0.447; paired t test between P and R, p = 0.689. For a time course of reversal, see Figure S2E. Error bars show

SEM, lines show data for individual animals.
Changes in Visual Context Affect Performance of a V1-
Driven Task
Neurons in the primary visual cortex are known to respond to

visual stimuli. The observation that animals can learn to success-

fully modulate V1 neurons in total darkness indicates that this

activity is at least partially independent of visual input. One

possibility is that over the course of learning, E1 and E2 units
become decoupled from bottom-up sources of visual input, for

example, visually driven activity from the lateral geniculate nu-

cleus of the thalamus. If this were true, then we can expect

trained animals to be able to perform the task under any light

condition. To test this, we trained animals both in light and total

dark conditions. Interestingly, no significant difference was

observed in performance at the end of a training session (last
Neuron 97, 1356–1368, March 21, 2018 1359
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(A) Time course showing the mean percentage of

rewarded trials within all sessions under lighted

conditions (yellow) compared to dark conditions

(black). Shaded areas represent SEM.

(B) Quantification of data in (A), using the first trials

and last trials in a session. Train light: N = 4 ani-

mals; average of 7.5 sessions per animal (range = 5

to 10 sessions). Paired t test between first trials

and last trials: p = 0.0113; mean first trials = 37.8%;

mean last trials = 74.0%. Train dark: N = 6 animals;

8 sessions per animal. Paired t test between first

trials and last trials: p = 0.00167; mean early =

0.396; mean late = 0.635. Unpaired t test between

last trials for light sessions and last trials for dark

sessions: p = 0.205 (*p < 0.05; black crosses show

mean and SEM). Colored lines show data from

individual animals.

(C) Time course showing the mean percentage of

rewarded trials when animals learned a decoder

under dark conditions and were switched to a

lighted condition mid-session (‘‘train dark, test

light’’). Shaded areas represent SEM.

(D) Mean percentage of rewarded trials when ani-

mals were trained in dark, and then tested in the

light (same data as C). N = 5 animals, mean of 1.8

sessions per animal (range 1–2). Data taken from

last 10 min of dark training and first 10 min of light

testing. Mean train dark: 87.4%, mean test light

42.6%; p = 0.0309 (paired t test). Error bars show SEM; horizontal lines show mean (*p < 0.05).

(E) Mean percentage of rewarded trials when animals were trained in the light and tested in the dark. N = 4 animals, mean of 1.5 sessions per animal (range 1–2).

Mean train light: 77.9%. Mean test dark: 35.4%. p = 0.043 (paired t test). For a time course, see Figure S2H. Error bars show SEM.
trials) for sessions performed entirely in the dark compared to in

the light (train light = 74.0%, train dark = 63.5%, p = 0.205, Fig-

ures 3A and 3B), suggesting that learning can occur both in the

presence and absence of visual stimuli. However, changing the

context within a training session, i.e., from dark to light after

the animals had learned the task in darkness, or vice versa,

had a significant negative impact on performance (Figures

3C–3E; Figures S2H–S2J). Changing the light conditions

affected the mean spike rates of all V1 neurons (Figure S2G;

mean rate in dark = 4.13 Hz; mean rate in light 6.18 Hz). These

results suggest that a modulatory input can learn to generate re-

warded patterns of activity in direct units under stable network

conditions but that changing the state of the network (for

example, by adding or removing visually evoked activity) is

disruptive and requires compensatory re-learning.

Learning to Modulate V1 Neurons Is Associated with
Changes in Neural Dynamics
Next, we chose to examine the neural dynamics associated with

learning goal-directed modulations in V1. Correlations between

E1 units, whose combined positive activity modulations moved

the cursor in the rewarded direction, significantly increased

over the course of the session, suggesting that training resulted

in increased coordination between these units. No such change

was observed between E2 units or between E1 and E2 units (Fig-

ures 4A and 4B). In 72 out of 102 sessions, the relationship

between performance and the E1 unit correlation was positive

(mean Pearson correlation coefficient = 0.187). Of these ses-
1360 Neuron 97, 1356–1368, March 21, 2018
sions, 55.72% exhibited a significant (p < 0.05) correlation. An

example session is shown in Figure 4C. We also observed that

the correlation between E1 units was significantly greater in a

1 s window prior to rewarded target hits, relative to unrewarded

targets or timeouts (Figure 4D). These data suggest that coordi-

nation between E1 units was important for success.

Interestingly, in the late learning phase, we observed an in-

crease in LFP power in V1 prior to rewarded target hits (Fig-

ure 4E). Similar changes in ongoing oscillatory activity have

previously been associated with top-down processing in visual

cortices (Engel et al., 2001), which is one potential mechanism

by which animals may be performing the task. To further explore

this possibility, we then calculated the coherence between

spikes in direct (combined E1 and E2) units and local field poten-

tials (LFP) in V1, time locked to rewarded targets. Previous re-

ports have found that attention alters alpha-band (approximately

5–15 Hz) coherence in the deep layers of visual cortex (Buffalo

et al., 2011).We found that the alpha-band spike-field coherence

(SFC) of direct units increased from early to late phases of

learning (Figures 4G and 4H). This effect was stronger for E1

than for E2 units (Figures S3G–S3I). This increase was only

observed during task performance but not when animals

were engaged in passive behavior (Figure 4F). Indirect neurons

did not show this effect (Figure 4G), suggesting that these

learning-related dynamicswere specific to units directly involved

in cursor control. However, a relatively constant fraction of indi-

rect neurons in each training session did show predictive power

for target choice (Figures S3E and S3F), suggesting that there is
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Figure 4. Evolving Neural Dynamics during V1-BMI Learning
(A) Mean pairwise correlations between units within ensemble 1 (green) or within ensemble 2 (blue) during training. Correlations were calculated using 1 ms bins.

Shaded areas show SEM.

(B) Change in normalized correlation coefficients (cc) from the first trials to the last trials within sessions. CC calculated between units within ensemble 1

(mean change = 4.418; p = 0.0417; paired t test), within ensemble 2 (mean change = 0.942; p = 0.775; paired t test), or between units in ensembles 1 and 2

(mean change = 1.361; p = 0.491; paired t test). N = 10 rats; mean of 4.4 sessions per rat (range 3–6). Error bars show SEM.

(C) Example data from one session showing the relationship between changes in correlation of ensemble 1 units (green) and task performance (percent of correct

trials, black).

(D) Mean correlation between ensemble 1 units during a 2 s window prior to target hits or timeouts. Mean cc prior to rewarded targets = 0.0285; mean cc prior to

unrewarded targets = 0.0241 (p = 0.00167; paired t test). Mean cc prior to timeouts = 0.0240. Comparison between rewarded targets and timeouts: p = 0.0362;

comparison between unrewarded targets and timeouts: p = 0.549. Error bars show SEM.

(E) Mean spectrogram of V1 LFP time-locked to rewarded target hits.

(F) Spike-field coherence between direct units and V1 LFP for late learning periods during task performance (red) compared to non-engaged passive behavior

(blue). Shaded area represents SEM.

(G) Spike-field coherograms showing the evolution of coherence over time for LFPs in V1 and spikes from direct (combined ensemble 1 and ensemble 2) units in

during early training periods (days 1–3; top plot), late training periods (last 3 days, middle plot), and indirect units (no direct relationship to cursor control) for late

periods (bottom plot) time locked to rewarded targets. See Figures S3G–S3I for a separate analysis of E1 and E2 units.

(H) Coherence between direct units and V1-LFP in the 10–25 Hz band for early training compared to late training. Solid lines show the mean for 10 animals and

shaded areas represent SEM.
a broader network of neurons in V1 that may have supported

learning in the direct units.

Striatal Activity Becomes Task Relevant with Learning
To address whether the dorsomedial striatum (DMS) plays a role

in V1-based reinforcement learning, we next examined whether

activity in an area of DMS that receives input from V1 changed

with learning. Electrical stimulation of V1 produced a reliable

spike response in both putative DMS output neurons and inter-

neurons (see STAR Methods) with a delay of approximately

6ms, suggesting a direct projection as shown in previous reports

(Allen Institute for Brain Science, 2015; Faull et al., 1986; Hin-

tiryan et al., 2016; Khibnik et al., 2014; McGeorge and Faull,

1989) (Figures 5A and 5B; Figures S4D and S4E). Conversely,

stimulation of DMS while recording in V1 did not produce an

observable response in most (but not all) units (Figure S4C). In
late learning, DMS output neurons exhibited a strongmodulation

time locked to the rewarded target that was not present in the

early phase. This response was characterized by an increase

in activity that emerged approximately 4 s prior to target hit, fol-

lowed by a sharp decline during the reward period (Figures 5C

and 5D). Units classified as interneurons exhibited the opposite

profile (Figures S4G and S4H). This was accompanied by

increases in beta and gamma LFP power within the same time

interval (Figure 5F). We next asked whether learning was accom-

panied by changes in the dependent relationship between direct

unit activity and activity of the recorded population in DMS.

A linear regression analysis using data from DMS units (including

both classified output neurons and interneurons) revealed that

over the course of training days, population activity of recorded

DMS units increasingly co-varied with V1 direct unit activity in a

500mswindow prior to target hits, such that a greater proportion
Neuron 97, 1356–1368, March 21, 2018 1361
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Figure 5. Dorsomedial Striatum Activity Becomes Engaged with V1 Ensembles during Learning

(A) Raster plot of an example putative DMS output neuron time-locked to V1 ICMS. For data from interneurons, see Figures S4D and S4E.

(B) Histogram of evoked spike counts from unit shown in (A) bin counts are total counts over 1,000 trials of ICMS.

(C) Mean Z scored firing rate of classified output units recorded in the dorsal medial striatum (DMS) time locked to rewarded targets for early compared to late

learning. For data from interneurons, see Figures S4G and S4H. Shaded areas show SEM.

(D) Modulation depth of output DMS units in a 1 s window surrounding rewarded target hits. Mean for early periods = 2.132; mean for late periods = 3.711;

p = 0.049. Error bars show SEM, dots show data for individual animals.

(E) Proportion of variance (R2) of direct unit spikes in V1 explained by DMS unit spikes (all units) in a 500ms window prior to rewarded target hits, computed using

a linear regression analysis on individual training days. Solid black lines show mean and SEM; gray lines show data for individual animals. Mean of first 2 days =

0.0788; mean of last 2 days = 0.276; p = 0.0196 (paired t test).

(F) Mean spectrogram of DMS LFP time locked to rewarded target hits for all animals during the early period (sessions 1–3, left), compared to the late period

(last 3 sessions, right).

(G) Field-field coherograms between V1 LFP and DMS LFP for early (left) compared to late (right) training sessions time locked to rewarded targets.

(H) Field-field coherence between V1 and DMS in the 0–5 Hz band in for early and late training, time locked to rewarded targets. Solid lines show mean for all

animals; shaded areas represent SEM.
of variance of direct unit activity could be explained by activity in

DMS (Figure 5E, Figure S4F). This result suggests that extended

training of V1 activity increasingly recruited the striatum. In

accordance with this observation, field-field coherence between

V1 LFP and DMS LFP was also increased in late learning around

the time of target achievement (Figures 5G and 5H), suggesting a

possible role for the striatum in learning to produce rewarded

modulations in V1.

Dorsomedial, but Not Dorsolateral Striatal Activity Is
Critical for Learning to Modulate V1 Activity
Next, we asked whether DMS activity was necessary for learning

to volitionally modulate V1 neural activity. Mice were injected

bilaterally with the red-shifted inhibitory opsin Jaws (rAAV8/

CamKII-Jaws-KGC-GFP-ER2; Chuong et al., 2014) into the

area of DMS that receives input from V1 and implanted chroni-

cally with optical fibers targeting DMS and with recording elec-
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trodes in L5 of V1 (Figures 6A and 6B). Red light stimulation

through the optical fiber decreased activity in optogentically

identified DMS units (Figure 6B; Figures S5C, S5D, S5G, and

S5H) but had no effect on spike rates in V1 (Figure S5I). Mice

were trained on the same task as rats as described above

and in Figure 1. During the first 7 days of training, Jaws-injected

mice and GFP-injected controls randomly received red light

stimulation on 50% of trials for the whole duration of the trial

(see STAR Methods; LED 50, Figure 6A, bottom). Control GFP

animals were able to learn the task and improved significantly

with several days of training, while Jaws animals did not (Figures

6C and 6D). This appeared to be a deficit in acquisition of the

task and not just poor performance in LED on trials, as no differ-

ence in success rate was observed between performance during

LED on trials compared to LED off trials in any of these sessions

(Figure S5A). However, Jaws animals were able to learn the task

and improve over the course of 5 subsequent training days if no
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Figure 6. Optogenetic Inhibition of DMS in Mice Impairs Learning, but Not Performance, of V1-BMI

(A) Schematic showing the replication of rat experiments in Jaws-injected mice. Left: mice were injected bilaterally with rAAV8/CamKII-Jaws-KGC-GFP-ER2.

Middle: after Jaws expression stabilized, mice were implanted unilaterally with an electrode array in V1 L5 and bilaterally in DMS or DLS. Right: animals were

trained on the same task as rats (see Figure 1A) with the addition of optogenetic inhibition. Bottom: time course of experiments. LED 50% indicates that Jaws was

activated via red LED light in 50% of trials.

(B) Jaws-mediated inhibition of DMS neurons. Inset shows a coronal section stained for neuronal cell bodies (blue) and Jaws expression (red). Scale bar, 1 mm.

Zoomed inset shows a magnification with labeling apparent on single neurons (white arrows). Arrow edge, 10 mm. Histogram plot shows suppression of spike

activity in one example putative DMS output neuron during Jaws-mediated inhibition (red bar). For an example interneuron, see Figure S5D.

(C) Percentage of rewarded trials for animals expressing Jaws in DMS (red) or DLS (orange) compared to control GFP (green) mice over the course of several days

of training. Red bar indicates sessions where the LED was active on 50% of trials for both groups (LED 50). Error bars show SEM, and thin lines show data from

individual animals.

(D) Quantification of performance across days for animals expressing Jaws in DMS (red; N = 4); animals expressing GFP in DMS (green, N = 4); and animals

expressing Jaws in DLS (orange; n = 4). Each time period is a mean over 3 sessions. Mean GFP, first 3 sessions = 39.7%, mean GFP, last 3 sessions = 69.7%;

p = 0.00072 (paired t test). Mean Jaws DMS, first 3 sessions = 29.3%, mean Jaws DMS, last 3 sessions LED 50 = 33.3%; p = 0.183. Mean Jaws DMS, last 3

sessions LED off = 62.1%. Paired t test between JawsDMS last 3 sessions LED 50 and JawsDMSLED off: p = 0.00131.Mean JawsDLS, first 3 sessions = 52.3%,

(legend continued on next page)
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LED activation occurred and activity DMS was unimpaired (Fig-

ures 6C and 6D). Interestingly, V1 LFP power in the gamma band

(25–60 Hz) during sessions with Jaws inhibition was markedly

reduced around the time of target hits, while gamma power dur-

ing LED-off sessions in which animals successfully learned the

task was similar to that observed in rats after learning (Figures

4E and 6E; Figures S5E and S5F). One possible explanation for

these results may be that DMS activity is necessary for learning

to modulate activity in V1. However, a second possibility may be

that Jaws-mediated inhibition of DMS reduced animals’ motiva-

tion to perform the task or that inactivation of these neurons

created a distraction that prevented learning from taking place.

To further control for these other possibilities, we performed

the same experiments in a third cohort of mice in which Jaws

expression was targeted to the dorsolateral striatum (DLS).

The DLS has an established role in motor learning (McHaffie

et al., 2005; Redgrave et al., 2010, 2011) but does not receive

a substantial projection from V1 (Allen Institute for Brain Science,

2015; Faull et al., 1986; Hintiryan et al., 2016; Khibnik et al., 2014;

McGeorge and Faull, 1989). Once expression was stable, DLS-

Jaws mice were trained on the same task as DMS-Jaws mice,

including LED activation to inhibit DLS activity on a randomized

50% of trials. Interestingly, animals were still able to learn the

task in a similar manner to control animals with ongoing DLS

inactivation (Figures 6C and 6D). Together, these results suggest

that inhibition of DMS activity prevents animals from learning

to generate arbitrary patterns of V1 activity in order to obtain a

desirable outcome.

Optogenetic Inhibition of DMS Does Not Impair Learned
Performance
In our task, the parameters used to translate neural activity to

auditory tones were re-calculated each day such that at the start

of every session animals were required to undergo some de novo

learning in order to adapt to the new calibration. Despite this, an-

imals were able to retain some memory of training from previous

days to perform better over the course of each session as

training progressed (Figure 2A; comparison between early and

late phases). Interestingly, we observed that returning Jaws an-

imals to an LED on 50% condition after several successful days

of LED off training impaired their ability to learn during that ses-

sion, even though they performed well above chance during the

previous session and during following sessionwhen the LEDwas

again inactive (Figure 6F). This could suggest that striatal activity
mean Jaws DLS, last 3 sessions = 77.0%; p = 0.00149. Colored lines show data

bars show SEM.

(E) Mean gamma power (25–60 Hz, solid lines) in V1 time locked to rewarded targ

areas show SEM. For color plots, see Figures S5E and S5F.

(F) Mean performance of trained DMS Jaws-injected animals after several days of

bars indicate sessions without LED activation. Striped red bars indicate sessions

first session = 63.3%; mean LED 50% (second session) = 38.9%; mean LED off, la

p = 0.0122. Paired t test between LED 50% and LED off, last session: p = 0.025

show SEM.

(G) Mean performance within a session for trained Jaws-DMS animals with late-se

areas show SEM.

(H) Quantification of performance when Jaws-DMS animals were trained with LE

animals; mean of train LED off = 59.6%; mean of test LED on = 64.4%; p = 0.657

mean across animals, and error bars show SEM.
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is required for animals to learn or adapt to the initial parameters

set at the beginning of each session; however, it could also indi-

cate that striatal inhibition was interfering with task performance

rather than acquisition. To disambiguate these two possibilities,

we allowed animals to achieve saturating performance on the

task within a single session (Train LED off, Figure 6H) and then

continued to train animals with the LED turned on in every trial

for the remainder of the session (Test LED on, Figure 6H). Inter-

estingly, inhibition of the striatum after within-session learning

had taken place did not impair animals’ ability to perform the

task, and they continued to performwell above chance level (Fig-

ures 6G and 6H) and in an indistinguishablemanner from the LED

off trials. These data suggest that striatal inhibition prevents

animals from learning to modulate neural patterns in V1 through

instrumental conditioning, but not from executing these patterns

after learning has taken place.

DISCUSSION

Here we demonstrate that animals can learn to modulate spike

activity in the primary visual cortex in a goal-directed manner us-

ing an abstract virtual task. These data demonstrate that feed-

back-based reinforcement learning can modulate activity on

the scale of a few neurons, even in a primary sensory region

that is strongly driven by external sensory input. Because we

observed that successful performance occurred in both the

presence and absence of light, it would appear that the learned

modulation of V1 units in our task is an internally driven process.

Such internally generated modulatory activity may arise from

cognitive and attention-related control systems in the frontal

cortices, for example, by leveraging circuits that modify sensory

processing in V1 to fit task requirements (Makino and Komiyama,

2015; Zhang et al., 2014). Alternatively, movement and gaze-

related activity is also known to change the activity of V1 neurons

(Duhamel et al., 1992; Keller et al., 2012; Niell and Stryker, 2010),

and it is possible that these mechanisms may still function in the

absence of sensory input. However, the differential nature of

the transform used to drive cursor activity was designed to

discourage a movement-based strategy, and previous work

demonstrated that movements were not used to solve a similar

task, even when control was generated from the primary motor

cortex (Koralek et al., 2012). Additionally, we observed that

changing the light context, which would not be expected to

affect movements, had a negative effect on task performance.
for individual animals, horizontal bars show mean across animals, and error

ets during LED-50 versus LED-off sessions in DMS-injected animals. Shaded

training. Data are plotted in the order that the training sessions occurred. Black

where the red LED was active on 50% of trials. N = 4 animals. Mean LED off,

st session = 59.6%. Paired t test between LED off, first session and LED 50%:

9. Paired t test between LED off, first and last sessions: p = 0.502. Error bars

ssion LED only activation compared to full-session LED 50% sessions. Shaded

D off and tested with LED on in the same session; data same as in (F). N = 4

(paired t test). Lines show data from individual animals, horizontal bars show



Finally, the lack of any observable learning deficit during DLS in-

hibition, a structure crucial for motor learning (Redgrave et al.,

2010; Yin et al., 2006), would argue against a motor-based strat-

egy. Identifying the source of the learned modulatory input in V1

is of great interest for future investigations. Taken along with a

body of previous work describing brain-machine interface

learning in other diverse cortical areas (Carmena et al., 2003;

Cerf et al., 2010; Clancy et al., 2014; Fetz, 2007; Musallam

et al., 2004; Prsa et al., 2017; Schafer and Moore, 2011; Shibata

et al., 2011), these results suggest that this type of instrumental

learning ability may be a common feature that tunes the activity

of cortical circuits more generally.

In the realm of motor control, the cortico-basal ganglia circuit

has been hypothesized to perform a selection function in which

competing cortical motor programs are either maintained or

released from inhibitory control (Costa, 2011; Redgrave et al.,

2011). A similar function has also been postulated to operate

in the realm of abstract cognition, by which various cognitive

patterns may be selected that are appropriate for the current

behavioral context, and have previously led to positive out-

comes (Graybiel, 1997). These models propose an inhibitory

feed-forward projection from basal ganglia output nuclei

(globus pallidus internal (GPi) and substantia nigra pars reticu-

lata (SNr) that can activate cortical programs when inhibition is

transiently released from the thalamus. Interestingly, although

basal ganglia outputs are known to target frontal cortical areas

and even higher-order visual areas like area TE in the primate

(Middleton and Strick, 1994, 1996), we are not aware of any

direct projections from the basal ganglia that target V1-projec-

ting thalamic nuclei.

Despite this, we observed that activity in the striatum was

necessary for instrumental learning of neural patterns in the pri-

mary visual cortex. This result may be due to an induced learning

deficit in a cortical region other than V1 whose input modulates

ensemble 1 and ensemble 2 activity in the absence of visual

stimulation. Frontal cortical areas, such as the cingulate cortex

(Cg) in the rodent, are known to powerfully and directly influence

processing in V1 to select and amplify representations of behav-

iorally relevant stimuli (Zhang et al., 2014). Thus, disrupting cor-

tico-basal ganglia circuit function might impair learning of a

top-down modulatory signal that generates rewarded activity

in V1. Perhaps analogously, Parkinson’s patients with abnormal

basal ganglia function have been shown to be impaired in volun-

tary and sustained control of visual attention in the absence of

eye movements (Wright et al., 1990; Yamaguchi and Kobayashi,

1998). Alternatively, the learning process we observed could

have recruited structures upstream of V1, such as the superior

colliculus, that also form connections with the basal ganglia

(McHaffie et al., 2005). Our results do not rule out these or other

possibilities; rather, they simply demonstrate that the basal

ganglia are necessary to learn to modulate activity in V1 and

that the input for this circuit is the striatum.

In our experiments, we observed that animals performed in a

goal-directed manner: performance remained sensitive to

changing task contingencies, even after many days of training

(Figure 2E). The projection of the primary visual cortex to the

striatum lies along the most medial-dorsal aspect, adjacent to

the ventricle wall (Khibnik et al., 2014). This lies well within
the dorsomedial division of the striatum, which is known to

be necessary for and to facilitate goal-directed behaviors (Yin

et al., 2005, 2009), as opposed to the dorsolateral division

that is required for habitual action (Redgrave et al., 2010; Wick-

ens et al., 2007; Yin et al., 2006). One possibility is that segre-

gation of V1 projections in the dorsomedial division of the

striatum favors goal-directed learning and behavior in V1. How-

ever, it is also possible that the daily recalibration of task pa-

rameters or simply insufficient training time prevented behavior

from becoming habitual. Previous work utilizing a similar task

design but controlled by neurons in M1 also observed that an-

imals behaved in a goal-directed manner (Clancy et al., 2014;

Koralek et al., 2012).

From our analyses, we observed that learning-related changes

in neural dynamics, such as changes in correlations and spike-

field coherence (Figure 4), were largely restricted to the direct

population consisting of units from ensemble 1 and ensemble 2.

Absolute modulation depth of indirect (non-E1 or E2) neurons in

V1 remained low relative to direct units (Figures S3A–S3C), sug-

gesting that the learning we observed operated primarily on the

small scale of a few neurons. Furthermore, the modulation depth

of task-irrelevant indirect neurons declined over the course of

training (Figure S3C), echoing similar results observed across

mice andmonkeys using calcium imaging and electrophysiology

techniques (Clancy et al., 2014; Ganguly et al., 2011; Prsa et al.,

2017). It has been reported that the activity of single cells in

sensory cortex is sufficient to drive a percept (Houweling and

Brecht, 2008), suggesting that cortical circuits may be optimized

to operate on these microscales. However, a closer analysis of

indirect unit activity showed that many single units as well as

the full population of indirect cells contained activity that was

predictive of target choice (Figures S3E and S3F). These results

suggest a subtle role for this population in the learning and

execution of the task.

It has been reported previously that plasticity in the cortico-

striatal circuit is required for animals to operantly learn to control

patterns of activity in primary motor cortex, as assessed by se-

lective deletion of striatal of NMDA receptors (Koralek et al.,

2012). A complete dissection of the circuit that begins with

changes at the cortico-striatal synapse and returns back to the

task-relevant cortical neurons is a project that we find compel-

ling and may warrant a study using a different set of methods.

However, we can speculate on the mechanism using existing

data. Although early models of cortico-basal ganglia-thalamo-

cortical loops proposed a segregated, parallel model (Alexander

et al., 1986), more recent data suggest that there is a substantial

degree of interconnection and integration in the circuit, both

within the striatum aswell as the thalamus (Haber and Calzavara,

2009; Joel and Weiner, 1994). Regions of DMS that are recipient

of V1 activity may increasingly engage frontal cortices through

divergent and non-reciprocal projections to SNr and GPi, or

act by changing synaptic weights in ‘‘hot spots’’ of convergence

within the thalamus. The recruitment of frontal cortices may in

turn increase the influence of top-down inputs to V1, which

has been demonstrated to occur with experience (Makino and

Komiyama, 2015). Precise tuning of the circuit that includes

direct units may then happen locally, through recruitment of neu-

romodulatory systems that are known to influence V1 plasticity
Neuron 97, 1356–1368, March 21, 2018 1365



(Gu, 2002, 2003), or through Hebbian learning mechanisms that

can adjust the tuning of the relevant units to better suit the task at

hand (Legenstein et al., 2009). Future projects will no doubt

involve closer study of how nearby and distal neural populations

support learning in a particular subset of cells.

An important goal of BMI research is often to decode move-

ment parameters with high accuracy in order to translate a sub-

jects’ existing motor control repertoire into the movement of a

complex artificial effector. In these cases, using high channel

count recordings in motor cortices is an effective strategy due

to the rich encoding of movement parameters in areas such as

M1 and PMd. Here, our goal was not to optimize performance

or control of an effector, but rather to develop a task that would

enable us to study learning. It is important to note our task is

different in several respects from BMI paradigms designed

with the goal of maximizing performance and control in a thera-

peutic context—our goal was to use a BMI paradigm as a

method of operantly conditioning neural activity in V1 directly

in order to study the learning process and the neural dynamics

associated with it. This enabled us to define the final output layer

of neurons directly responsible for controlling a virtual action as

well as their relationship to task performance and allowed us to

observe their activity relative to each other, other V1 neurons,

and activity in the dorsomedial striatum.

Although neurons in the primary visual cortex are thought to

represent low-level visual features early in the visual processing

stream, we observed that V1 neurons could learn to produce

rewarded activity patterns that were independent of visual stim-

ulation when spike activity was used as a control signal for a

closed-loop brain-machine interface task. While here we focus

on learning in the primary visual cortex, the dynamics of striatal

activation, cortico-striatal dynamics over the course of learning,

and the necessity of the striatum in the learning process is similar

to what has been observed in a variety of tasks that engage

diverse cortical regions (Barnes et al., 2005; Corbit and Janak,

2010; Koralek et al., 2012; Pasupathy andMiller, 2005; Shohamy

et al., 2004; Yin et al., 2009). These results suggest that cortico-

striatal projections, as part of larger cortico-basal ganglia cir-

cuits, play a generalizable role in shaping cortical activity based

on ongoing experience and behavioral outcomes.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

rAAV8/CamKII-Jaws-KGC-GFP-ER2 University of North Carolina Addgene plasmid #65015

rAAV8/CamKII-GFP University of North Carolina Addgene plasmid #64545; GenBank: KM000926.1

Experimental Models: Organisms/Strains

Long-Evans rats (Male, between 200 g

and 300 g)

Charles River Crl:LE Strain Code: 006

Mice, C57BL, (Male, between 2.5-3.5

months old)

Jackson Labs 000664

Software and Algorithms

Python 2.7; Anaconda distribution Anaconda https://www.anaconda.com/download/

Chronux toolbox Chronux http://chronux.org; RRID: SCR_005547

Scikit-learn toolbox Scikit-learn http://www.scikit-learn.org; RRID: SCR_002577

Plexon SortClient Plexon http://plexon.com/products/software;

RRID: SCR_003170

Other

Plexon MAP System Plexon http://plexon.com/products/multichannel-acquisition-

processor-map-data-acquisition-system

Microwire arrays- fixed Innovative Neurophysiology http://www.inphysiology.com/fixed-arrays/

Microwire arrays- moveable Innovative Neurophysiology http://www.inphysiology.com/movable-arrays/

Fiber-coupled LED system Prizmatix http://www.prizmatix.com/optogenetics/Prizmatix-in-

vivo-Optogenetics-Toolbox.htm

OmniPlex system Plexon https://plexon.com/products/omniplex-d-neural-data-

acquisition-system-1/

Operant test chamber Lafayette Neuroscience Model 80004NS
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr. Jose

M. Carmena (jcarmena@berkeley.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Rats
All rat experiments were performed in compliance with the regulations of the Animal Care and Use Committee at the University of

California, Berkeley. A total of 13 singly housed, male Long-Evans rats on a 12h light/dark cycle weighing roughly 250 g were

used for the experiments. All rats were chronically implanted with microwire arrays in V1, with 8 rats also receiving implants in the

dorsomedial striatum. Each array contained 16 or 32 tungsten microelectrodes (35 mm diameter, 250 mm electrode spacing, 8x2

or 8x4 configuration; Innovative Neurophysiology, Durham, NC). Stereotactic coordinates relative to bregma and lambda were

used to center the arrays (1 mm anterior of lambda, 3.5 mm lateral from the midline, and 1.25 mm ventral from the cortical surface

for V1; 1.8 mm anterior of bregma, 2 mm lateral of the midline, and 5.5 mm ventral from the cortical surface for DMS). V1 implants

were targeted for layer 5 neurons based on insertion depth, and this was verified histologically at the end of experiments (Fig-

ure S1A,b). Rodents were anesthetized with Ketamine (50 mg/kg) and Xylazine (5 mg/kg) with supplemental isoflurance gas as

needed. Craniectomies were sealed with cyanoacrylate and rats were allowed to recover for ten days after implantation before

behavioral training. Rats were given dexamethasone treatment (0.5mg/kg) for oneweek following surgery tominimize tissue damage

around the implant (Zhong and Bellamkonda, 2007).
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Mice
Mouse experiments were performed in accordance with the Champalimaud Centre for the Unknown Ethics Committee guidelines

and approved by the Portuguese Veterinary General Board (Direcção Geral de Veterinária, approval 0421/000/000/2014). A total

of 12 singly housed male C57BL mice of 2.5-3.5 months of age were used (four experimental mice with DMS-targeted Jaws, four

with DLS-targeted Jaws, and four DMS-targeted GFP control mice). Surgeries were performed under isoflurane anesthesia

(1%–3%). All mice with DMS-targeted injections were injected bilaterally with 1 mL of viral solution in the dorsomedial striatum using

coordinates relative to Bregma (0.9 mm AP, ± 1.5 mm ML, 2 mm below brain surface). For DLS injections, 0.5 mL was used and the

coordinates usedwere +0.5mmAP, +/�2.3ML, and�2.3 DV. Viral solutionwas injected through a glass pipette by pressure (Nanojet

II from Drummond Scientific, 4.6 nL pulses at a rate of 0.2 Hz). For experimental animals, the virus injected was rAAV8/CamKII-Jaws-

KGC-GFP-ER2 (University of North Carolina, titer 5.9x1012). For control animals, the virus injected was rAAV8/CamKII-GFP (Univer-

sity of North Carolina, titer 2.8x1012). For delivery of red light, mice were implanted bilaterally with optical fibers (250 mm diameter,

NA 0.63). All mice were also implanted with 16-channel movable electrode arrays (electrode diameter 23 mm; Innovative Neurophys-

iology, Durham, NC) in the right primary visual cortex using coordinates relative to Lambda (0mmAP, 0.3mmML, 0.6mmbelow brain

surface).

METHOD DETAILS

Electrophysiology
Single unit activity and local field potentials were simultaneously recorded with a Multichannel Acquisition Processor (MAP in rats,

OmniPlex in mice; Plexon, Dallas, TX). Activity was sorted using an online sorting application (Plexon, Dallas, TX) prior to each daily

recording session. Only units with a clearly identified waveform and signal-to-noise ratio greater than 2 were used. Sorting templates

were further refined using an offline sorting application (Plexon, Dallas, TX). Behavioral timestamps were sent to the MAP recording

system through custom Python and C++ programs and synchronized to the neural data for later analyses. Recording arrays were

grounded to a screw in the occipital bone, and both arrays were also referenced locally using the online program Ref2 (Plexon,

Dallas, TX) to eliminate effects of volume conduction. For referencing, an electrode on each array was chosen to be subtracted

from all other electrodes on that array. This was done independently for both V1 and DMS.

Behavioral Task
After recovering from surgery, rats were trained on the task in a dark behavioral chamber (Lafayette Instrument Company,

Lafayette, IL) unless otherwise specified. During training, rats only received access to water during the task unless supplemental wa-

ter was needed tomaintain their body weight at a healthy level. At the start of each session, two ensembles of 2 well-isolated V1 units

each were chosen for inclusion in the direct population based on SNR, interspike- interval histograms, and refractory periods. No

other selection criteria were used to partition the recorded cells into each ensemble. Although these direct units were consistently

well-isolated, we also ensured that many well-isolated units were included in the indirect population to enable a proper comparison.

The units assigned to the direct population remained relatively constant throughout training using the stability of spike waveforms,

sorting templates, and interspike intervals across sessions as a guide. After sorting and partitioning of direct and indirect units, a

15-minute baseline period was recorded in which animals received a sucrose water reward on a variable-interval schedule. During

this time, spike counts were recorded for each ensemble binned into 100ms bins, and a distribution of state values was calculated by

subtracting the counts from E1 from E2 in each time bin. From here, the distribution was fit by a Gaussian mixture model (GMM)

comprising between 1 and 10 Gaussian components (the exact number was chosen by finding the Akaike Information Criterion

(AIC) value for each possible number of components, and choosing the number with the lowest AIC value). The probability density

function (PDF) was then computed for the chosen model. By default, the neural state values (E1 – E2 counts for a 100 ms bin) cor-

responding to the low and high targets were set at the points on the computed PDFwhere the area under the curve was equivalent to

1.5% and 98.5%of the total area, respectively (Figure S1A). However, these target values were iteratively updated by running a simu-

lation using the data recorded in the baseline period until the probability of hitting each target was approximately 30%. Finally, using

the lowest and highest target values as well as the mean of the GMM, in combination with the lowest (1000 Hz), highest (15000 Hz)

andmidpoint (7000 Hz) frequencies, a 2-degree polynomial function was fit to these values in order tomap neural state to a frequency

value. During online performance, the state value used to compute the instantaneous feedback frequency was smoothed over the

most recent 10 bins, updated every 100 ms. The rodents had to then precisely modulate these neuronal ensembles to move the

cursor to one of two target frequencies, one which was randomly chosen using a coin flip on a per-animal basis to be associated

with a 20% sucrose solution reward (and kept consistent across training sessions). Rodents were free to reach either target, although

the cursor value had to return to the middle value for a new trial to begin. A trial was marked as a miss if neither of these target states

were achieved within 30 s of trial initiation. Recorded neural data were entered in real time to custom routines in Python and C++ that

then translated those activity levels into the appropriate feedback frequency as described above and played the frequency on

speakers mounted above the behavioral chamber. When a target was hit, a Data Acquisition board (National Instruments,

Austin, TX) controlled by a Python script triggered the operant box to supply the appropriate reward to rodents.
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Behavioral Manipulations
After initial training of at least 8 days, a contingency degradation was performed. This took place over two sessions: during the first

session, animals were allowed to achieve stable performance on the task, which took approximately 30 min (pre-degradation). Then,

reward delivery was decoupled from task performance and delivered on a variable-interval schedule that approximated the rate of

reward during training conditions (CD). During this time, animals still received auditory feedback linked to their neural state. The con-

tingency degradation continued for the remainder of the session. The next day, animals were again trained on the task under normal

conditions (reinstatement). Similarly, for contingency reversal sessions, we reversed the contingency approximately 30 min into a

training session. During sessions that involved light manipulation, we again waited for animals to achieve saturating performance

in a single session, and then placed a light into the behavioral chamber in an overhead configuration.

Optical Inhibition
For optical inhibition experiments, red light was applied to the striatum of both experimental and control groups on 50% of all trials in

a session. Light was applied through a fiber-coupled LED system (Prizmatix, Givat-Shmuel, Israel). Power levels tested through the

system at the optical fiber tip ranged from 4-6mW. Red light application consisted of a square pulse that lasted the full duration of the

current trial, from trial initiation until either a target or timeout was reached. Both groups were trained in this manner for 7 days. Next,

the experimental animals were trained for 5 additional days in the absence of red light. After this initial training, both groups were

tested to determine the role of striatal circuits in learning versus performance of the task. On day LED 50, red light was applied

on 50%of all trials. On day LED late, no light was applied for the first 45 trials, after which red light was applied on 50%of all remaining

trials.

Data Analysis
Analyses were performed in Python with custom- written routines utilizing publicly available software packages. Unit data were first

binned in 1 ms time bins and digitized. To classify recorded striatal units as either output neurons or interneurons, we used the

method of (Jin and Costa, 2010). Briefly, units with a waveform trough half-width of less than 100 ms and a baseline firing rate of

more than 10 Hzwere considered to be fast-spiking interneurons, while units that did not meet these criteria were classified as output

neurons. Approximately 91%of the units we recorded were classified as output neurons. Firing rate analyses were performed in rela-

tion to target achievement as indicated in figures. Unless otherwise specified, firing rates were binned into 50ms bins for all analyses.

Only two-sided statistical tests were used to determine significance. The term ‘‘early’’ indicates that analyses were performed using

data taken from animals during the first 3 days of training (inclusive), while ‘‘late’’ specifies data taken from animals during the final

3 days of training. The ‘‘first trials’’ of a session indicates trials in the first 10 min, while the ‘‘last trials’’ of a session are defined as

occurring in the last 10 min, unless otherwise specified in the text. Modulation depths were computed as the difference between

the maximum and minimum firing rate values in a 2 s window centered around target achievement. Coherence analyses were per-

formed using algorithms translated to Python from the Chronux toolbox (http://chronux.org) in conjunction with custom routines in

Python. A multi-taper method was used to compute spectral estimates of spiking and LFP activity (Jarvis and Mitra, 2001; Thomson,

1982). A total of 5 tapers were used with a time-bandwidth product of 3, and estimates were computed every 50 ms with a window

size of 500 ms. Coherence between spiking in LFP activity was calculated and defined as:

Cxy =

��Rxy

��
ffiffiffiffiffiffiffiffiffiffiffijRxx j

p ffiffiffiffiffiffiffiffiffi��Ryy

q

where Rxx and Ryy are the power spectra and Rxy is the cross-spectrum. Spectral analyses were calculated relative to the delivery of

reward and averaged across trials and animals.

Coherence estimates can be affected by firing rate(Lepage et al., 2011) andwe therefore performed a thinning procedure to equate

firing rates between conditions in which rates differed (Gregoriou et al., 2009). Trial-averaged spike trains in the neuronal populations

were smoothed with a moving average of 10 ms. The difference in firing rate between the populations normalized by the maximum

firing rate at a given time point determined the probability that a spike would need to be removed from the population with a higher

firing rate. Spikes were then removed from the population with a higher firing rate based on this probability in order to eliminate any

possible influence of firing rate on coherence estimates.

The signal-to-noise ratio for each recorded waveform was quantified as:

SNR=
A

2 � SDnoise

whereA is the peak-to-peak voltage of themeanwaveform and SDnoise is the standard deviation of the residuals from eachwaveform

after the mean waveform has been subtracted (Suner et al., 2005). Units included in the analysis had a minimum SNR of 2.

For logistic regression analyses, we used functions from the publicly available python package scikit-learn (http://.scikit-learn.org).

Regression was performed using a window of spike activity 500ms prior to target hits, binned into 50ms bins. L2 Regularization was

done using cross-validation to determine the optimum regularization parameter. 3-fold cross validation was performed 5 times using

left out data to compute accuracies, and the average of all 5 results was taken to be the final accuracy value. Chance rates were taken
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as the accuracy of the analyses using shuffled data. To determine significance values, a permutation test was used that compared

the accuracy of the prediction using the original dataset compared to dataset in which target identities for all trials were shuffled.

Neural activity was considered to be significantly predictive of target choice if the accuracy of the prediction using the original dataset

outperformed the accuracy of the shuffled version on 95% of 500 iterations.

The linear regressionmodel was fit for each session as follows. First, a data windowwas defined for each trial as the 500ms prior to

target hit. Summed spike counts over this interval were computed for all DMS units at every trial in the session, and arranged to create

amatrix, X, of dimensions (trials * units), where each entry is a spike count. Then for each direct (V1) unit, a similar processwas used to

create a vector, y, for that particular unit, with length trials, and each entry the spike count over the interval for that trial. These

matrices were used to fit an ordinary least-squares regression and estimate the coefficients of the regression model, which was

done using the LinearRegression method of the python package scikit-learn (sklearn.org). R-squared (variance explained) was

computed using three-fold cross validation. In order to compute the significance of the model prediction, we used a permutation

test with 10,000 iterations. On each iteration, the vector y was shuffled and the R-squared was computed for the shuffled data.

The prediction was considered significant if the intact dataset resulted in a greater quantity of explained variance than shuffled data-

sets on 95% of iterations. This process was repeated for each direct unit using the same X matrix of DMS unit data. The resulting

R-squared value for each direct unit was then averaged across all direct units to compute the mean R-squared value for that session.

QUANTIFICATION AND STATISTICAL ANALYSIS

In all figures, unless otherwise specified, the bold lines represent the mean of the data, and error bars denote standard error of the

mean (SEM). Translucent lines or dots are used to show data from individual animals, as indicated in the Figure legends.Means, stan-

dard error, and statistical tests were computed across animals. Number of subjects and sessions analyzed for each figure are indi-

cated in the figure legends or in the figure panel. ‘‘Percent correct’’ was calculated by dividing the total number of correct trials in a

given interval by the sum of the total trials completed in that interval, including trials that resulted in a rewarded target hit, an unre-

warded target hit, or a time-out. Many comparisons of learning were done by analyzing performance differences between different

epochs- as indicated in the Results, ‘‘early’’ and ‘‘late’’ refer to the first 3 and last 3 training sessions for each animal, respectively.

Sometimes, we analyzed ‘‘first trials’’ and ‘‘last trials,’’ which refers to the trials completed in the first 10 min of a session and last

10 min of a session, respectively. The epoch that is being analyzed in a given figure is clearly specified in the Results and Fig-

ure legend. Determination of chance performance rates is described above in Method Details, under the subheading Behavioral

task. The statistical test used in each comparison is specified in the Figure legend, along with the resulting p value. Parametric tests

were used to compare performance across training epochs, while permutation tests were used to derive significance levels

for regression models. Significance was considered as p < 0.05. A single asterisk was used to denote significance of at least

p < 0.05, while a double asterisk was used to denote p < 0.001. All statistical tests were performed using custom-written scripts

in Python.
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