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Our daily visual experiences are inevitably linked to recognizing
the rich variety of textures. However, how the brain encodes and
differentiates a plethora of natural textures remains poorly
understood. Here, we show that many neurons in macaque V4
selectively encode sparse combinations of higher-order image
statistics to represent natural textures. We systematically explored
neural selectivity in a high-dimensional texture space by combin-
ing texture synthesis and efficient-sampling techniques. This
yielded parameterized models for individual texture-selective
neurons. The models provided parsimonious but powerful pre-
dictors for each neuron’s preferred textures using a sparse combi-
nation of image statistics. As a whole population, the neuronal
tuning was distributed in a way suitable for categorizing textures
and quantitatively predicts human ability to discriminate textures.
Together, we suggest that the collective representation of visual
image statistics in V4 plays a key role in organizing the natural
texture perception.

texture perception | material perception | visual area V4 |
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In the visual world, objects are characterized in part by their
shapes, but also by their textures (1). The wide variety of tex-

tures we experience enables us to segment objects from back-
grounds, perceive object properties, and recognize materials. It is
well established that the representation of complex shapes and
contours is gradually built up along the ventral visual pathway
(2–5). On the other hand, how textural information is processed
in the cortex is largely unknown, although some recent studies
have examined the representation of natural textures and surface
properties in the macaque ventral visual areas (6–11). Because,
unlike contours, textures cannot be described based on combi-
nations of edge fragments, we need to consider different un-
derlying cortical processing.
In contrast to the limited knowledge available from physiol-

ogy, computational descriptions of textures have been extensively
developed in the fields of psychophysics (12–16) and computer
vision (17–19). In one such description, Portilla and Simoncelli
(20) proposed that textures could be represented using an
ensemble of summary statistics, including features derived from
the luminance histogram and the amplitudes of the outputs of
Gabor-like filters, as well as higher-order statistics such as the
correlations across the filter outputs (see Fig. 3 for details;
hereafter, we call this collection of statistics “PS statistics,” using
the authors’ initials). Portilla and Simoncelli successfully gener-
ated new textures that were visually indistinguishable from the
originals solely by making their PS statistics identical. Their al-
gorithm is particularly inspiring because PS statistics use filters
and computations that share biological properties. It was re-
cently shown, for example, that a version of their synthesis
algorithm can generate perceptually indistinguishable visual
images (visual metamers) (21) and that naturalistic textures in-
corporating these summary statistics strongly activate neurons in
V2, compared with noise images lacking these features (7).

Given the previous successes in the parametric description of
textures, it is tempting to expect that promoting this framework
will reveal a full picture of texture representation in the sub-
sequent stages in the ventral pathway, such as area V4, where
many neurons show selectivity for textures (6, 22). However, such
an attempt has been hampered by a fundamental difficulty of
data sampling due to the high dimensionality of natural texture
space. Indeed, previous studies on neural texture representation
were typically based on strictly limited samples (6–8)—e.g., 15
different textures were used in Freeman et al. (7)—despite a
potentially large number of parameters describing the neural
selectivity for various natural textures. In this study, we overcome
this problem of dimensionality by combining the parametric
texture synthesis with an adaptive sampling procedure (23–25)
that efficiently sampled a portion of the stimuli that were
expected to evoke stronger responses in the recorded neuron, as
well as linear regression with a dimension-reduced version of the
PS statistics. As a result, we successfully fitted neural responses
to hundreds of textures using PS statistics. The fitted result
revealed an unprecedentedly detailed picture of how the sum-
mary statistics shape the texture selectivity of V4 neurons. No-
tably, the tuning of each single neuron was well described using
a small number of PS statistics. At the same time, the pop-
ulation-level neural representation was shown to be functionally
relevant to humans’ ability to discriminate and categorize tex-
tures. The present results provide direct evidence that the visual
system extracts a variety of sparsely combined higher-order
image statistics, suggesting that these representations bridge
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the gap between local image features and global perception of
visual textures.

Results
Adaptive Sampling and Texture-Selective V4 Neurons. The stimuli
for each neuron were adaptively sampled from 10,355 synthetic
textures defined in a sampling space (Fig. 1A). They were all
grayscale (mean: 15 cd/m2; SD: 6 cd/m2), square (6.4° wide), and
presented for 200 ms at the center of the receptive fields of the
recorded V4 neurons. These neurons were recorded from the
prelunate gyrus and their receptive fields typically extended from
1° to 10° (average receptive field size: 6.1 ± 3.1°). All 10,355
textures were synthesized using a texture synthesis algorithm (20)
based on synthesis parameters (PS statistics) extracted and in-
terpolated from 4,400 natural textural images. These images
were derived from photographs of eight material categories
(bark, sand, fabric, fur, leather, stone, water, and wood; 550
images for each). We generated the sampling space (Fig. 1A)
from the PS statistics of the images (740 dimensions) by
extracting the seven-dimensional subspace using Fisher’s lin-
ear discriminant analysis (Fig. S1). This procedure finds the

subspace that maximally separates images of different mate-
rial categories. We explored neuronal responses to textures
along this space, although the stimuli themselves were synthe-
sized using all 740 parameters. To efficiently collect preferred
textures for individual neurons, we adopted an adaptive sampling
procedure (25) (Fig. 1B). For each neuron, we first randomly
selected 50 textures from the entire set and recorded the
responses to those textures. We then produced another 50 tex-
tures by selecting more stimuli from among the textures nearby
the strongly active ones in the sampling space (such as groups A
and B in Fig. 1B) and selecting fewer stimuli from among those
nearby weakly active textures (such as groups C, D, and E in Fig.
1B). These procedures were repeated for 5–10 generations (av-
erage 7.2), recording responses to 250–500 textures per neuron.
In two macaque monkeys, we recorded from 109 V4 neurons

that selectively responded to the presented textures (P < 0.0001,
Kruskal–Wallis test; 64 neurons from monkey SI, 45 neurons
from monkey EV). Of these, 90 neurons that responded to a
sufficiently large number of textures (sparseness index < 0.75; for
the definition of sparseness index, see SI Methods, Electrophysi-
ological Recording) were further analyzed (53 neurons from
monkey SI; 37 neurons from monkey EV). Typically, each neu-
ron vigorously responded to textures with similar appearances
(Fig. 2A for an example cell) but not to textures with different
appearances (Fig. 2B), and different neurons preferred textures
with different appearances (Fig. S2A). In a subset of neurons
(n = 13), we examined whether two independent adaptive sam-
plings starting from different first generations converged to
similar texture selectivity. The preferred textures obtained from
two independent samplings appeared to be visually similar (Fig.
S2B). The minimum distance between the five most effective
textures obtained from two samplings was on average 2.44 in the
sampling space, which is close to the average distance between
adjacent textures in the space (1.65) and is significantly smaller
than that obtained when the five textures were randomly sam-
pled (4.87; P = 0.0018; n = 13; two-tailed t test). We also con-
firmed that the texture selectivity is largely invariant, irrespective
of the positions or sizes of the images (Fig. S2C). Textures with
appearances similar to their effective parents were preferentially
selected by the adaptive sampling, and those descendants usually
produced comparable levels of neuronal activity (Fig. 2C). When
we averaged the firing rates evoked by all descendant textures
sorted according to the ranks of the parents’ firing rates (Fig.
1B), we found that the offspring selected from highly responsive
parents generally evoked stronger responses than those selected
from the weakly responsive parents (group A vs. C–E: P < 0.005,
Mann–Whitney test; Fig. 2D) or randomly chosen textures
(group A vs. Rand: P < 0.0001, Mann–Whitney test). We also
found that, as the generation proceeded, the average distance
between the sampled stimuli and the optimal stimuli for each
neuron (here, we regarded stimuli evoking more than 90% of the
maximum firing rate as optimal) became smaller (Fig. 2E, orange
line), and that this effect was more evident than in the average
distances computed from simulated data assuming that the
neurons were randomly tuned to the textures (blue line, vs.
“Data”: generation 2; P = 0.002, generation 3–10; P < 0.001,
Mann–Whitney test; SI Methods). This indicates that the stimuli
near the optimal ones were more densely sampled as generation
proceeded. The convergence of the sampled stimuli was also
evident when we computed the distance between the sampled
stimuli and the optimal stimuli extracted from two independent
samplings starting from different first generations (Fig. S2D).
Together, the results suggest that the procedure for adaptive
sampling worked successfully, and the neurons’ preferences
could be characterized by the texture parameters used to gen-
erate the sampling space.
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Fig. 1. The parametric sampling space and the adaptive sampling pro-
cedure. (A) The sampling space and locations of example textures. The panel
shows the first two dimensions of the seven-dimensional sampling space.
The textures were synthesized based on synthesis parameters extracted from
photographs of one of the eight material categories (bark, sand, fabric, fur,
leather, stone, water, and wood). Each dot represents one textural image
derived from a photograph of material textures, and the color indicates its
material category. The Insets show example textural stimuli located at the
black dots. The frame colors indicate the material categories. There are also
many other textures generated by interpolating the parameters of the
textures neighboring in this space. These textures cannot be categorized
into the materials and are not shown in the figure. Including the in-
terpolated ones, a total number of 10,355 textures was derived. (B) Adaptive
sampling. Textures in preceding generations were classified into five groups
(indicated by different gray levels), depending on the rank of the firing rates
they elicited. Then, 38 of 50 textures in the subsequent generation were
selected from among the neighbors of the textures for each of the five
groups, with priority given to the higher ranked groups. The remaining
stimuli (12) were selected randomly (“Rand”).
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Fitting Using Higher-Order Image Statistics. To understand texture
selectivity in terms of tuning to textural parameters, we tried to
linearly regress neuronal responses using the textural parameters
(PS statistics; Fig. 3) to determine how well this simplest fitting
explains texture selectivity. Because the large number of parame-
ters in the PS statistics (740; Table S1) makes the fitting unreliable,
we reduced the number by removing redundant features from the
individual groups of parameters in the PS statistics. In short, we
reduced the resolutions of scale and orientation from 4 × 4 to 2 × 2
and also applied principal-component analysis to parameters in
the groups of statistics called “Linear cross position” and “Energy
cross position.” For “Marginal” statistics, only the skewness of
the luminance histogram was used because the mean and SD had
been equalized across the textures. Through these operations, we
reduced the number of parameters to 29. These 29 parameters,
which we will call “minimal PS statistics” (minPS; Table S2),
were used to fit each neuron’s responses to 250–500 textures by
adopting the regularized (L1-penalized) linear least-squares
regression (26). We evaluated the fitting performance using
10-fold cross-validation (Methods, Fitting to Neuronal Responses)
and found that the firing rates of most neurons were successfully
fit using minPS [r between the observed and predicted responses =
0.46 ± 0.18 for the cross-validated set; P < 0.05 for 83 of 90
neurons (92%), permutation test; Fig. 4A]. Similar levels of fit-
ting performance were obtained from both monkeys (r = 0.43 ±
0.18 for monkey SI; r = 0.50 ± 0.18 for monkey EV). The cells
proved to be significant (n = 83) have also been shown to be
significant using the test of correlation coefficient (P < 0.05,
Pearson’s test). On average, the fittings explained 29 ± 17% of
the explainable variance of the firing rates, computed by sub-
tracting the trial-by-trial variance from the whole variance. Fur-
thermore, in a subset of neurons (n = 13), we examined the

prediction performances to responses obtained in a separate
adaptive sampling session started with a different first generation
and found the performance levels to be comparable (r = 0.49 ±
0.20), again supporting the validity of the fittings.
We carefully inspected the fitting weights for each neuron

(Fig. 4B) because they should tell us the statistical parameters
that are critical for activation of these neurons. We found that
a relatively small number of parameters had higher weights (Fig.
4C). The number of parameters with weight absolute values that
exceeded the half-maximum weight was 3.4, on average (Fig.
4D), suggesting the neurons are sparsely tuned to a small number
of parameters. Fig. 4E shows the numbers of neurons tuned to
each of the different groups of statistical parameters in the
minPS with greater than half-maximum weight (the groups are
listed in Fig. 3). Of these, “Spectral” is a lower-order statistic that
corresponds to the tuning to the amplitude of particular spatial
frequency/orientation subbands and is already represented in V1.
That a large number of neurons are tuned to Spectral statistics is
consistent with earlier studies showing the spatial frequency/
orientation selectivity of V4 neurons (27, 28). More importantly,
a large fraction of the neurons were also selective for other higher-
order statistics (72 of 83 neurons had greater than half-maximum
weight on at least one parameter in groups other than Spectral).
To further validate the significance of the higher-order statistics,
we tried to fit the responses using only Spectral statistics and found
that this operation significantly degraded the fitting performance
(r = 0.35; vs. the minPS: P < 0.0001, Wilcoxon test). We also ex-
amined whether models of statistical image representation other
than the minPS could better explain the neural responses, and
found that no model outperformed the minPS (Fig. S3).
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Examples of Tuning to the Image Statistics. We observed tight
correspondence between the responses of individual neurons
and the statistical features on which they had large weights.
Here, we present six example neurons that showed good fitting
performance and were heavily weighted for each group of minPS
(Fig. 5). We rarely encountered neurons heavily weighted for
“Linear cross scale” statistics and no example is shown. For each
neuron, we depicted three example effective/ineffective textures
and their corresponding image statistics selected from the best
and worst five textures for that neuron. The neuron shown in Fig.
5A had the highest weight for Spectral statistics; the weight was
on the amplitude of low-frequency vertical components, and the
preferred textures contained coarse vertical stripes. The neuron
depicted in Fig. 5B had the highest negative weight for skewness
of the luminance histogram in the Marginal statistics. This neuron
clearly preferred images containing black lines, which induce
stronger negative skewness, whereas it did not respond to images
containing bright white lines or spots. The neurons in Fig. 5 C
and D had maximum weights for Linear cross position and En-
ergy cross position, respectively. They were heavily weighted for
particular patterns of spatial autocorrelation in the filter outputs,
which were frequently observed in their preferred textures. The
weight of the neuron shown in Fig. 5E indicates that it preferred
the correlation between fine-scale vertical and horizontal sub-
bands in “Energy cross orientation.” This feature is character-
istically observed in images with fine white spots or grids. Finally,

the neuron shown in Fig. 5F was weighted heaviest for the cor-
relation between fine- and coarse-scale vertical subbands in
“Energy cross scale.” This correlation is observed in images
containing vertical lines. It is noteworthy that some neurons
preferentially responded to visually dissimilar textures (e.g., neurons
in Fig. 5 A, D, and F). This is because, although these dissimilar
textures share neurons’ preferred statistical features in common,
other features to which neurons were not sensitive have affected the
appearances to make them different. Thus, a neuron’s preferences
for textures could be better interpretable in terms of its tuning to
the image statistics rather than to the image appearances.

The Model Predicts Responses to Manipulated Images. To verify the
neurons’ tuning to the PS statistics, we examined the responses
of the neurons (n = 90) to four types of control images: (i)
images in which the phase of the Fourier transform was ran-
domized (Scramble), (ii) images made by rotating the original
image 90° (Rotation), (iii) images synthesized using the same PS
parameters as the original textures but from different random
noises (Same), and (iv) grayscale photographs used to extract the
synthesis parameters of the original image (Photo) (Fig. 6A).
The first two manipulations partially deform the PS statistics,
whereas the second two manipulations retain the PS statistics of
the original images even though the pixel-level features are
considerably different. Five textures equally sampled based on
the evoked firing rates in the adaptive sampling experiment were
used to generate each of the four control images (Fig. 6A). The
responses to Same and Photo were similar to those to Original,
as would be expected from the tuning to the PS statistics (three
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represents the input texture. Marginal statistics were directly computed
from that texture and include statistics from the luminance histogram, in-
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filters.” From these responses, the correlations between spatially neighbor-
ing filters (Linear cross position) and the correlations between filters with
neighboring scales (Linear cross scale) were computed. The Responses of
linear filters were then converted to “Responses of energy filters” by taking
the amplitudes of the responses. From those, average amplitudes of filter
outputs (Spectral), correlations between filters with neighboring ori-
entations (Energy cross orientation), correlations between spatially neigh-
boring filters (Energy cross position), and correlations between filters with
neighboring scales (Energy cross scale) were extracted.
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example cells in Fig. 6B). By contrast, the responses to Scramble
and Rotation were cell dependent; some neurons showed similar
selectivity for Rotation but not Scramble (Fig. 6B, Top), some
others showed the opposite (Fig. 6B, Middle), and still others
showed similar selectivity to neither Scramble nor Rotation (Fig.
6B, Bottom). At the population level, the correlations between
the Original and Same/Photo conditions were significantly higher
than between the Original and Scramble/Rotation conditions
(Same vs. Scramble/Rotation: P < 0.003; Photo vs. Scramble/
Rotation: P < 0.020, Mann–Whitney test, Fig. 6C). The firing

rates averaged across all five textures in the Same and Photo
conditions were also higher than in the Scramble and Rotation
conditions (Fig. 6D and Fig. S4).
The variation in the outcomes of the Scramble and Rotation

manipulations can be explained by the fact that these image
manipulations deform different elements of the PS statistics. For
example, the Spectral statistics are affected by Rotation but not
by Scramble (Fig. 7A). Accordingly, a neuron selective for Spectral
statistics (Fig. 5A) showed less selectivity in the Rotation condition
but retained its selectivity in the Scramble condition (Fig. 7A; the
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correlation coefficient with the Original condition is shown above
the image). Likewise, the preferred pattern of the spatial autocor-
relation for the neuron weighted for Linear cross position (Fig. 5C)
was largely modulated in the Rotation condition, and the neuron
changed its response in this condition (Fig. 7C). Conversely, the
skewness of the luminance histogram in Marginal statistics was
unaffected by Rotation, but was affected by the Scramble con-
dition, and changes in the neuron’s response weighted on the
skewness (Fig. 5B) coincided with it (Fig. 7B). The neurons
weighted on Energy cross position, Energy cross orientation, and
Energy cross scale also showed those trends (Fig. 7 D–F). To
validate these tendencies at the population level, we classified
neurons according to whether their fitting weights were larger for
parameters tolerant or intolerant to Scramble or Rotation (Fig.
7G; SI Methods), and computed the correlations with Original
for each manipulation separately (Fig. 7H). In this analysis, only
neurons with high fitting performances (r > 0.4; n = 53) were
used. Neurons heavily weighted for tolerant parameters had
clearly higher correlations than neurons with large weights
on intolerant parameters in both types of control conditions
(Scramble: P = 0.047; Rotation: P = 0.0026; Mann–Whitney
test). Note that neurons were classified based on the fitting
weights obtained in the adaptive sampling experiment, whereas
the correlations with the Original stimuli were examined using

the responses obtained in the control experiment. In addition, we
found that the responses to the control images could be directly
predicted using the fitting weights to the minPS of each neuron
(Fig. S5). Thus, the results further support the validity of the
fitting using the minPS.

Functional Significance of the Observed Tuning. The final question
addressed is how the tuning to minPS in V4 is related to per-
ception of texture and material of objects. Freeman et al. (7)
psychophysically compared human sensitivity to textures and
corresponding noise images having the same Fourier spectrum
and linearly fitted these sensitivities using PS statistics to esti-
mate the contributions of each group of the PS statistics to the
psychophysical sensitivity. They found that the higher-order statis-
tics, especially “Energy” statistics, are critical for explaining human
sensitivity (Fig. 8A, Right). We examined whether the sensitivity
of V4 neurons to discriminate textures from noise images is also
capable of reproducing this psychophysical observation. To do
that, we calculated the sensitivity of each V4 neuron to a texture
by contrasting the firing rates elicited by the texture and its
corresponding noise image predicted from the observed fitting
weights (Fig. 4B), and averaged these sensitivities across all 83
significant neurons (SI Methods). We then assessed the contri-
bution of each statistical parameter group to the neuronal sen-
sitivity by comparing the power of the linear fit (R2) before and
after removing a particular parameter group (averaging-over-
orderings technique) (29) (Fig. 8A, Left). The results obtained
from our V4 data exhibited striking correspondence with the
psychophysical data reported by Freeman et al. (7) (r = 0.90; Fig.
8A, Right), and this correspondence was significantly better than
in cases where the fitting weights were shuffled within individual
neurons (P = 0.016, permutation test). These results suggest that
V4 tuning potentially contributes to the perceptual discrimina-
bility of textures.
Different materials have characteristic textures, and how the

texture tuning of V4 neurons is related to material categorization
is another important issue. To address this, we defined category
separability (J) as an index to quantify how well neurons separate
the eight material categories used to define the textural stimuli
(see Fig. 1A for these categories). The index corresponds to the
between-category variance divided by the within-category vari-
ance within a given space. From the obtained fitting weights of
the neurons (Fig. 4B), we computed the predicted responses to
all of our textures tagged with the categories (n = 4,400) and
computed the neurons’ category separability (J) as a function of
the number of neurons. The separabilities were significantly
larger than was the case when we shuffled the fitting weights of
individual cells (number of neurons = 3–27: P < 0.01, Mann–
Whitney test; Fig. 8B), which indicates the observed weights are
also desirable for classifying the categories of materials. To ex-
plore why the observed weights produced better category seg-
regation, we quantified the degree to which image statistics
separate different material categories using a measure similar to
“J,” but in this case the parameter values in each group of PS
statistics were used instead of neural responses (Ji in Fig. 8C,
black line). We found that parameters in some groups were more
separable across different categories of textures than were oth-
ers. Importantly, the absolute values of the fitting weights sum-
med across all 83 significant neurons closely matched the
differences in separability across groups (r = 0.79; Fig. 8C, color
bars). The correlation is not an outcome of the adaptive pro-
cedure in the sampling space because the stimuli were synthe-
sized using all PS statistics rather than the parameters defining
the sampling space. This suggests that neurons are able to sep-
arate the categories well because they are likely tuned to the
statistics that effectively differentiate textures from different
material categories.

0

0.4

0.8

N
or

m
al

iz
ed

 fi
rin

g 
ra

te *

Scra
mble

Rota
tio

n
Sam

e
Pho

to

Original Scramble Rotation Same Photo

A

B

C

Scra
mble

Rota
tio

n
Sam

e
Pho

to
0

0.4

0.8

C
or

re
la

tio
n 

w
ith

 o
rig

in
al *

D

0

95

0

70

Original
0

90

Scramble Rotate Same Photo

Textures
2 3 4 51

Fi
rin

g 
ra

te
 (s

pi
ke

/s
)

cell ev381301

cell si311501

cell ev391701

Textures
1 2 3 54

Fig. 6. Responses to the control stimuli. (A) Five control images were pre-
pared for each of five textures selected based on the rank (indicated by
frame color) of the elicited firing rates in the main experiment. Original:
same images used in the main experiment. Scramble: images whose Fourier
transform phases were randomized. Rotation: images that were rotated by
90°. Same: synthetic texture generated using the same synthesis parameters
as the original. Photo: the original photograph used to extract the synthesis
parameters. (B) Responses of three example neurons to all stimuli presented
under the control conditions. Each row indicates the responses of one
neuron. Bar colors indicate different textures corresponding to those in A.
The rank order of the responses to the original image was basically retained
for the “Same” and “Photo” images, but only partially retained or not
retained for the “Scramble” and “Rotation” images, depending on the
neuron. (C) Comparison between the neuronal responses to different con-
trol conditions in terms of the similarities of the responses to the originals
(n = 90 neurons). The vertical axis indicates the correlation coefficients be-
tween the responses to the original five textures and those to five textures in
each control condition. The bars indicate the median correlations across all
neurons. (D) Firing rates averaged across all five textures in each condition
(n = 90 neurons). The firing rates were normalized to those averaged across
the five textures in the Original condition. In C and D, the error bars indicate
SEM across the neurons. *P < 0.05, Mann–Whitney test.
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Discussion
In the present study, we attempted to reveal the neuronal
underpinnings of natural texture perception by examining the
texture selectivity of area V4—midlevel area in the ventral
pathway—in terms of the higher-order image statistics such as
those used in the texture synthesis (PS statistics; Fig. 3). The
fundamental difficulty of data sampling in the great diversity of
natural textures was overcome by extending an adaptive sam-
pling procedure (25) to explore the manifold of natural textures
in a high-dimensional sampling space. We successfully modeled
the obtained responses of individual cells as a linear tuning to
sparse combinations of image statistics. The models provided an
unprecedentedly clear picture of texture representation at the
intermediate level of visual processing. At the population level,
the observed tuning was found to be suitable to explain per-
ceptual texture discriminability and categorization of materials
by human observers. These results allow us to explain the natural
texture perception in terms of the collective representation of
visual image statistics.
Here, we performed only a linear fit using the synthesis

parameters; consequently, there remains the possibility that V4
neurons could be better explained by introducing nonlinear
terms into the parameters, although determining those param-
eters would be more difficult because of the increase in di-
mensionality. In addition, we do not think that the exact forms of
the parameters used in the PS statistics are important, as we may
be able to develop variants of the PS statistics that better account
for the neuronal data. An essential finding here is that the tex-
ture selectivity of V4 neurons can be better understood by in-
troducing higher-order statistics, such as those used in the
texture synthesis, than by simple spatial-frequency/orientation
tuning. We also suggest that, because the neural responses could
be fit using a small number of parameters, individual V4 neurons
respond to limited parts of the higher-order statistics rather than
to the whole.
Recently, Freeman et al. (7) demonstrated that V2 neurons

are more strongly driven by textural stimuli containing the
higher-order features of PS statistics than by noise images,
whereas responses in V1 do not distinguish between the two. The
present study significantly extended these observations by
explaining the neurons’ “selectivity” for textures in terms of their
tuning to those higher-order parameters. Both the activities of
V4 neurons in the present study and those of the V2 neurons
studied by Freeman et al. (7) correlated with the psychophysi-
cally measured texture sensitivity, which suggests tuning prop-
erties for natural textures are shared between V2 and V4. The
results of several studies emphasize the role of texture segmen-
tation in areas downstream of V2 (30, 31), which suggests V4 is
also involved in the texture-defined shape perception. Another
earlier study demonstrated that responses of V4 neurons were
less affected by the removal of global structures from natural
scene images by using the texture synthesis algorithm than
neurons in the inferior temporal cortex (32). Analogously, V4
might be more sensitive to changes in global structures than V2,
a property that could not be captured by textural stimuli. Such
differences between V2 and V4 are an important issue remaining
for future research.
Previous physiological studies have shown that neurons in V4

respond to various visual attributes (33) including shape (27, 34),
color (35, 36), disparity (37, 38), and texture (6, 22). In partic-
ular, many studies have demonstrated that V4 neurons show
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Fig. 7. Effects of image scramble and rotation on the neuronal responses.
(A–F) Control stimuli in the Scramble and Rotation conditions and their
statistics for neurons depicted in Fig. 5 A–F, respectively. The images corre-
spond to the stimuli that evoked the highest firing rates in the Original
condition among the five selected textures. Red numbers above the images
indicate the correlation between the neural responses in the Original con-
dition and those in the Scramble/Rotation conditions. The conventions used
to describe the statistics are the same as in Fig. 5 A–F. (G) The table sum-
marizes the tolerance of each parameter to the image manipulations. To
measure the tolerance, we computed the minPS parameters for our 10,355
textures and their corresponding control stimuli, and calculated the corre-
lation coefficients between them for each parameter in the minPS. Param-
eters with correlation greater than 0.4 were regarded as tolerant of the
manipulations. ○: all parameters in the group are tolerant; △: some
parameters in the group are tolerant; ×: no parameters in the group are
tolerant. (H) Correlation coefficients between the responses to the original
and control conditions averaged across neurons classified as tolerant or

intolerant of the control manipulations based on their fitting weights.
Neurons with large weights on statistics that were not greatly affected by the
control manipulation were classified as “Tolerant”; otherwise, they were classi-
fied as “Intolerant” (SI Methods). *P < 0.05, **P < 0.01, Mann–Whitney test.
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tuning to curvature in object contours (39, 40). Considering that
curvature can also be regarded as a higher-order combinatory
feature of Gabor filter output, it may be that there is shared
tuning between these contour fragments and textures. However,
texture synthesis does not capture global image structures and
cannot reproduce inhomogeneous image features such as object
contours (20), although it may explain visual discriminability of
those features in peripheral visual field (21, 41, 42). It is there-
fore also plausible that tuning to geometric shapes or curvatures
is hidden in the unexplained variances in the neural responses
recorded in this study, or that they can be attributed to a differ-
ent population of V4 neurons tuned to those features. It may be
possible to construct a unified model to explain responses to
both textures and shapes by introducing even higher-level fea-
tures or hierarchical networks (43).
We have shown that the representations of statistical features

in V4 neurons can explain several perceptual features of visual
texture processing including the sensitivity to textures (Fig. 8A)
and the classification of materials (Fig. 8B). The utility of higher-
order correlation statistics for texture classification has been
shown in theoretical terms (44). In addition, our previous func-
tional MRI study showed that cortical responses gradually
change from the representation of low-level image properties in
V1 to those of material properties in higher visual cortices

(11, 45), which is consistent with the finding that V4 is suitable
to separate the material categories (Fig. 8 B and C). Recent
psychophysical studies have suggested that statistics, including
skewness of the luminance histogram and congruence of local
orientations, play important roles in the perception of surface
properties such as gloss (46, 47). Because these features are
partially incorporated into PS statistics, V4 neurons can also be
considered a reasonable intermediate step for the perception of
these properties. Using their outputs, higher-order visual areas,
such as the inferior temporal cortex, would be able to build up
the representations of material categories or surface properties
(8, 9, 11, 48), ultimately leading to our perceptual experience of
the material-rich visual world.

Methods
Stimulus Presentation and Electrophysiology. Neurons were recorded from
area V4 in two macaque monkeys. All procedures for animal care and ex-
perimentation were in accordance with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals (49) and were approved
by the Institutional Animal Care and Use Committee of the National Institute
of Natural Sciences. Stimuli were presented on a cathode ray tube monitor
(frame rate: 100 Hz; Totoku Electric) situated at a distance of 57 cm from the
monkeys. See SI Methods for further details.

Visual Stimulus Generation. Stimuli in the main experiment were generated
using the texture synthesis procedure described in Portilla and Simoncelli (20)
with a program provided by the authors (www.cns.nyu.edu/∼lcv/texture/).
The program includes codes to extract a set of synthesis parameters (PS
statistics) from an image and codes to synthesize an image based on the PS
statistics. In the synthesis, starting from a white-noise image, the algorithm
iteratively modifies the image to match its PS statistics with the desired one.
Before the synthesis of our stimuli set, we collected 4,400 texture images
from photographs of eight material categories (bark, sand, fabric, fur,
leather, stone, water, and wood; 550 images for each category) from
commercial databases (SOZAIJITEN; Datacraft) and the Internet (Fig. S1A).
We then computed the PS statistics of each image using four scales and four
filter orientations. For the parameters describing correlations between
spatially neighboring filter outputs, positional shifts within a seven-pixel
square were taken into account. Under these conditions, the algorithm
yielded in total 740 parameters of PS statistics for each image (Table S1). To
generate a sampling space, we normalized individual parameters across the
4,400 natural texture images, denoised them using principal-component
analysis, which reduced the dimensions to 300, and finally projected them
into a seven-dimensional space using Fisher’s linear discriminant analysis
(LDA). LDA finds the linear subspace that maximally separates different
categories. Mathematically, it finds the vectors w that maximize the fol-
lowing objective function, J(w):

JðwÞ= wSBwT

wSWwT , [1]

where SB is the between-category covariance matrix and SW is the within-
category covariance matrix. SB is defined as follows:

SB =
X

c

Ncðmc −mÞðmc −mÞT , [2]

where Nc is a number of samples in category c, mc is the vector averaged
across samples in category c, and m is the vector averaged across samples in
all categories. SW is defined as follows:

SW =
X

c

X

n∈c
ðxn −mcÞðxn −mcÞT , [3]

where xn is a vector corresponding to an individual sample in category c. We
extracted the first seven dimensions that maximized the objective function J.
This can be done by computing the generalized eigenvalues of SB and SW.
For each texture, we connected the 20 nearest textures in this seven-
dimensional space as its neighbors, and its descendants were chosen from
among these neighbors. To ensure the uniformity of sampling in this pa-
rameter space, we removed 230 points that correspond to a part of the 4,400
natural texture images by which the sampling space was constructed, and
added 6,185 points by interpolating the parameters of 4,400 textural images
such that the distance between each pair of textures fell within 3SD of the
distance distribution before the interpolation. The interpolation was done
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Fig. 8. Functional significances of the observed tuning. (A) Percent contri-
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criminate textures from the noise images (Left) was compared with human
sensitivity to textures (Right; reprinted with permission from ref. 7). The
contributions were computed from the fitting weights for all significant V4
cells (n = 83) (SI Methods). It should be noted that this computation was
based on the sensitivity to textures vs. noise and should differ from the
proportions of neurons shown in Fig. 4E. For both V4 neural sensitivity (Left)
and human sensitivity (Right), the same groups of statistical parameters are
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Freeman et al. (7). (B) The degree of category separability (J) computed from
the neural data (black) and shuffled data (red) are shown as a function of
the number of neurons. J reaches a plateau when the number of neurons is
29 because the degrees of freedom of the predicted firing rates are con-
strained by the number of the statistical parameters used for the fitting (i.e.,
the minPS). The error bars indicate the SD for 100 repetitions of random
neuronal samplings. **P < 0.01. (C) Sum of fitted weights across all signifi-
cant neurons (n = 83) for each group of PS statistics (color bars). A black line
shows the category separability computed from the image statistics of each
group in the minPS (Methods).
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by linearly averaging the PS parameters of two neighboring textures. These
procedures yielded in total 10,355 sets of PS parameters and corresponding
textural images among which the adaptive sampling was performed. Note
that for image synthesis we used all 740 parameters rather than the seven
parameters extracted above. Individual images were synthesized from
a white-noise image in an iterative manner to match its PS statistics with the
desired one. The size of images was 128 × 128 pixel (corresponding to 6.4°).
The number of synthesis iterations was 50, and we confirmed that the PS
statistics of images converged to the desired values. The mean and SD of the
luminance histogram were equalized to 15 and 6 cd/m2, respectively, to
avoid the effects of these low-level factors. The images were presented on
a gray background (10 cd/m2).

Adaptive Sampling Procedure. We introduced the adaptive sampling pro-
cedure to efficiently search parameter space for finding effective textural
stimuli (25). In this procedure, we first randomly selected 50 textures (the
first generation) from the 10,355-image set and recorded the single-cell
responses they elicited. Then in subsequent generations we selected
stimuli from among neighbors of ancestor stimuli selected from earlier
generations based on the ranks of the elicited firing rates: 13 from the top
10% of stimuli, 10 from the next 10–24%, 5 from 24–44%, 5 from 44–70%,
and 5 from 70–100% (Fig. 1B). Each subsequent generation also included
12 new, randomly selected stimuli. We repeated these procedures at least
5 times and at most 10 times to record neuronal responses to 250–
500 textures.

Dimension Reduction of the Synthesis Parameters. To avoid overfitting to the
neuronal responses, we reduced the number of parameters of the PS sta-
tistics. This was possible because the parameters were highly redundant. We
took two basic approaches to reducing dimension number: averaging across
neighboring subbands and extracting principal components. Given that the
outputs of the neighboring filters were highly correlated, we averaged the
statistics extracted from different subbands, which were originally 4 scales × 4
orientations resolution, into 2 scales × 2 orientations. The averaging was
performed only within each group of statistical parameters (Fig. 3). In the
second approach, we performed principal-component analysis of Linear
cross position and Energy cross position, which are related to spatial pattern
information, to extract patterns prevalent across images and subbands.
Reduction was accomplished in each group as follows. For the Spectral
group, we averaged the amplitudes of neighboring subbands to leave only 2
scales × 2 orientations. For the Marginal group, we left only the skewness of
the luminance histogram because the mean and SD were equalized across
textures in advance. We did not incorporate the kurtosis of the luminance
histogram because it was highly correlated with the skewness in our texture
stimuli. For the Linear cross position group, all subbands were expressed as
combinations of four major spatial patterns using principal-component
analysis. Because different subbands extracted from the same image gen-
erally had similar spatial patterns, we averaged the values of all subbands.
For the Linear cross scale group, we left 2 scales × 2 orientations. Only
combinations between the same orientations in different scales were in-
corporated. For the Energy cross position group, all subbands were expressed
as combinations of three major spatial patterns extracted using principal-
component analysis. Patterns obtained in different scales were averaged and
the number of orientations was reduced to two. For the Energy cross orien-
tation group, we extracted three combinations of orientations: vertical vs.
horizontal, vertical vs. oblique, and horizontal vs. oblique. The number of
scales was two. For the Energy cross scale group, the reduction was performed
in the same manner as the Linear cross scale. As a result of the reductions, the
number of parameters ultimately became 29, and we called the obtained
parameter set minimal PS statistics (minPS; Table S2).

Fitting to Neuronal Responses. We used L1-penalized linear least-squares
regression (known as lasso) (26) to fit the firing rates of neurons elicited by
250–500 textures. The regression minimizes the following loss function:

L=
1
N

XN

i=1

ðFRi − PSi ·WÞ2 + λjW j, [4]

where N indicates the number of stimuli, FRi and PSi indicate the observed
firing rate and the PS statistics of image i, W indicates the fitting weights,
and λ indicates the regularization coefficient. A 10-fold cross-validation was
performed to estimate the fitting performance. In that analysis, we parti-
tioned the presented textures into 10 subsamples and estimated fitting
weights (W) using the responses to 9 of the 10 subsamples. We then calcu-
lated the correlation coefficients between the observed responses of the
remaining one subsample and the predicted responses. We repeated this
procedure for all 10 combinations and averaged the correlation coefficients.
The statistical significance was tested using a permutation test in which we
shuffled the combinations between the textures and the firing rates, and
repeated the same analyses to calculate a correlation coefficient. We re-
peated the procedure 2,000 times to obtain the distribution of the corre-
lation coefficients under the null hypothesis for each cell. In lasso, we set
a hyperparameter λ in Eq. 4 to perform the fitting. For that, we performed
a fivefold cross-validation within the training set (i.e., the 9 of 10 sub-
samples) to obtain the λ that achieved the best fitting performance within
the set. For the final estimation of fitting weights (displayed in Fig. 4B), we
used the whole dataset without the cross-validation. We also determined
the fraction of the variance that was explained in the fitting to the whole
variance of the neuronal responses, taking into account the noise in the
responses (50). For this, we first computed the amount of noise by calcu-
lating the trial-by-trial variances of the neuronal responses to a single
stimulus. We then subtracted this noise variance from the whole variance of
the neuronal responses to all stimuli. The resultant subtracted variance
corresponds to the true variance that should be perfectly explained if there
is the true model of the neuron. We therefore divided the coefficient of de-
termination obtained with the fitting by this subtracted variance and regarded
the resulting value as the percent explained variance of the fittings.

Analyses of Category Separability. As described above, 4,400 texture stimuli
were tagged with eight different material categories. To estimate whether
given parameters could separate those categories, we formulated category
separability (J) using Eq. 1. In short, J denotes the between-class variance
divided by the within-class variance, which can be obtained from a given
parameter set. For the neuronal data, we first computed the predicted
responses to the 4,400 images using the weights obtained by fitting to the
minPS. We then randomly selected n neurons and calculated the J in this
n-dimensional space. We repeated this procedure 100 times to estimate the
average J as a function of the number of neurons (n). As a control, we
shuffled the weights of each neuron and conducted the same analysis. To
compute the category separability using image statistics (Ji), we used the
values of the minPS of the same 4,400 images to calculate the J for each
group of parameters in the same manner (Fig. 8C).
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