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Diverse coupling of neurons to populations in
sensory cortex
Michael Okun1,2,3, Nicholas A. Steinmetz1,2,3,4, Lee Cossell2,5, M. Florencia Iacaruso2,5, Ho Ko2{, Péter Barthó6{, Tirin Moore4,
Sonja B. Hofer2,5, Thomas D. Mrsic-Flogel2,5, Matteo Carandini31 & Kenneth D. Harris1,2,61

A large population of neurons can, in principle, produce an astro-
nomical number of distinct firing patterns. In cortex, however,
these patterns lie in a space of lower dimension1–4, as if individual
neurons were ‘‘obedient members of a huge orchestra’’5. Here we use
recordings from the visual cortex of mouse (Mus musculus) and
monkey (Macaca mulatta) to investigate the relationship between
individual neurons and the population, and to establish the under-
lying circuit mechanisms. We show that neighbouring neurons can
differ in their coupling to the overall firing of the population, rang-
ing from strongly coupled ‘choristers’ to weakly coupled ‘soloists’.
Population coupling is largely independent of sensory preferences,
and it is a fixed cellular attribute, invariant to stimulus conditions.
Neurons with high population coupling are more strongly affected
by non-sensory behavioural variables such as motor intention. Pop-
ulation coupling reflects a causal relationship, predicting the res-
ponse of a neuron to optogenetically driven increases in local activity.
Moreover, population coupling indicates synaptic connectivity; the
population coupling of a neuron, measured in vivo, predicted sub-
sequent in vitro estimates of the number of synapses received from
its neighbours. Finally, population coupling provides a compact sum-
mary of population activity; knowledge of the population couplings
of n neurons predicts a substantial portion of their n2 pairwise cor-
relations. Population coupling therefore represents a novel, simple
measure that characterizes the relationship of each neuron to a
larger population, explaining seemingly complex network firing pat-
terns in terms of basic circuit variables.

The cortex represents its computations through the joint activity of
multiple neurons. This activity can be remarkably diverse even among
neighbouring neurons, belonging to the same morphological and lam-
inar cell class. In sensory cortex, neighbouring neurons not only respond
to diverse stimulus features6–8, but also use diverse strategies to encode
information. For example, mean firing rate differs by orders of magni-
tude across neurons9–11, and it appears to constitute an invariant prop-
erty of each cell, persisting across multiple stimulus conditions and
spontaneous activity12. We asked whether there are other invariant
dimensions that characterize the diversity of firing of cortical neurons.
Ideally, such dimensions would not only help explain the complex pat-
terns of activity produced by cortical populations, but also relate directly
to underlying circuit variables.

To characterize how different cortical neurons relate to large-scale
firing patterns, we considered their relationship to the ‘population rate’,
that is, the summed activity of all neurons in the recorded population at
any moment in time13–16. We recorded first from populations of 20–80
neurons in deep layers of area V1 in awake head-fixed mice using multi-
site silicon probes (Fig. 1a). Consistent with previous reports17–19, popu-
lation rate was not strictly controlled by sensory stimulation, but showed

coherent fluctuations even spontaneously in the absence of sensory
stimuli (Fig. 1b, c), closely tracking the simultaneously recorded local
field potential (LFP, Fig. 1d).

During spontaneous activity, neighbouring neurons differed widely
in their coupling to the population. The spike-triggered population rate
typically had a single peak centred close to zero (Fig. 1e and Extended
Data Fig. 1), whose height was large for some neurons and small or even
reversed for others. The variation in population coupling across neu-
rons was continuous, and neurons did not appear to fall into discrete
classes of distinct coupling. However, this diversity in coupling repre-
sented a robust property of individual cells; computing coupling from
separate data segments yielded highly consistent results (Extended Data
Fig. 2a). A similar result was seen when correlating spikes with the LFP
(Fig. 1f and Extended Data Fig. 2b). These variations in population
coupling were not trivially explained by differences in mean firing rate;
shuffling the spike times across neurons and time, while preserving each
neuron’s mean rate and the population rate distribution14, destroyed the
diversity in population coupling between neurons (Fig. 1g and Extended
Data Fig. 2c). Moreover, diversity in population coupling was not restricted
to mouse V1; it was also observed in monkey area V4 (Fig. 1h) and in
rat (Rattus norvegicus) auditory cortex (Extended Data Fig. 3).

Population coupling differed both between and within cell classes.
On the basis of spike shape20, we classified ,13% of the cells in mouse
V1 as narrow-spiking putative interneurons (Extended Data Fig. 4a),
with the remainder primarily pyramidal cells. Narrow-spiking cells tended
to have higher population coupling than wide-spiking cells (medians of
0.84 and 0.50; P , 1026). Nevertheless, this difference between classes
was substantially smaller than the variability within each class (Extended
Data Fig. 4). Strongly coupled neurons were more likely to exhibit burst-
ing and to have a lower firing rate. However, even cells with similar firing
rate and bursting dynamics could show great variation in coupling (Ex-
tended Data Fig. 4b–d).

We next asked to what degree population coupling can explain the
patterns of spontaneous correlated activity in a population. To this end,
we generated random population activity patterns, constrained so that
each neuron’s population coupling and mean rate matched the original
data, as did the distribution of population rate over time (Fig. 2a). We
found that pairwise correlations in the resulting synthetic activity resem-
bled those observed in the recorded activity (Fig. 2b). The accuracy of
this prediction was higher when the population rate showed stronger
variance, indicating that the single statistic of coupling was able to cap-
ture the correlations induced by globally coordinated fluctuations (Fig. 2c).
If coupling was not included, however, the performance of the model
was substantially impaired (Fig. 2c, d).

These results indicate that much of the pairwise correlation in the
population is explained by the coupling of each neuron to population
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rate, with coupling strengths that vary between neurons. The underly-
ing model is parsimonious, requiring only order n parameters to pre-
dict order n2 pairwise correlations. Moreover, the model is intuitive,
involving procedures among the simplest in neuroscience—summing
the activity of multiple neurons, and correlating the spike train of each
neuron with the result. To assess whether more advanced procedures
would yield different results, we used a variant of latent variable ana-
lysis designed for discrete spike count data4,21 to obtain the weights of

individual neurons to the first detected factor. Reassuringly, these weights
were highly correlated with population coupling (Extended Data Fig. 5a);
latent variable analysis found the same basic structure as our simple
coupling model.

The ability of the model to predict correlations may appear surprising
given that it operates without knowledge of the neurons’ sensory tuning.
In primary sensory areas, neurons with similar sensory selectivity show
stronger stimulus-independent correlations1,3,5,22, and we observed a
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Figure 2 | A simple model based on population coupling predicts the
structure of pairwise correlations in a cortical population. a, The model
generates random spike patterns subject to three constraints: that the
population coupling of each neuron, the mean firing rate of each neuron, and
the distribution of the population rate must match those in the original data.
b, Random activity generated by the model produces pairwise correlations that
are similar to those measured in the original spike trains (n 5 67 units in
one experiment; correlations computed in 20-ms bins). The upper triangle
shows observed pairwise correlations, and the lower one shows pairwise
correlations predicted by the model. Neurons are arranged in order of
population coupling. The values on the diagonal (all 1s) have been removed.
Similarity of observed and predicted correlations is indicated by the symmetry
of the upper and lower triangles. c, Percentage of explainable correlation
structure predicted, as a function of the variability of population rate (filled
symbols, see Methods). The model captures pairwise correlations, but only in

experiments in which the population rate fluctuates. It cannot predict them
when population rate is mostly constant (a highly desynchronized cortical
state). Recordings were obtained from mouse V1 in wakefulness (diamonds)
or under anaesthesia (circles), or from A1 of awake rat (squares), all
spontaneous activity; note that a variety of states is observed in all conditions.
Open symbols show predictions of a model that ignores population coupling.
The example experiment in b is shown in red. d, Same as b for predictions
made without using population coupling. Such predictions fail to capture the
structure of pairwise correlations (open markers in c). e, The model cannot
predict a relationship between similarity of preferred orientation and
spontaneous pairwise correlations (P 5 0.15, Pearson correlation). f, As a
result, this correlation is retained in the residual pairwise correlations obtained
by subtracting the modelled from actual correlations (r 5 0.26, P , 1023,
Pearson correlation), indicating that the predictions of coupling and
orientation sum linearly. The black line in f shows regression on cos 2Dhð Þ.
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Figure 1 | Neighbouring neurons differ markedly in population coupling
during spontaneous activity. a, Schematic of a single shank of silicon
electrode array, and spike waveforms of four example wide-spiking neighbour
neurons measured with the array in deep layers of V1 of an awake mouse.
b, Population raster of spontaneous activity in 66 neurons recorded from the
whole array. Cells are arranged vertically in order of population coupling.
Arrows indicate the four example neurons shown in a. c, Population rate
measured by summing all the spikes detected on the entire array. d, LFP
measured on a shank adjacent to that on which the example neurons were
recorded (LFP waveforms were similar across shanks). e, Spike-triggered
population rate (stPR) for the four example neurons. The spike train of each

neuron was excluded from the population rate before computing its stPR.
f, The spike-triggered local field potential (stLFP) for the four example cells
(inverted for ease of comparison) resembles their stPR (shown in e). Inset,
normalized magnitudes of stPR and stLFP (see Methods) are highly correlated
across cells (r 5 20.71, P , 102100, rank correlation, n 5 431 neurons).
g, Differences in population coupling disappear after shuffling spikes in a
manner that preserves each neuron’s mean firing rate and the population rate.
Inset, population couplings in the actual spike trains (red) and after shuffling
(grey), for neurons from all experiments. h, stPR of four example neurons
simultaneously recorded in primate area V4, computed as in e.

RESEARCH LETTER

2 | N A T U R E | V O L 0 0 0 | 0 0 M O N T H 2 0 1 5

Macmillan Publishers Limited. All rights reserved©2015



significant relationship between orientation preference similarity and
spontaneous correlations (Pearson correlation r 5 0.26, P , 1023, for
n 5 163 pairs of cells with orientation selectivity index .0.6). The
coupling model could not predict this relationship; indeed, its predic-
tions of correlations were independent of orientation preference sim-
ilarity (P 5 0.15, Fig. 2e). However, population coupling represented a
much better predictor of pairwise correlations than orientation pref-
erence similarity (r 5 0.63, P , 1029); moreover, the two predictors
are independent, representing complementary predictions that sum to
explain the fine structure of pairwise correlations within a population
(Fig. 2f).

Population coupling was invariant to visual stimulation, and showed
little relation to basic visual properties. We measured population coup-
ling across neurons during responses to natural movies, and found that
it closely resembled that obtained during spontaneous activity (Fig. 3a, b
and Extended Data Fig. 6a, b). Differences in coupling, therefore, reflect
invariant properties of each neuron, rather than differences in the
responses of each neuron to a specific set of stimuli. Both strongly and
weakly coupled cells could respond to natural movies, showing reliable
modulation by visual stimuli (Fig. 3c, d). In responses to gratings, more-
over, population coupling showed no relationship to orientation select-
ivity, spatial frequency preference, or linearity of spatial summation
(Extended Data Fig. 6c–e).

However, population coupling predicted the overall increase in mean
firing rate caused by a visual stimulus. Strongly coupled cells exhibited
a larger increase in mean firing rate during visual stimulation, both in
responses to natural stimuli (Fig. 3c–e; r 5 0.38, P , 10215, n 5 431)
and in responses to drifting gratings (r 5 0.32, P 5 2 3 1026, n 5 217;
Extended Data Fig. 6f). Thus population coupling—a quantity defined
on a time scale of tens of milliseconds, and measurable during spon-
taneous activity—predicts the temporally extended, nonspecific eleva-
tion in firing rate seen during sensory stimulation.

These correlates of population coupling do not prove that the relation-
ship between population rate and individual cells’ firing is causal. To
test causality, we used transgenic mice that express channelrhodopsin-2
in a subset of layer 5 pyramidal neurons23. Light stimulation (0.5-s
pulses at ,2 mW per mm2 using a blue LED) strongly increased network
activity (Fig. 3f). A control experiment (brief laser pulses at 100 mW
per mm2) indicated that in most cells this increase was driven synapti-
cally. Only a few cells (,5%) reliably responded at short enough laten-
cies (,5 ms) to indicate direct optogenetic depolarization. While strongly
coupled cells substantially increased their firing in response to LED
stimulation, activity in weakly coupled cells showed little increase, or
even decreased (Fig. 3g). Therefore, the diverse coupling of individual
neurons to population rate reflects differences in the causal influence
of the population on these cells.

These observations suggest that more strongly coupled neurons might
receive stronger synaptic input from neighbouring neurons. Consistent
with this view, intracellular in vivo measurements indicated that popu-
lation coupling measured from a neuron’s spike train resembles the
coupling measured from the neuron’s subthreshold membrane poten-
tial, which mostly reflects synaptic inputs (Extended Data Fig. 7; see
also ref. 17).

To investigate whether population coupling is related to synaptic
connectivity, we studied cortical populations that were first imaged in
vivo and then recorded in vitro24,25. Population activity in superficial
cortical layers was measured during presentation of natural movies and
images in lightly anaesthetized mice. As in deeper layers, these cells
showed a wide heterogeneity in population coupling (Fig. 4a, b). Cou-
pling was not related to a cell’s spatial location (Fig. 4b and Extended
Data Fig. 8a), and we observed no correlation between in vivo coupling
and intrinsic properties such as resting potential, input resistance and
spike threshold (Extended Data Fig. 8b–d). Population coupling was
again consistent between the halves of each recording, even when these
halves contained different sets of stimuli (r 5 0.85, P , 1029, n 5 4,215
neurons from 15 experiments). Next, we analysed synaptic connectivity

using paired in vitro whole-cell recordings of the same neurons (Fig. 4c).
We focused on pyramidal cells, identified by somatodendritic morpho-
logy when filled with Alexa dye, and by a regular-spiking firing pattern.

These paired recordings revealed a significant correlation between a
neuron’s population coupling and its probability of receiving synaptic
input from its neighbours (Fig. 4d). According to a logistic regression
fit, a pyramidal cell whose population coupling was one standard devi-
ation below the average had a probability of 0.14 to receive a connection
from a neighbouring neuron, whereas for a pyramidal neuron whose
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Figure 3 | Population coupling under natural and optogenetic stimulation
conditions. a, Spike-triggered population rate (stPR) for the four example
neurons in Fig. 1a–g during responses to a natural movie. The curves are similar
to those measured during spontaneous activity (Fig. 1e). b, Comparison of
population coupling during spontaneous and evoked activity, across cells and
experiments (r 5 0.88, P , 102100, rank correlation). c, Spike rasters (one
row per presentation of a natural movie) and corresponding firing rate for a
strongly coupled neuron (red neuron in a). Dashed line indicates baseline firing
rate. Shaded area shows the duration of the movie clip. d, Same as c for a
weakly coupled neuron (purple neuron in a). e, The increase in mean firing rate
of a cell in response to natural movie presentations (relative to baseline)
correlates with population coupling measured during spontaneous activity
(r 5 0.38, P , 10215, rank correlation, n 5 431 neurons from 13 recordings in
8 animals). Black diamonds, running median. Points outside the x-axis
range appear at the border for display purposes. f, Population rasters showing
activity of deep-layer V1 neurons during four example trials (out of 75 in total),
where the network was optogenetically driven by blue light in a mouse
expressing channelrhodopsin-2 sparsely in layer 5. Neurons are sorted by their
population coupling during spontaneous activity. Shaded area shows the
duration of optogenetic stimulation. g, Change in mean firing rate evoked by
optogenetic stimulation correlates with population coupling measured during
spontaneous activity (r 5 0.51, P , 102100, rank correlation, n 5 237
neurons). Points outside the x-axis range appear at the border for display
purposes. Black diamonds, running median.
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coupling was a standard deviation above the mean this probability
increased to 0.23 (a 65% increase). In contrast, there was no correla-
tion between a neuron’s population coupling and the probability that
it provided synaptic outputs to neighbouring cells (Fig. 4e). These results
are consistent with a correlation between population coupling and input
connection probability as high as r 5 0.65 (Extended Data Fig. 9).

These data suggest that diversity in mean input connectivity may
form the circuit mechanism for diversity in population coupling. The
diversity in mean input connectivity that we have observed is separate
from the tendency of cortical pyramidal cells to receive more synaptic
connections from cells with similar sensory tuning24,25. Thus, if the net-
work is stimulated non-specifically (for example by optogenetic activa-
tion of a random neuronal subset, Fig. 3f, g), the effects of this nonspecific
stimulation, amplified by recurrent cortical connections, will be lar-
gest for neurons with strong mean input connectivity (Extended Data
Fig. 10a, b). To make these intuitive ideas more precise, we extended
an established modelling framework26, and mathematically analysed a
model cortical circuit in which different excitatory neurons have dif-
ferent mean input probability (see Supplementary Information). This
model reproduced many of our experimental findings, including the
relationship between population coupling and mean input connectivity
(Extended Data Fig. 10c and Fig. 4d), the structure of spontaneous
pairwise correlations (Extended Data Fig. 10d and Fig. 2b), and the addi-
tivity of correlations predicted by sensory tuning similarity and by popu-
lation coupling strength (Extended Data Fig. 10e–h and Fig. 2e, f).

If neurons with stronger population coupling are more likely to be
driven by nonspecific excitation, they may show greater modulation by
non-sensory factors, which are believed to be conveyed to sensory cortex
by diffuse, nonspecific inputs15,19. To test this hypothesis, we analysed
population recordings made from area V4 of monkeys performing a
cued-saccade task27. Consistent with the hypothesis, strongly coupled
neurons increased their firing rate during saccade preparation into their
receptive field (Fig. 5a). Weakly coupled neurons often showed the
opposite effect (Fig. 5b). Overall, there was a marked correlation between
a neuron’s population coupling and its modulation by saccade pre-
paration (r 5 0.37, P 5 1029, Fig. 5c).

In conclusion, population coupling constitutes a previously unap-
preciated dimension characterizing the relationship of individual neu-
rons to population activity. Strongly coupled neurons (choristers) are
more strongly activated during multiple conditions that nonspecifically
increase the activity of their local network: not only sensory stimuli, but
also spontaneous fluctuations, polysynaptic optogenetic stimulation,
and top-down modulation. Conversely, weakly coupled neurons (solo-
ists) are more immune to these population-wide events. Population
coupling differs both across and within cell classes; it remains to be
determined whether this within-class diversity reflects further subdivi-
sions of these classes (such as pyramidal cells with different long-range
axonal targets28,29), or continuous within-class variation in cellular
parameters such as input connection probability. Moreover, a neuron’s
population coupling need not be fixed for life; neurons that rats learn to
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V1 were bulk-loaded with Oregon Green BAPTA-1 dye and their activity
recorded using two-photon imaging during presentation of natural movies
and images. Population coupling was assessed as the correlation between each
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coloured traces show a segment of activity from a strongly and a weakly coupled
neuron (orange and blue, respectively), each superimposed on the averaged
population activity (grey). Scale bar, 20% DF/F for each single neuron, 5% for
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a subset of the imaged neurons was later assessed using simultaneous in vitro
whole-cell recordings. Top, four example pyramidal cells (solid white circles),
recorded in vitro together with an additional fast-spiking interneuron
(dashed circle) that was excluded from later analysis. Bottom, four synaptic
connections were found between these four pyramidal neurons, shown here
coloured by their in vivo population coupling. The two weakly coupled neurons
(blue) received zero or one input, while the strongly coupled neuron (yellow)
received two inputs. d, Logistic regression estimate of probability to receive
a synaptic connection as a function of the population coupling of the target
(dashed black lines, 95% confidence intervals; error bars, mean 6 standard
error for binned data). e, As in d for outgoing connections.
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use while controlling a brain–machine interface show increased cor-
relation with LFP30, indicating increased population coupling, and
thus suggesting an increase in mean synaptic input strength. This
single, simple variable relating each neuron’s participation in the popu-
lation code to underlying circuit connectivity may prove critical to
understanding cortical computation and plasticity.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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Figure 5 | Population coupling under top-down stimulation conditions.
a, Mean firing rate of an example neuron in primate V4 with strong population
coupling (red neuron in Fig. 1h). This neuron showed higher firing rate
(solid curve) while saccades were prepared into its receptive field (RF) than
outside of it (dashed curve). b, An example neuron with weak population
coupling (purple neuron in Fig. 1h) showed suppressed firing during saccade
preparation into its receptive field. c, The change in firing rate of V4 neurons
during saccade preparation into their receptive field (relative to saccade out
of their receptive field) correlates with population coupling (r 5 0.37,
P 5 1029, rank correlation, n 5 262 neurons). Black diamonds, running
median.
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METHODS
Electrophysiological recordings. Recordings in mouse primary visual cortex were
performed under licenses from the UK Home Office in accordance with the Animal
(Scientific Procedures) Act 1986. In the electrophysiological experiments, record-
ings were made from male and female mice older than 6–7 weeks, of C57BL/6J or
Thy1-ChR2 line 18 strains23. Randomization was not required as all animals were
treated similarly.

For recordings from awake mice, animals were first implanted with a custom-
built head plate and recording chamber under isoflurane anaesthesia. After 3 days
of recovery accompanied by Rimadyl treatment, the mice underwent two or three
head-restraint acclimatization sessions. On the recording day, the animals were
briefly anaesthetized with isoflurane and a craniectomy of ,1.5 3 1.5 mm was
made above the left primary visual cortex. The dura was resected with a 30G needle
and the brain was covered with Ringer solution and Kwik-Cast (WPI Inc.). At least
1.5 h of recovery between this procedure and the beginning of the recording were
allowed, a period that was more than sufficient for the animals to fully resume their
normal behaviour in their home cage. In some animals, an additional recording was
performed the following day; in this case the brain was again protected with Ringer
solution and Kwik-Cast in between the two recording sessions. Thirteen recordings
were made in eight animals, of which five recordings were in three Thy1-ChR2
line 18 mice, and the rest in C57BL/6J mice. Recordings were made with Buzsaki32
or A4x8 silicon probes (NeuroNexus technologies, Ann Arbor, Michigan), low-
ered to a depth of 550–1050mm (median 700mm) by a PatchStar manipulator
(Scientifica, Uckfield, UK). Signals were amplified and stored for offline analysis using
the Cerebus data acquisition system (Blackrock Microsystems, Salt Lake City, Utah).
For electrophysiological recordings in anaesthetized animals (Fig. 2 and Extended
Data Fig. 7), anaesthesia was induced with a mixture of fentanyl citrate, fluanisone
and midazolam (0.8 mg kg21, 25 mg kg21 and 12.5 mg kg21, respectively). A total
of nine recordings from anaesthetized animals were analysed. In a few of these
experiments, whole-cell recordings were performed in parallel with the silicon
probe population recording. The whole-cell intracellular recordings were per-
formed following the standard techniques for blind patching17,31,32, with the patch
pipette positioned ,200–400mm away from the plane of the silicon probe shanks.

For the electrophysiological data, the experimental setup was similar to the one
described in ref. 33, except that mice were standing in a custom-built tube, instead
of on a floating Styrofoam ball. In brief, visual stimuli were presented on two of the
three available LCD monitors, positioned ,25 cm from the animal and covering a
field of view of ,120u3 60u, extending in front and to the right of the animal. Visual
stimuli analysed in the present study consist of multiple presentations of natural
movie video clips (taken from The Life of Mammals, BBC, London, UK) and drift-
ing gratings (100% and 25% contrast, 2 Hz, 12 directions, spatial frequencies of
0.02, 0.04 0.08 and 0.25 cycles per degree). For recordings of spontaneous activity,
the monitors showed a uniform grey background.

Recordings in auditory cortex (Extended Data Fig. 3) were made in awake, head-
fixed male rats, in accordance with protocols approved by the Rutgers University
Animal Care and Use Committee. Experimental details were previously described
in refs 3, 18, 34. In the recordings analysed here, silicon probes with four shanks,
and four contacts in a tetrode configuration on each shank were used (NeuroNexus
technologies, Ann Arbor, Michigan).

Recordings in primate area V4 were made in two male monkeys (Macaca mulatta)
using 16-channel U-Probes (Plexon Inc., Dallas, Texas), in accordance with NIH
Guide for the Care and Use of Laboratory Animals, the Society for Neuroscience
Guidelines and Policies, and Stanford University Animal Care and Use Committee;
full experimental details were previously described in ref. 27. In brief, as part of the
behavioural task, a cue presented near the central fixation point indicated the
direction of a saccade that would be necessary at the end of the trial to obtain a
reward in the event of a change in the orientation of a peripheral stimulus.
Optogenetic stimulation. For in vivo electrophysiological recordings with opto-
genetic stimulation, we used Thy1-ChR2 line 18 mice, a transgenic line in which
ChR2 is expressed in a sparse subset of cortical L5 pyramidal cells23. In these mice,
in addition to recording spontaneous and visually evoked activity, we also recorded
activity in response to optogenetic stimulation consisting of 500 ms light pulses of
,2 mW per mm2 intensity, delivered by a 470 nm (blue) LED (M470F1, Thor Labs,
Newton, New Jersey), and focused on a circular area of ,1 mm2 centred on the
silicon probe insertion site.

To estimate the proportion of recorded neurons directly activated by ChR2, we
performed a control experiment, in which 20- and 40-Hz trains of five 2-ms pulses
of ,100 mW per mm2 intensity were delivered to the silicon probe insertion site
using a MBL-III 473 nm 150 mW blue light laser (CNI, Chungchun, China). Reliable,
short latency (,5 ms) and low jitter (,1 ms) responses were found in ,5% of the
units, indicating that ,95% of cells were driven polysynaptically rather than directly.
Data analysis (electrophysiology). Spikes were detected and visually verified using
the programs NDmanager and Neuroscope35. Spike sorting involved an automated

stage, performed using KlustaKwik36, and a manual verification stage for which
Klusters35 or KlustaViewa37 were used. Detailed analysis of coupling to population
rate and LFP was performed only for units with isolation distance .20 (see refs 38, 39).
Units were selected and sorted blind to measures of population coupling and all
other cellular parameters.

Population rate (for example, in Fig. 1c) was computed by accumulating all the
detected spikes (both well-isolated units and multi-unit activity) with 1 ms resolu-
tion, and smoothing the resulting vector with a Gaussian of half-width 12 ms. The
population rate used to compute the stPR for any individual unit did not include
the spikes of that unit. The baseline level of each stPR (which reflects the mean
population rate) was subtracted.

For stLFP computations, raw extracellular signals were first digitally band-pass
filtered offline between 0.1 and 200 Hz to isolate the LFP. For units recorded on a
particular shank, the LFP was taken from an adjacent shank (200mm away), to avoid
contaminating the stLFP by the spike waveform itself. The size of stLFP was taken
as the ordinate value of the negative peak of the cross-correlation in a 1 s interval
around 0 lag. stLFPs were normalized similarly to stPRs (see below).

The size of the stPR was quantified as the value of the spike-triggered population
rate at 0 time lag. Thus, the population coupling of unit i is given by:

ci~
1
fik k

ð
fi tð Þ

X

j=i

fj tð Þ{mj

" #
dt

Here, f represents the smoothed firing rate of a neuron (Gaussian kernel of half
width 12=H2 ms), m is its mean firing rate, and fk k represents its norm (that is, the
number of spikes fired). To compare the sizes of stPRs across recordings, they were
normalized by the median size of the stPR of the shuffled data in each recording
(see next paragraph).

Spike shuffling was performed according to the previously described raster
marginals model14. In more detail, the recording was first divided into non-over-
lapping 1 ms bins. A binary matrix was then constructed with one column for each
time bin and one row for each isolated unit as well as additional rows for the mul-
tiunit spiking on each shank. Each matrix element contained a 1 if the correspond-
ing unit spiked in the corresponding time bin. To shuffle, random 2-by-2 submatrices
were repeatedly chosen with each row and column of the submatrix containing a
0 and 1; the positions of 0s and 1s were then exchanged in the submatrix, which
leaves the summed values of each row and column identical. As we have discussed
previously14, such a shuffling procedure produces in the limit a uniform sample
from a distribution subject to the constraints on the mean firing rate and popula-
tion rate distribution of the original data.

To characterize the responses of individual cells to drifting grating stimuli, the
response for each orientation was averaged across trials, contrasts and spatial fre-
quencies, and the orientation with the highest value was taken as preferred. The
spatial frequency that evoked the highest response along the preferred orientation
was taken as the preferred spatial frequency. The orientation selectivity index (OSI)
was computed as: (Rpref {Rortho)=(Rpref zRortho), where Rpref and Rortho are the
responses in the preferred and orthogonal orientations. f1/f0 was taken as the ratio
between the power of the average response around 2 Hz (which was the temporal
frequency of the drifting grating stimuli) and the mean increase in the firing rate
above the spontaneous level.

In primate area V4, we measured the firing rate changes during saccade prepa-
ration for isolated single neurons. Spikes were counted during the interval between
0.5 s after cue onset and the end of the post-cue period (that is, the start of the blank
period), and were converted to firing rates for each trial based on the duration of
that period. We compared firing rates from trials for which the cue indicated a
saccade into the receptive field would be required and trials for which the cue indi-
cated a saccade to an orthogonal location outside the receptive field would be required.
Only spikes from correctly performed trials were considered for this analysis. Peak
stPR size was measured identically to rodent electrophysiological recordings, and
was computed from the continuous recording of the entire experimental session.
Two-photon imaging. All procedures were performed under licenses from the UK
Home Office in accordance with the Animals (Scientific Procedures) Act 1986. In
the imaging experiments C57BL/6J mice of P22–26 age and both sexes were used.
Anaesthesia was induced with fentanyl, midazolam and medetomidine (0.05 mg kg21,
5.0 mg kg21 and 0.5 mg kg21, correspondingly) and later maintained by isoflurane
(0.3–0.5%) in a 60:40 mixture of oxygen and nitrous oxide. The experimental setup
for two-photon imaging was described in refs 24, 25. In brief, visual stimuli were
presented on an LCD monitor ,20 cm from the animal, covering a field of view of
,105u3 85u. The calcium-sensitive dye Oregon Green BAPTA-1 (OGB-1) was
bulk loaded into the superficial layers of the cortex together with sulforhodamine
101 to distinguish glia from neurons.

We used two data sets in the analysis, recorded from 18 and 15 animals, respec-
tively. In the first data set (previously described in ref. 24), visual stimuli included
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full-field and localized drifting gratings and natural movies. The gratings were
shown at 100% contrast, 2 Hz temporal frequency, spatial frequency of 0.035 cycles
per degree, and 8 directions. Cortical areas of ,285 3 285mm were imaged at 7.6 Hz
and 256 3 256 pixel resolution, and the imaging was performed for ,8–16 differ-
ent depths, 7mm apart.

In the second data set40, static natural images and natural movies (either video
clips from The Life of Mammals or cage scenes from a head-mounted mouse camera)
were presented. A volume of ,200 3 200 3 50mm was imaged simultaneously at
512 3 512 3 4 pixel resolution using a piezoelectric objective mover. In each exper-
iment 2–3 such volumes were imaged.

After in vivo imaging, whole-cell in vitro recordings of the imaged neurons were
performed as previously described24. In brief, at the end of the in vivo imaging
session the brain was removed, 300-mm thick coronal slices were cut and the slice
containing the in vivo imaged region was located by the presence of OGB-1. A simul-
taneous recording from several nearby neurons was performed using a standard
whole-cell in vitro protocol. Synaptic connections between neurons were tested
using 30-Hz trains of five suprathreshold 5-ms current pulses, and checking for
postsynaptic responses in the other cells. The current injection train was repeated
at least 30 times with 15-s intervals. Pyramidal cells and interneurons were dis-
tinguished by spike width, resting membrane potential, responses to 1-s depolar-
izing currents, and somatodendritic morphology when filled with Alexa dye. For
the analysis of the relationship between coupling strength and probability to receive
(provide) a synaptic connection (Fig. 4), we excluded pairs where the potential
target (source) cell was an interneuron or a neuron for which no in vivo calcium
trace was available. Simultaneously patched neurons could have been imaged non-
simultaneously, which happened when the cells resided in different imaging planes
or volumes. In total, 379 neurons were recorded; of 854 potential input connec-
tions tested, 146 synaptic connections were found. Of 854 potential output connec-
tions tested, 155 synaptic connections were found. The number of potential input
and output connections were equal by coincidence; some of the input connections
were not analysed as output connections because one of the cells was either an
interneuron or had no in vivo data, and vice versa.
Data analysis (imaging). Outlines of recorded neurons were detected semi-
automatically using custom software written in MATLAB (MathWorks, Natick,
Massachusetts). All pixels within individual outline were averaged to give for each
neuron a singleDF/F signal, which was additionally high-pass filtered above 0.02 Hz
to correct for slow artefacts such as photobleaching.

The population coupling of each cell i was estimated by a similar formula to that
used in spike train data:

ci~
1
fik k

ð
fi tð Þ

X

j=i

fj tð Þ{mj

" #
dt,

where f now represents the continuous fluorescence trace of a cell (DF/F), and fk k
its standard deviation. Note that ci is proportional to the Pearson correlation of
cell i with the summed activity of all other neurons. To pool data across multiple
experiments, the normalization factor was computed not by spike shuffling (which
is not possible for calcium traces) but by z-scoring the population coupling values
within each recording.

For grating responses, the orientation selectivity index (OSI; Extended Data
Fig. 6g) was estimated as (Rbest{Rortho)=(RbestzRortho), where Rbest and Rortho are
the interpolated responses to drifting gratings in the best direction and the direc-
tions orthogonal to it.
Statistics. Unless explicitly stated otherwise, comparisons between pairs of sets of
values were made using Wilcoxon rank sum test and correlations were measured
using Spearman’s rank correlation coefficients (an important exception being the
pairwise spike train correlations, for which, as commonly accepted, we used Pearson
correlation). No statistical methods were used to predetermine sample size.
Pairwise correlation prediction. To predict pairwise correlations from coupling
values, we used an extension of the raster marginals model14 that now also included
a population coupling parameter for each neuron. The spike trains of all neurons
are first converted into a binary 0–1 matrix with 20-ms bins. The parameters extracted
correspond to: (i), the total number of 1 s in row i, for all i between 1 and the number
of rows n; (ii), the total number of columns whose sum is i, for all i between 0 and n;
and (iii) the inner product of each row with the sum of all rows (representing the
stPR for the unit corresponding to the row).

Pairwise correlations were predicted by constructing a random matrix that respects
the constraints represented by the above parameters, and computing the correlations
between all pairs of rows in this random matrix. To construct such a random

matrix we first construct a random matrix that respects constraints (i) and (ii),
as described in ref. 14, and then perform a sequential operation to impose satis-
faction of constraint (iii). This sequential operation consists of repeatedly exchan-
ging 2 3 2 sub-matrices between rows whose population coupling is too high and

too low. Specifically, observe that if there exists a row ni for which ni,
P

j
nj

* +

(the inner product with the sum of all rows) is too high, then there must also
exist another row for which this inner product is too low; this is because
P

i
ni,
P

j
nj

* +
~

P
i

ni,
P

j
nj

* +
, which depends only on the population rate dis-

tribution and is thus invariant to sub-matrix exchange.
The satisfaction of constraint (iii) occurs by repeatedly finding a pair of rows

that violate the constraint in opposite directions, while such pairs exist. For each
such pair of rows, we find a pair of columns that forms a 2-by-2 sub-matrix such
that each row and column of it contains a 0 and 1, and switch the 0s and 1s in a way
that preserves constraints (i) and (ii) and reduces the violation of constraint (iii) in
this pair of rows. This procedure is repeated until (iii) is satisfied (up to a small
error of at most n).

To measure how well this method could predict pairwise correlations, we used
cross-validation. Time bins were divided at random into an equally-sized training
and test set. Model parameters were fit from the training set, and the prediction
error of the model was quantified as SSmodelErr~

P
ivj

(cij{ĉij)
2, where cij is the cor-

relation between neurons i and j measured in the test set, and ĉij the correlation
predicted by the model with parameters estimated on the training set. This error
was compared to a ‘ground truth’ prediction, SSdataErr~

P
ivj

(cij{c0ij)
2, where c0ij is

the correlation between neurons i and j as directly measured in the training set.
The quality of the model fit was defined to be the fraction of explainable variance:
SStot{SSmodelErr½ $z= SStot{SSdataErr½ $, where SStot~

P
ivj

(cij{!c)2 and!c is the mean
pairwise correlation.

Latent variable analysis of the population recordings was performed using
the publically available toolbox of L. Buesing and J. Macke (http://bitbucket.org/
mackelab/pop_spike_dyn; see also ref. 21). The toolbox uses a nuclear norm mini-
mization method4 to fit a low-dimensional model of the form st*Poisson eytð Þ, where
yt~Cxtzd. The latent variables xt were modelled using a multivariate Gaussian
distribution. The performance of this model was assessed by its ability to predict
pairwise correlations, quantified with cross-validation measures described above.
To generate correlations we fitted the parameters of the model and then used these
parameters to sample spike count vectors.
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Extended Data Figure 1 | Pearson correlation between spike trains of
individual units and the population rate. To estimate the relation of a neuron
to the population, an alternative to spike-triggered population rate (stPR)
would have been to compute the Pearson correlation coefficient of the neuron’s
spike train with the summed population rate of all other recorded cells
(a measure we term ‘Pearson coupling’). This measure, however, is biased by
firing rate. a, Pearson coupling and stPR were computed for a set of individual
units in an example experiment. Pearson coupling is related to the stPR, but
not identical to it. b, The numerical value of the Pearson coupling depends

strongly on the bin size used, but the correlations measured with different bin
sizes are tightly related. c, Pearson correlation is biased by firing rate41,42.
The spike train of a single cell was ‘thinned’ to different firing rates by keeping
only a random subset of its spikes; Pearson correlation with the population was
recalculated for different values of firing rate. A strong effect of firing rate is
seen. d, Performing the same analysis for population coupling (measured by
stPR) demonstrates that this measure does not suffer from rate bias. For this
reason, we chose to quantify population coupling with stPR in this work.
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Extended Data Figure 2 | Neighbouring neurons differ markedly in
population coupling during spontaneous activity. a, Dividing the data
into two halves shows that population coupling, measured as the height of
stPR at 0 time lag, is highly consistent over time (n 5 431 neurons from
13 experiments; r 5 0.76, P , 102100, rank correlation). Coloured dots
represent the four example cells. b, As in a for peak spike-triggered local field
potential (stLFP) (r 5 0.58, P , 102100). c, Differences in stLFP disappear after

shuffling spikes in a manner that preserves each neuron’s mean firing rate
and the population rate (compare with Figure 1g). Inset, stLFPs in the actual
spike trains (red) and after shuffling (grey), for neurons from all experiments
(compare with Figure 1g). d, stPR size of V4 neurons is consistent over
time (n 5 262 neurons from 43 experiments; r 5 0.95, P , 102100, rank
correlation).
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Extended Data Figure 3 | Neighbouring neurons in auditory cortex differ
markedly in population coupling. a, Spike-triggered population rate (stPR)
for four example neurons recorded on the same electrode shank, during
spontaneous activity in rat primary auditory cortex. b, Differences in
population coupling disappear after shuffling spikes in a manner that preserves
each neuron’s mean firing rate and the population rate distribution. c, d, As in
a, b for the spike-triggered local field potential (stLFP). e, Dividing the data
into two halves shows that population coupling, measured as the height of
stPR at 0 time lag, is highly consistent over time (n 5 76 neurons from
3 experiments; r 5 0.92, P , 102100, rank correlation). Coloured dots
represent the four example cells. f, As in e for stLFP (r 5 0.81, P , 102100,
rank correlation).
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Extended Data Figure 4 | Firing rate, burstiness and population coupling.
a, Similarly to other studies20,43 our recordings allow separation of narrow
spiking (putative Pvalb1 inhibitory) and wide spiking (primarily excitatory
pyramidal) neurons. Here, we used a trough-to-peak time of 0.66 ms as the
separation criterion. b, There is a negative correlation between burstiness
(the ratio between the peak and baseline of a neuron’s autocorrelogram) and
mean firing rate, which is also the case individually for wide spiking (n 5 384,
r 5 20.60, P , 1029, rank correlation) and narrow spiking (n 5 47,
r 5 20.82, P , 1029, rank correlation) neurons. a.u., arbitrary units. c, There is
a positive correlation between burstiness and population coupling, which is also
the case individually for wide spiking (r 5 0.46, P , 1029, rank correlation)

and narrow spiking (r 5 0.50, P 5 4 3 1024, rank correlation) neurons.
d, There is a negative correlation between firing rate and population coupling,
which is also the case individually for wide spiking (r 5 20.27, P 5 1027, rank
correlation) and narrow spiking (r 5 20.37, P 5 0.01, rank correlation)
neurons. The correlation between population coupling and firing rate can be
predicted from the correlations between burstiness and firing rate and between
population coupling and burstiness; the partial rank sum correlation
between population coupling and firing rate, once burstiness is taken into
account, is insignificant (r 5 0.06, P 5 0.25). This is also the case for wide
spiking (r 5 0.01, P 5 0.78) and narrow spiking (r 5 0.07, P 5 0.65)
neurons individually.
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Extended Data Figure 5 | Latent variable analysis. a, Population coupling of
each neuron is highly correlated with its loading in a single-factor latent
variable model (see Methods). The similarity of each cell’s population coupling
and loading indicates that the low-dimensional structure found by the latent
variable model is homologous to that found by the coupling model. b, Percent
of pairwise correlation structure explained by a latent variable model with
1–5 factors (black), and by the coupling model introduced in the present study

(dashed purple line). Error bars show standard error. While the coupling model
outperforms latent variable models with less than four degrees of freedom,
this difference may arise primarily from the assumption of a Gaussian
distribution for the latent variables. Indeed, if the population rate distribution
generated by the latent variable model is substituted into the coupling
model instead of the (correct) populate rate distribution, extremely poor
performance results (dashed grey line).
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Extended Data Figure 6 | Population coupling and visual stimulation in
mouse V1. a, stLFPs computed for the four example neurons of Fig. 1a–f, from
intervals of natural movie presentation (inverted for ease of comparison, see
Figure 1f). b, Comparison of stLFP size during spontaneous and evoked activity
across all experiments (r 5 0.72, P , 102100, rank correlation). c–e, Population
coupling is plotted versus the f1/f0 ratio, preferred spatial frequency and
orientation selectivity index (OSI) for neurons recorded in the infragranular
layers of V1. All correlations are statistically insignificant. f, Similar to movie

presentations (Figure 3e), the mean change in the activity of a cell in response
to grating presentations (relative to baseline, averaged across contrasts and
orientations) correlates with population coupling measured during
spontaneous activity (r 5 0.32, P 5 2 3 1026, n 5 217, rank correlation). Black
diamonds, running median. g, In the two-photon imaging data (of ,10,000
cells) only a very weak correlation between OSI and population coupling was
found (r 5 0.066, P , 1029, rank correlation).
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Extended Data Figure 7 | stLFP reflects the correlation between membrane
potential (Vm) and LFP. a, Example of a silicon probe population recording
performed simultaneously with a whole-cell recording (in an anaesthetized
animal). Four neurons shown in colour were recorded on the same shank of the

silicon probe. b, Comparison of stLFP and Vm–LFP cross-correlation
(VmLFPcc, appropriately scaled along the ordinate axis) for the intracellularly
recorded cell. c, stLFP for the four neurons from a and the intracellularly
recorded neuron, exhibiting diversity in the strength of coupling to LFP.
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Extended Data Figure 8 | Population coupling in two-photon data is not
correlated with location and intrinsic properties of the neurons. a, For each
neuron in the central region of the imaging field (defined as a square quarter
of the total imaging area), we compared its coupling to the population of all
other neurons in the central region, with its coupling to population of all
neurons outside of the central region. The two were highly similar; this was the
case because the two population rate signals were themselves highly correlated

(on average across experiments the Pearson correlation was 0.77). Thus,
differences in population coupling measured between cells do not reflect
differences in the fraction of nearby neurons imaged. b–d, No significant
correlation was observed between population coupling (measured in vivo) and
resting potential, input resistance and spike threshold (subsequently measured
in vitro).
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Extended Data Figure 9 | Correlation between input connectivity and
population coupling. a, Cumulative distribution of population coupling of a
target pyramidal neuron when an input connection was present (red) and
when it was absent (blue). The medians (arrows) are significantly different
(P 5 0.008, rank sum test, n 5 854 pairs). b, As in a for population coupling of
the source pyramidal cells. The distributions shown were used for the logistic
regression analysis in Fig. 4. c–f, To estimate what strength of correlation
between input connectivity and population coupling would give rise to these
observations, we constructed random directed graphs of 1,000 nodes (each
node representing a L2/3 pyramidal cell) with the probability of connection

from node j to node i given by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pi

inpj
out

q
, where the propensities to receive and

provide connections (pin and pout, correspondingly) were randomly and
independently chosen for each node from a Gaussian distribution. The
resulting distribution of the number of input connections in a typical network is
shown in c; the number of output connections was (by construction) similarly
distributed. In addition, each node was assigned a population coupling

value, highly correlated to the number of its input connections (on average
r 5 0.65); this correlation in a typical network is shown in d. e, f, We next asked
how the relationship between measured connectivity and population
coupling would look if we sample from 33 such randomly generated networks
(equal to the number of animals used in our experimental data), the same
amount of data empirically available in our in vitro recordings (that is, the
connections between 2–3 randomly selected groups of 2–6 nodes). Results very
similar to those of Fig. 4 were typically obtained (e, f; compare with a and
Fig. 4d; error bars in f indicate standard error for binned data). In particular,
when the entire procedure was repeated 1,000 times, in over 30% of the
cases the P value of the difference between the medians (presented in a, e)
was higher (that is, less statistically significant) than the value of 0.008
obtained in the actual data. Thus, the results shown in Fig. 4 and in a are
consistent with a strong correlation between connection probability and
population coupling.
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Extended Data Figure 10 | Mathematical model for the relationship
between nonspecific connectivity, specific connectivity, and correlations.
a, A recurrent network where excitatory cells (triangles) send synaptic
connections (arrows) to each other and to inhibitory cells (circles). Weakly
coupled neurons (bottom) receive only connections from neurons with similar
sensory preference (for example, for stimulus orientation, indicated in blue
versus red). Strongly coupled neurons (top) also receive nonspecific
connections from neurons of different sensory preference. b, The effect of
nonspecific drive, such as caused by non-sensory top-down inputs, or
occurring due to artificial optogenetic stimulation, is amplified through
recurrent connections, leading to stronger activation of neurons with greater
mean local input (darker shading). c, d, Correlations predicted by the model
(analytically derived in Supplementary Information). c, Population coupling
versus nonspecific connectivity ci, for all simulated excitatory neurons.

d, Pseudocolour plot of predicted pairwise correlations for a random subset of
excitatory neurons, ordered by population coupling. e–h, Dependence of
correlations on specific and nonspecific connectivity. e, Predicted correlations
based on nonspecific connections versus total observed correlations.
f, Predicted correlation based on nonspecific connectivity versus difference in
preferred orientation. As in the experimental data (Fig. 2e), no relation is
observed. g, Observed correlation versus difference in preferred orientation.
As has been widely reported, observed correlations are largest for neurons of
similar orientation preference. h, Residual correlation (after removing
prediction from nonspecific connectivity) versus difference in preferred
orientation. Again as in our experimental data (Fig. 2f), the residual correlation
is largest for neurons of similar orientation preference, indicating an additive
relationship between correlations generated by specific connections and
correlations generated by nonspecific connections.
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