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The prefrontal cortex plays an important role in the mainte-
nance of working memory, as evidenced by studies using 
microelectrode recordings1, lesions2, inactivation3, micro-

stimulation4,5, and functional neuroimaging6. Furthermore, the pre-
frontal cortex suppresses task-irrelevant stimuli, or distractors3,7,8. 
This has led to the notion that the prefrontal cortex plays a central 
role in the maintenance of working memory and the suppression of 
distractors, which are cornerstones of executive processing.

Individual neurons in the lateral prefrontal cortex (LPFC; 
Brodmann area 46) show selective, sustained activity during the 
delay period of working memory and only as long as the memory is 
maintained1,9,10. Populations of LPFC neurons form a stable memory 
code during the delay period of a working memory task11. Distractors 
are thought to be suppressed in the LPFC, since it responds less to 
distractors than to task-relevant stimuli3,7,8. Notably, sustained activ-
ity of LPFC neurons persists even after distractors are presented3,10. 
Thus, it is reasonable to hypothesize that the stable code observed 
during the delay period persists after a distractor is presented, form-
ing a persistent code throughout the memory period.

Recent studies have shown that the LPFC hosts an abundance 
of neurons with mixed selectivity12–19. These cells encode multiple 
parameters of the task simultaneously, such as sensory stimuli, task 
rule, or motor response. In particular, neurons with nonlinear mixed 
selectivity (NMS) are thought to play a key role in the encoding 
of information18,20. In the context of a working memory task with 
interfering distractors, mixed selectivity could lead to a change in 
code after the distractor is presented. Thus, it is also reasonable to 
hypothesize that the code does not persist throughout the memory 
period but rather that it is flexible, with the ability to adapt to new 
task contingencies, such as the presentation of a distractor. Here we 
found that the LPFC morphs its code, as the latter hypothesis pre-
dicts, while the frontal eye fields (FEF) maintain a stable code, in 
agreement with the former hypothesis.

Results
Two monkeys were trained to perform a delayed saccade task 
(Fig.  1a). Overall performance of both animals was higher than 
75% correct (Fig.  1b). We recorded a total of 256 neurons from 
the LPFC (144 from Monkey A and 112 from Monkey B; the posi-
tions of the implanted electrode arrays are shown in red in Fig. 1c) 
and 137 neurons from the FEF (125 from Monkey A and 12 from 
Monkey B; electrode arrays are shown in blue in Fig. 1c) while the 
animals performed the task.

Of the neurons recorded, more than 40% displayed selectiv-
ity to target location in at least one stage during the trial (Fig. 1d). 
Examples of the responses of an LPFC and an FEF neuron are shown 
in Supplementary Fig. 1a,b. To quantify the magnitude of this selec-
tivity, we computed the percentage of explained variance (PEV) 
for spatial selectivity in each neuron. The average PEVs across 
significant neurons (Methods) are shown in Fig. 1d. In the LPFC, 
we observed that target information in selective cells (n =​ 107, 42% 
of the LPFC population) increased during the target presentation 
period and remained stable throughout the rest of the trial (Fig. 1d). 
In addition, in Supplementary Fig. 1c, we show that the distractor 
information was much lower in these same neurons during the Delay 
2 period (P <​ 0.001, Hedges’ g =​ 23.99). A previous study found a 
sharp decrease in target information following distractor presen-
tation, together with an increase of distractor information21. Our 
results, however, did not replicate these observations. Rather, we 
found that target information remained stable, and distractor infor-
mation stayed close to baseline throughout the trial (Supplementary 
Fig. 1c). This difference may reflect the simpler nature of our task 
and the comparatively lower behavioral saliency of the distractor 
we used. It may also reflect differences in the ways different types 
of information are encoded; perhaps the working memory code 
for numerosity in LPFC is more susceptible to distractors than 
the code for spatial locations. In contrast, in the FEF we observed 
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that, on average, target information in selective cells (n =​ 66, 48% of 
the FEF population) peaked during the target presentation period 
(P <​ 0.001, g =​ 13.27) and dropped below the PEV values found in 
the LPFC for the rest of the trial (P <​ 0.001, g =​ 6.54). Similarly to 
the results seen for LPFC neurons, the distractor information in 
Delay 2 was also significantly lower than target information in these 
FEF neurons (P <​ 0.001, g =​ 21.42; Supplementary Fig. 1d), although 
for a brief period during the distractor presentation, the distractor 
information was not significantly different from the target informa-
tion (P ≈​ 0.94). This showed that, on average, individual LPFC neu-
rons retained more information about the target than FEF neurons. 
However, this analysis did not address how information about the 
target was stored in the population of LPFC and FEF neurons.

Distractor presentation leads to code morphing in the LPFC. We 
employed cross-temporal decoding methods11 to evaluate the stabil-
ity of the code used by the population to distinguish different target 
locations (Methods and Supplementary Fig. 2). The decoding anal-
ysis was carried out only in seven locations, since one animal had 
difficulty performing the task when the target was in the lower-right 
location. Thus, chance performance of the decoder was 1 out of 7, 
or 14%. In the LPFC, we found an initial period (200–650 ms) of 
dynamic changes in the code during the stimulus presentation and 
early delay period, during which the decoder performed well only 
when the testing windows and training windows were very close in 
time. Soon after, the code settled into a period of stability in Delay 1,  
during which the decoder performed well even when the testing 
windows and the training windows were separated in time (consis-
tent with an earlier study11). This was maintained until the presen-
tation of the distractor (Fig. 2a). After the distractor was presented, 
during Delay 2, the population settled into another period of stabil-
ity, which persisted until the Go cue (Fig. 2a). Notably, the decoder 
performed poorly when it was trained in Delay 1 and tested in Delay 
2, and vice versa (Fig. 2a), suggesting that a change occurred in the 
population code after the distractor presentation. To quantify this 
effect, we calculated the average decoding performance in the last 
500 ms of each quadrant (Fig. 2a) and obtained the following decod-
ing performance values (LP, LPFC performance; FP, FEF perfor-
mance): LP11 (classifier trained and tested in Delay 1), LP12 (classifier 
trained in Delay 1 and tested in Delay 2), LP22 (classifier trained and 
tested in Delay 2), and LP21 (classifier trained in Delay 2 and tested 
in Delay 1). The average cross-temporal decoding performance 
fell from 50.5% in LP11 to 32.4% in LP12 (Supplementary Fig.  2a; 
P <​ 0.001, g =​ 18.42). However, LP22 was not significantly different 
from LP11 (P ≈​ 0.50). These results suggest that, in the LPFC, the dis-
tractor triggered a change in the Delay 1 code such that it morphed 
into a different code in Delay 2 with no loss in performance.

To assess whether this morphing in the code was qualitatively 
and quantitatively different from the temporal evolution of the code 
in Delay 1, it would be ideal to compare our results to an experimen-
tal condition in which the animal was required to hold the target 
position in working memory for the same duration but no distrac-
tor was presented. Unfortunately, this condition was not included 
in our experiments. In lieu of this condition, we characterized the 
changes in performance throughout the trial. Fig. 2b shows a heat 
map of the change in performance in cross-temporal decoding in 
the LPFC at one timepoint, ti, and a timepoint three bins later, ti+3 
(LP(ti) −​ LP(ti+3)). For classifiers trained in Delay 1, the changes 
before the distractor onset were quite small (with a mean value of 
–0.12%), consistent with the presence of a stable population code 
in Delay 1. However, much larger changes (mean: 7.15%) could be 
seen close to the distractor offset, corresponding to a qualitative and 
quantitative change in the population code. For classifiers trained 
in Delay 2, similarly large changes (mean: –8.98%) occurred near 
the distractor offset (Fig. 2b); these were different from the smaller 
changes (mean: 1.57%) found in Delay 2. We also analyzed the rate 

a

Prin
cip

al

Arcuate

Pr
inc

ipa
l

Arcuate

c

b

Monkey A Monkey B

FEF
LPFC

Behavioral task

Fixation
500 ms

Target
300 ms

Delay 1
1,000 ms

Distractor
300 ms

Delay 2
1,000 ms

Response
cue

Behavioral performance

Electrode positions

0 0.3 1.3 1.6
0

2

4

6

8

10

12

14

16

Correct
77%

Error
24%

Correct
74%

Error
26%

Monkey A Monkey B

PE
V

 (%
)

Time from target onset (s)

d Percentage of explained variance 

42%
58%

48% 52%

Selective neurons
LPFC FEF

n = 256 
neurons

n = 137 
neurons

Fig. 1 | Experimental design. a, Behavioral task: each trial began when 
the monkey fixated on a fixation spot in the center of the screen. He was 
required to maintain fixation throughout the trial until the fixation spot 
disappeared. A target (red square) was presented for 300 ms, followed by 
a 1,000-ms delay period (Delay 1). A distractor (green square) was then 
presented for 300 ms in a random location, which was different from the 
target location, followed by a second delay of 1,000 ms (Delay 2). After 
Delay 2, the fixation spot disappeared, which was the Go cue for the monkey 
to report, using an eye movement, the location of the target. b, Pie charts 
indicate the performance of the two animals in our experiment. c, Implant 
locations of 16-channel and 32-channel electrode arrays (with electrode 
lengths ranging from 5.5 mm closer to the sulci, to 1 mm further from the 
sulci) in the LPFC (red dots) and the FEF (blue dots) in the two animals. 
 d, Average PEV for selective neurons in the LPFC (red) and FEF (blue) plotted 
as a function of time in the trial. Inset: proportion of neurons in the LPFC 
and FEF that exhibited spatial selectivity to the target location in at least one 
stage during the trial. P values were 3.62 ×​ 10−84 to 4.87 ×​ 10−2 for selective 
LPFC neurons and 7.17 ×​ 10−76 to 4.95 ×​ 10−2 for selective FEF neurons.  
F values were 1.06–82.5 for selective LPFC neurons and 1.50–84.4 for selective 
FEF neurons. Degrees of freedom were either 6 or 7, depending on which 
animal the neuron was recorded from, for both LPFC and FEF. Shaded regions 
around the line plot indicate the 95th percentile range (two-sided). Gray 
shading at 0 s and 1.3 s indicates target and distractor windows, respectively.
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of change in performance before and after the distractor offset. 
Figure 2c shows the average performance for LPFC classifiers trained 
in Delay 1, as well as for classifiers trained in Delay 2. Best-fit lines 
are superimposed on the average performance curves for illustrative 
purposes, but in our analysis, we actually performed the fit for the 
individual classifiers (Supplementary Fig. 2a). Figure 2d shows the 
distribution of the means of the slopes of those best-fit lines in Delay 
1 and Delay 2. The line fits were generally good, with the following 
mean R2 values: LP11, 0.24; LP12, 0.74; LP22, 0.2; LP21, 0.92. We found 
that the changes in performance of the Delay 1 classifiers were very 
small during Delay 1 (with slope values that were not significantly 
different from 0, P ≈​ 0.27), but performance decreased dramatically 
after the distractor offset (median slope values were –10.4% per s, 
P <​ 0.001). Similarly, Delay 2 classifiers exhibited very small changes 
in performance in Delay 2 (with slope values that were not signifi-
cantly different from 0, P ≈​ 0.09), but the performance decreased 
dramatically in Delay 1 (median slope values were 22.1% per s, 

P <​ 0.001). These results show that the distractor presentation clearly 
altered the population code in a way qualitatively and quantitatively 
different from the normal temporal evolution of the code.

To determine whether the morphing in population code was a 
general feature of prefrontal processing, we carried out the same 
analysis in the FEF (Fig. 2e). Similarly to our findings in the LPFC, 
we found an initial period (200–650 ms) of dynamic changes in the 
code during the stimulus presentation and early delay period, which 
settled into a period of stability in Delay 1. In contrast to what we 
found in the LPFC, after presentation of the distractor, there was 
a significantly smaller drop in performance from 39.0% in FP11 to 
28.8% in FP12 (P <​ 0.001, g =​ 12.15). More importantly, FP22 was 
31.7 ±​ 0.7%, a significant drop in performance compared to FP11 
(P <​ 0.001, g =​ 9.03). This suggested that, unlike the LPFC, which 
exhibited a change in code after the distractor presentation without 
a loss in performance, in the FEF the code appeared to degrade in 
Delay 2. We also looked at the rate of change in performance of the 

0 0.3 1.3 1.6

0
0.3

1.3
1.6

Cross-temporal decoding 

Performance (%)

Performance (%)

0
0.3

1.3

1.6

Testing windows aligned to target onset (s)

Tr
ai

ni
ng

 w
in

do
w

 a
lig

ne
d 

to
 ta

rg
et

 o
ns

et
 (s

)
Tr

ai
ni

ng
 w

in
do

w
 a

lig
ne

d 
to

 ta
rg

et
 o

ns
et

 (s
)

a

e

0 0.3 1.3 1.6
Testing windows aligned to target onset (s)

10 20 30 40 50 60

0
0.3

1.3

1.6

–40 –30 –20 –10 10 20 300

Tr
ai

ni
ng

 w
in

do
w

Testing window
0 0.3 1.3 1.6

Di�erence in performance (%)

0

0.3

1.3

1.6

Tr
ai

ni
ng

 w
in

do
w

–40 –30 –20 –10 10 20 300

Testing window
0 0.3 1.3 1.6

Di�erence in performance (%)

15
20
25
30
35
40
45
50
55
60

0 0.3 1.3 1.6

15
20
25
30
35
40
45
50
55
60

0 0.3 1.3 1.6

Pe
rf

or
m

an
ce

 (%
)

Testing windows aligned to target onset (s)

Pe
rf

or
m

an
ce

 (%
)

Testing windows aligned to target onset (s)

–20

–10

0

10

20

30

40

–20

0

10

20

30

40

Trained in 
delay 1

Trained in 
delay 2

LP
11

LP
12

LP
21

LP
22

Trained in 
delay 1

Trained in 
delay 2

FP
11

FP
12

FP
21

FP
22

n.s.

n.s.

n.s.

n.s.

n.s. n.s.

**

**

Average performance of the 
decoder

Trained in delay 1
Trained in delay 2

Trained in delay 1
Trained in delay 2

Slope of the decoder 
performance 

at di�erent timepoints
LPFC (n = 256 neurons)

FEF (n = 137 neurons)

Fitted data True data

Sl
op

e 
of

 th
e 

cu
rv

e 
(%

 p
er

 s
)

Sl
op

e 
of

 th
e 

cu
rv

e 
(%

 p
er

 s
)

b c d

f g h

LP11 LP12

LP22LP21

FP11 FP12

FP22FP21

–10

10 20 30 40 50 60

Change in performance

Fig. 2 | Population decoding in the LPFC and FEF. a, Heat map showing the cross-temporal population-decoding performance in the LPFC. White lines 
indicate target presentation (0–0.3 s) and distractor presentation (1.3–1.6 s). Squares with dashed lines indicate time periods used to quantify and compare 
performance results (LP11, LP12, LP22, and LP21). b, Heat map showing the change in performance in cross-temporal decoding in the LPFC at timepoint ti and 
a timepoint three bins later, ti+3 (LP(ti) −​ LP(ti+3)). For classifiers trained in Delay 1 and Delay 2, the changes before and after the distractor onset were quite 
small, while much larger changes can be seen close to the distractor offset. c, Average performance for LPFC classifiers trained in Delay 1 and Delay 2. The 
performance for Delay 1 classifiers remained fairly stable during Delay 1 but fell rapidly during Delay 2. The opposite happened for the Delay 2 classifiers. 
Illustrative best-fit lines (thick lines) are superimposed on the average performance curves. d, Distribution of the means of the slopes of the lines that were 
fit to the performance of the individual Delay 1 and Delay 2 classifiers when they were tested in different windows. e–h, As in (a–d) but for FEF data. In 
box plot: center red line, median; box limits, upper and lower quartiles; notch limits, (1.57 ×​ interquartile range)/√​n; whiskers, 95th percentile range (two 
sided) of the distribution. Asterisks (**), significant (i.e., 95th percentile range of the distribution did not overlap with zero); n.s., nonsignificant (i.e., 95th 
percentile range of the distribution overlapped with zero).

Nature Neuroscience | VOL 20 | DECEMBER 2017 | 1770–1779 | www.nature.com/natureneuroscience1772

© 2017 Nature America Inc., part of Springer Nature. All rights reserved.

http://www.nature.com/natureneuroscience


ArticlesNaTure NeuroscIence

classifiers in the FEF. Figure 2f shows the change in performance 
in cross-temporal decoding in the FEF at one timepoint, ti, and a 
timepoint three bins later, ti+3 (FP(ti) −​ FP(ti+3)). In contrast to what 
we observed in the LPFC, changes in the FEF remained fairly small, 
with values that remained close to 1%. Similarly, the Delay 2 clas-
sifiers exhibited very small changes during both Delay 2 (1%) and 
Delay 1 (2%). Figure 2g,h shows the classifier performance and the 
slopes of the best-fit lines for FEF classifiers. The mean R2 values for 
the fits were generally good as well: FP11, 0.15; FP12, 0.14; FP22, 0.17; 
FP21, 0.53. However, in contrast to the LPFC, none of the slopes were 
significantly different from 0: FP11, P ≈​ 0.30; FP12, P ≈​ 0.12; FP22, 
P ≈​ 0.08; FP21, P ≈​ 0.27. These results show that, unlike in the LPFC, 
the population code in the FEF did not change in a qualitatively or 
quantitatively different way as a result of the distractor presentation.

State space analysis of code morphing. To further characterize the 
morphing of code seen in the LPFC, we used principal components 

analysis to characterize the change in the population response as 
a result of the presentation of the distractor (Methods). Figure 3a 
shows the responses in Delay 1 projected onto the first two princi-
pal components of the Delay 1 response space for each target loca-
tion. For comparison, we also projected the responses in Delay 2 
onto the same axes. These latter responses exhibited a clear shift 
from the cluster locations in Delay 1. This explains the large drop 
in performance when a classifier trained on Delay 1 responses was 
tested with Delay 2 responses. Similar shifts were found for Delay 2 
responses and Delay 1 responses when projected onto the top two 
principal components of the Delay 2 response space (Fig. 3b). To 
relate the cluster plots to the performance we observed in the cross-
temporal decoding in Figure 2a, we computed the average distance 
between responses in the full principal component analysis space for 
the same target location (intracluster distance) and the average dis-
tance between responses for different target locations (intercluster 
distance). The first measure quantifies the intracondition response 
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variability found at each target location, while the second quantifies 
the intercondition discriminability between target locations. The 
results are plotted in Figure 3c and show that the intracluster and 
intercluster distances for Delay 1 responses in Delay 1 space and for 
Delay 2 responses in Delay 2 space were not significantly different 
(P ≈​ 0.67 for intercluster distance, P ≈​ 0.27 for intracluster distance). 
This provides additional evidence that there was no loss in informa-
tion after the code morphing. We also quantified the shift in clus-
ter locations between the Delay 1 and Delay 2 responses illustrated 
in Figure 3a,b and found shifts that were significantly larger than 
chance in Figure  3d (Delay 1 space: P <​ 0.001, g =​ 24.72; Delay 2 
space: P <​ 0.001, g =​ 24.89). These results suggest that the morphed 
code in the population underwent a transformation that maintained 
the intracondition variability and intercondition discriminability, 
thus allowing the LPFC to maintain information after the presenta-
tion of the distractor.

In contrast, we found that in the FEF, unlike in the LPFC, there 
were much smaller shifts in the cluster positions (Fig. 3e,f). There 

were no significant increases in intercluster distances (P ≈​ 0.91), 
although there was a significant increase in intracluster distance 
(P <​ 0.001, g =​ 1.91; Fig.  3g). In addition, we found the shifts in 
cluster positions to be no larger than chance (P ≈​ 0.43 for Delay 1 
and P ≈​ 0.99 for Delay 2; Fig. 3h). This meant that the code mor-
phing in the FEF was very small, and the overall shift was not 
significant. Coupled with a significant increase in intracluster 
distances, it appeared that the population code in Delay 2 was a 
degraded version of the population code in Delay 1. After the Go 
cue, target information reappeared in the FEF before saccade onset, 
underscoring the role of the FEF in controlling eye movements 
(Supplementary Fig. 3).

Overall, these results suggest that the presentation of the distrac-
tor triggered reorganization of the target information in both the 
LPFC and FEF, but the LPFC was able to morph its population code 
in a way that retained information, while the population code in the 
FEF appeared to persist across delay periods, although with sub-
stantial loss of information. We also observed these shifts (as well as 
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term, respectively). b, An example of a neuron with LMS. This neuron exhibited an overall decrease in mean firing rate, but its selectivity did not change 
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9.09 ×​ 10−31 and 3.98 ×​ 10−2 for target location and between 1.37 ×​ 10−223 and 2.50 ×​ 10−2 for task epoch; those in the FEF exhibited P values between 
1.03 ×​ 10−20 and 4.33 ×​ 10−2 for target location and between 6.06 ×​ 10−29 and 1.52 ×​ 10−2 for task epoch. Neurons with CS in the LPFC exhibited P values 
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neuron was recorded. f, Using the F statistic, we also compared the effect sizes found in the neurons with NMS in the LPFC and FEF. The distribution of effect 
sizes found in the LPFC is shown by the solid red line, with the mean and the 95th percentile range (two-sided) shown with the red dashed vertical lines.  
The mean of the FEF population is shown by the blue dashed vertical line, which is clearly outside the 95th percentile for the LPFC.
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the cross-temporal decoding results described above) when using 
simultaneously recorded populations of neurons instead of pseudo-
populations (Supplementary Fig. 4). In addition, the code morph-
ing was also observed using a cross-correlation analysis of target 
PEVs22 (Supplementary Fig. 5). We did not find any evidence that 
the code morphing in the LPFC was dependent on the distractor 
location (Supplementary Figs. 6 and 7), although our analysis was 
underpowered, as we did not have enough repetitions to cover the 
large number of target–distractor combinations (Methods). Finally, 
we found that the LPFC encoded low but stable levels of distrac-
tor information in Delay 2 (Supplementary Fig. 1e), while the FEF 

encoded distractor information only during the distractor presenta-
tion period (Supplementary Fig. 1f).

Temporal stability in error trials. To assess the behavioral rel-
evance of the code morphing observed in the LPFC, we analyzed 
trials in which the animals waited for the Go cue but failed to report 
the correct target location (error trials). Due to the small number 
of error trials at some locations, we tested the decoding on just 
four of the locations with the highest rate of errors (Methods). We 
decoded the location of the target in error trials (the distribution 
of different types of error trials is shown in Supplementary Fig. 8). 
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For each time window ti in the error trials, we used the classifier 
trained in the same time window on correct trials and tested it 
across all time windows in error trials. Figure 4a shows the results 
of the cross-temporal decoding of error trials in the LPFC. Notably, 
the difference in performance of correct and incorrect trials in the 
initial stages of the response (t =​ 200–650 ms) was not significant 
(correct trials =​ 52.4 ±​ 0.2%; error trials =​ 48.9 ±​ 0.1%; P ≈​ 0.06), 
perhaps due to the fact that the initial response was dominated by 
the visual response (as seen in the similarity between 200 ms and 
650 ms in Figs.  2a and 4a). However, the mean performance of 
the decoder during Delay 1 (LP11) in error trials was significantly 
lower than in correct trials (P <​ 0.001, g =​ 7.37; Fig. 4b). This sug-
gested that in error trials, information in Delay 1 about the target 
location had already significantly deteriorated. LP22 was also sig-
nificantly lower in error trials compared to correct trials (P <​ 0.001, 
g =​ 11.29; Fig. 4c), but the difference between LP11 and LP22 in error 
trials was not significant (P ≈​ 0.12, data not shown). In Figure 4d, 
we show a comparison of code morphing in error trials to that in 
correct trials for an example target location (error trials for other 
target locations are shown in Supplementary Fig. 9). In some cases 
(e.g., Supplementary Fig.  9a; top middle location), the error tri-
als came very close to the correct trials, while in others (e.g., bot-
tom left location), they were more widely separated. In addition, 
the responses in Delay 2 were also projected onto the same space, 
with correct trials plotted using red dots and error trials plotted 
using brown dots. The plots show that, even in error trials, there 
were shifts in the cluster locations for many of the target locations, 
indicating code morphing. Notably, in some cases, the clusters in 
the error trials were highly overlapped with the clusters in correct 
trials (e.g., top middle and bottom left locations), while in others 
there was a clear separation (e.g., top right corner and middle right 
location), which suggested an incomplete morphing of the code in 
error trials. We quantified the average shift in the cluster centers 
between the Delay 1 and Delay 2 responses across the four target 
locations, and the shifts in error trials were significantly smaller 
than in correct trials in both the Delay 1 and Delay 2 spaces (Fig. 4e; 
Delay 1: P <​ 0.001, g =​ 24.89 for correct trials when compared to 
chance; P <​ 0.001, g =​ 20.69 for error trials when compared to 
chance; P <​ 0.001, g =​ 6.52 when comparing correct trials to error 
trials; Delay 2: P <​ 0.001, g =​ 24.73 for correct trials when compared 
to chance; P <​ 0.001, g =​ 19.57 for error trials when compared to 
chance; P <​ 0.001, g =​ 6.86 when comparing correct trials to error 
trials). This suggests that incomplete code morphing may have 
been the cause of some of the errors.

In comparison, in the FEF we found no significant differences 
in the cross-temporal decoding performance for correct and error 
trials in the target period (correct trials =​ 63.5 ±​ 0.2%, error tri-
als =​ 60.6 ±​ 0.2%, P ≈​ 0.40; Fig.  4f) and Delay 1 period (P ≈​ 0.06; 
Fig. 4g), although the differences during the Delay 2 period were 
significant (P <​ 0.001, g =​ 6.01; Fig.  4h). Notably, the decrease in 
decoding performance during Delay 2 in the FEF was significantly 
smaller than that observed in the LPFC (FEF: difference between 
correct and error =​ 12.2 ±​ 0.3%; LPFC: difference between cor-
rect and error =​ 27.7 ±​ 0.3%, P <​ 0.001, g =​ 4.78). This suggests 
that activity in the LPFC during the delay period was more closely 
related to the animal’s behavior than activity in the FEF. In Fig. 4i,j, 
we show the lack of code morphing in the FEF in error trials, much 
like what we found in correct trials (Delay 1: P ≈​ 0.53 for correct 
trials; P ≈​ 0.72 for error trials; Delay 2: P ≈​ 0.74 for correct trials 
when compared to chance; P <​ 0.001, g =​ 14.38 for error trials when 
compared to chance, which means that there was significantly less 
morphing than expected by chance). Overall, our results show that, 
similarly to the situation in correct trials, code morphing occurred 
in the LPFC but not in the FEF in error trials. However, subtle dif-
ferences in the population responses in the LPFC were enough to 
cause errors to occur.

Neurons with mixed selective activity morph the population 
code. One possible mechanism that could explain the morphing in 
code in the LPFC involves single-neuron changes in responsiveness 
and selectivity in different task epochs, referred to as mixed-selec-
tive responses18,23. We performed two-way ANOVA on the neuronal 
firing rates between task epoch (Delay 1 and 2) ×​ target location 
(seven locations) and divided the neurons into the following three 
categories: (i) neurons with classical selectivity (CS; i.e., no mixed 
selectivity), which exhibited a main effect of either target location or 
task epoch; (ii) neurons with linear mixed-selectivity (LMS), which 
exhibited main effects of both target location and task epoch but 
a nonsignificant interaction term; and (iii) neurons with nonlinear 
mixed selectivity (NMS), which exhibited a significant interaction 
term. Figure 5a–d shows examples of each type of neuron. In total, 
25% of LPFC neurons (n =​ 64) and 19% of FEF neurons (n =​ 26) 
were identified as neurons with NMS; 11% of LPFC neurons (n =​ 27) 
and 3% of FEF neurons (n =​ 18) were identified as neurons with 
LMS; and 12% of LPFC neurons (n =​ 30) and 5% of FEF neurons 
(n =​ 6) were identified as neurons with CS (Fig.  5e). In addition, 
the strength of the interaction (as measured by F-statistics from 
the two-way ANOVA; Methods) in these neurons with NMS was 
significantly higher in the LPFC than the FEF (P <​ 0.001; Fig. 5f). 
This meant not only that there were   more neurons with NMS in 
the LPFC than in the FEF but also that the LPFC neurons exhibited 
larger changes in their selectivity between Delays 1 and 2. This dif-
ference suggested that the morphing in code observed in the LPFC 
could be driven by neurons with mixed selectivity.

We tested this hypothesis by assessing the roles of these three 
types of neurons in mediating code morphing in the LPFC. We did 
this by systematically eliminating each type of neuron from the 
LPFC population (Methods) and performed cross-temporal decod-
ing on the remaining population. When we eliminated the neurons 
with NMS, code morphing was no longer observable (Fig. 6a,d). On 
the other hand, when we eliminated the neurons with LMS or CS, 
code morphing was unaffected (Fig. 6b–d). When we carried out the 
same analysis separately on homogeneous populations of neurons 
with NMS, LMS, and CS, we found that neurons with NMS were 
responsible for a large change in code, neurons with LMS exhibited 
a small change in code, and neurons with CS had no role in chang-
ing the code (Fig. 6e–h and Supplementary Fig. 10). However, the 
code change in LMS neurons was significantly lower than that in 
NMS neurons (Fig. 6h). To assess the effect that neurons with NMS 
would have on the FEF, we added LPFC neurons with NMS to the 
FEF population to match the proportion and properties found in the 
LPFC, and we found that the code morphing could now be observed 
in the FEF (Supplementary Fig. 11a). In addition, we removed the 
most nonlinear neurons with NMS from the LPFC until the popula-
tion of neurons with NMS matched the properties of those found 
in the FEF and found code-morphing results similar to those found 
in the FEF (Supplementary Fig. 11b). These results provided strong 
evidence that neurons with mixed selectivity (NMS and LMS) were 
necessary and sufficient for the code morphing in the LPFC.

Our definition of neurons with NMS included neurons that 
changed selectivity between Delay 1 and Delay 2 (i.e., Fig. 5a), as 
well as neurons that were selective in Delay 1 but lost their selectiv-
ity in Delay 2, and vice versa. Excluding neurons that acquired or 
lost selectivity from the analysis did not substantially change the 
results (Supplementary Fig. 12). This shows that the morphing of 
the population code was not exclusively driven by neurons that 
acquired or lost selectivity.

In addition to the population of neurons with NMS that encoded 
a mixture of target location and delay period, we identified another 
population of neurons with NMS that encoded a mixture of target 
location and distractor location (Supplementary Fig. 13). This popu-
lation, however, was not involved in the morphing of code observed 
in the LPFC (Supplementary Fig. 14). Finally, we also compared the 
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receptive field sizes in the LPFC and FEF (Supplementary Fig. 15) 
and were not able to find any significant differences in size (P ≈​ 0.6 
and P ≈​ 0.54, respectively, for Delays 1 and 2) that could explain the 
differences in code morphing in the LPFC compared to the FEF.

Discussion
Here we demonstrate that the LPFC encodes memory information 
in a flexible manner, by morphing its memory code in response 
to a distractor, without losing information. The morphing of code 
is behaviorally relevant, since incomplete morphing was observed 
in error trials. We identified the cellular mechanism that under-
lies the morphing of the code by determining that neurons with 
mixed selectivity are necessary and sufficient for the morphing to 
occur. In particular, neurons with NMS had the largest influence in 
the morphing of the code. Finally, we show that unlike the LPFC, 
the FEF, another prefrontal region, encodes memory information 
using a consistent code before and after the distractor (i.e., without 
morphing its code) but that the FEF code was unstable, since it lost 
information after the distractor was presented. Overall, our results 
show that the balance between classical selectivity and mixed selec-
tivity within a neuronal population determines whether the pop-
ulation encodes information consistently throughout the task, or 
flexibly, by morphing the code in response to task contingencies, 
such as distractors.

Previous studies have shown that cells with NMS increase the 
dimensionality of neuronal representations, thus optimizing the 
encoding of information24–26. This increased dimensionality allows a 
neuronal population to encode information in a manner that could 
be flexibly decoded, or interpreted, by downstream neurons18,21. Our 
results provide a previously uncharacterized role for NMS: to allow 
the morphing of codes in a manner that maintains the encoded 
information, even when the morphing is triggered by a task-irrele-
vant stimulus, or distractor. Thus, in addition to the proposed roles 
of increasing dimensionality and multiple-interpretability of the 
code, we propose that NMS allows neuronal populations to flexibly 
adjust the code itself, a role that fits well with the adaptive coding 
model of neural function in prefrontal cortex27 and with dynamic 
network models of prefrontal function23,28. Altogether, a picture is 
emerging of flexibility in prefrontal coding, which may well be a 
neural mechanism for cognitive flexibility.

It has also been shown that the LPFC plays a different role 
than visual and parietal areas do in working memory and atten-
tion3,10,21,29–33. Neurons in both the LPFC and FEF show sus-
tained activity during the delay period of a working memory 
task. However, the differences in the roles of these two prefron-
tal regions in working memory have, thus far, not been explored. 
Our results show clear differences between the LPFC and FEF. 
First, only the LPFC morphed its code after a distractor. Second, 
only the LPFC maintained the same amount of information after 
the distractor was presented. Third, the LPFC showed a larger 
decrease in memory information during error trials. Finally, while 
neurons with NMS were present in both the LPFC and FEF, they 
were less abundant and weaker in the FEF than in the LPFC, 
which would explain why we observed a consistent code in the 
FEF before and after the distractor. Overall, our results underscore 
the large functional differences between the LPFC and FEF, with 
LPFC activity being more closely related to the maintenance of 
working memory.

Although there were clear signs that the change in code was trig-
gered by the presentation of the distractor, it is a limitation in our 
experimental design that we did not have a condition without a dis-
tractor. Although we believe our results strongly suggest that the code 
morphing was due to the presentation of the distractor (especially 
since previous studies without a distractor22,34 have demonstrated the 
existence of a persistent, stable code beyond 1-s delays), this remains 
to be tested explicitly with future experiments without distractors.

Our results also raise a number of questions. For example, would 
different types of distractors (e.g., auditory) morph the code in the 
LPFC differently? Would subsequent distractors continue morph-
ing the code even further? Are there any links between the multiple 
network states that encode the same memories in different contexts? 
Is the morphing in code gradual or abrupt in individual trials? How 
are areas downstream from the LPFC able to interpret the changing 
code correctly? Future studies should address these and other ques-
tions raised by this work.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41593-017-0003-2. 
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Methods
Subjects and surgical procedures. We used two male adult macaques (Macaca 
fascicularis) in the experiments: Animal A (age 4) and Animal B (age 6). All 
animal procedures were approved by, and conducted in compliance with, the 
standards of the Agri-Food and Veterinary Authority of Singapore and the 
Singapore Health Services Institutional Animal Care and Use Committee 
(SingHealth IACUC #2012/SHS/757). Procedures also conformed to the 
recommendations described in Guidelines for the Care and Use of Mammals in 
Neuroscience and Behavioral Research (National Academies Press, 2003). Each 
animal was implanted first with a titanium head-post (Crist Instruments, MD, 
USA) before arrays of intracortical microelectrodes (MicroProbes, MD, USA) 
were implanted in multiple regions of the left frontal cortex (Fig. 1c). In Animal 
A, we implanted six arrays of 16 electrodes and one array of 32 electrodes in 
the LPFC, as well as two arrays of 32 electrodes in the FEF, for a total of 192 
electrodes. In Animal B, we implanted one array of 16 electrodes and two arrays 
of 32 electrodes in the LPFC, as well as two arrays of 16 electrodes in the FEF, 
for a total of 112 electrodes. The arrays consisted of platinum-iridium wires with 
either 200- or 400-µ​m separation, 1–5.5 mm long and with 0.5 MΩ​ of impedance, 
and they were arranged in 4 ×​ 4 or 8 ×​ 4 grids. Surgical procedures followed the 
following steps: 24 h prior to surgery, animals received a dose of dexamethasone to 
control inflammation during and after the surgery. They also received antibiotics 
(amoxicillin, 7–15 mg/kg, and Enrofloxacin, 5 mg/kg) for 8 d, starting 24 h before 
the surgery. During surgery, the scalp was incised and the muscles retracted to 
expose the skull. A craniotomy was performed (~2 ×​ 2 cm). The dura mater was cut 
and removed from the craniotomy site. Arrays of electrodes were slowly lowered 
into the brain using a stereotaxic manipulator. Once all the arrays were secured in 
place, the arrays’ connectors were secured on top of the skull using bone cement. 
A head-holder was also secured using bone cement. The piece of bone removed 
during the craniotomy was returned to its original location and secured in place 
using metal plates. The skin was sutured on top of the craniotomy site and stitched 
in place, avoiding any tension to ensure good healing of the wound. All surgeries 
were conducted using aseptic techniques under general anesthesia (isofluorane, 
1–1.5% for maintenance). The depth of anesthesia was assessed by monitoring the 
heart rate and movement of the animal, and the level of anesthesia was adjusted 
as necessary. Analgesics were provided during postsurgical recovery, including a 
fentanyl patch (12.5 mg/2.5 kg, 24 h prior to surgery, removed 48 h after surgery) 
and meloxicam (0.2–0.3 mg/kg after removal of the fentanyl patch). Animals were 
not euthanized at the end of the study.

Recording techniques. Neural signals were initially acquired using a 128-channel 
and a 256-channel Plexon OmniPlex system (Plexon Inc., TX, USA) with a 
sampling rate of 40 kHz. The wideband signals were bandpass-filtered between 
300 and 3,000 Hz. Following that, spikes were detected using an automated hidden 
Markov model-based algorithm for each channel35. Eye positions were obtained 
using an infrared-based eye-tracking device from SR Research Ltd. (Eyelink 1000 
Plus). The behavioral task was designed on a standalone PC (stimulus PC) using 
the Psychophysics Toolbox36 in Matlab (Mathworks, MA, USA). To align the neural 
and behavioral activity (trial epochs and eye data) for data analysis, we generated 
strobe words denoting trial epochs and performance (rewarded or failure) during 
the trial. These strobe words were generated on the stimulus PC and sent to the 
Plexon and Eyelink computers using the parallel port.

Microstimulation. For arrays positioned in the prearcuate region (FEF), we used 
standard electrical microstimulation to confirm that saccades could be elicited with 
low currents. These electrodes had a depth of 5.5 mm inside the sulcus and tapered 
to 1 mm away from sulcus. We conducted these microstimulation experiments 
after we finished our recording experiments. During the microstimulation 
experiment, each electrode implanted in the FEF was tested for its ability to 
evoke fixed-vector saccadic eye movements with stimulation at currents of 50 µ​A. 
Electrical microstimulation consisted of a 200-ms train of biphasic current pulses 
(1 ms, 300 Hz) with 0 interphase delays, delivered with a Plexon Stimulator (Plexon 
Inc., TX, USA). We mapped the saccade vector elicited via microstimulation at 
each electrode to verify that the electrodes were implanted in the FEF. Sites at 
which stimulation of 50 µ​A or less elicited eye movements at least 50% of the time, 
plus regions within 2–3 mm of these locations, were considered to be in the FEF37.

Behavioral task. Each trial started with a mandatory period (500 ms) during which 
the animal fixated on a white circle at the center of the screen. While continuing 
to fixate, the animal was presented with a target (a red square) for 300 ms at any 
one of eight locations in a 3 ×​ 3 grid. The center square of the 3 ×​ 3 grid contained 
the fixation spot and was not used. The presentation of the target was followed by 
a delay of 1,000 ms, during which the animal was expected to maintain fixation on 
the white circle at the center. At the end of this delay, a distractor (a green square) 
was presented for 300 ms at any one of the seven locations (other than where the 
target was presented). This was again followed by a delay of 1,000 ms. At the end 
of the second delay the animal was given a cue (the disappearance of the fixation 
spot) to make a saccade towards the target location presented earlier in the trial. 
Saccades to the target location within 150 ms and continued fixation at the saccade 
location for 200 ms was considered a correct trial. An illustration of the task is 

shown in Figure 1a. One of the animals was presented with only seven of the eight 
target locations because of a behavioral bias in the animal.

Classical target selectivity. To investigate the responses of individual neurons 
to stimulus location, we computed the firing rate of neurons in non-overlapping 
50-ms bins during all correct trials. The firing rates in each bin during the 
target period (50–350 ms after target onset), Delay 1 (400–1,200 ms after target 
onset), distractor period (1,350–1,650 ms after target onset), Delay 2 period 
(1,700–2,500 ms after target onset), and presaccadic (–200 to 200 ms with respect 
to saccade onset) were compared to the baseline (300 ms activity prior to the 
target period) using a two-sample t test (P <​ 0.05) for each stimulus (target or 
distractor) location. A neuron was classified as responsive if the firing rate was 
significantly different from the baseline for 100 ms (two consecutive bins) for any 
of the stimulus locations. In addition, activities due to different stimulus (target or 
distractor) locations during each trial epoch (target, Delay 1, distractor, Delay 2,  
and response/saccade) were compared using one-way ANOVA (P <​ 0.05).  
A selective neuron was one that exhibited responsiveness and a significant difference 
in activity between different stimulus locations in one task epoch for at least 
100 ms (two consecutive bins). Depending on the task epoch in which the neuron 
exhibited selectivity and the stimulus (target or distractor) to which it was selective, 
the neuron was then classified into one of the following categories of selectivity: 
visual, delay, movement, or combinations of the above.

Percentage of explained variance. To compute the information in a neuronal 
population, we used the percentage of explained variance, ω2, which computes the 
variance in firing rate for each neuron that can be explained by varying the spatial 
location of the stimulus. ω2 was computed for every neuron in 100-ms bins with 
50-ms steps. ω2 is defined by
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We also balanced the number of trials in each group by stratifying the trials in 
each group to the lowest common number of trials across all groups. This was done to 
account for the bias in the calculation of PEV38. We repeated this step 1,000 times to 
form a distribution of PEV values at every timepoint for each neuron. To determine 
the time periods in which the PEV measure was significant, a randomization test 
was used. A null distribution of PEV values was created by shuffling the target 
labels associated with the trials (1,000 repetitions). This was repeated for each of the 
neurons, and only neurons that exhibited a z-score (mean and standard deviation for 
the z-score were computed from the null distribution) greater than 3 for at least one 
timepoint were used in computing the population averages for the LPFC and FEF 
(Fig. 1d). Figure 1d shows the mean and the 95th percentile confidence intervals of 
the mean PEV across all the neurons with z >​ 3 in at least one time bin. To determine 
the time periods in which the PEV of the LPFC and FEF were significantly different, 
we compared the distribution of PEV values averaged across all significant neurons in 
the FEF and LPFC (Fig. 1d). For example, the PEV of LPFC neurons was considered 
significantly higher than FEF neurons if the 95th percentile distribution of PEV for 
LPFC neurons was higher than the 95th percentile distribution for FEF neurons.

Statistics. We considered two bootstrapped distributions to be significantly 
different if the 95th percentile ranges of the two distributions did not overlap. 
We also computed an estimated P value for this comparison using the following 
formula39:

+
+

X
N
1

1

where X represents the number of overlapping data points between the two 
distributions, and N represents the number of bootstraps. With this computation, 
and the N =​ 1,000 bootstraps we used throughout the paper, two distributions 
with no overlap result in P <​ 0.001, and two distributions with x% overlap result in 
P ≈​ x/100.
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In addition to the estimated P value, we also computed the effect size of the 
comparison using a measure known as Hedges’ g, computed using the following 
formula40
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̄x  refers to the mean of each distribution, n refers to the length of each distribution, 
and s refers to the standard deviation of each distribution.

No statistical methods were used to predetermine sample sizes, but our sample 
sizes are similar to those reported in previous publications11,21,22. The majority of 
our analyses made use of nonparametric permutation tests and, as such, did not 
make assumptions regarding the distribution of the data. No randomization was 
used during the data collection, except in the selection of the target and distractor 
locations for each trial. Randomization was used extensively in the data analyzed 
to test for statistical significance. Data collection and analysis were not performed 
blind to the conditions of the experiments. No animals or data points were 
excluded from any of the analyzed. Please see additional information in the Life 
Sciences Reporting Summary.

Cross-temporal decoding. A decoder based on linear discriminant analysis 
(LDA) was built using the classify function in Matlab to predict the location of the 
target (Supplementary Software). To increase the number of neuronal responses 
used in this analysis, we pooled the responses across recording sessions to create 
a pseudopopulation of 256 neurons for the LPFC and 137 neurons for the FEF. 
We also analyzed recordings from single sessions (i.e., simultaneously recorded 
populations) and verified that they demonstrated the same trends (Supplementary 
Fig. 4). The instantaneous firing rate of each neuron (estimated with 100-ms 
windows with 50 ms of overlap) was converted to a z-score by normalizing to 
the mean and standard deviation of the instantaneous firing rates from 300 ms 
before target onset to target onset. The decoder was built to predict the seven 
target locations that were common to both the animals. Approximately 50% of 
the 3,143 correct trials from two animals (1,500 trials, with a uniform distribution 
of the seven different target locations) were grouped to build separate training 
datasets consisting of 1,500 pseudotrials for LPFC and FEF neurons. Subsets 
of the remaining correct trials, or 100% of the error trials, were used to build 
the testing dataset consisting of 100 pseudotrials. The training and testing data 
were denoised using principal components analysis (PCA) at every timepoint 
by reconstructing the data with the top n principal components that explained 
at least 90% of the variance. This step was done to avoid singular matrices when 
LDA was performed in Matlab and to reduce the noise in the data used to train 
and test the decoder. Initially, the target locations were predicted by training and 
testing the decoder on datasets from equivalent timepoints. The performance of 
the decoder, a measure of the information about target location in the population 
activity, was computed at each timepoint as a percentage of test trials in which the 
target location was predicted correctly. This process was repeated 1,000 times, with 
different subsets of correct trials used to constitute the training and test sets. This 
allowed us to obtain a distribution of performance for the decoders trained at each 
timepoint. At this point, we were ready to assess the stability of the population 
information across time. For each trained decoder, we also tested it with test sets 
from other timepoints throughout the trial. This gave us another 1,000 measures 
of performance at every other timepoint aside from the timepoint used to train the 
decoder. The average performance at every combination of training and testing 
timepoints is shown in heat maps (e.g., in Fig. 2a and other figures) displaying the 
results of cross-temporal decoding. To investigate the stability of the performance 
before and after the distractor, we first summarized the performance in the last 
500 ms of Delay 1 (800–1,300 ms after target onset, shown in the dashed lines 
in the bottom left quadrant of Fig. 2a). This meant that we included the cross-
temporal decoding performance of (i) a classifier trained on data from 800–900 ms 
after target onset and tested on subsequent windows up to the 1,200–1,300-ms 
window; (ii) a classifier trained on data from 1,200–1,300 ms and tested on 
preceding windows up to the 800–900-ms window; and (iii) all combinations of 
training and testing windows in between (Supplementary Fig. 2a,d). Since both 
the training data and the test data were from Delay 1, we called this performance 
LP11 or FP11 (for LPFC performance and FEF performance), where the first digit 
in the subscript indicates whether the training window was Delay 1 or Delay 2, 
and the second digit indicates whether the testing window was Delay 1 or Delay 
2. To assess the performance of classifiers trained in Delay 1 and tested in Delay 
2, we used the cross-temporal decoding performance of the same classifiers used 
to compute LP11 or FP11, but this time we averaged the performance in a 500-ms 
window at the end of Delay 2 (i.e., 1,850–2,450 ms after target onset but before 
any presaccadic activity; shown in the dashed lines in the bottom right quadrant 
of Fig. 2a). This meant that we included the performance of (i) a classifier trained 

on the data from 800–900 ms after target onset and tested on windows starting 
from 1,850–1,950 ms and up to 2,350–2,450 ms; (ii) a classifier trained on the data 
from 1,200–1,300 ms and tested on the same windows as in (i); and (iii) all training 
windows in between, while the testing window was kept the same as in (i). Since 
the training data was from Delay 1 and the test data was from Delay 2, we called 
this performance LP12 or FP12. The same procedure was used to compute LP22, LP21, 
FP22, and FP21. To check for statistical significance, we obtained the 95th percentile 
range for each of these values obtained through the 1,000 times we trained and 
tested different classifiers. If these ranges did not overlap, we considered the two 
performance values to be significantly different. This analysis was repeated every 
time we performed cross-temporal decoding on different subsets of neurons. In 
addition, we also subtracted the performance of LP22 from LP11, LP12 from LP11, 
and LP21 from LP22 (and similarly for the FEF) for each of the 1,000 repetitions, 
and we plotted the mean and standard error of the difference in the box plots in 
Supplementary Figure 2b,e. For significance, the 95th percentile range (two-sided) 
of this subtracted distribution was compared to 0.

State space analysis. To look at how the population response morphed from one 
delay period to another, we performed PCA on the responses in the same 1,500 
pseudotrials that were used to train the cross-temporal decoding classifiers. The 
covariance matrix consisted of z-scores of each of the neurons in one area (LPFC 
or FEF) in one dimension, and in the other dimension, we included the responses 
from different time windows, different conditions, and different repetitions (i.e., 
trial-wise variance was also included). Our goal was to include the entirety of 
the space of Delay 1 (or Delay 2) responses and then perform PCA to identify 
the two axes that contained the largest variance. This allowed us to reduce the 
dimensionality of the LPFC population from 256 neurons to the two principal 
components with the largest variance and to reduce the FEF population from 137 
neurons to two principal components. This made it possible for us to visualize 
the responses in a simple 2D plot. However, for the purposes of measuring shifts 
between Delay 1 and Delay 2 responses, we used the full PCA space instead of the 
reduced space to avoid underestimating the magnitude of the shifts. Although 
this PCA space did not correspond directly to the space used by the LDA 
classifier, it allowed us to gain some insight into the changes in the population 
responses between Delay 1 and Delay 2. The z-score of the instantaneous firing 
rate (described above) in 100-ms windows (with steps of 50 ms) for each delay 
period were used separately to define the space for dimensionality reduction. We 
used subsets from a separate 1,500 pseudotrials to perform the projections. For 
each target location, we selected 25 pseudotrials to compute an average z-score 
for each of the 256 LPFC neurons or the 137 FEF neurons. This allowed us to 
reduce some of the variability from individual trials. For visualization, the average 
z-scores for each 100-ms window from the full population were then projected 
onto the two principal components to obtain a point in the two-dimensional PCA 
space. To investigate what was happening in the last 500-ms window of Delay 
1 and Delay 2, we averaged the points derived from the ten 100-ms windows to 
obtain the average position for those 500 ms. This procedure was repeated to 
obtain 50 points for each target location. To obtain the intracluster distance, we 
computed all the pairwise Euclidean distances in the full PCA space (normalized 
by dividing by the number of dimensions, i.e., the number of neurons) for all 
the points in each target location and then averaged the distances across target 
locations. To obtain the intercluster distance, we averaged the 50 points in each 
target location to obtain a point in the full PCA space for each target location. 
We then computed all the pairwise distances between these points and averaged 
them to obtain the intercluster distance. By repeating the analysis 1,000 times 
with different sets of 25 pseudotrials, we were able to compute the mean and the 
range of distances spanned by 95% of the repetitions. We computed the intra- and 
intercluster distances for Delay 1 and Delay 2 clusters in Delay 1 or Delay 2 space 
correspondingly. The inter- and intracluster distances between Delay 1 and Delay 
2 were considered significantly different if the 95th percentile distributions of each 
distance (Delay 1 or Delay 2) did not overlap. To quantify the shift in the cluster 
locations, we first computed the cluster center by taking the average of the points in 
each cluster. We then computed the Euclidean distances between each of the cluster 
centers in Delay 1 (i.e., the distances between the blue clusters and red clusters for 
each target location in Fig. 3a,e), as well as the distances between corresponding 
cluster centers in Delay 2 (Fig. 3b,f). The average distance was then computed from 
these distances. We repeated this 1,000 times to obtain a distribution of average 
distances. The 95th percentile range is depicted with error bars in Figure 3d,h. 
To test for statistical significance, we created 1,000 pairs of subsampled Delay 1 
responses in Delay 1 space for each of the locations and computed the average 
intracluster shift across locations. We repeated this for Delay 2 responses in Delay 
2 space. The 97.5th percentile range of these chance distributions are shown in the 
dashed lines in Figure 3d,h. This analysis was done whenever we computed the 
shift in cluster centers.

Distractor specificity in target code. Aside from looking at cross-temporal 
decoding, we also looked to see if there was any evidence that the target 
information maintained in Delay 2 was specific to the distractor location. We 
did this by training classifiers on Delay 2 data from trials in which the target 
was located at any of the seven possible locations but the distractor was located 
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at just one of the locations. These classifiers were then tested to see if they 
could generalize to decode target location in trials in which the distractors were 
presented at other locations. In this analysis, we used all the neurons within each 
area, including those with target–distractor NMS. The results for the LPFC and 
FEF are shown in Supplementary Figure 6a,d. Each heat map shows the target 
decoding performance (averaged over 1,000 iterations) on test trials for a classifier 
trained on trials with distractors at only one location. For example, the heat map 
shown in the top left indicates the test results for a classifier trained on trials in 
which the distractor was presented at the top left location. The test results for 
different target locations in trials in which the distractor was presented at the same 
top left location are shown in the first column, with the top left location shown in 
the bottom row. This corresponds to the within-condition performance. As the 
target and distractor never appeared at the same location in our experiment, the 
classifier was never trained on any trials in which the target appeared at the top 
left location. As a result, we did not test the classifier on this location, and this 
is why the entire bottom row is blank. The remaining columns illustrate the test 
results for the classifier in trials where the distractor was in different locations, 
corresponding to the cross-condition performance. The blank squares along 
the diagonal are again due to the fact that the location of targets and distractors 
never overlapped in our experiment. If the morphed population information was 
specific to the distractor location, we would expect significant differences across 
the columns in a row. We did this by comparing the bootstrapped performance 
distributions for all possible pairs within each row and checking whether the 2.5th 
and 97.5th percentile range overlapped.

We also averaged the classifier performance across target locations and plotted 
the average performance and the 2.5th and 97.5th percentiles in the boxplots in 
Supplementary Figure 6b,e. The performance in within-condition trials are labeled 
w, while those for cross-condition trials are labeled c. If the 95th percentile range 
overlapped for all possible pairs, it would indicate that training the classifier on 
the responses at one distractor location did not significantly affect its classification 
performance when tested with responses at other distractor locations. We also 
directly compared performances within conditions and across conditions in 
Supplementary Figure 6c,f for each of the seven types of classifiers. We subsampled 
the cross-condition performance to make sure we had the same number of 
measurements as those in the within-condition performance and checked for 
overlap in the 95th percentile range. However, one caveat for the above analysis is 
the large error bars in the plots indicating the 95th percentile range, which were 
the result of the small number of trials for some target–distractor combinations. 
As this number of trials has to be reduced further into training and test trials, this 
greatly reduces the number of trials available for each combination.

As an alternative to splitting the data into training and testing sets, we looked 
for evidence of distractor specific code morphing, using the state space analysis 
shown in Figure 3. Using the same state space as the analysis shown in Figure 3, 
we used a cluster-separation measure (LDA S-ratio41, which computes the 
variance between classes divided by variance within class) to quantify clustering 
in the Delay 2 responses when the points were grouped by distractor location. To 
maximize the number of trials we had for each target–distractor combination, we 
selected the four target locations for which we had the largest numbers of trials. In 
addition, we used the single-session recordings instead of the pseudopopulation 
data, as the latter required us to remove trials to match the lowest number of trials 
across sessions. The results are shown in Supplementary Figure 7. The cluster 
separations (measured in the full state space) for each group of points representing 
different distractor locations were computed, and the average and standard errors 
are shown in Supplementary Figure 7b,c,e,f. As a control, we randomly grouped 
the points into seven clusters and computed the average cluster separation. We 
repeated this 1,000 times and obtained the 97.5th percentile in cluster separation 
(dashed lines). As another control, we performed the same analysis on the 
responses in Delay 1, which are also plotted in the same plots. Since the distractors 
were presented after Delay 1, the responses in Delay 1 should not exhibit any 
clustering by distractor location.

Error trials. Due to an unequal distribution of error trials across different 
locations, we only analyzed the error trials from four target locations. We only 
included those locations in the analysis where there were at least six error trials 
in every session. For calculating the shift caused by chance in Figure 4e,j, we 
created 1,000 pairs of subsampled Delay 1 responses in Delay 1 space for each 
of the four locations and computed the average intracluster shift for error trials 
across locations. We repeated this for Delay 2 error trials in Delay 2 space. The 
97.5th percentile range of these chance distributions are shown in the dashed 
lines in Figure 4e,j.

Comparing effect sizes in neurons with NMS. After performing two-way 
ANOVA to identify neurons with NMS, we used the F-statistic returned by the 
two-way ANOVA to compare the effect sizes of neurons with NMS in the LPFC 
and FEF. As we found 13 neurons with NMS in the FEF and 54 in the LPFC, we 
subsampled the LPFC population to produce 13 neurons at a time to compute 
the mean and compare against the mean of the FEF population. We performed 
the subsampling 1,000 times and obtained the 95th percentile range for the mean 
computed from 13 LPFC cells.

Role of different neurons in code morphing. To investigate the role of different 
types of neurons in mediating code morphing in the LPFC, we first selected 27 
neurons with NMS, 27 neurons with LMS, and 27 neurons with CS. The cross-
temporal decoding was then performed on the following subpopulations: (i) 
without neurons with NMS, (ii) without neurons with LMS, and (iii) without 
neurons with CS. We also performed a separate analysis on homogeneous 
populations of 27 neurons with NMS, 27 neurons with LMS, and 27 neurons 
with CS.

Cluster distances for LPFC neurons with different selectivity. To look at 
how different LPFC neurons contribute to the changes in the intercluster and 
intracluster distances, we created a population consisting of equal numbers of 
neurons with NMS, neurons with LMS, and neurons with CS. As the smallest 
number of neurons was 27 for the neurons with LMS, we randomly selected 27 
of the 64 neurons with NMS and 27 of the 30 neurons with CS. We then looked 
at code morphing when one of the neuron types was excluded (i.e., we were left 
with 54 neurons), as well as when only one of the neuron types was included (i.e., 
only 27 neurons used). We used the same 1,500 pseudotrials to create the PCA 
space, but this time with just 54 or 27 neurons. For illustration, we again selected 
the two principal components with the largest variances and projected responses 
from a separate set of 1,500 trials onto the two principal components to obtain 
points in the two-dimensional PCA space (Supplementary Fig. 10). However, 
the shifts shown in Figure 6d,h were distances measured for the full 54 and 27 
dimensions, respectively.

Injection of neurons with NMS into the FEF. To demonstrate the ability of 
neurons with NMS to morph the population code, we added 20 of the most 
nonlinear neurons with NMS from the LPFC to the population of 137 FEF 
neurons. This allowed us to increase the percentage of neurons with NMS to match 
the percentage found in the LPFC (25%). It also allowed us to alter the average F-
statistic for the modified population of neurons with NMS to fall within the 2.5th 
and 97.5th percentile range found in the LPFC. The results of the cross-temporal 
decoding and the state space analysis from this modified FEF population are 
shown in Supplementary Figure 11a–d. With the addition of the 20 neurons with 
NMS to the FEF, the code morphing increased to significantly above chance in 
both the Delay 1 and Delay 2 spaces. This meant that by adding the neurons with 
NMS, the new FEF population gained the ability to morph the code, much like the 
LPFC population.

Decoding with FEF-like NMS neurons in the LPFC. To demonstrate the role of 
neurons with NMS in morphing the population code, we attempted to match the 
effect sizes of the neurons with NMS in the LPFC with those in the FEF (Fig. 5f). 
We did this by removing 23 LPFC neurons with F >​ 6, which was the largest 
value found in the FEF population. This also reduced the proportion of neurons 
with NMS to 17.6%, close to the 19% we observed in FEF. The results of the state 
space analysis from this modified LPFC population are shown in Supplementary 
Figure 11e–h. The code morphing in both Delay 1 and Delay 2 spaces dropped 
below significance, providing further evidence that the neurons with NMS 
with large interaction effects (which were unique to the LPFC) were primarily 
responsible for code morphing.

Neurons with target–distractor nonlinear mixed selectivity. To identify a 
nonlinear target–distractor mixed selective neuron, we computed the firing rates 
of neurons in 50-ms bins for different target–distractor pairs during all correct 
trials. This accounted for 56 or 42 different pairs of target–distractor locations 
(8 or 7 target locations and 7 or 6 distractor locations associated with each target 
location) for Monkey A or B, respectively. Each category of target–distractor 
pair consisted of about 6–10 correct trials for each neuron. Due to the limited 
number of trials for each category, we compared the trial-averaged activity for 
each category to a null distribution computed from the trials with the same target 
location but with distractors presented at any of the locations except the one 
associated with the category in comparison. For example, the trial-averaged firing 
rate of a neuron for trials presented with the target at Location 1 (left corner) 
and the distractor at Location 2 (top center) was compared to a null distribution 
generated from trials with the target at Location 1 and the distractor at every 
location other than Location 2. A null distribution with 100 bootstraps was 
computed, with each bootstrap representing the average activity from the same 
number of trials as the target–distractor pair in question. A neuron was classified 
as nonlinear mixed selective using a surrogate test if the trial-averaged activity 
of one or more target–distractor pair was different from the 2.5th and 97.5th 
percentile of the null distribution for 100 ms (two consecutive bins) during the 
distractor and Delay 2 periods.

Decoding without neurons with target–distractor nonlinear mixed selectivity. 
We investigated the role of the neurons with target–distractor nonlinear 
mixed selectivity in mediating the morphing in population code by excluding 
these neurons (n =​ 31) from our pseudopopulation in the LPFC. The results 
of the state space analysis from this modified LPFC population are shown in 
Supplementary Figure 14a–d. Excluding the neurons with tdNMS did not appear 
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to affect the code morphing in either the Delay 1 or Delay 2 spaces, suggesting 
that in our task, the neurons with tdNMS did not play a big role in the code 
morphing in the LPFC.

Receptive field comparison between LPFC and FEF. To investigate whether 
differences in receptive field (RF) sizes in the LPFC and the FEF can account for 
the differences in population code morphing we observed, we quantified receptive 
field sizes by counting the number of target locations that exhibited responses 
that were significantly different from the baseline. This was done using the same 
measure used to quantify classical target selectivity. To perform a statistical 
comparison, we subsampled the population of LPFC and FEF neurons to create 
1,000 bootstrapped populations of 100 neurons each. We computed the histogram 
of the receptive field size for each bootstrapped population and then computed a 
weighted average (Nneurons ×​ size of RF) for each bootstrapped population. The 95th 
percentile range of the weighted average was compared for the two bootstrapped 
distributions to see if they overlapped.

Data availability. The data that support the findings of this study are available 
from the corresponding authors upon reasonable request.

Code availability. A code package for performing the cross-temporal decoding is 
available at https://github.com/aishu1803/Code-for-Parthasarathy-et-al.
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lateral Prefrontal cortex and 137 neurons from Frontal Eye Fields across 8 
recording sessions. The sessions were chosen based on the number of trials 
performed by the monkey in the session.

2.   Data exclusions
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3.   Replication

Describe whether the experimental findings were 
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Describe the software used to analyze the data in this 
study. 

All analyses were performed in MATLAB.
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Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.
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Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).
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10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. N/A

b.  Describe the method of cell line authentication used. N/A

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

N/A

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.
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Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

We used non-human primates (Macaca fusicularis) for this work.
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