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ABSTRACT5

During perceptual decision making, subjects often display a constant rate of errors independent of6

evidence strength, referred to as “lapses”. Their proper treatment is crucial for accurate estimation7

of perceptual parameters, however they are often treated as a nuisance arising from motor errors8

or inattention. Here, we propose that lapses can instead reflect a dynamic form of exploration.9

We demonstrate that perceptual uncertainty modulates the probability of lapses both across and10

within modalities on a multisensory discrimination task in rats. These effects cannot be accounted11

for by inattention or motor error, however they are concisely explained by uncertainty-guided12

exploration. We confirm the predictions of the exploration model by showing that changing the13

magnitude or probability of reward associated with one of the decisions selectively affects the14

lapses associated with that decision in uncertain conditions, while leaving “sure-bet” decisions15

unchanged, as predicted by the model. Finally, we demonstrate that muscimol inactivations of16

secondary motor cortex and posterior striatum affect lapses asymmetrically across modalities. The17

inactivations can be captured by a devaluation of actions corresponding to the inactivated side, and18

do not affect “sure-bet” decisions. Together, our results suggest that far from being a nuisance,19

lapses are informative about subjects’ action values and deficits thereof during perceptual decisions.20
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INTRODUCTION21

Perceptual judgments are often modeled using noisy ideal observers (e.g., Signal detection theory,22

Green, Swets, et al., 1966; Bayesian decision theory, Dayan and Daw, 2008) that explain subjects’23

errors as a consequence of noise in sensory evidence. This predicts an error rate that decreases24

with increasing sensory evidence, capturing the sigmoidal relationship often seen between evidence25

strength and subjects’ decision probabilities (i.e. the psychometric function; Fig. 1).26

Human and non-human subjects often deviate from these predictions, displaying an additional27

constant rate of errors independent of the evidence strength known as “lapses”, leading to errors28

even on extreme stimulus levels (Wichmann and Hill, 2001; Gold and Ding, 2013; Carandini and29

Churchland, 2013; Busse et al., 2011). Despite the knowledge that ignoring or improperly fitting30

lapses can lead to serious mis-estimation of psychometric parameters (Wichmann and Hill, 2001;31

Prins and Kingdom, 2018), the cognitive mechanisms underlying lapses remain poorly understood.32

A number of possible sources of noise have been proposed to explain lapses, typically peripheral to33

the decision-making process.34

One class of explanations for lapses relies on pre-decision noise added due to fluctuating35

attention, which is often operationalized as a small fraction of trials on which the subject fails to36

attend to the stimulus (Wichmann and Hill, 2001). On these trials, it is assumed that the subject37

cannot specify the stimulus (i.e. sensory noise with infinite variance, Bays, Catalao, and Husain,38

2009) and hence guesses randomly or in proportion to prior beliefs. This model can be thought of as39

a limiting case of the Variable Precision model, which assumes that fluctuating attention has a more40
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graded effect of scaling the sensory noise variance (Garrido, Dolan, and Sahani, 2011), giving rise41

to heavy tailed estimate distributions, resembling lapses in the limit of high variability (Shen and42

Ma, 2019; Zhou et al., 2018). Temporal forms of inattention have also been proposed to give rise to43

lapses, where the animal ignores early or late parts of the evidence (impulsive or leaky integration,44

Erlich et al., 2015).45

An alternative class of explanations for lapses relies on a fixed amount of noise added after a46

decision has been made, commonly referred to as “post-categorization” noise (Erlich et al., 2015)47

or decision noise (Law and Gold, 2009). Such noise could arise from errors in motor execution48

(e.g. finger errors , Wichmann and Hill, 2001), non-stationarities in the decision rule arising from49

computational imprecision (Findling et al., 2018), suboptimal weighting of choice or outcome50

history (Roy et al., 2018; Busse et al., 2011) or random variability added for the purpose of51

exploration (eg.“ε-greedy” decision rules).52

A number of recent observations have cast doubt on fixed early- or late-stage noise as53

satisfactory explanations for lapses. For instance, many of these explanations predict that lapses54

should occur at a constant rate, while in reality, lapses are known to reduce in frequency with55

training in non-human primates (Law and Gold, 2009). Further, they can occur with different56

frequencies for different stimuli even within the same subject (in rodents, Nikbakht et al., 2018; and57

humans, Mihali et al., 2018; Bertolini et al., 2015), suggesting that they may reflect task-specific,58

associative processes that can vary within a subject.59

Lapse frequencies are even more variable across subjects and can depend on the subject’s60
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age and state of brain function. For instance, lapses are significantly higher in children and patient61

populations than healthy adult humans (Witton, Talcott, and Henning, 2017). Moreover, a number62

of recent studies in rodents have found that perturbing neural activity in secondary motor cortex63

(Erlich et al., 2015) and striatum (Yartsev et al., 2018; Guo et al., 2018) has dramatic, asymmetric64

effects on lapses in auditory decision-making tasks. Because these perturbations were made in65

structures known to be involved in action selection, an intriguing possibility is that lapses reflect66

an integral part of the decision-making process, rather than a peripheral source of noise. However,67

because these studies only tested auditory stimuli, they did not afford the opportunity to distinguish68

sensory modality-specific deficits from general decision-related deficits. Taken together, these69

observations point to the need for a deeper understanding of lapses that accounts for effects of70

stimulus set, learning, age and neural perturbations.71

Here, we leverage a multisensory task in rodents to reveal a novel explanation for lapses:72

uncertainty-guided exploration, a well known strategy for balancing exploration and exploitation73

in value-based decisions (Dayan and Daw, 2008). This is also known as Thompson sampling74

and can be operationalized as a dynamic “softmax” decision rule (Gershman, 2018). We confirm75

the predictions of the exploration model by manipulating reward under conditions of varying76

uncertainty. Finally, we demonstrate that suppressing secondary motor cortex or posterior striatum77

unilaterally has an asymmetric effect on lapses that generalizes across sensory modalities, but only78

in uncertain conditions. This can be accounted for by an action value deficit on the inactivated side,79

reconciling the proposed perceptual and value-related roles of these areas and suggesting that lapses80

are informative about the subjective values of actions.81
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RESULTS82

Testing ideal observer predictions in perceptual decision-making83

We leveraged an established decision-making task (Raposo, Sheppard, et al., 2012; Raposo, Kauf-84

man, and Churchland, 2014; Sheppard, Raposo, and Churchland, 2013; Licata et al., 2017) (Fig.85

1) in which freely moving rats judge whether the fluctuating rate of a 1000 ms series of auditory86

clicks and/or visual flashes (rate range: 9 - 16 Hz) is high or low compared with an abstract category87

boundary (Fig. 1a - c). Using Bayesian decision theory, we constructed an ideal observer for our88

task that selects choices that maximize expected reward (See Methods: Modelling). To test whether89

behavior matches ideal observer predictions, we presented multisensory trials with matched visual90

and auditory rates (i.e., both modalities carried the same number of events/s; Fig. 1c, bottom)91

interleaved with visual-only or auditory-only trials. This allowed us to separately estimate the92

sensory noise in the animals’ visual and auditory system, and compare the measured performance93

on multisensory trials to the predictions of the ideal observer.94

Performance was assessed using a psychometric curve, i.e., the probability of high-rate95

decisions as a function of stimulus rate (Fig. 1f). The ideal observer model predicts a relationship96

between the slope of the psychometric curve and the noise in the animal’s estimate: the higher the97

standard deviation (σ) of sensory noise, the more uncertain the animals estimate of the rate and98

the shallower the psychometric curve. On multisensory trials, the ideal observer should have a99

more certain estimate of the rate, driving a steeper psychometric curve (Fig. 1e, visual [blue] and100

auditory [green] σ values are larger than multisensory σ [red] and Fig. 1f, red curve is steeper than101
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green and blue curves). Since this model does not take lapses into account, it would predict perfect102

performance on the easiest stimuli regardless of uncertainty, and thus all curves should asymptote at103

0 and 1 (Fig 1f).104

105

Figure 1 Testing ideal observer predictions in perceptual decision-making. (a) Schematic drawing of106

rate discrimination task. Rats initiate trials by poking into a center port. Trials consist of visual stimuli107
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presented via a panel of diffused LEDs, auditory stimuli presented via a centrally positioned speaker or108

multisensory stimuli presented from both. Rats are rewarded with a 24µl drop of water for reporting high109

rate stimuli (greater than 12.5 Hz) by poking in the right port and low rate stimuli (lower than 12.5 Hz) with110

leftward choices. (b) Timeline of task events. (c) Example stimulus on auditory (top), visual (middle) and111

multisensory trials (bottom). Stimuli consist of a stream of events separated by long (100 ms) or short (50112

ms) intervals. Multisensory stimuli consist of visual and auditory streams carrying the same underlying113

rate. Visual, auditory and multisensory trials were randomly interleaved (40% visual, 40% auditory, 20%114

multisensory). (d) Schematic outlining the computations of a Bayesian ideal observer. Stimulus with a true115

underlying rate s gives rise to noisy observations xA and xV , which are then integrated with each other116

and with prior beliefs to form a multisensory posterior belief about the rate. This is combined with prior117

beliefs about choice to produce a posterior belief about the correct choice, and further combined with reward118

information to form expected action values QL, QR. The ideal observer selects the action ĉ with maximum119

expected value. Lightning bolts denote proposed sources of noise that can give rise to (red) or exacerbate120

(grey) lapses, causing deviations from the ideal observer. (e) Posterior beliefs on an example trial assuming121

flat priors. Solid black line denotes true rate, blue and green dotted lines denote noisy visual and auditory122

observations, with corresponding unisensory posteriors shown in solid blue and green. Solid red denotes the123

multisensory posterior, centered around the M.A.P. rate estimate in dotted red. Shaded fraction denotes the124

probability of the correct choice being rightward, with µ denoting the category boundary. (f) Ideal observer125

predictions for the psychometric curve, i.e. proportion of rightward choices for each rate. Inverse slopes of126

the curves in each condition are reflective of the posterior widths on those conditions, assuming flat priors.127

The value on the abscissa corresponding to the curve’s midpoint indicates the category boundary (assuming128
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equal rewards).129

Lapses cause deviations from ideal observer, and are reduced on multisensory trials130

In practice, the shapes of empirically obtained psychometric curves do not perfectly match the131

ideal observer (Fig. 2e, green) since they asymptote at values that are less than 1 or greater than132

0. This is a well known phenomenon in psychophysics (Wichmann and Hill, 2001), requiring two133

additional lapse parameters to precisely capture the asymptotes. To account for lapses, we fit a134

four-parameter psychometric function to the subjects’ choice data (Fig. 2a, Equation 1 in Methods)135

with the Palamedes toolbox (Prins and Kingdom, 2018). γ and λ are the lower and upper asymptote136

of the psychometric function, which parameterize lapses away from the left and the right reward137

ports, respectively; φ is a sigmoidal function, in our case the cumulative normal distribution; x is138

the event rate, i.e. the number of flashes or beeps presented during the one second stimulus period;139

µ parameterizes the midpoint of the psychometric function and σ describes the inverse slope after140

correcting for lapses.141

How can we be sure that the asymptotes seen in the data truly reflect non-zero asymptotes142

rather than fitting artifacts or insufficient data at the asymptotes? To test whether lapses were truly143

necessary to explain the behavior, we fit the curves with and without lapses (Fig. 2b) and tested144

whether the lapse parameters were warranted. The ideal observer without lapses was rejected in145

15/17 rats by BIC, and in all rats by AIC. Fitting a fixed lapse rate was not sufficient to capture146

the data, nor was fitting a lapse rate that was constrained to be less than 0.1 (Wichmann and Hill,147

2001), and the data warranted fitting separate lapse rates to each condition (“free lapses” model148
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outperforms “fixed lapses”, “restricted lapses” or “no lapses/ideal observer” in Fig. 2g).149

Multisensory trials offer an additional, strong test of ideal observer predictions. In addition to150

perfect performance on the easiest stimuli, the ideal observer model predicts the minimum possible151

uncertainty achievable on multisensory trials through optimal integration (Ernst and Bulthoff, 2004;152

Equation 2 in Methods). By definition, better-than-optimal performance is impossible. However,153

studies in rats performing multisensory decision-making tasks suggest that in practice, animals’154

performance appears to exceed optimal predictions (Raposo, Sheppard, et al., 2012; Nikbakht155

et al., 2018) seeming, at first, to violate the ideal observer model. Moreover, in these datasets,156

performance on the easiest stimuli was not perfect and asymptotes deviated from 0 and 1. As in157

these previous studies, when we fit performance without lapses, multisensory performance was158

significantly supra-optimal (p=0.0012, paired t-test), i.e. better than the ideal observer prediction159

(Fig. 2c, data points are above the unity line). This was also true when lapse probabilities were160

assumed to be fixed across conditions (p =0.0018) or when they were assumed to be less than 0.1161

(p=0.0003). However, when we allowed lapses to vary freely across conditions, performance was162

indistinguishable from optimal (Fig. 2d, data points are on the unity line). This reaffirms that proper163

treatment of lapses is crucial for accurate estimation of perceptual parameters and offers a potential164

explanation for previous reports of supra-optimality.165

Using this improved fitting method, we replicated previous observations (Raposo, Sheppard, et166

al., 2012; Raposo, Kaufman, and Churchland, 2014) showing that animals have improved sensitivity167

(lower σ) on multisensory vs. unisensory trials (Fig. 2e, red curve is steeper than green/blue curves;168
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Fig. 2f, top). Interestingly, we observed that animals also had a lower lapse probability (λ + γ)169

on multisensory trials (Fig. 2e, asymptotes for red curve are closer to 0 and 1; n=17 rats, 347537170

trials). This was consistently observed across animals (Fig. 2f bottom, the probability of lapses on171

multisensory trials was 0.06 on average, compared to 0.17 on visual, p=1.4e-4 and 0.21 on auditory,172

p=1.5e-5).173

174

Figure 2 Deviations from ideal observer reflect lapses in judgment. (a) Schematic psychometric per-175

formance of an ideal observer (black) vs. a model that includes lapses (green). The ideal observer fit176

includes two parameters: intercept (µ) and slope (σ). The four-parameter cumulative normal distribution177

individually fits µ, σ, and lapse probability for high rate (γ) and low rate choices (λ). Dotted line shows178
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the category boundary (12.5 Hz). (b) Subject data was fit with a an ideal observer model (black) and a179

four-parameter model (green). Dotted line shows the category boundary (12.5 Hz). (c,d) Ideal observer180

predictions vs. measured multisensory sigma for fits with and without lapses. (c) Multisensory integration181

seems supra-optimal when not accounting for lapses. (d) Optimal multisensory integration is restored when182

accounting for lapses. (n = 17 rats. Points represent individual rats; star represents pooled data across all183

rats. Data points that lie on the unity line represent cases in which the measured sigma was equal to the184

optimal prediction). (e) Rats’ psychometric curves on auditory (green), visual (blue) and multisensory (red)185

trials. Bold lines represent data pooled across 17 rats; thin lines represent individual rats. (f) Fit values of186

sigma (top) and lapse parameters (bottom) on unisensory and multisensory conditions. Both parameters187

showed significant reduction on the multisensory conditions (paired t-test, p<0.05); n=17 rats (347537 trials).188

(g) Model comparison using BIC(pink) and AIC(blue) for the average subject (top) and across individual189

subjects (bottom). Lower scores indicate better fits. Both metrics favor a model where lapses are allowed190

to vary freely across conditions (“Free lapse”) over one without lapses (“Ideal observer”), one with a fixed191

probability of lapses (“Fixed lapse”) or where the lapses are restricted to being less than 0.1 (“Restricted192

lapse”).193

A novel model, uncertainty-guided exploration, explains lapses better than traditional mod-194

els of inattention or motor-error195

What could account for the reduction in lapse probability on multisensory trials? While adding extra196

parameters to the ideal observer model fit the behavioral data well and accounted for the reduction197

in inverse-slope on multisensory trials, this success doesn’t provide an explanation for why lapses198

are present in the first place, nor why they differ between stimulus conditions.199
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To investigate this, we considered possible sources of noise that have traditionally been200

invoked to explain lapses (Fig. 1d). We first hypothesized that lapses might be due to a fixed201

amount of noise added once the decision has been made. These sources of noise could include202

decision noise due to imprecision (Findling et al., 2018), motor errors (Wichmann and Hill, 2001)203

or ε-greedy exploration. However, these sources should hinder decisions equally across conditions204

(Supplementary Fig. 1b), which cannot explain our observation of condition-dependent lapse rates205

(Fig. 2f).206

A second explanation is that lapses arise due to inattention on a small fraction of trials.207

Inattention would drive the animal to guess randomly, producing lapse rates whose sum should208

reflect the probability of not attending (Fig. 3a, Methods). According to this explanation, the209

lower lapse rate on multisensory trials reflects increased attention on those trials, perhaps due to210

their increased bottom-up salience (i.e. two streams of stimuli instead of one). To test this, we211

leveraged a multisensory condition that manipulates uncertainty without changing salience (Raposo,212

Sheppard, et al., 2012). Specifically, we interleaved standard matched-rate multisensory trials with213

“neutral” multisensory trials for which the rate of the auditory stimuli ranged between 9-16 Hz,214

while the visual stimuli was always 12 Hz. This rate was so close to the category boundary (12.5215

Hz) that it did not provide compelling evidence for one choice or the other (Fig. 3d, left), thus216

reducing the information in the multisensory stimulus and increasing uncertainty. However, since217

both “neutral” and “matched” conditions are multisensory, they should be equally salient, and since218

they are interleaved, the animal would be unable to identify the condition without actually attending219

to the stimulus. According to the inattention model, matched and neutral trials should have the same220
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rate of lapses, only differing in their σ (Supplementary Fig 1c).221

Contrary to this prediction, we observed higher lapse rates on “neutral” trials, where the222

uncertainty was high, than on “matched” trials, where the uncertainty was lower (Fig. 3d). The223

dependence of lapses on uncertainty is reminiscent of the dependence of lapse on uncertainty224

observed when comparing unisensory vs. multisensory trials (Fig. 2e,f; Supplementary Fig. 1e).225

Having observed that traditional explanations of lapse fail to account for the behavioral226

observations, we extended the ideal observer model to propose a novel explanation for lapses: an227

uncertainty-guided form of exploration using a dynamic softmax decision rule (Fig. 3b). This form228

of exploration is widely used in value-based decision making (Dayan and Daw, 2008) since it allows229

the subject to “tune” the degree of exploration using a β parameter, also known as an “inverse230

temperature”. Lower values of β encourage more exploration, while higher values of β encourage231

exploitation, with the limiting case of β →∞ reducing to the reward-maximizing ideal observer.232

Modulating exploration with uncertainty is a well known heuristic called Thompson sampling, that233

automatically balances exploration and exploitation (Supplementary Fig. 4a-b) allowing one to234

efficiently maximize long-term expected reward (Gershman, 2018; Leike et al., 2016). This predicts235

that conditions with higher uncertainty in expected reward (e.g. unisensory or neutral trials) should236

encourage more exploration, giving rise to more frequent lapses (Supplementary Fig. 4c-d).237

As a result, the uncertainty-guided exploration model predicts an increase not only in the σ238

but also in lapses on neutral trials, just as we observed (Fig. 3c)- in fact it predicts that both these239

parameters should match those on auditory trials. This model fit the data well (Fig. 3e, bottom).240
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The inattention model, by contrast, predicts that both conditions would have the same lapse rates241

with the neutral condition simply having a greater σ. This model provided a worse fit to the data,242

particularly missing the data at extreme stimulus values where lapses are most clearly apparent243

(Fig. 3e, top). Model comparison using BIC and AIC both favored the exploration model over the244

inattention model for average data (Fig. 3f top) as well as across individual subjects (Fig. 3f bottom,245

Supplementary Fig. 3)246

247

Figure 3 Uncertainty-guided exploration offers a novel explanation for lapses. Models of lapses in248
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decision-making: (a) Inattention model of lapses. Left panel: on a small fraction of trials given by 1−pattend,249

the observer does not attend to the stimulus (red curve), leading to equal posterior probabilities of high and250

low rates (Shaded, clear regions of curve respectively) and guesses according to the probability bias, giving251

rise to lapses (right panel). The sum of lapse rates then reflects 1 − pattend, while their ratio reflects the252

bias. (b) Uncertainty-guided exploration model. Lapses can arise from exploratory decision rules such as253

the “softmax” (red) rather than reward-maximization (blue). Since the difference in expected value from254

right and left actions (QR − QL) is bounded by the maximum reward magnitudes rR and rL, even when255

the stimulus is very easy, the maximum probability of choosing the higher value option is not 1, giving rise256

to lapses. Lapse rates on either side are then proportional to the reward magnitude on that side, and to a257

“temperature” parameter β that depends on the uncertainty in expected reward. (c) Motor error, or ε-greedy258

model. Lapses can also arise from decision rules with a fixed proportion ε of random exploratory choices,259

or due to motor errors ocurring on ε fraction of trials. The sum of lapses reflects ε while their ratio reflects260

any bias in exploration or motor errors. (d) Left: multisensory stimuli designed to distinguish between261

attentional and non-attentional sources of lapses. Standard multisensory stimuli with matched visual and262

auditory rates (top) and “neutral” stimuli where one modality has a rate very close to the category boundary263

and is uninformative (bottom). Both stimuli are multisensory and designed to have equal bottom-up salience,264

and can only be distinguished by attending to them and accumulating evidence. Right: rat performance265

on interleaved matched (red) and neutral (orange) trials. (e) Since the matched and neutral conditions are266

equally salient, they are expected to have equal probabilities of attending, predicting similar total lapse rates267

in the inattention model (top, solid lines are model fits). Deviations from model fits are denoted with arrows.268

The exploration model (bottom) provides a better fit, by allowing for different levels of exploration in the269

15

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/613828doi: bioRxiv preprint first posted online Apr. 19, 2019; 

http://dx.doi.org/10.1101/613828
http://creativecommons.org/licenses/by-nc-nd/4.0/


two conditions. (f) Model comparison using BIC (pink) and AIC (blue) both favor the uncertainty-guided270

exploration model.271

Reward manipulations confirm predictions of exploration model272

One of the key features of the uncertainty-guided exploration model is that lapses are exploratory273

choices made with full knowledge of the stimulus, and should depend only on the expected rewards274

associated with that stimulus category (Supplementary Fig. 4). This is in stark contrast to the275

inattention model and many other kinds of disengagement (Supplementary Fig. 2), in which lapses276

are caused by the observer disregarding the stimulus, and hence lapses at the two extreme stimulus277

levels are both influenced by a common underlying guessing process that depends on expected278

rewards from both stimulus categories. This is also in contrast with fixed motor error or ε-greedy279

models in which lapses are independent of expected reward (Fig. 3c).280

Therefore, a unique prediction of the exploration model is that selectively manipulating281

expected rewards associated with one of the stimulus categories should only affect lapses at one282

extreme of the psychometric function, whereas inattention and other kinds of disengagement predict283

that both lapses should be affected, and fixed error models predict that neither should be affected284

(Fig. 4a, Supplementary Fig. 1,2).285

To experimentally test these predictions, we tested rats on the rate discrimination task with286

asymmetric rewards (Fig. 4b, top). Instead of rewarding high and low rate choices equally, we287

increased the water amount on the reward port associated with high-rates (rightward choices) so it288

was 1.5 times larger than before, without changing the reward on the the low-rate side (leftward289
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choices). In a second rat cohort we did the opposite: we devalued the choices associated with290

high-rate trials by decreasing the water amount on that side port so it was 1.5 times smaller than291

before, without changing the reward on the low-rate side.292

293

Figure 4 Reward manipulations match predictions of the exploration model. (a) The inattention, ex-294

ploration and fixed error models make different predictions for increases and decreases in the reward295

magnitude for rightward (high-rate) actions. The inattention model (left panel) predicts changes in lapses for296

both right and left choices, while the exploration model (center panel) predicts changes in lapses only for297
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high rate choices, and fixed motor error or ε greedy models (right) predict changes in neither lapse. Black298

line, equal rewards on both sides; green, increased rightward reward; red, decreased rightward reward. (b)299

Schematic of rate discrimination trials and interleaved “sure bet” (side LED) trials. The majority of the trials300

(94%) were rate discrimination trials as described in Figure 1. On sure-bet trials, a pure tone was played301

during a 0.2 second fixation period and one of the side ports was illuminated once the tone ended to indicate302

that reward was available there. Rate discrimination and sure-bet trials were randomly interleaved, as were303

left and right trials, and the rightward reward magnitude was either increased (36µl) or decreased (16µl) while304

maintaining the leftward reward at 24µl (c) Rats’ behavior on rate discrimination trials following reward305

magnitude manipulations. High rate lapses decrease when water reward for high-rate choices is increased (left306

panel; n=3 rats, 6976 trials), while high-rate lapses increase when reward on that side is decreased (right panel;307

n=3 rats, 11164 trials). Solid curves are exploration model fits with a single parameter change accounting for308

the manipulation. (d) Rats show nearly perfect performance on sure-bet trials, and are unaffected by reward309

manipulations on these trials. (e) Reward probability manipulation. (Left) Schematic of probabilistic reward310

trials, incorrect (leftward) choices on high rates were rewarded with a probability of 0.5, and all other rewards311

were left unchanged. (Right) Rat behavior and exploration model fits showing a selective increase in high-rate312

lapses (n=5 rats, 34292 trials). (f) Rat behavior on equal reward trials conditioned on successes (green) or313

failures (red) on the right on the previous trials resembles effects of reward size manipulations. (g) Model314

comparison showing that AIC and BIC both favor the exploration model on data from all 3 manipulations.315

The animals’ behavior on the asymmetric-reward task matched the predictions of the explo-316

ration model. Increasing the reward size on choices associated with high-rates led to a decrease in317

lapses for the highest rates and no changes in lapses for the lower rates (Fig. 4c, left; n=3 rats, 6976318
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trials). Decreasing the reward of choices associated with high-rates led to an increase in lapses for319

the highest rates and no changes in lapses for the lower rates (Fig. 4c, right; n=3 rats, 11164 trials).320

This shows that both increasing and decreasing the value of one of the actions has an asymmetric321

effect on lapse probabilities that does not match the inattention model.322

To confirm that the asymmetric changes in lapse rate that we observed were truly driven323

by uncertainty, we examined performance on randomly interleaved “sure bet” trials on which the324

uncertainty was very low (Fig. 4b, bottom). On these trials, a pure tone was played during the325

fixation period, after which an LED at one of the side ports was clearly illuminated, indicating a326

reward. Sure-bet trials comprised 6% of the total trials, and as with the rate discrimination trials,327

left and right trials were interleaved. Owing to the low uncertainty, the model predicts that very328

little exploration would be required in this condition, and that animals would very quickly reach329

perfect performance on these trials. Importantly, our model predicts that performance on “sure-bet”330

trials would be unaffected by imbalances in reward magnitude.331

In keeping with this prediction, on sure-bet trials, performance was near perfect (right-332

ward probabilities of 0.003 [0.001,0.01] and 0.989 [0.978,0.995] on go-left and go-right trials333

respectively), and unaffected following reward manipulations (Fig. 4d: Rightward probabilities of334

0.004 [0.001, 0.014] and 0.996 [0.986,0.999] on increased reward, 0.006 [0.003,0.012] and 0.99335

[0.983,0.994] on decreased reward). This suggests that the effect of value on lapses is restricted336

to uncertain situations that encourage subjects to explore, rather than exploit. Further, because337

sure-bet trials were interleaved with more uncertain trials, their near-perfect performance indicates338
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that uncertainty can be estimated on the timescale of individual trials.339

As an additional test of the model, we manipulated expected rewards by probabilistically340

rewarding incorrect i.e. leftward choices on high rate trials with a probability of 0.5, while leaving all341

other rewards unchanged (Fig. 4e left). The exploration model predicts that this should selectively342

increase the value of leftward actions on high rate trials, increasing lapses on high rates. Indeed,343

this is what we observed (Fig. 4e right, n=5 animals, 347537 trials), and the effect was strikingly344

similar to the decreased reward experiment, even though the two manipulations affect high rate345

action values through changes on opposite reward ports. Moreover, this suggests that lapses reflect346

changes in action value caused by changing either reward magnitudes or reward probabilities, as347

one would expect from the exploration model.348

The subjective value of actions may naturally change with experience, even without the349

explicit reward manipulations described above. Throughout training, the animal uses outcomes of350

previous trials to learn and update the expected rewards from various actions, allowing it to learn351

the rules of the task (i.e. that high rate trials are rewarded on the right and so on). If such learning352

processes continue to persist in trained animals, either due to incomplete training (Law and Gold,353

2009), uncertainty in feedback, forgetting over time (Gershman, 2015; Drugowitsch and Pouget,354

2018), or perceived volatility (Yu and Cohen, 2009), then the outcomes of previous trials should355

continue to affect subsequent trials even in trained animals, as has been observed in a number of356

studies (Busse et al., 2011; Lak et al., 2018; Mendonca et al., 2018; Odoemene et al., 2018; Pinto357

et al., 2018; Scott et al., 2015). The action value of rightward choices should increase following358
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a rightward success and decrease following a rightward failure, predicting the same asymmetric359

changes in lapses as reward magnitude manipulations. As predicted, trials following rewarded and360

unrewarded rightward choices showed decreased and increased high-rate lapses, respectively (Fig.361

4g; same rats and trials as in Fig. 2e). Taken together, manipulations of value match the predictions362

of the uncertainty-dependent exploration model.363

Changes in lapses following prefrontal and striatal inactivations resemble value deficit364

The results of the reward experiments suggest that disrupting areas that confer value to actions365

should asymmetrically bias lapses, in contrast to disruptions of areas that encode sensory evidence,366

which should lead to horizontal biases without affecting lapses, or motor disruptions that simply367

make one of the actions harder to perform, which should affect both lapses (Supplementary Fig.368

11a, top). Crucially, in the absence of lapses, all three of these disruptions would look identical,369

producing a horizontal shift. This suggests that lapses could actually be informative about the370

stage of involvement of brain regions. Two candidate areas that we sought out to test in our371

multisensory task were secondary motor cortex (M2) and posterior striatum (pStr), both of which372

receive convergent input from primary visual and auditory cortices (Supplementary Fig. 5, results of373

simultaneous anterograde tracing from V1 and A1; also see Jiang and Kim, 2018; Barthas and Kwan,374

2017). Previous studies have shown effects on lapses following inactivation of both these areas in375

auditory tasks in rats (Erlich et al., 2015; Guo et al., 2018). These were interpreted as effects arising376

from either leaky accumulation (Erlich et al., 2015), post-categorization biases (Piet et al., 2017) or377

perceptual biases (Guo et al., 2018). These effects were very similar to the effects of manipulating378

reward in our task, hinting that these effects may actually arise from biased action values. However,379
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since these deficits were only demonstrated during auditory decision-making, these studies did380

not afford the opportunity to distinguish sensory modality-specific deficits from those that should381

generalize across modalities (e.g., visual, multisensory, auditory) like value deficits.382

To test whether pStr and M2 have a modality-independent role in perceptual decisions, we383

suppressed activity of neurons in each of these areas using muscimol, a GABAA agonist, during384

our multisensory rate discrimination task. We implanted bilateral cannulae in M2 (Supplementary385

Fig. 6b; n = 5 rats; +2 mm AP 1.3 mm ML, 0.3 mm DV) and pStr (Supplementary Fig. 6a; n386

= 6 rats; -3.2 mm AP, 5.4 mm ML, 4.1 mm DV) (Fig. 5a). On control days, rats were infused387

unilaterally with saline, followed by unilateral muscimol infusion the next day (M2: 0.1-0.5 µg,388

pStr 0.075-0.125 µg). We compared performance on the multisensory rate discrimination task for389

muscimol days with preceding saline days. Inactivation of the side associated with low-rate choices390

biased the animals to make more low-rate choices (Fig. 5b; left 6 panels: empty circles, inactivation391

sessions; full circles, control sessions) and inactivation of the side associated with high-rates biased392

them to make more high-rate choices (Fig. 5b, right 6 panels). The inactivations largely affected393

lapses on the contralateral side, while sparing those on the ipsilateral side (Fig. 5c). These results394

recapitulated previous findings, and were strikingly similar to the effects we observed following395

reward manipulations (as seen in Fig. 4c, right panel). These effects were seen across areas (Fig. 5b,396

top, M2; bottom, pStr) and modalities (Fig. 5b; green, auditory; blue, visual and red, multisensory),397

suggesting that pStr and M2 are part of a modality-independent circuit for decision-making.398

Fitting the data with the exploration model revealed that the effects on lapses could be captured399
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by scaling the contralateral action value by a single parameter across modalities (Fig. 5b, Joint fits400

to control (solid lines) and inactivation trials (dotted lines) across modalities, differing only by a401

single parameter), similar to the reward manipulation experiments. Animals that were inactivated402

on the side associated with high rates showed increased low rate lapses (Fig. 5c, bottom right; data403

points are above the unity line; n=9 rats), but lapses did not change for high rates (Fig. 5c, top right;404

data points are on the unity line). This was consistent across areas and modalities (Fig. 5c; M2,405

triangles; pStr, circles; blue, visual; green, auditory). Animals that were inactivated on the side406

associated with low rates showed the opposite effect: increased lapses on high rate trials (Fig. 5c,407

top left; n=10 rats) and no change in lapses for low rate trials (Fig. 5c bottom left). To confirm408

that this effect was independent of the associated stimulus, some rats were trained on a reverse409

contingency regimen in which high rates were rewarded on the left side. The effects were consistent410

across both groups (Supplementary Fig. 7) and always resembled a devaluation of contralateral411

actions (Supplementary Fig. 11).412

To determine whether changes in decision-making simply reflected motor impairments that413

drove a tendency to favor the ipsilateral side, we compared behavior on the sure-bet task described414

previously (Fig. 4b, bottom). Performance was spared on these trials (Fig. 5d): rats made correct415

rightward and leftward choices regardless of the side that was inactivated. This suggests that416

behavioral effects were restricted to situations in which there was uncertainty about the correct417

outcome. We also looked at multiple movement parameters such as wait time in the center port and418

movement times to ipsilateral and contralateral reward ports. There were no significant effects on419

movement parameters (Supplementary figure 10), suggesting that effects on decision outcome were420
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not due to a muscimol-induced motor impairment.421

Finally, a model comparison revealed that a fixed contralateral value deficit captured the422

inactivation effects much better than a fixed reduction in contralateral sensory evidence or a fixed423

increase in contralateral motor effort, both for M2 (Fig. 5e top) and pStr (Fig. 5e bottom).424

In uncertain conditions, this reduced contralateral value gives rise to more exploratory choices425

and hence more lapses on one side (Fig. 5f top), but doesn’t affect the other side, or sure-bet426

trials on which the animals largely exploit. Together, this suggests that M2 and pStr have a427

lateralized, modality-independent role in computing the expected value of actions based on incoming428

multisensory information (Fig. 5f bottom).429

430
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Figure 5 Inactivation of secondary motor cortex and posterior striatum affects lapses, suggesting a431

role in action value encoding. (a) Schematic of cannulae implants in M2 (top) and pStr (bottom) and repre-432

sentative coronal slices. For illustration purposes only, the schematic shows implants in the left hemisphere,433

however, the inactivations shown in panel (b) were performed also on the right hemisphere. (b) Unilateral434

inactivation of M2 (top) and pStr (bottom). Left 6 plots: inactivation of the side associated with low-rates435

shows increased lapses for high rates on visual (blue), auditory (green) and multisensory (red) trials (M2: n=5436

rats; 10329 control trials, full line; 6174 inactivation trials, dotted line; pStr: n=5 rats; 10419 control trials;437

6079 inactivation trials). Right 6 plots: inactivation of the side associated with high-rates shows increased438

lapses for low rates on visual, auditory and multisensory trials (M2: n=3 rats; 5678 control trials; 3816439

inactivation trials; pStr: n=6 rats; 11333 control trials; 6838 inactivation trials). Solid lines are exploration440

model fits,accounting for inactivation effects across all 3 modalities by scaling all contralateral values by a441

single parameter. (c) Increased high rate lapses following unilateral inactivation of the side associated with442

low-rates (top left); no change in low rate lapses (bottom left) and vice versa for inactivation of the side443

associated with high-rates (top, bottom right). Control data on the abscissa is plotted against inactivation data444

on the ordinate. Same animals as in b. Green, auditory trials; blue, visual trials. Abbreviations: posterior445

striatum (pStr), secondary motor cortex (M2). (d) Sure bet trials are unaffected following inactivation. This446

example shows that rats who were inactivated on the side associated with high rates make correct rightward447

and leftward choices Top, M2; bottom, pStr. (e) Model comparison of three possible multisensory deficits -448

reduction of contralateral evidence by a fixed amount (left), reduction of contralateral value by a fixed amount449

(center) or an increased contralateral effort by a fixed amount (right). Both AIC and BIC suggest a value450

deficit (f) Proposed computational role of M2 and Striatum. Lateralized encoding of left and right action451
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values by right and left M2/pStr explain the asymmetric effect of unilateral inactivations on lapses.452

DISCUSSION453

Perceptual decision-makers have long been known to display a small fraction of errors even on easy454

trials. Until now, these “lapses” were largely regarded as a nuisance and lacked a comprehensive,455

normative explanation. Here, we propose a novel explanation for lapses: that they reflect a strategic456

balance between exploiting known rewarding options and exploring uncertain ones. Our model457

makes strong predictions for lapses under diverse decision-making contexts, which we have tested458

here. First, the model predicts more lapses on conditions with higher uncertainty, such as unisensory459

(Fig. 2) or neutral (Fig. 3), compared to multisensory or sure-bet conditions. Second, the model460

predicts that asymmetric reward manipulations should only affect lapses on one side, sparing461

decisions to the other side and sure-bet trials (Fig. 4). Finally, the model predicts that lapses should462

be affected by perturbations to brain regions that encode action value. Accordingly, we observed463

that unilateral inactivations of secondary motor cortex and posterior striatum similarly affected464

lapses on one side across auditory, visual and multisensory trials (Fig. 5). Taken together, our model465

and experimental data argue strongly that far from being a nuisance, lapses are informative about466

animals’ subjective action values and reflect a trade-off between exploration and exploitation.467

Considerations of value have provided many useful insights into aspects of behavior that468

seem sub-optimal at first glance from the perspective of perceptual ideal observers. For instance,469

many perceptual tasks are designed with accuracy in mind - defining an ideal observer as one470
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who maximizes accuracy, in line with classical signal detection theory. However, in practice, the471

success or failure of different actions may be of unequal value to subjects, especially if reward or472

punishment is delivered explicitly, as is often the case with non-human subjects. This may give rise473

to biases that can only be explained by an observer that maximizes expected utility (Dayan and474

Daw, 2008). Similarly, reward outcomes on a given trial can influence decisions about stimuli on475

subsequent trials through reinforcement learning, giving rise to serial biases. These biases occur476

even though the ideal observer should treat the evidence on successive trials as independent (Busse477

et al., 2011; Lak et al., 2018). Finally, when subjects can control how long they sample the stimulus,478

subjects maximizing reward rate may choose to make premature decisions, sacrificing accuracy for479

speed (Bogacz et al., 2006).480

Here, we take further inspiration from considerations of value to provide a novel account for481

lapses. We leveraged a well known phenomenon in value-based decisions: uncertainty dependent482

exploration. Until now, this phenomenon has not been considered a candidate explanation for483

lapses in perceptual decisions. Our results argue that lapses are not simply accidental errors made484

as a consequence of attentional “blinks” or motor “slips”, but can reflect a deliberate, internal485

source of behavioral variability that facilitates learning and information gathering under uncertain486

or non-stationary environments.487

Although exploration no longer yields the maximum utility on any given trial, it is critical488

for dynamic environments, and those in which there is uncertainty about probability of reward or489

stimulus-response contingency (e.g., during learning). By encouraging subjects to sample multiple490
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options, exploration can potentially improve the subject’s knowledge of the rules of the task, helping491

it to increase future payoff, thus maximizing expected utility over a long period of time.492

Balancing exploration and exploitation is computationally challenging, and the mechanism493

we propose here, uncertainty dependent exploration, is a well-known, elegant heuristic for achieving494

this balance. Also known as Thompson sampling, this strategy has been shown to be asymptotically495

optimal in partially observable environments (Leike et al., 2016) and can be naturally implemented496

through a sampling scheme where the subject samples action values from a learnt distribution497

and then maximizes with respect to the sample (Gershman, 2018). This strategy predicts that498

conditions with higher uncertainty should have higher exploration, and consequently higher lapse499

rates, explaining the pattern of lapse rates we observed on unisensory vs. multisensory trials as well500

as on neutral vs. matched trials. A lower rate of lapses on multisensory trials has also been reported501

on a visual-tactile task in rats (Nikbakht et al., 2018) and a vestibular integration task in humans502

(Bertolini et al., 2015) and can potentially account for the apparent supra-optimal integration that503

has been reported in a number of studies (Nikbakht et al., 2018; Hou et al., 2018; Raposo, Sheppard,504

et al., 2012). A strong prediction of uncertainty guided exploration is that the animal should always505

exploit on conditions with no uncertainty, as we observed on sure-bet trials (Fig. 4d, 5d).506

The model also predicts that exploration, and consequently lapses, should decrease with507

training as the animal becomes more certain of the rules and expected rewards, explaining training-508

dependent effects reported in primates (Law and Gold, 2009). It can also potentially explain why509

children have higher lapse rates - they have been shown to be more exploratory in their decisions510
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than adults (Lucas et al., 2014).511

A unique prediction of the exploration model is that it predicts lapse rates will sometimes512

change asymmetrically for left and right decisions. For instance, changing the value associated513

with one of the decisions (eg. high rate) should only affect lapses associated with that decision -514

predicting fewer lapses on high rates if the rightward reward is increased, and more lapses if it is515

decreased, or if leftward decisions are probabilistically rewarded on high rates. These predictions516

are borne out (Fig. 4c), and rightward successes or failures on the previous trial have a similar effect.517

The model also suggests that the asymmetric effects on lapses seen during unilateral inactivations of518

prefrontal and striatal regions (Fig. 5b) arises from a selective devaluation of contralateral actions.519

This interpretation reconciles a number of studies that have found asymmetric effects of inactivating520

these areas during perceptual decisions (Erlich et al., 2015; Zatka-Haas et al., 2019; Wang et al.,521

2018; Guo et al., 2018) with their established roles in encoding action value (Barthas and Kwan,522

2017; Lee et al., 2015) during value-based decisions.523

An open question that remains is how the brain might tune the degree of exploration in524

proportion to uncertainty. An intriguing candidate for this is dopamine, whose tonic levels have525

been shown to modulate exploration in mice on a lever-press task (Beeler et al., 2010), and context-526

dependent song variability in songbirds (Leblois, Wendel, and Perkel, 2010). Dopaminergic genes527

have been shown to predict individual differences in uncertainty-guided exploration in humans528

(Frank et al., 2009), and dopaminergic disorders such as Parkinson’s disease have been shown to529

disrupt the uncertainty-dependence of lapses across conditions (Bertolini et al., 2015). Patients with530
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ADHD, another disorder associated with dopaminergic dysfunction, have been shown to display531

both increased perceptual variability and increased task-irrelevant motor output, a measure that532

correlates with lapses (Mihali et al., 2018). A promising avenue for future studies is to leverage533

the informativeness of lapses and the precise control of uncertainty afforded by multisensory tasks,534

in conjunction with perturbations or recordings of dopaminergic circuitry, to further elucidate the535

connections between perceptual and value-based decision making systems.536

METHODS537

Behavior538

Animal Subjects and Housing All animal procedures and experiments were in accordance with539

the National Institutes of Healths Guide for the Care and Use of Laboratory Animals and were540

approved by the Cold Spring Harbor Laboratory Animal Care and Use Committee. Experiments541

were conducted with 34 adult male and female Long Evans rats (250-350g, Taconic Farms) that542

were housed with free access to food and restricted access to water starting from the onset of543

behavioral training. Rats were housed on a reversed light-dark cycle; experiments were run during544

the dark part of the cycle. Rats were pair-housed during the whole training period.545

Animal training and behavioral task Rats were trained following previously established methods546

(Raposo 2012, Sheppard 2013, Raposo 2014, Licata 2017). Briefly, rats were trained to wait in547

the center port for 1000 ms while stimuli were presented, and to associate stimuli with left/right548

reward ports. Stimuli for each trial consisted of a series of events: auditory clicks from a centrally549
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positioned speaker, full-field visual flashes, or both together. Stimulus events were separated by550

either long (100 ms) or short (50 ms) intervals. For the easiest trials, all inter-event intervals were551

identical, generating rates that were 9 events/s (all long intervals) or 16 events/s (all short intervals).552

More difficult trials included a mixture of long and short intervals, generating stimulus rates that553

were intermediate between the two extremes and therefore more difficult for the animal to judge.554

The stimulus began after a variable delay following when the rats snout broke the infrared beam555

in the center port. The length of this delay was selected from a truncated exponential distribution556

(λ = 30 ms, minimum = 10 ms, maximum = 200 ms) to generate an approximately flat hazard557

function. The total time of the stimulus was usually 1000 ms. Trials of all modalities and stimulus558

strengths were interleaved. For multisensory trials, the same number of auditory and visual events559

were presented (except for a subset of neutral trials). Auditory and visual stimulus event times were560

generated independently, as our previous work has demonstrated that rats make nearly identical561

decisions regardless of whether stimulus events are presented synchronously or independently562

(Raposo, Sheppard, et al., 2012). For most experiments, rats were rewarded with a drop of water563

for moving to the left reward port following low-rate trials and to the right reward port following564

high rate trials. For muscimol inactivation experiments half of the rats were rewarded according565

to the reverse contingency. Animals typically completed between 700 and 1,200 trials per day.566

Most experiments had 18 conditions (3 modalities 8 stimulus strengths), leading to 29-50 trials per567

condition per day.568

To probe the effect of uncertainty on lapses, rats received catch trials consisting of multisensory569

neutral trials, where only the auditory modality provided evidence for a particular choice, whereas570
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the visual modality provided evidence that was so close to the category boundary (12 Hz) that it did571

not support one choice or the other (Raposo, Sheppard, et al., 2012)572

To probe the effect of value on lapses, we manipulated either reward magnitude or reward573

probability associated with high rates, while keeping low rate trials unchanged. To increase or574

decrease reward magnitude associated with high rates, the amount of water dispensed on the right575

port was increased or decreased to 36ul or 16 ul respectively, while the reward on the left port576

was maintained at 24 ul. To manipulate reward probability, we occasionally rewarded rats on the577

(incorrect) left port on high rate trials with a probability of 0.5. The right port was still rewarded578

with a probability of 1 on high rates, and reward probabilities on low rate trials were unchanged (1579

on the left port, 0 on the right).580

Analysis of behavioral data.581

Psychometric curves. Descriptive four-parameter psychometric functions were fit to choice data us-582

ing the Palamedes toolbox (Prins and Kingdom, 2018). Psychometric functions were parameterized583

as:584

ψ(x;µ, σ, γ, λ) = φ(x;µ, σ)(1− λ− γ) + γ (1)

where γ and λ are the lower and upper asymptote of the psychometric function, which parameterize585

the lapse rates on the left and to the right, respectively; φ is a cumulative normal function; x is the586

event rate, i.e. the number of flashes or beeps presented during the one second stimulus period; µ587

parameterizes the x-value at the midpoint of the psychometric function and σ describes the inverse588

slope. 95% Confidence intervals on these parameters were generated via bootstrapping based on589
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1000 simulations.590

Modeling591

Ideal observer model592

We can specify an ideal observer model for our task using Bayesian Decision Theory (Dayan and593

Daw, 2008). This observer maintains probability distributions over previously experienced stimuli594

and choices, computes the posterior probability of each action being correct given its observations595

and picks the action that yields the highest expected reward.596

Let the true category on any given trial be ctrue, the true stimulus rate be strue and the animal’s597

noisy visual and auditory observations of strue be xV and xA, respectively. We assume that the two598

sensory channels are corrupted by independent gaussian noise with standard deviation σA and σV ,599

respectively, giving rise to conditionally independent observations.600

p(xA|strue) = N (strue, σA), p(xV |strue) = N (strue, σV ),

p(xA, xV |strue) = p(xA|strue)p(xV |strue)
(2)

The ideal observer can use this knowledge to compute the likelihood of seeing the current trial’s601

observations as a function of the hypothesized stimulus rate s. This likelihood L is a gaussian602
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function of s with a mean given by a weighted sum of the observations xA and xV ,:603

L(s) = p(xA, xV |s) = p(xA|s)p(xV |s)

∝ N (µM , σM)

µM = wAxA + wV xV

σM = (σ−2
A + σ−2

V )−
1
2

wA =
σ2
M

σ2
A

, wV =
σ2
M

σ2
V

(3)

The likelihood of seeing the observations as a function of the hypothesized category c, is given604

by marginalizing over all possible hypothesized stimulus rates. Let the experimentally imposed605

category boundary be µ0, such that stimulus rates are considered high when s > µ0 and low when606

s < µ0. Then,607

L(c = High) = p(xA, xV |c = High)

=

∫
s

p(xA, xV , s|c = High)ds

=

∫
s

p(xA, xV |s)p(s|c = High)ds ∵ xa, xV ⊥ c|s

=

∫
s>µ0

p(xA, xV |s)ds

∝ 1− Φ(µ0;µM , σM)

(4)

where Φ is the cumulative normal function. Using Bayes’ rule, the ideal observer can then compute608

the probability that the current trial was high or low rate given the observations, i.e. the posterior609
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probability.610

p(c|xA, xV ) =
p(xA, xV |c)p(c)
p(xA, xV )

=⇒ p(c = High|xA, xV ) ∝ pHigh(1− Φ(µ0;µM , σM))

=⇒ p(c = Low|xA, xV ) ∝ pLowΦ(µ0;µM , σM)

(5)

where pHigh and pLow are the prior probabilities of high and low rates respectively. The expected611

value Q(a) of choosing right or left actions (also known as the action values) is obtained by612

marginalizing the learnt value of state-action pairs q(c, a) over the unobserved state c.613

Q(a = R) = p(High|xA, xV )q(High,R) + p(Low|xA, xV )q(Low,R)

Q(a = L) = p(High|xA, xV )q(High, L) + p(Low|xA, xV )q(Low,L)

(6)

Under the standard contingency, high rates are rewarded on the right and low rates on the left,614

so for a trained observer that has fully learnt the contingency, q(High,R) → rR, q(High, L) →615

0, q(Low,R)→ 0, q(Low,L)→ rL, with rR and rL being reward magnitudes for rightward and616

leftward actions. This simplifies the action values to:617

Q(R) = p(High|xA, xV )rR ∝ pHigh(1− Φ(µ0;µM , σM))rR

Q(L) = p(Low|xA, xV )rL ∝ pLowΦ(µ0;µM , σM)rL

(7)
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The max-reward decision rule involves picking the action â with the highest expected reward:618

â = argmaxQ(a)

i.e. â = R ⇐⇒ Q(R) > Q(L)

⇐⇒ pHigh(1− Φ(µ0;µM , σM))rR > pLowΦ(µ0;µM , σM))rL

⇐⇒ Φ(µM ;µ0, σM)) >
1

1 +
pHighrR
pLowrL

⇐⇒ wAxA + wV xV > Φ−1(
1

1 +
pHighrR
pLowrL

;µ0, (σ
−2
A + σ−2

V )−
1
2 )

(8)

In the special case of equal rewards and uniform stimulus and category priors, this reduces to619

choosing right when the weighted sum of observations is to the right of the true category boundary,620

i.e. wAxA + wV xV > µ0. Note that this is a deterministic decision rule for any given observations621

xA and xV , however, since these are noisy and gaussian distributed around the true stimulus rate622

strue, the likelihood of making a rightward decision is given by the cumulative gaussian function Φ:623

624

For pHigh = pLow, rR = rL

p(â = R|s) = p(wAxA + wV xV > µ0|s)

= Φ(strue;µ0, σ)

σ =



σA on auditory trials

σV on visual trials

(σ−2
A + σ−2

V )
1
2 on multisensory trials

(9)

625
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We can measure this probability empirically through the psychometric curve. Fitting it with a two626

parameter cumulative gaussian function yields µ and σ which can be compared to ideal observer627

predictions. The σ parameter is then taken to reflect sensory noise; and with the assumption of uni-628

form priors and equal rewards, the µ parameter is taken to reflect the subjective category boundary.629

Although µ should equal µ0 for the ideal observer, in practice it is treated as a free parameter, and630

deviations of µ from µ0 could reflect any of three possible suboptimalities: 1) a subjective category631

boundary mismatched to the true one, 2) mismatched priors, or 3) unequal subjective rewards of the632

two actions.633

634

Inattention model635

The traditional model for lapse rates assumes that on a fixed proportion of trials, the animal fails to636

pay attention to the stimulus, guessing randomly between the two actions. We can incorporate this637

suboptimality into the ideal observer above as follows: Let the probability of attending be pattend.638

Then, on 1 − pattend fraction of trials, the animal does not attend to the stimulus (i.e. receives639

no evidence), effectively making σsensory → ∞ and giving rise to a posterior that is equal to the640

prior. On these trials, the animal may choose to maximize this prior (always picking the option641

that’s more likely a-priori, guessing with 50-50 probability if both options are equally likely), or642

probability-match the prior (guessing in proportion to its prior). Let us call this guessing probability643

pbias. Then, the probability of a rightward decision is given by marginalizing over the attentional644

state:645
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646

p(â = R|s) = p(â = R|s, attend)p(attend) + p(â = R|s,∼ attend)p(∼ attend)

= p(â = R|s)pattend + pbias(1− pattend)
(10)

Comparing this with the standard 4-parameter sigmoid used in psychometric fitting, we obtain647

p(â = R|strue) = γ + (1− γ − λ)Φ(strue;µ0, σ)

=⇒ γ + λ = pattend,
γ

γ + λ
= pbias

(11)

where γ and λ are the lower and upper asymptotes respectively, collectively known as “lapses”.648

In this model, the sum of the two lapses depends on the probability of attending, which could be649

modulated in a bottom up fashion by the salience of the stimulus; their ratio depends on the guessing650

probability, which in turn depends on the observer’s priors and subjective rewards.651

652

Motor error/ε greedy model653

Lapses can also occur if the observer doesn’t always pick the reward-maximizing or “exploit”654

decision. This might occur due to random errors in motor execution on a small fraction of trials655

given by ε, or it might reflect a deliberate propensity to occasionally make random “exploratory”656

choices to gather information about rules and rewards. This is known as an ε-greedy decision rule,657

where the observer chooses randomly (or according to pbias) on ε fraction of trials. Both these658
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models yield predictions similar to those of the inattention model:659

p(â = R|s) = p(â = R|s)(1− ε) + εpbias

=⇒ γ + λ = ε,
γ

γ + λ
= pbias

(12)

660

Softmax exploration model661

A more sophisticated form of exploration is the “softmax” decision rule, which explores options in662

proportion to their expected rewards, allowing for a balance between exploration and exploitation663

through the tuning of a parameter β known as inverse temperature. In particular, in conditions of664

greater uncertainty about rules or rewards, it is advantageous to be more exploratory and have a665

lower β. This strategy is known as Thompson sampling, and can be achieved by sampling from a666

belief distribution over expected rewards and maximizing with respect to the sample, reducing to a667

softmax rule whose β depends on the total uncertainty in expected reward (Gershman, 2018).668

p(â = R|Q(a)) =
exp βQ(R)

exp βQ(L) + exp βQ(R)

=
1

1 + exp(−β(Q(R)−Q(L)))

(13)

The proportion of rightward choices conditioned on the true stimulus rate is then obtained669

by marginalizing over the latent action values Q(a), using the fact that the choice depends on s670

only through its effect on Q(a), where ρ is the animal’s posterior belief in a high rate stimulus,671

i.e. ρ = p(c = High|xA, xV ). ρ is often referred to as the belief state in reinforcement learning672
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problems involving partial observability such as our task.673

p(â = R|s) =

∫
Q(a)

p(â = R,Q(a)|s)dQ

=

∫
Q(a)

p(â = R|Q(a))p(Q(a)|s)dQ ∵ â ⊥ s|Q(a)

=

∫
ρ

1

1 + exp−β(ρ(rR + rL)− rL)

N (Φ−1(1− ρ, 0, σpost), µ0 − s, σpost)
N (Φ−1(1− ρ, 0, σpost), 0, σpost))

dρ

(14)

Since lapses are the asymptotic probabilities of the lesser rewarding action at extremely easy674

stimulus rates, we can derive them from this expression by setting ρ→ 1 or ρ→ 0. This yields675

γ =
1

1 + exp(βrL)
, λ =

1

1 + exp(βrR)
(15)

Critically, in this model, the upper and lower lapses are dissociable, depending only on the676

rightward or leftward rewards, respectively. Such a softmax decision rule has been used to account677

for suboptimalities in value based decisions (Dayan and Daw, 2008), however it has not been678

used to account for lapses in perceptual decisions. Other suboptimal decision rules described679

in perceptual decisions, such as generalized probability matching or posterior sampling (Acerbi,680

Vijayakumar, and Wolpert, 2014; Drugowitsch, Wyart, et al., 2016; Ortega and Braun, 2013) amount681

to a softmax on log-posteriors or log-expected values, rather than on expected values, and do not682

produce lapses since in these decision rules, when the posterior probability goes to 1, so does the683

decision probability.684

685
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Model fitting686

Model fits were obtained from custom maximum likelihood fitting code using MATLAB’s fmincon,687

by maximizing the marginal likelihood of rightward choices given the stimulus on each trial as688

computed from each model. Confidence intervals for fit parameters were generated using the hessian689

obtained from fmincon. Fits to multiple conditions were performed jointly, taking into account any690

linear or nonlinear (eg. optimality) constraints on parameters across conditions. Model comparisons691

were done using AIC and BIC.692

Surgical procedures693

All rats subject to surgery were anesthetized with 1%-3% isoflurane. Isoflurane anesthesia was694

maintained by monitoring respiration, heart rate, oxygen and CO2 levels, as well as foot pinch695

responses throughout the surgical procedure. Ophthalmic ointment was applied to keep the eyes696

moistened throughout surgery. After scalp shaving, the skin was cleaned with 70% ethanol and 5%697

betadine solution. Lidocaine solution was injected below the scalp to provide local analgesia prior698

to performing scalp incisions. Meloxicam (5mg/ml) was administered subcutaneously (2mg/kg)699

for analgesia at the beginning of the surgery, and daily 2-3 days post-surgery. The animals were700

allowed at least 7 days to recover before behavioral training.701

Viral injections- 2 rats, 15 weeks of age, were anesthetized and placed in a stereotaxic apparatus702

(Kopf Instruments). Small craniotomies were made in the center of primary visual cortex (V1;703

6.9mm posterior to Bregma, 4.2mm to the right of midline) and primary auditory cortex (A1;704

4.7mm posterior to Bregma, 7mm to the right of midline). Small durotomies were performed705
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at each craniotomy and virus was pressure injected at depths of 600, 800, and 1000 µm below706

the pia (150 nL/depth). Virus injections were performed using Drummond Nanoject III, which707

enables automated delivery of small volumes of virus. To minimize virus spread, the Nanoject708

was programmed to inject slowly: fifteen 10 nL boluses, 30 seconds apart. Each bolus was709

delivered at 10 nL/sec. 2-3 minutes were allowed following injection at each depth to allow for710

diffusion of virus. The AAV2.CB7.CI.EGFP.WPRE.RBG construct was injected in V1, and the711

AAV2.CAG.tdTomato.WPRE.SV40 construct was injected in A1. Viruses were obtained from the712

University of Pennsylvania vector core.713

Cannulae implants Rats were anesthetized and placed in the stereotax as described above. After714

incision and skull cleaning, 2 skull screws were implanted to add more surface area for the dental715

cement. For striatal implants, two craniotomies were made, one each side of the skull (3.2mm716

posterior to Bregma; 5.4mm to the right and left of midline). Durotomies were performed and a717

guide cannula (22 gauge, 8.5 mm long; PlasticsOne) was placed in the brain, 4.1mm below the pia718

at each craniotomy. For secondary motor cortex implants, one large craniotomy spanning the right719

and left M2 was performed (˜5mm x ˜2mm in size centered around 2mm anterior to Bregma and720

3.1mm to the right and left of midline). A durotomy was performed and a double guide cannula721

(22 gauge, 4mm long; PlasticsOne) was placed in the brain, 300um below the pia. The exposed722

brain was covered with sterile Vaseline and cannulae were anchored to the skull with dental acrylic723

(Relyx). Single or double dummy cannulae protruding 0.7 mm below the guide cannulae were724

inserted.725
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Inactivation with muscimol726

Rats were lightly anesthetized with isoflurane. Muscimol was unilaterally infused into pStr or M2727

with a final concentration of 0.075-0.125 µg and 0.1-0.5 µg, respectively. A single/double-internal728

cannula (PlasticsOne), connected to a 2 µl syringe (Hamilton microliter syringe, 7000 series), was729

inserted into each previously implanted guide cannula. Internal cannulae protruded 0.5mm below730

the guide. Muscimol was delivered using an infusion pump (Harvard PHD 22/2000) at a rate of 0.1731

ul/minute. Internal cannulae were kept in the brain for 3 additional minutes to allow for diffusion732

of muscimol. Rats were removed from anesthesia and returned to cages for 15 minutes before733

beginning behavioral sessions. The same procedure was used in control sessions, where muscimol734

was replaced with sterile saline.735

Histology736

At the conclusion of inactivation experiments, animals were deeply anesthetized with Euthasol737

(pentobarbital and phenytoin). Animals were perfused transcardially with 4% paraformaldehyde.738

Brains were extracted and post-fixed in 4% paraformaldehyde for 24-48 hours. After post-fixing,739

50-100 um coronal sections were cut on a vibratome (Leica) and imaged.740
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