1
 Lapses in perceptual judgments reflect exploration

Sashank Pisupati*1,2, Lital Chartarifsky-Lynn*1,2, Anup Khanal ${ }^{1}$ \& Anne K. Churchland ${ }^{1}$

${ }^{1}$ Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
${ }^{2}$ Watson School of Biological Sciences, Cold Spring Harbor, New York, USA

Abstract

During perceptual decision making, subjects often display a constant rate of errors independent of evidence strength, referred to as "lapses". Their proper treatment is crucial for accurate estimation of perceptual parameters, however they are often treated as a nuisance arising from motor errors or inattention. Here, we propose that lapses can instead reflect a dynamic form of exploration. We demonstrate that perceptual uncertainty modulates the probability of lapses both across and within modalities on a multisensory discrimination task in rats. These effects cannot be accounted for by inattention or motor error, however they are concisely explained by uncertainty-guided exploration. We confirm the predictions of the exploration model by showing that changing the magnitude or probability of reward associated with one of the decisions selectively affects the lapses associated with that decision in uncertain conditions, while leaving "sure-bet" decisions unchanged, as predicted by the model. Finally, we demonstrate that muscimol inactivations of secondary motor cortex and posterior striatum affect lapses asymmetrically across modalities. The inactivations can be captured by a devaluation of actions corresponding to the inactivated side, and do not affect "sure-bet" decisions. Together, our results suggest that far from being a nuisance, lapses are informative about subjects' action values and deficits thereof during perceptual decisions.

INTRODUCTION

Perceptual judgments are often modeled using noisy ideal observers (e.g., Signal detection theory, Green, Swets, et al., 1966; Bayesian decision theory, Dayan and Daw, 2008) that explain subjects' errors as a consequence of noise in sensory evidence. This predicts an error rate that decreases with increasing sensory evidence, capturing the sigmoidal relationship often seen between evidence strength and subjects' decision probabilities (i.e. the psychometric function; Fig. 1).

Human and non-human subjects often deviate from these predictions, displaying an additional constant rate of errors independent of the evidence strength known as "lapses", leading to errors even on extreme stimulus levels (Wichmann and Hill, 2001; Gold and Ding, 2013; Carandini and Churchland, 2013; Busse et al., 2011). Despite the knowledge that ignoring or improperly fitting lapses can lead to serious mis-estimation of psychometric parameters (Wichmann and Hill, 2001; Prins and Kingdom, 2018), the cognitive mechanisms underlying lapses remain poorly understood. A number of possible sources of noise have been proposed to explain lapses, typically peripheral to the decision-making process.

One class of explanations for lapses relies on pre-decision noise added due to fluctuating attention, which is often operationalized as a small fraction of trials on which the subject fails to attend to the stimulus (Wichmann and Hill, 2001). On these trials, it is assumed that the subject cannot specify the stimulus (i.e. sensory noise with infinite variance, Bays, Catalao, and Husain, 2009) and hence guesses randomly or in proportion to prior beliefs. This model can be thought of as a limiting case of the Variable Precision model, which assumes that fluctuating attention has a more
graded effect of scaling the sensory noise variance (Garrido, Dolan, and Sahani, 2011), giving rise to heavy tailed estimate distributions, resembling lapses in the limit of high variability (Shen and Ma, 2019; Zhou et al., 2018). Temporal forms of inattention have also been proposed to give rise to lapses, where the animal ignores early or late parts of the evidence (impulsive or leaky integration, Erlich et al., 2015).

An alternative class of explanations for lapses relies on a fixed amount of noise added after a decision has been made, commonly referred to as "post-categorization" noise (Erlich et al., 2015) or decision noise (Law and Gold, 2009). Such noise could arise from errors in motor execution (e.g. finger errors , Wichmann and Hill, 2001), non-stationarities in the decision rule arising from computational imprecision (Findling et al., 2018), suboptimal weighting of choice or outcome history (Roy et al., 2018; Busse et al., 2011) or random variability added for the purpose of exploration (eg." ϵ-greedy" decision rules).

A number of recent observations have cast doubt on fixed early- or late-stage noise as satisfactory explanations for lapses. For instance, many of these explanations predict that lapses should occur at a constant rate, while in reality, lapses are known to reduce in frequency with training in non-human primates (Law and Gold, 2009). Further, they can occur with different frequencies for different stimuli even within the same subject (in rodents, Nikbakht et al., 2018; and humans, Mihali et al., 2018; Bertolini et al., 2015), suggesting that they may reflect task-specific, associative processes that can vary within a subject.

Lapse frequencies are even more variable across subjects and can depend on the subject's
age and state of brain function. For instance, lapses are significantly higher in children and patient populations than healthy adult humans (Witton, Talcott, and Henning, 2017). Moreover, a number of recent studies in rodents have found that perturbing neural activity in secondary motor cortex (Erlich et al., 2015) and striatum (Yartsev et al., 2018; Guo et al., 2018) has dramatic, asymmetric effects on lapses in auditory decision-making tasks. Because these perturbations were made in structures known to be involved in action selection, an intriguing possibility is that lapses reflect an integral part of the decision-making process, rather than a peripheral source of noise. However, because these studies only tested auditory stimuli, they did not afford the opportunity to distinguish sensory modality-specific deficits from general decision-related deficits. Taken together, these observations point to the need for a deeper understanding of lapses that accounts for effects of stimulus set, learning, age and neural perturbations.

Here, we leverage a multisensory task in rodents to reveal a novel explanation for lapses: uncertainty-guided exploration, a well known strategy for balancing exploration and exploitation in value-based decisions (Dayan and Daw, 2008). This is also known as Thompson sampling and can be operationalized as a dynamic "softmax" decision rule (Gershman, 2018). We confirm the predictions of the exploration model by manipulating reward under conditions of varying uncertainty. Finally, we demonstrate that suppressing secondary motor cortex or posterior striatum unilaterally has an asymmetric effect on lapses that generalizes across sensory modalities, but only in uncertain conditions. This can be accounted for by an action value deficit on the inactivated side, reconciling the proposed perceptual and value-related roles of these areas and suggesting that lapses are informative about the subjective values of actions.

RESULTS

Testing ideal observer predictions in perceptual decision-making

We leveraged an established decision-making task (Raposo, Sheppard, et al., 2012; Raposo, Kaufman, and Churchland, 2014; Sheppard, Raposo, and Churchland, 2013; Licata et al., 2017) (Fig. 1) in which freely moving rats judge whether the fluctuating rate of a 1000 ms series of auditory clicks and/or visual flashes (rate range: $9-16 \mathrm{~Hz}$) is high or low compared with an abstract category boundary (Fig. 1a-c). Using Bayesian decision theory, we constructed an ideal observer for our task that selects choices that maximize expected reward (See Methods: Modelling). To test whether behavior matches ideal observer predictions, we presented multisensory trials with matched visual and auditory rates (i.e., both modalities carried the same number of events/s; Fig. 1c, bottom) interleaved with visual-only or auditory-only trials. This allowed us to separately estimate the sensory noise in the animals' visual and auditory system, and compare the measured performance on multisensory trials to the predictions of the ideal observer.

Performance was assessed using a psychometric curve, i.e., the probability of high-rate decisions as a function of stimulus rate (Fig. 1f). The ideal observer model predicts a relationship between the slope of the psychometric curve and the noise in the animal's estimate: the higher the standard deviation (σ) of sensory noise, the more uncertain the animals estimate of the rate and the shallower the psychometric curve. On multisensory trials, the ideal observer should have a more certain estimate of the rate, driving a steeper psychometric curve (Fig. 1e, visual [blue] and auditory [green] σ values are larger than multisensory σ [red] and Fig. 1f, red curve is steeper than
green and blue curves). Since this model does not take lapses into account, it would predict perfect performance on the easiest stimuli regardless of uncertainty, and thus all curves should asymptote at 0 and 1 (Fig 1f).

C Low rate stimulus Auditory trials HIIHIHIH ${ }^{11 \mathrm{~Hz}}$

e

Stimulus rate (Hz)

Stimulus rate (Hz)

Figure 1 Testing ideal observer predictions in perceptual decision-making. (a) Schematic drawing of rate discrimination task. Rats initiate trials by poking into a center port. Trials consist of visual stimuli
presented via a panel of diffused LEDs, auditory stimuli presented via a centrally positioned speaker or multisensory stimuli presented from both. Rats are rewarded with a $24 \mu \mathrm{l}$ drop of water for reporting high rate stimuli (greater than 12.5 Hz) by poking in the right port and low rate stimuli (lower than 12.5 Hz) with leftward choices. (b) Timeline of task events. (c) Example stimulus on auditory (top), visual (middle) and multisensory trials (bottom). Stimuli consist of a stream of events separated by long (100 ms) or short (50 ms) intervals. Multisensory stimuli consist of visual and auditory streams carrying the same underlying rate. Visual, auditory and multisensory trials were randomly interleaved (40\% visual, 40\% auditory, 20\% multisensory). (d) Schematic outlining the computations of a Bayesian ideal observer. Stimulus with a true underlying rate s gives rise to noisy observations x_{A} and x_{V}, which are then integrated with each other and with prior beliefs to form a multisensory posterior belief about the rate. This is combined with prior beliefs about choice to produce a posterior belief about the correct choice, and further combined with reward information to form expected action values Q_{L}, Q_{R}. The ideal observer selects the action \hat{c} with maximum expected value. Lightning bolts denote proposed sources of noise that can give rise to (red) or exacerbate (grey) lapses, causing deviations from the ideal observer. (e) Posterior beliefs on an example trial assuming flat priors. Solid black line denotes true rate, blue and green dotted lines denote noisy visual and auditory observations, with corresponding unisensory posteriors shown in solid blue and green. Solid red denotes the multisensory posterior, centered around the M.A.P. rate estimate in dotted red. Shaded fraction denotes the probability of the correct choice being rightward, with μ denoting the category boundary. (f) Ideal observer predictions for the psychometric curve, i.e. proportion of rightward choices for each rate. Inverse slopes of the curves in each condition are reflective of the posterior widths on those conditions, assuming flat priors. The value on the abscissa corresponding to the curve's midpoint indicates the category boundary (assuming
equal rewards).

Lapses cause deviations from ideal observer, and are reduced on multisensory trials

In practice, the shapes of empirically obtained psychometric curves do not perfectly match the ideal observer (Fig. 2e, green) since they asymptote at values that are less than 1 or greater than 0. This is a well known phenomenon in psychophysics (Wichmann and Hill, 2001), requiring two additional lapse parameters to precisely capture the asymptotes. To account for lapses, we fit a four-parameter psychometric function to the subjects' choice data (Fig. 2a, Equation 1 in Methods) with the Palamedes toolbox (Prins and Kingdom, 2018). γ and λ are the lower and upper asymptote of the psychometric function, which parameterize lapses away from the left and the right reward ports, respectively; ϕ is a sigmoidal function, in our case the cumulative normal distribution; x is the event rate, i.e. the number of flashes or beeps presented during the one second stimulus period; μ parameterizes the midpoint of the psychometric function and σ describes the inverse slope after correcting for lapses.

How can we be sure that the asymptotes seen in the data truly reflect non-zero asymptotes rather than fitting artifacts or insufficient data at the asymptotes? To test whether lapses were truly necessary to explain the behavior, we fit the curves with and without lapses (Fig. 2b) and tested whether the lapse parameters were warranted. The ideal observer without lapses was rejected in 15/17 rats by BIC, and in all rats by AIC. Fitting a fixed lapse rate was not sufficient to capture the data, nor was fitting a lapse rate that was constrained to be less than 0.1 (Wichmann and Hill, 2001), and the data warranted fitting separate lapse rates to each condition ("free lapses" model
outperforms "fixed lapses", "restricted lapses" or "no lapses/ideal observer" in Fig. 2g).

Multisensory trials offer an additional, strong test of ideal observer predictions. In addition to perfect performance on the easiest stimuli, the ideal observer model predicts the minimum possible uncertainty achievable on multisensory trials through optimal integration (Ernst and Bulthoff, 2004; Equation 2 in Methods). By definition, better-than-optimal performance is impossible. However, studies in rats performing multisensory decision-making tasks suggest that in practice, animals' performance appears to exceed optimal predictions (Raposo, Sheppard, et al., 2012; Nikbakht et al., 2018) seeming, at first, to violate the ideal observer model. Moreover, in these datasets, performance on the easiest stimuli was not perfect and asymptotes deviated from 0 and 1 . As in these previous studies, when we fit performance without lapses, multisensory performance was significantly supra-optimal ($\mathrm{p}=0.0012$, paired t -test), i.e. better than the ideal observer prediction (Fig. 2c, data points are above the unity line). This was also true when lapse probabilities were assumed to be fixed across conditions $(p=0.0018)$ or when they were assumed to be less than 0.1 ($\mathrm{p}=0.0003$). However, when we allowed lapses to vary freely across conditions, performance was indistinguishable from optimal (Fig. 2d, data points are on the unity line). This reaffirms that proper treatment of lapses is crucial for accurate estimation of perceptual parameters and offers a potential explanation for previous reports of supra-optimality.

Using this improved fitting method, we replicated previous observations (Raposo, Sheppard, et al., 2012; Raposo, Kaufman, and Churchland, 2014) showing that animals have improved sensitivity (lower σ) on multisensory vs. unisensory trials (Fig. 2e, red curve is steeper than green/blue curves;

Fig. 2f, top). Interestingly, we observed that animals also had a lower lapse probability $(\lambda+\gamma)$
on multisensory trials (Fig. 2e, asymptotes for red curve are closer to 0 and 1; n=17 rats, 347537 trials). This was consistently observed across animals (Fig. 2f bottom, the probability of lapses on multisensory trials was 0.06 on average, compared to 0.17 on visual, $\mathrm{p}=1.4 \mathrm{e}-4$ and 0.21 on auditory, $\mathrm{p}=1.5 \mathrm{e}-5)$.

Figure 2 Deviations from ideal observer reflect lapses in judgment. (a) Schematic psychometric performance of an ideal observer (black) vs. a model that includes lapses (green). The ideal observer fit includes two parameters: intercept (μ) and slope (σ). The four-parameter cumulative normal distribution individually fits μ, σ, and lapse probability for high rate (γ) and low rate choices (λ). Dotted line shows
the category boundary (12.5 Hz). (b) Subject data was fit with a an ideal observer model (black) and a four-parameter model (green). Dotted line shows the category boundary (12.5 Hz). (c,d) Ideal observer predictions vs. measured multisensory sigma for fits with and without lapses. (c) Multisensory integration seems supra-optimal when not accounting for lapses. (d) Optimal multisensory integration is restored when accounting for lapses. ($\mathrm{n}=17$ rats. Points represent individual rats; star represents pooled data across all rats. Data points that lie on the unity line represent cases in which the measured sigma was equal to the optimal prediction). (e) Rats' psychometric curves on auditory (green), visual (blue) and multisensory (red) trials. Bold lines represent data pooled across 17 rats; thin lines represent individual rats. (f) Fit values of sigma (top) and lapse parameters (bottom) on unisensory and multisensory conditions. Both parameters showed significant reduction on the multisensory conditions (paired t -test, $\mathrm{p}<0.05$); $\mathrm{n}=17$ rats (347537 trials). (g) Model comparison using BIC(pink) and AIC(blue) for the average subject (top) and across individual subjects (bottom). Lower scores indicate better fits. Both metrics favor a model where lapses are allowed to vary freely across conditions ("Free lapse") over one without lapses ("Ideal observer"), one with a fixed probability of lapses ("Fixed lapse") or where the lapses are restricted to being less than 0.1 ("Restricted lapse").

A novel model, uncertainty-guided exploration, explains lapses better than traditional mod-

 els of inattention or motor-errorWhat could account for the reduction in lapse probability on multisensory trials? While adding extra parameters to the ideal observer model fit the behavioral data well and accounted for the reduction in inverse-slope on multisensory trials, this success doesn't provide an explanation for why lapses are present in the first place, nor why they differ between stimulus conditions.

To investigate this, we considered possible sources of noise that have traditionally been invoked to explain lapses (Fig. 1d). We first hypothesized that lapses might be due to a fixed amount of noise added once the decision has been made. These sources of noise could include decision noise due to imprecision (Findling et al., 2018), motor errors (Wichmann and Hill, 2001) or ϵ-greedy exploration. However, these sources should hinder decisions equally across conditions (Supplementary Fig. 1b), which cannot explain our observation of condition-dependent lapse rates (Fig. 2f).

A second explanation is that lapses arise due to inattention on a small fraction of trials. Inattention would drive the animal to guess randomly, producing lapse rates whose sum should reflect the probability of not attending (Fig. 3a, Methods). According to this explanation, the lower lapse rate on multisensory trials reflects increased attention on those trials, perhaps due to their increased bottom-up salience (i.e. two streams of stimuli instead of one). To test this, we leveraged a multisensory condition that manipulates uncertainty without changing salience (Raposo, Sheppard, et al., 2012). Specifically, we interleaved standard matched-rate multisensory trials with "neutral" multisensory trials for which the rate of the auditory stimuli ranged between $9-16 \mathrm{~Hz}$, while the visual stimuli was always 12 Hz . This rate was so close to the category boundary (12.5 Hz) that it did not provide compelling evidence for one choice or the other (Fig. 3d, left), thus reducing the information in the multisensory stimulus and increasing uncertainty. However, since both "neutral" and "matched" conditions are multisensory, they should be equally salient, and since they are interleaved, the animal would be unable to identify the condition without actually attending to the stimulus. According to the inattention model, matched and neutral trials should have the same
rate of lapses, only differing in their σ (Supplementary Fig 1c).

Contrary to this prediction, we observed higher lapse rates on "neutral" trials, where the uncertainty was high, than on "matched" trials, where the uncertainty was lower (Fig. 3d). The dependence of lapses on uncertainty is reminiscent of the dependence of lapse on uncertainty observed when comparing unisensory vs. multisensory trials (Fig. 2e,f; Supplementary Fig. 1e).

Having observed that traditional explanations of lapse fail to account for the behavioral observations, we extended the ideal observer model to propose a novel explanation for lapses: an uncertainty-guided form of exploration using a dynamic softmax decision rule (Fig. 3b). This form of exploration is widely used in value-based decision making (Dayan and Daw, 2008) since it allows the subject to "tune" the degree of exploration using a β parameter, also known as an "inverse temperature". Lower values of β encourage more exploration, while higher values of β encourage exploitation, with the limiting case of $\beta \rightarrow \infty$ reducing to the reward-maximizing ideal observer. Modulating exploration with uncertainty is a well known heuristic called Thompson sampling, that automatically balances exploration and exploitation (Supplementary Fig. 4a-b) allowing one to efficiently maximize long-term expected reward (Gershman, 2018; Leike et al., 2016). This predicts that conditions with higher uncertainty in expected reward (e.g. unisensory or neutral trials) should encourage more exploration, giving rise to more frequent lapses (Supplementary Fig. 4c-d).

As a result, the uncertainty-guided exploration model predicts an increase not only in the σ but also in lapses on neutral trials, just as we observed (Fig. 3c)- in fact it predicts that both these parameters should match those on auditory trials. This model fit the data well (Fig. 3e, bottom).

The inattention model, by contrast, predicts that both conditions would have the same lapse rates with the neutral condition simply having a greater σ. This model provided a worse fit to the data, particularly missing the data at extreme stimulus values where lapses are most clearly apparent (Fig. 3e, top). Model comparison using BIC and AIC both favored the exploration model over the inattention model for average data (Fig. 3f top) as well as across individual subjects (Fig. 3 f bottom, Supplementary Fig. 3)

Figure 3 Uncertainty-guided exploration offers a novel explanation for lapses. Models of lapses in
decision-making: (a) Inattention model of lapses. Left panel: on a small fraction of trials given by $1-p_{\text {attend }}$, the observer does not attend to the stimulus (red curve), leading to equal posterior probabilities of high and low rates (Shaded, clear regions of curve respectively) and guesses according to the probability bias, giving rise to lapses (right panel). The sum of lapse rates then reflects $1-p_{\text {attend }}$, while their ratio reflects the bias. (b) Uncertainty-guided exploration model. Lapses can arise from exploratory decision rules such as the "softmax" (red) rather than reward-maximization (blue). Since the difference in expected value from right and left actions ($Q_{R}-Q_{L}$) is bounded by the maximum reward magnitudes r_{R} and r_{L}, even when the stimulus is very easy, the maximum probability of choosing the higher value option is not 1 , giving rise to lapses. Lapse rates on either side are then proportional to the reward magnitude on that side, and to a "temperature" parameter β that depends on the uncertainty in expected reward. (c) Motor error, or ϵ-greedy model. Lapses can also arise from decision rules with a fixed proportion ϵ of random exploratory choices, or due to motor errors ocurring on ϵ fraction of trials. The sum of lapses reflects ϵ while their ratio reflects any bias in exploration or motor errors. (d) Left: multisensory stimuli designed to distinguish between attentional and non-attentional sources of lapses. Standard multisensory stimuli with matched visual and auditory rates (top) and "neutral" stimuli where one modality has a rate very close to the category boundary and is uninformative (bottom). Both stimuli are multisensory and designed to have equal bottom-up salience, and can only be distinguished by attending to them and accumulating evidence. Right: rat performance on interleaved matched (red) and neutral (orange) trials. (e) Since the matched and neutral conditions are equally salient, they are expected to have equal probabilities of attending, predicting similar total lapse rates in the inattention model (top, solid lines are model fits). Deviations from model fits are denoted with arrows. The exploration model (bottom) provides a better fit, by allowing for different levels of exploration in the
two conditions. (f) Model comparison using BIC (pink) and AIC (blue) both favor the uncertainty-guided exploration model.

Reward manipulations confirm predictions of exploration model

One of the key features of the uncertainty-guided exploration model is that lapses are exploratory choices made with full knowledge of the stimulus, and should depend only on the expected rewards associated with that stimulus category (Supplementary Fig. 4). This is in stark contrast to the inattention model and many other kinds of disengagement (Supplementary Fig. 2), in which lapses are caused by the observer disregarding the stimulus, and hence lapses at the two extreme stimulus levels are both influenced by a common underlying guessing process that depends on expected rewards from both stimulus categories. This is also in contrast with fixed motor error or ϵ-greedy models in which lapses are independent of expected reward (Fig. 3c).

Therefore, a unique prediction of the exploration model is that selectively manipulating expected rewards associated with one of the stimulus categories should only affect lapses at one extreme of the psychometric function, whereas inattention and other kinds of disengagement predict that both lapses should be affected, and fixed error models predict that neither should be affected (Fig. 4a, Supplementary Fig. 1,2).

To experimentally test these predictions, we tested rats on the rate discrimination task with asymmetric rewards (Fig. 4b, top). Instead of rewarding high and low rate choices equally, we increased the water amount on the reward port associated with high-rates (rightward choices) so it was 1.5 times larger than before, without changing the reward on the the low-rate side (leftward
choices). In a second rat cohort we did the opposite: we devalued the choices associated with high-rate trials by decreasing the water amount on that side port so it was 1.5 times smaller than before, without changing the reward on the low-rate side.

Figure 4 Reward manipulations match predictions of the exploration model. (a) The inattention, exploration and fixed error models make different predictions for increases and decreases in the reward magnitude for rightward (high-rate) actions. The inattention model (left panel) predicts changes in lapses for both right and left choices, while the exploration model (center panel) predicts changes in lapses only for
high rate choices, and fixed motor error or ϵ greedy models (right) predict changes in neither lapse. Black line, equal rewards on both sides; green, increased rightward reward; red, decreased rightward reward. (b) Schematic of rate discrimination trials and interleaved "sure bet" (side LED) trials. The majority of the trials (94%) were rate discrimination trials as described in Figure 1. On sure-bet trials, a pure tone was played during a 0.2 second fixation period and one of the side ports was illuminated once the tone ended to indicate that reward was available there. Rate discrimination and sure-bet trials were randomly interleaved, as were left and right trials, and the rightward reward magnitude was either increased ($36 \mu \mathrm{l}$) or decreased ($16 \mu \mathrm{l}$) while maintaining the leftward reward at $24 \mu \mathrm{l}$ (c) Rats' behavior on rate discrimination trials following reward magnitude manipulations. High rate lapses decrease when water reward for high-rate choices is increased (left panel; $\mathrm{n}=3$ rats, 6976 trials), while high-rate lapses increase when reward on that side is decreased (right panel; $\mathrm{n}=3$ rats, 11164 trials). Solid curves are exploration model fits with a single parameter change accounting for the manipulation. (d) Rats show nearly perfect performance on sure-bet trials, and are unaffected by reward manipulations on these trials. (e) Reward probability manipulation. (Left) Schematic of probabilistic reward trials, incorrect (leftward) choices on high rates were rewarded with a probability of 0.5 , and all other rewards were left unchanged. (Right) Rat behavior and exploration model fits showing a selective increase in high-rate lapses ($\mathrm{n}=5$ rats, 34292 trials). (f) Rat behavior on equal reward trials conditioned on successes (green) or failures (red) on the right on the previous trials resembles effects of reward size manipulations. (g) Model comparison showing that AIC and BIC both favor the exploration model on data from all 3 manipulations.

The animals' behavior on the asymmetric-reward task matched the predictions of the exploration model. Increasing the reward size on choices associated with high-rates led to a decrease in lapses for the highest rates and no changes in lapses for the lower rates (Fig. 4c, left; n=3 rats, 6976
trials). Decreasing the reward of choices associated with high-rates led to an increase in lapses for the highest rates and no changes in lapses for the lower rates (Fig. 4c, right; $n=3$ rats, 11164 trials). This shows that both increasing and decreasing the value of one of the actions has an asymmetric effect on lapse probabilities that does not match the inattention model.

To confirm that the asymmetric changes in lapse rate that we observed were truly driven by uncertainty, we examined performance on randomly interleaved "sure bet" trials on which the uncertainty was very low (Fig. 4b, bottom). On these trials, a pure tone was played during the fixation period, after which an LED at one of the side ports was clearly illuminated, indicating a reward. Sure-bet trials comprised 6% of the total trials, and as with the rate discrimination trials, left and right trials were interleaved. Owing to the low uncertainty, the model predicts that very little exploration would be required in this condition, and that animals would very quickly reach perfect performance on these trials. Importantly, our model predicts that performance on "sure-bet" trials would be unaffected by imbalances in reward magnitude.

In keeping with this prediction, on sure-bet trials, performance was near perfect (rightward probabilities of 0.003 [$0.001,0.01]$ and 0.989 [0.978,0.995] on go-left and go-right trials respectively), and unaffected following reward manipulations (Fig. 4d: Rightward probabilities of 0.004 [0.001, 0.014] and $0.996[0.986,0.999]$ on increased reward, $0.006[0.003,0.012]$ and 0.99 [$0.983,0.994$] on decreased reward). This suggests that the effect of value on lapses is restricted to uncertain situations that encourage subjects to explore, rather than exploit. Further, because sure-bet trials were interleaved with more uncertain trials, their near-perfect performance indicates
that uncertainty can be estimated on the timescale of individual trials.

As an additional test of the model, we manipulated expected rewards by probabilistically rewarding incorrect i.e. leftward choices on high rate trials with a probability of 0.5 , while leaving all other rewards unchanged (Fig. 4e left). The exploration model predicts that this should selectively increase the value of leftward actions on high rate trials, increasing lapses on high rates. Indeed, this is what we observed (Fig. 4e right, $\mathrm{n}=5$ animals, 347537 trials), and the effect was strikingly similar to the decreased reward experiment, even though the two manipulations affect high rate action values through changes on opposite reward ports. Moreover, this suggests that lapses reflect changes in action value caused by changing either reward magnitudes or reward probabilities, as one would expect from the exploration model.

The subjective value of actions may naturally change with experience, even without the explicit reward manipulations described above. Throughout training, the animal uses outcomes of previous trials to learn and update the expected rewards from various actions, allowing it to learn the rules of the task (i.e. that high rate trials are rewarded on the right and so on). If such learning processes continue to persist in trained animals, either due to incomplete training (Law and Gold, 2009), uncertainty in feedback, forgetting over time (Gershman, 2015; Drugowitsch and Pouget, 2018), or perceived volatility (Yu and Cohen, 2009), then the outcomes of previous trials should continue to affect subsequent trials even in trained animals, as has been observed in a number of studies (Busse et al., 2011; Lak et al., 2018; Mendonca et al., 2018; Odoemene et al., 2018; Pinto et al., 2018; Scott et al., 2015). The action value of rightward choices should increase following
a rightward success and decrease following a rightward failure, predicting the same asymmetric changes in lapses as reward magnitude manipulations. As predicted, trials following rewarded and unrewarded rightward choices showed decreased and increased high-rate lapses, respectively (Fig. 4g; same rats and trials as in Fig. 2e). Taken together, manipulations of value match the predictions of the uncertainty-dependent exploration model.

Changes in lapses following prefrontal and striatal inactivations resemble value deficit

The results of the reward experiments suggest that disrupting areas that confer value to actions should asymmetrically bias lapses, in contrast to disruptions of areas that encode sensory evidence, which should lead to horizontal biases without affecting lapses, or motor disruptions that simply make one of the actions harder to perform, which should affect both lapses (Supplementary Fig. 11a, top). Crucially, in the absence of lapses, all three of these disruptions would look identical, producing a horizontal shift. This suggests that lapses could actually be informative about the stage of involvement of brain regions. Two candidate areas that we sought out to test in our multisensory task were secondary motor cortex (M2) and posterior striatum (pStr), both of which receive convergent input from primary visual and auditory cortices (Supplementary Fig. 5, results of simultaneous anterograde tracing from V1 and A1; also see Jiang and Kim, 2018; Barthas and Kwan, 2017). Previous studies have shown effects on lapses following inactivation of both these areas in auditory tasks in rats (Erlich et al., 2015; Guo et al., 2018). These were interpreted as effects arising from either leaky accumulation (Erlich et al., 2015), post-categorization biases (Piet et al., 2017) or perceptual biases (Guo et al., 2018). These effects were very similar to the effects of manipulating reward in our task, hinting that these effects may actually arise from biased action values. However,
since these deficits were only demonstrated during auditory decision-making, these studies did not afford the opportunity to distinguish sensory modality-specific deficits from those that should generalize across modalities (e.g., visual, multisensory, auditory) like value deficits.

To test whether pStr and M2 have a modality-independent role in perceptual decisions, we suppressed activity of neurons in each of these areas using muscimol, a $G A B A_{A}$ agonist, during our multisensory rate discrimination task. We implanted bilateral cannulae in M2 (Supplementary Fig. 6b; $\mathrm{n}=5$ rats; +2 mm AP 1.3 mm ML, 0.3 mm DV) and pStr (Supplementary Fig. 6a; n $=6$ rats; -3.2 mm AP, 5.4 mm ML, 4.1 mm DV$)($ Fig. 5a). On control days, rats were infused unilaterally with saline, followed by unilateral muscimol infusion the next day (M2: 0.1-0.5 $\mu \mathrm{g}$, pStr 0.075-0.125 $\mu \mathrm{g}$). We compared performance on the multisensory rate discrimination task for muscimol days with preceding saline days. Inactivation of the side associated with low-rate choices biased the animals to make more low-rate choices (Fig. 5b; left 6 panels: empty circles, inactivation sessions; full circles, control sessions) and inactivation of the side associated with high-rates biased them to make more high-rate choices (Fig. 5b, right 6 panels). The inactivations largely affected lapses on the contralateral side, while sparing those on the ipsilateral side (Fig. 5c). These results recapitulated previous findings, and were strikingly similar to the effects we observed following reward manipulations (as seen in Fig. 4c, right panel). These effects were seen across areas (Fig. 5b, top, M2; bottom, pStr) and modalities (Fig. 5b; green, auditory; blue, visual and red, multisensory), suggesting that pStr and M2 are part of a modality-independent circuit for decision-making.

Fitting the data with the exploration model revealed that the effects on lapses could be captured
by scaling the contralateral action value by a single parameter across modalities (Fig. 5b, Joint fits to control (solid lines) and inactivation trials (dotted lines) across modalities, differing only by a single parameter), similar to the reward manipulation experiments. Animals that were inactivated on the side associated with high rates showed increased low rate lapses (Fig. 5c, bottom right; data points are above the unity line; $n=9$ rats), but lapses did not change for high rates (Fig. 5c, top right; data points are on the unity line). This was consistent across areas and modalities (Fig. 5c; M2, triangles; pStr, circles; blue, visual; green, auditory). Animals that were inactivated on the side associated with low rates showed the opposite effect: increased lapses on high rate trials (Fig. 5c, top left; $\mathrm{n}=10$ rats) and no change in lapses for low rate trials (Fig. 5c bottom left). To confirm that this effect was independent of the associated stimulus, some rats were trained on a reverse contingency regimen in which high rates were rewarded on the left side. The effects were consistent across both groups (Supplementary Fig. 7) and always resembled a devaluation of contralateral actions (Supplementary Fig. 11).

To determine whether changes in decision-making simply reflected motor impairments that drove a tendency to favor the ipsilateral side, we compared behavior on the sure-bet task described previously (Fig. 4b, bottom). Performance was spared on these trials (Fig. 5d): rats made correct rightward and leftward choices regardless of the side that was inactivated. This suggests that behavioral effects were restricted to situations in which there was uncertainty about the correct outcome. We also looked at multiple movement parameters such as wait time in the center port and movement times to ipsilateral and contralateral reward ports. There were no significant effects on movement parameters (Supplementary figure 10), suggesting that effects on decision outcome were
not due to a muscimol-induced motor impairment.

Finally, a model comparison revealed that a fixed contralateral value deficit captured the inactivation effects much better than a fixed reduction in contralateral sensory evidence or a fixed increase in contralateral motor effort, both for M2 (Fig. 5e top) and pStr (Fig. 5e bottom). In uncertain conditions, this reduced contralateral value gives rise to more exploratory choices and hence more lapses on one side (Fig. 5f top), but doesn't affect the other side, or sure-bet trials on which the animals largely exploit. Together, this suggests that M2 and pStr have a lateralized, modality-independent role in computing the expected value of actions based on incoming multisensory information (Fig. 5f bottom).

Figure 5 Inactivation of secondary motor cortex and posterior striatum affects lapses, suggesting a role in action value encoding. (a) Schematic of cannulae implants in M2 (top) and pStr (bottom) and representative coronal slices. For illustration purposes only, the schematic shows implants in the left hemisphere, however, the inactivations shown in panel (b) were performed also on the right hemisphere. (b) Unilateral inactivation of M2 (top) and pStr (bottom). Left 6 plots: inactivation of the side associated with low-rates shows increased lapses for high rates on visual (blue), auditory (green) and multisensory (red) trials (M2: n=5 rats; 10329 control trials, full line; 6174 inactivation trials, dotted line; pStr: $\mathrm{n}=5$ rats; 10419 control trials; 6079 inactivation trials). Right 6 plots: inactivation of the side associated with high-rates shows increased lapses for low rates on visual, auditory and multisensory trials (M2: $\mathrm{n}=3$ rats; 5678 control trials; 3816 inactivation trials; pStr : $\mathrm{n}=6$ rats; 11333 control trials; 6838 inactivation trials). Solid lines are exploration model fits, accounting for inactivation effects across all 3 modalities by scaling all contralateral values by a single parameter. (c) Increased high rate lapses following unilateral inactivation of the side associated with low-rates (top left); no change in low rate lapses (bottom left) and vice versa for inactivation of the side associated with high-rates (top, bottom right). Control data on the abscissa is plotted against inactivation data on the ordinate. Same animals as in b. Green, auditory trials; blue, visual trials. Abbreviations: posterior striatum (pStr), secondary motor cortex (M2). (d) Sure bet trials are unaffected following inactivation. This example shows that rats who were inactivated on the side associated with high rates make correct rightward and leftward choices Top, M2; bottom, pStr. (e) Model comparison of three possible multisensory deficits reduction of contralateral evidence by a fixed amount (left), reduction of contralateral value by a fixed amount (center) or an increased contralateral effort by a fixed amount (right). Both AIC and BIC suggest a value deficit (f) Proposed computational role of M2 and Striatum. Lateralized encoding of left and right action
values by right and left M2/pStr explain the asymmetric effect of unilateral inactivations on lapses.

DISCUSSION

Perceptual decision-makers have long been known to display a small fraction of errors even on easy trials. Until now, these "lapses" were largely regarded as a nuisance and lacked a comprehensive, normative explanation. Here, we propose a novel explanation for lapses: that they reflect a strategic balance between exploiting known rewarding options and exploring uncertain ones. Our model makes strong predictions for lapses under diverse decision-making contexts, which we have tested here. First, the model predicts more lapses on conditions with higher uncertainty, such as unisensory (Fig. 2) or neutral (Fig. 3), compared to multisensory or sure-bet conditions. Second, the model predicts that asymmetric reward manipulations should only affect lapses on one side, sparing decisions to the other side and sure-bet trials (Fig. 4). Finally, the model predicts that lapses should be affected by perturbations to brain regions that encode action value. Accordingly, we observed that unilateral inactivations of secondary motor cortex and posterior striatum similarly affected lapses on one side across auditory, visual and multisensory trials (Fig. 5). Taken together, our model and experimental data argue strongly that far from being a nuisance, lapses are informative about animals' subjective action values and reflect a trade-off between exploration and exploitation.

Considerations of value have provided many useful insights into aspects of behavior that seem sub-optimal at first glance from the perspective of perceptual ideal observers. For instance, many perceptual tasks are designed with accuracy in mind - defining an ideal observer as one
who maximizes accuracy, in line with classical signal detection theory. However, in practice, the success or failure of different actions may be of unequal value to subjects, especially if reward or punishment is delivered explicitly, as is often the case with non-human subjects. This may give rise to biases that can only be explained by an observer that maximizes expected utility (Dayan and Daw, 2008). Similarly, reward outcomes on a given trial can influence decisions about stimuli on subsequent trials through reinforcement learning, giving rise to serial biases. These biases occur even though the ideal observer should treat the evidence on successive trials as independent (Busse et al., 2011; Lak et al., 2018). Finally, when subjects can control how long they sample the stimulus, subjects maximizing reward rate may choose to make premature decisions, sacrificing accuracy for speed (Bogacz et al., 2006).

Here, we take further inspiration from considerations of value to provide a novel account for lapses. We leveraged a well known phenomenon in value-based decisions: uncertainty dependent exploration. Until now, this phenomenon has not been considered a candidate explanation for lapses in perceptual decisions. Our results argue that lapses are not simply accidental errors made as a consequence of attentional "blinks" or motor "slips", but can reflect a deliberate, internal source of behavioral variability that facilitates learning and information gathering under uncertain or non-stationary environments.

Although exploration no longer yields the maximum utility on any given trial, it is critical for dynamic environments, and those in which there is uncertainty about probability of reward or stimulus-response contingency (e.g., during learning). By encouraging subjects to sample multiple
options, exploration can potentially improve the subject's knowledge of the rules of the task, helping it to increase future payoff, thus maximizing expected utility over a long period of time.

Balancing exploration and exploitation is computationally challenging, and the mechanism we propose here, uncertainty dependent exploration, is a well-known, elegant heuristic for achieving this balance. Also known as Thompson sampling, this strategy has been shown to be asymptotically optimal in partially observable environments (Leike et al., 2016) and can be naturally implemented through a sampling scheme where the subject samples action values from a learnt distribution and then maximizes with respect to the sample (Gershman, 2018). This strategy predicts that conditions with higher uncertainty should have higher exploration, and consequently higher lapse rates, explaining the pattern of lapse rates we observed on unisensory vs. multisensory trials as well as on neutral vs. matched trials. A lower rate of lapses on multisensory trials has also been reported on a visual-tactile task in rats (Nikbakht et al., 2018) and a vestibular integration task in humans (Bertolini et al., 2015) and can potentially account for the apparent supra-optimal integration that has been reported in a number of studies (Nikbakht et al., 2018; Hou et al., 2018; Raposo, Sheppard, et al., 2012). A strong prediction of uncertainty guided exploration is that the animal should always exploit on conditions with no uncertainty, as we observed on sure-bet trials (Fig. 4d, 5d).

The model also predicts that exploration, and consequently lapses, should decrease with training as the animal becomes more certain of the rules and expected rewards, explaining trainingdependent effects reported in primates (Law and Gold, 2009). It can also potentially explain why children have higher lapse rates - they have been shown to be more exploratory in their decisions
than adults (Lucas et al., 2014).

A unique prediction of the exploration model is that it predicts lapse rates will sometimes change asymmetrically for left and right decisions. For instance, changing the value associated with one of the decisions (eg. high rate) should only affect lapses associated with that decision predicting fewer lapses on high rates if the rightward reward is increased, and more lapses if it is decreased, or if leftward decisions are probabilistically rewarded on high rates. These predictions are borne out (Fig. 4c), and rightward successes or failures on the previous trial have a similar effect. The model also suggests that the asymmetric effects on lapses seen during unilateral inactivations of prefrontal and striatal regions (Fig. 5b) arises from a selective devaluation of contralateral actions. This interpretation reconciles a number of studies that have found asymmetric effects of inactivating these areas during perceptual decisions (Erlich et al., 2015; Zatka-Haas et al., 2019; Wang et al., 2018; Guo et al., 2018) with their established roles in encoding action value (Barthas and Kwan, 2017; Lee et al., 2015) during value-based decisions.

An open question that remains is how the brain might tune the degree of exploration in proportion to uncertainty. An intriguing candidate for this is dopamine, whose tonic levels have been shown to modulate exploration in mice on a lever-press task (Beeler et al., 2010), and contextdependent song variability in songbirds (Leblois, Wendel, and Perkel, 2010). Dopaminergic genes have been shown to predict individual differences in uncertainty-guided exploration in humans (Frank et al., 2009), and dopaminergic disorders such as Parkinson's disease have been shown to disrupt the uncertainty-dependence of lapses across conditions (Bertolini et al., 2015). Patients with

ADHD, another disorder associated with dopaminergic dysfunction, have been shown to display both increased perceptual variability and increased task-irrelevant motor output, a measure that correlates with lapses (Mihali et al., 2018). A promising avenue for future studies is to leverage the informativeness of lapses and the precise control of uncertainty afforded by multisensory tasks, in conjunction with perturbations or recordings of dopaminergic circuitry, to further elucidate the connections between perceptual and value-based decision making systems.

METHODS

Behavior

Animal Subjects and Housing All animal procedures and experiments were in accordance with the National Institutes of Healths Guide for the Care and Use of Laboratory Animals and were approved by the Cold Spring Harbor Laboratory Animal Care and Use Committee. Experiments were conducted with 34 adult male and female Long Evans rats (250-350g, Taconic Farms) that were housed with free access to food and restricted access to water starting from the onset of behavioral training. Rats were housed on a reversed light-dark cycle; experiments were run during the dark part of the cycle. Rats were pair-housed during the whole training period.

Animal training and behavioral task Rats were trained following previously established methods (Raposo 2012, Sheppard 2013, Raposo 2014, Licata 2017). Briefly, rats were trained to wait in the center port for 1000 ms while stimuli were presented, and to associate stimuli with left/right reward ports. Stimuli for each trial consisted of a series of events: auditory clicks from a centrally
positioned speaker, full-field visual flashes, or both together. Stimulus events were separated by either long (100 ms) or short (50 ms) intervals. For the easiest trials, all inter-event intervals were identical, generating rates that were 9 events/s (all long intervals) or 16 events/s (all short intervals). More difficult trials included a mixture of long and short intervals, generating stimulus rates that were intermediate between the two extremes and therefore more difficult for the animal to judge. The stimulus began after a variable delay following when the rats snout broke the infrared beam in the center port. The length of this delay was selected from a truncated exponential distribution $(\lambda=30 \mathrm{~ms}$, minimum $=10 \mathrm{~ms}$, maximum $=200 \mathrm{~ms})$ to generate an approximately flat hazard function. The total time of the stimulus was usually 1000 ms . Trials of all modalities and stimulus strengths were interleaved. For multisensory trials, the same number of auditory and visual events were presented (except for a subset of neutral trials). Auditory and visual stimulus event times were generated independently, as our previous work has demonstrated that rats make nearly identical decisions regardless of whether stimulus events are presented synchronously or independently (Raposo, Sheppard, et al., 2012). For most experiments, rats were rewarded with a drop of water for moving to the left reward port following low-rate trials and to the right reward port following high rate trials. For muscimol inactivation experiments half of the rats were rewarded according to the reverse contingency. Animals typically completed between 700 and 1,200 trials per day. Most experiments had 18 conditions (3 modalities 8 stimulus strengths), leading to 29-50 trials per condition per day.

To probe the effect of uncertainty on lapses, rats received catch trials consisting of multisensory neutral trials, where only the auditory modality provided evidence for a particular choice, whereas
the visual modality provided evidence that was so close to the category boundary (12 Hz) that it did not support one choice or the other (Raposo, Sheppard, et al., 2012)

To probe the effect of value on lapses, we manipulated either reward magnitude or reward probability associated with high rates, while keeping low rate trials unchanged. To increase or decrease reward magnitude associated with high rates, the amount of water dispensed on the right port was increased or decreased to 36 ul or 16 ul respectively, while the reward on the left port was maintained at 24 ul . To manipulate reward probability, we occasionally rewarded rats on the (incorrect) left port on high rate trials with a probability of 0.5 . The right port was still rewarded with a probability of 1 on high rates, and reward probabilities on low rate trials were unchanged (1 on the left port, 0 on the right).

Analysis of behavioral data.

Psychometric curves. Descriptive four-parameter psychometric functions were fit to choice data using the Palamedes toolbox (Prins and Kingdom, 2018). Psychometric functions were parameterized as:

$$
\begin{equation*}
\psi(x ; \mu, \sigma, \gamma, \lambda)=\phi(x ; \mu, \sigma)(1-\lambda-\gamma)+\gamma \tag{1}
\end{equation*}
$$

where γ and λ are the lower and upper asymptote of the psychometric function, which parameterize the lapse rates on the left and to the right, respectively; ϕ is a cumulative normal function; x is the event rate, i.e. the number of flashes or beeps presented during the one second stimulus period; μ parameterizes the x-value at the midpoint of the psychometric function and σ describes the inverse slope. 95% Confidence intervals on these parameters were generated via bootstrapping based on

1000 simulations.

Modeling

Ideal observer model

We can specify an ideal observer model for our task using Bayesian Decision Theory (Dayan and Daw, 2008). This observer maintains probability distributions over previously experienced stimuli and choices, computes the posterior probability of each action being correct given its observations and picks the action that yields the highest expected reward.

Let the true category on any given trial be $c_{\text {true }}$, the true stimulus rate be $s_{\text {true }}$ and the animal's noisy visual and auditory observations of $s_{\text {true }}$ be x_{V} and x_{A}, respectively. We assume that the two sensory channels are corrupted by independent gaussian noise with standard deviation σ_{A} and σ_{V}, respectively, giving rise to conditionally independent observations.

$$
\begin{align*}
p\left(x_{A} \mid s_{\text {true }}\right) & =\mathcal{N}\left(s_{\text {true }}, \sigma_{A}\right), \quad p\left(x_{V} \mid s_{\text {true }}\right)=\mathcal{N}\left(s_{\text {true }}, \sigma_{V}\right), \tag{2}\\
p\left(x_{A}, x_{V} \mid s_{\text {true }}\right) & =p\left(x_{A} \mid s_{\text {true }}\right) p\left(x_{V} \mid s_{\text {true }}\right)
\end{align*}
$$

The ideal observer can use this knowledge to compute the likelihood of seeing the current trial's observations as a function of the hypothesized stimulus rate s. This likelihood \mathcal{L} is a gaussian
function of s with a mean given by a weighted sum of the observations x_{A} and x_{V},

$$
\begin{align*}
\mathcal{L}(s) & =p\left(x_{A}, x_{V} \mid s\right)=p\left(x_{A} \mid s\right) p\left(x_{V} \mid s\right) \\
& \propto \mathcal{N}\left(\mu_{M}, \sigma_{M}\right) \\
\mu_{M} & =w_{A} x_{A}+w_{V} x_{V} \tag{3}\\
\sigma_{M} & =\left(\sigma_{A}^{-2}+\sigma_{V}^{-2}\right)^{-\frac{1}{2}} \\
w_{A} & =\frac{\sigma_{M}^{2}}{\sigma_{A}^{2}}, \quad w_{V}=\frac{\sigma_{M}^{2}}{\sigma_{V}^{2}}
\end{align*}
$$

The likelihood of seeing the observations as a function of the hypothesized category c, is given by marginalizing over all possible hypothesized stimulus rates. Let the experimentally imposed category boundary be μ_{0}, such that stimulus rates are considered high when $s>\mu_{0}$ and low when $s<\mu_{0}$. Then,

$$
\begin{align*}
\mathcal{L}(c=\text { High }) & =p\left(x_{A}, x_{V} \mid c=\text { High }\right) \\
& =\int_{s} p\left(x_{A}, x_{V}, s \mid c=\text { High }\right) d s \\
& =\int_{s} p\left(x_{A}, x_{V} \mid s\right) p(s \mid c=\text { High }) d s \quad \because x_{a}, x_{V} \perp c \mid s \tag{4}\\
& =\int_{s>\mu_{0}} p\left(x_{A}, x_{V} \mid s\right) d s \\
& \propto 1-\Phi\left(\mu_{0} ; \mu_{M}, \sigma_{M}\right)
\end{align*}
$$

where Φ is the cumulative normal function. Using Bayes' rule, the ideal observer can then compute the probability that the current trial was high or low rate given the observations, i.e. the posterior
probability.

$$
\begin{align*}
p\left(c \mid x_{A}, x_{V}\right) & =\frac{p\left(x_{A}, x_{V} \mid c\right) p(c)}{p\left(x_{A}, x_{V}\right)} \\
\Longrightarrow p\left(c=\operatorname{High} \mid x_{A}, x_{V}\right) & \propto p_{\text {High }}\left(1-\Phi\left(\mu_{0} ; \mu_{M}, \sigma_{M}\right)\right) \tag{5}\\
\Longrightarrow p\left(c=\operatorname{Low} \mid x_{A}, x_{V}\right) & \propto p_{\text {Low }} \Phi\left(\mu_{0} ; \mu_{M}, \sigma_{M}\right)
\end{align*}
$$

where $p_{H i g h}$ and $p_{\text {Low }}$ are the prior probabilities of high and low rates respectively. The expected value $Q(a)$ of choosing right or left actions (also known as the action values) is obtained by marginalizing the learnt value of state-action pairs $q(c, a)$ over the unobserved state c.

$$
\begin{align*}
& Q(a=R)=p\left(\operatorname{High} \mid x_{A}, x_{V}\right) q(\operatorname{High}, R)+p\left(\operatorname{Low} \mid x_{A}, x_{V}\right) q(\text { Low }, R) \tag{6}\\
& Q(a=L)=p\left(\operatorname{High} \mid x_{A}, x_{V}\right) q(\text { High }, L)+p\left(\operatorname{Low} \mid x_{A}, x_{V}\right) q(\text { Low }, L)
\end{align*}
$$

Under the standard contingency, high rates are rewarded on the right and low rates on the left, so for a trained observer that has fully learnt the contingency, $q($ High,$R) \rightarrow r_{R}, q(H i g h, L) \rightarrow$ $0, q($ Low, $R) \rightarrow 0, q($ Low,$L) \rightarrow r_{L}$, with $r R$ and $r L$ being reward magnitudes for rightward and leftward actions. This simplifies the action values to:

$$
\begin{align*}
& Q(R)=p\left(\operatorname{High} \mid x_{A}, x_{V}\right) r_{R} \propto p_{\text {High }}\left(1-\Phi\left(\mu_{0} ; \mu_{M}, \sigma_{M}\right)\right) r_{R} \tag{7}\\
& Q(L)=p\left(\operatorname{Low} \mid x_{A}, x_{V}\right) r_{L} \propto p_{\text {Low }} \Phi\left(\mu_{0} ; \mu_{M}, \sigma_{M}\right) r_{L}
\end{align*}
$$

The max-reward decision rule involves picking the action \hat{a} with the highest expected reward:

$$
\hat{a}=\operatorname{argmax} Q(a)
$$

$$
\begin{gather*}
\text { i.e. } \hat{a}=R \Longleftrightarrow Q(R)>Q(L) \\
\left.\Longleftrightarrow p_{\text {High }}\left(1-\Phi\left(\mu_{0} ; \mu_{M}, \sigma_{M}\right)\right) r_{R}>p_{\text {Low }} \Phi\left(\mu_{0} ; \mu_{M}, \sigma_{M}\right)\right) r_{L} \tag{8}\\
\left.\Longleftrightarrow \Phi\left(\mu_{M} ; \mu_{0}, \sigma_{M}\right)\right)>\frac{1}{1+\frac{p_{\text {High }} r_{R}}{p_{\text {Low }} r_{L}}} \\
\Longleftrightarrow w_{A} x_{A}+w_{V} x_{V}>\Phi^{-1}\left(\frac{1}{1+\frac{p_{\text {High }} r_{R}}{p_{\text {Low }} r_{L}}} ; \mu_{0},\left(\sigma_{A}^{-2}+\sigma_{V}^{-2}\right)^{-\frac{1}{2}}\right)
\end{gather*}
$$

In the special case of equal rewards and uniform stimulus and category priors, this reduces to choosing right when the weighted sum of observations is to the right of the true category boundary, i.e. $w_{A} x_{A}+w_{V} x_{V}>\mu_{0}$. Note that this is a deterministic decision rule for any given observations x_{A} and x_{V}, however, since these are noisy and gaussian distributed around the true stimulus rate $s_{\text {true }}$, the likelihood of making a rightward decision is given by the cumulative gaussian function Φ :

$$
\begin{align*}
& \text { For } \quad \begin{aligned}
p_{\text {High }} & =p_{\text {Low }}, r_{R}=r_{L} \\
p(\hat{a}=R \mid s)= & p\left(w_{A} x_{A}+w_{V} x_{V}>\mu_{0} \mid s\right) \\
& =\Phi\left(s_{\text {true }} ; \mu_{0}, \sigma\right) \\
\sigma & =\left\{\begin{array}{l}
\sigma_{A} \text { on auditory trials } \\
\sigma_{V} \text { on visual trials } \\
\left(\sigma_{A}^{-2}+\sigma_{V}^{-2}\right)^{\frac{1}{2}} \text { on multisensory trials }
\end{array}\right.
\end{aligned} . \begin{array}{l}
\end{array}
\end{align*}
$$

We can measure this probability empirically through the psychometric curve. Fitting it with a two parameter cumulative gaussian function yields μ and σ which can be compared to ideal observer predictions. The σ parameter is then taken to reflect sensory noise; and with the assumption of uniform priors and equal rewards, the μ parameter is taken to reflect the subjective category boundary. Although μ should equal μ_{0} for the ideal observer, in practice it is treated as a free parameter, and deviations of μ from μ_{0} could reflect any of three possible suboptimalities: 1) a subjective category boundary mismatched to the true one, 2) mismatched priors, or 3) unequal subjective rewards of the two actions.

Inattention model

The traditional model for lapse rates assumes that on a fixed proportion of trials, the animal fails to pay attention to the stimulus, guessing randomly between the two actions. We can incorporate this suboptimality into the ideal observer above as follows: Let the probability of attending be $p_{\text {attend }}$. Then, on $1-p_{\text {attend }}$ fraction of trials, the animal does not attend to the stimulus (i.e. receives no evidence), effectively making $\sigma_{\text {sensory }} \rightarrow \infty$ and giving rise to a posterior that is equal to the prior. On these trials, the animal may choose to maximize this prior (always picking the option that's more likely a-priori, guessing with 50-50 probability if both options are equally likely), or probability-match the prior (guessing in proportion to its prior). Let us call this guessing probability $p_{\text {bias }}$. Then, the probability of a rightward decision is given by marginalizing over the attentional state:

$$
\begin{align*}
p(\hat{a}=R \mid s) & =p(\hat{a}=R \mid s, \text { attend }) p(\text { attend })+p(\hat{a}=R \mid s, \sim \text { attend }) p(\sim \text { attend }) \tag{10}\\
& =p(\hat{a}=R \mid s) p_{\text {attend }}+p_{\text {bias }}\left(1-p_{\text {attend }}\right)
\end{align*}
$$

where γ and λ are the lower and upper asymptotes respectively, collectively known as "lapses". In this model, the sum of the two lapses depends on the probability of attending, which could be modulated in a bottom up fashion by the salience of the stimulus; their ratio depends on the guessing probability, which in turn depends on the observer's priors and subjective rewards.

Motor error/ ϵ greedy model

Lapses can also occur if the observer doesn't always pick the reward-maximizing or "exploit" decision. This might occur due to random errors in motor execution on a small fraction of trials given by ϵ, or it might reflect a deliberate propensity to occasionally make random "exploratory" choices to gather information about rules and rewards. This is known as an ϵ-greedy decision rule, where the observer chooses randomly (or according to $p_{\text {bias }}$) on ϵ fraction of trials. Both these
models yield predictions similar to those of the inattention model:

$$
\begin{align*}
& p(\hat{a}=R \mid s)=p(\hat{a}=R \mid s)(1-\epsilon)+\epsilon p_{\text {bias }} \\
& \Longrightarrow \gamma+\lambda=\epsilon, \quad \frac{\gamma}{\gamma+\lambda}=p_{\text {bias }} \tag{12}
\end{align*}
$$

Softmax exploration model

A more sophisticated form of exploration is the "softmax" decision rule, which explores options in proportion to their expected rewards, allowing for a balance between exploration and exploitation through the tuning of a parameter β known as inverse temperature. In particular, in conditions of greater uncertainty about rules or rewards, it is advantageous to be more exploratory and have a lower β. This strategy is known as Thompson sampling, and can be achieved by sampling from a belief distribution over expected rewards and maximizing with respect to the sample, reducing to a softmax rule whose β depends on the total uncertainty in expected reward (Gershman, 2018).

$$
\begin{align*}
p(\hat{a}=R \mid Q(a)) & =\frac{\exp \beta Q(R)}{\exp \beta Q(L)+\exp \beta Q(R)} \tag{13}\\
& =\frac{1}{1+\exp (-\beta(Q(R)-Q(L)))}
\end{align*}
$$

The proportion of rightward choices conditioned on the true stimulus rate is then obtained by marginalizing over the latent action values $Q(a)$, using the fact that the choice depends on s only through its effect on $Q(a)$, where ρ is the animal's posterior belief in a high rate stimulus, i.e. $\rho=p\left(c=\operatorname{High} \mid x_{A}, x_{V}\right)$. ρ is often referred to as the belief state in reinforcement learning
problems involving partial observability such as our task.

$$
\begin{align*}
p(\hat{a}=R \mid s) & =\int_{Q(a)} p(\hat{a}=R, Q(a) \mid s) d Q \\
& =\int_{Q(a)} p(\hat{a}=R \mid Q(a)) p(Q(a) \mid s) d Q \quad \because \hat{a} \perp s \mid Q(a) \tag{14}\\
& =\int_{\rho} \frac{1}{1+\exp -\beta\left(\rho\left(r_{R}+r_{L}\right)-r_{L}\right)} \frac{\mathcal{N}\left(\Phi^{-1}\left(1-\rho, 0, \sigma_{p o s t}\right), \mu_{0}-s, \sigma_{p o s t}\right)}{\left.\mathcal{N}\left(\Phi^{-1}\left(1-\rho, 0, \sigma_{p o s t}\right), 0, \sigma_{p o s t}\right)\right)} d \rho
\end{align*}
$$

Since lapses are the asymptotic probabilities of the lesser rewarding action at extremely easy stimulus rates, we can derive them from this expression by setting $\rho \rightarrow 1$ or $\rho \rightarrow 0$. This yields

$$
\begin{equation*}
\gamma=\frac{1}{1+\exp \left(\beta r_{L}\right)}, \quad \lambda=\frac{1}{1+\exp \left(\beta r_{R}\right)} \tag{15}
\end{equation*}
$$

Critically, in this model, the upper and lower lapses are dissociable, depending only on the rightward or leftward rewards, respectively. Such a softmax decision rule has been used to account for suboptimalities in value based decisions (Dayan and Daw, 2008), however it has not been used to account for lapses in perceptual decisions. Other suboptimal decision rules described in perceptual decisions, such as generalized probability matching or posterior sampling (Acerbi, Vijayakumar, and Wolpert, 2014; Drugowitsch, Wyart, et al., 2016; Ortega and Braun, 2013) amount to a softmax on log-posteriors or log-expected values, rather than on expected values, and do not produce lapses since in these decision rules, when the posterior probability goes to 1 , so does the decision probability.

Model fitting

Model fits were obtained from custom maximum likelihood fitting code using MATLAB's fmincon, by maximizing the marginal likelihood of rightward choices given the stimulus on each trial as computed from each model. Confidence intervals for fit parameters were generated using the hessian obtained from fmincon. Fits to multiple conditions were performed jointly, taking into account any linear or nonlinear (eg. optimality) constraints on parameters across conditions. Model comparisons were done using AIC and BIC.

Surgical procedures

All rats subject to surgery were anesthetized with $1 \%-3 \%$ isoflurane. Isoflurane anesthesia was maintained by monitoring respiration, heart rate, oxygen and CO_{2} levels, as well as foot pinch responses throughout the surgical procedure. Ophthalmic ointment was applied to keep the eyes moistened throughout surgery. After scalp shaving, the skin was cleaned with 70% ethanol and 5% betadine solution. Lidocaine solution was injected below the scalp to provide local analgesia prior to performing scalp incisions. Meloxicam ($5 \mathrm{mg} / \mathrm{ml}$) was administered subcutaneously ($2 \mathrm{mg} / \mathrm{kg}$) for analgesia at the beginning of the surgery, and daily 2-3 days post-surgery. The animals were allowed at least 7 days to recover before behavioral training.

Viral injections- 2 rats, 15 weeks of age, were anesthetized and placed in a stereotaxic apparatus (Kopf Instruments). Small craniotomies were made in the center of primary visual cortex (V1; 6.9 mm posterior to Bregma, 4.2 mm to the right of midline) and primary auditory cortex (A1; 4.7 mm posterior to Bregma, 7 mm to the right of midline). Small durotomies were performed
at each craniotomy and virus was pressure injected at depths of 600,800 , and $1000 \mu \mathrm{~m}$ below the pia ($150 \mathrm{~nL} /$ depth). Virus injections were performed using Drummond Nanoject III, which enables automated delivery of small volumes of virus. To minimize virus spread, the Nanoject was programmed to inject slowly: fifteen 10 nL boluses, 30 seconds apart. Each bolus was delivered at $10 \mathrm{~nL} / \mathrm{sec}$. 2-3 minutes were allowed following injection at each depth to allow for diffusion of virus. The AAV2.CB7.CI.EGFP.WPRE.RBG construct was injected in V1, and the AAV2.CAG.tdTomato.WPRE.SV40 construct was injected in A1. Viruses were obtained from the University of Pennsylvania vector core.

Cannulae implants Rats were anesthetized and placed in the stereotax as described above. After incision and skull cleaning, 2 skull screws were implanted to add more surface area for the dental cement. For striatal implants, two craniotomies were made, one each side of the skull (3.2 mm posterior to Bregma; 5.4mm to the right and left of midline). Durotomies were performed and a guide cannula (22 gauge, 8.5 mm long; PlasticsOne) was placed in the brain, 4.1 mm below the pia at each craniotomy. For secondary motor cortex implants, one large craniotomy spanning the right and left M2 was performed ($\sim 5 \mathrm{~mm} \times \sim 2 \mathrm{~mm}$ in size centered around 2 mm anterior to Bregma and 3.1 mm to the right and left of midline). A durotomy was performed and a double guide cannula (22 gauge, 4 mm long; PlasticsOne) was placed in the brain, 300um below the pia. The exposed brain was covered with sterile Vaseline and cannulae were anchored to the skull with dental acrylic (Relyx). Single or double dummy cannulae protruding 0.7 mm below the guide cannulae were inserted.

Inactivation with muscimol

Rats were lightly anesthetized with isoflurane. Muscimol was unilaterally infused into pStr or M2 with a final concentration of $0.075-0.125 \mu \mathrm{~g}$ and $0.1-0.5 \mu \mathrm{~g}$, respectively. A single/double-internal cannula (PlasticsOne), connected to a $2 \mu \mathrm{l}$ syringe (Hamilton microliter syringe, 7000 series), was inserted into each previously implanted guide cannula. Internal cannulae protruded 0.5 mm below the guide. Muscimol was delivered using an infusion pump (Harvard PHD 22/2000) at a rate of 0.1 $\mathrm{ul} /$ minute. Internal cannulae were kept in the brain for 3 additional minutes to allow for diffusion of muscimol. Rats were removed from anesthesia and returned to cages for 15 minutes before beginning behavioral sessions. The same procedure was used in control sessions, where muscimol was replaced with sterile saline.

Histology

At the conclusion of inactivation experiments, animals were deeply anesthetized with Euthasol (pentobarbital and phenytoin). Animals were perfused transcardially with 4\% paraformaldehyde. Brains were extracted and post-fixed in 4% paraformaldehyde for 24-48 hours. After post-fixing, 50-100 um coronal sections were cut on a vibratome (Leica) and imaged.

References

Acerbi, Luigi, Sethu Vijayakumar, and Daniel M Wolpert (2014). "On the origins of suboptimality in human probabilistic inference". In: PLoS computational biology 10.6, e1003661.

Barthas, Florent and Alex C Kwan (2017). "Secondary motor cortex- where sensory meets motor in the rodent frontal cortex". In: Trends in neurosciences 40.3, pp. 181-193.

Bays, Paul M, Raquel FG Catalao, and Masud Husain (2009). "The precision of visual working memory is set by allocation of a shared resource". In: Journal of vision 9.10, pp. 7-7.

Beeler, Jeff A et al. (2010). "Tonic dopamine modulates exploitation of reward learning". In: Frontiers in behavioral neuroscience 4, p. 170.

Bertolini, Giovanni et al. (2015). "Impaired tilt perception in Parkinsons disease- a central vestibular integration failure". In: PloS one 10.4, e0124253.

Bogacz, Rafal et al. (2006). "The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks." In: Psychological review 113.4, p. 700.

Busse, Laura et al. (2011). "The detection of visual contrast in the behaving mouse". In: Journal of Neuroscience 31.31, pp. 11351-11361.

Carandini, Matteo and Anne K Churchland (2013). "Probing perceptual decisions in rodents". In: Nature neuroscience 16.7, p. 824.

Dayan, Peter and Nathaniel D Daw (2008). "Decision theory, reinforcement learning, and the brain". In: Cognitive, Affective, \& Behavioral Neuroscience 8.4, pp. 429-453.

Drugowitsch, Jan and Alexandre Pouget (2018). "Learning optimal decisions with confidence". In: bioRxiv, p. 244269.

Drugowitsch, Jan, Valentin Wyart, et al. (2016). "Computational precision of mental inference as critical source of human choice suboptimality". In: Neuron 92.6, pp. 1398-1411.

Erlich, Jeffrey C et al. (2015). "Distinct effects of prefrontal and parietal cortex inactivations on an accumulation of evidence task in the rat". In: Elife 4, e05457.

Ernst, Marc O and Heinrich H Bulthoff (2004). "Merging the senses into a robust percept". In: Trends in cognitive sciences 8.4, pp. 162-169.

Findling, Charles et al. (2018). "Computational noise in reward-guided learning drives behavioral variability in volatile environments". In: bioRxiv, p. 439885.

Frank, Michael J et al. (2009). "Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation". In: Nature neuroscience 12.8, p. 1062.

Garrido, Marta I, Raymond J Dolan, and Maneesh Sahani (2011). "Surprise leads to noisier perceptual decisions". In: i-Perception 2.2, pp. 112-120.

Gershman, Samuel J (2015). "A unifying probabilistic view of associative learning". In: PLoS computational biology 11.11, e1004567.

- (2018). "Deconstructing the human algorithms for exploration". In: Cognition 173, pp. 34-42. Gold, Joshua I and Long Ding (2013). "How mechanisms of perceptual decision-making affect the psychometric function". In: Progress in neurobiology 103, pp. 98-114.

Green, David M, John A Swets, et al. (1966). Signal detection theory and psychophysics. Vol. 1. Wiley New York.

Guo, Lan et al. (2018). "Stable representation of sounds in the posterior striatum during flexible auditory decisions". In: Nature communications 9.1, p. 1534.

Hou, Han et al. (2018). "Neural correlates of optimal multisensory decision making". In: bioRxiv, p. 480178.

Jiang, Haiyan and Hyoung F Kim (2018). "Anatomical inputs from the sensory and value structures to the tail of the rat striatum". In: Frontiers in neuroanatomy 12.

Lak, Armin et al. (2018). "Dopaminergic and frontal signals for decisions guided by sensory evidence and reward value". In: bioRxiv, p. 411413.

Law, Chi-Tat and Joshua I Gold (2009). "Reinforcement learning can account for associative and perceptual learning on a visual-decision task". In: Nature neuroscience 12.5, p. 655.

Leblois, Arthur, Benjamin J Wendel, and David J Perkel (2010). "Striatal dopamine modulates basal ganglia output and regulates social context-dependent behavioral variability through D1 receptors". In: Journal of Neuroscience 30.16, pp. 5730-5743.

Lee, A Moses et al. (2015). "Between the primate and reptilian brain- rodent models demonstrate the role of corticostriatal circuits in decision making". In: Neuroscience 296, pp. 66-74.

Leike, Jan et al. (2016). "Thompson sampling is asymptotically optimal in general environments". In: arXiv preprint arXiv:1602.07905.

Licata, Angela M et al. (2017). "Posterior parietal cortex guides visual decisions in rats". In: Journal of Neuroscience 37.19, pp. 4954-4966.

Lucas, Christopher G et al. (2014). "When children are better (or at least more open-minded) learners than adults: Developmental differences in learning the forms of causal relationships". In: Cognition 131.2, pp. 284-299.

Mendonca, Andre G et al. (2018). "The impact of learning on perceptual decisions and its implication for speed-accuracy tradeoffs". In: bioRxiv, p. 501858.

Mihali, Andra et al. (2018). "A Low-Level Perceptual Correlate of Behavioral and Clinical Deficits in ADHD". In: pp. 1-23.

Nikbakht, Nader et al. (2018). "Supralinear and supramodal integration of visual and tactile signals in rats: psychophysics and neuronal mechanisms". In: Neuron 97.3, pp. 626-639.

Odoemene, Onyekachi et al. (2018). "Visual evidence accumulation guides decision-making in unrestrained mice". In: Journal of Neuroscience 38.47, pp. 10143-10155.

Ortega, Pedro A and Daniel A Braun (2013). "Thermodynamics as a theory of decision-making with information-processing costs". In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469.2153, p. 20120683.

Piet, Alex T et al. (2017). "Rat prefrontal cortex inactivations during decision making are explained by bistable attractor dynamics". In: Neural computation 29.11, pp. 2861-2886.

Pinto, Lucas et al. (2018). "An accumulation-of-evidence task using visual pulses for mice navigating in virtual reality". In: Frontiers in behavioral neuroscience 12, p. 36.

Prins, Nicolaas and Frederick AA Kingdom (2018). "Applying the model-comparison approach to test specific research hypotheses in psychophysical research using the Palamedes Toolbox". In: Frontiers in psychology 9.

Raposo, David, Matthew T Kaufman, and Anne K Churchland (2014). "A category-free neural population supports evolving demands during decision-making". In: Nature neuroscience 17.12, p. 1784.

Raposo, David, John P Sheppard, et al. (2012). "Multisensory decision-making in rats and humans". In: Journal of neuroscience 32.11, pp. 3726-3735.

Roy, Nicholas G et al. (2018). "Efficient inference for time-varying behavior during learning". In: Advances in Neural Information Processing Systems, pp. 5700-5710.

Scott, Benjamin B et al. (2015). "Sources of noise during accumulation of evidence in unrestrained and voluntarily head-restrained rats". In: Elife 4, e11308.

Shen, Shan and Wei Ji Ma (2019). "Variable precision in visual perception." In: Psychological review 126.1, p. 89.

Sheppard, John P, David Raposo, and Anne K Churchland (2013). "Dynamic weighting of multisensory stimuli shapes decision-making in rats and humans". In: Journal of vision 13.6, pp. 4-4.

Wang, Lupeng et al. (2018). "Activation of striatal neurons causes a perceptual decision bias during visual change detection in mice". In: Neuron 97.6, pp. 1369-1381.

Wichmann, Felix A and N Jeremy Hill (2001). "The psychometric function: I. Fitting, sampling, and goodness of fit". In: Perception \& psychophysics 63.8, pp. 1293-1313.

Witton, Caroline, Joel B Talcott, and G Bruce Henning (2017). "Psychophysical measurements in children: challenges, pitfalls, and considerations". In: PeerJ 5, e3231.

Yartsev, Michael M et al. (2018). "Causal contribution and dynamical encoding in the striatum during evidence accumulation." In: Elife 7.

Yu, Angela J and Jonathan D Cohen (2009). "Sequential effects: superstition or rational behavior?" In: Advances in neural information processing systems, pp. 1873-1880.

Zatka-Haas, Peter et al. (2019). "Distinct contributions of mouse cortical areas to visual discrimination". In: bioRxiv, p. 501627.

Zhou, Baohua et al. (2018). "Chance, long tails, and inference in a non-Gaussian, Bayesian theory of vocal learning in songbirds". In: Proceedings of the National Academy of Sciences 115.36, E8538-E8546.

Acknowledgements We thank Matt Kaufman, Simon Musall, Onyekachi Odoemene, Ashley Juavinett, Farzaneh Najafi, Akihiro Funamizu, Priyanka Gupta, Anne Urai, James Roach, Colin Stoneking, Diksha Gupta, Tatiana Engel, Rob Phillips, Tony Zador, Steve Shea and Bo Li for scientific advice and discussions, and Angela Licata, Steven Gluf, Liete Einchorn, Dennis Maharjan, Alexa Pagliaro, Edward Lu and Barry Burbach for technical assistance. We thank Partha Mitra, Alexander Tolpygo and Stephen Savoia for help with slicing and imaging virus injected brains. This work was supported by the Simons Collaboration on the Global Brain, ONR MURI, the Eleanor Schwartz Fund, the Pew Charitable Trust and the Watson School of Biological Sciences.

Competing Interests The authors declare that they have no competing financial interests.

Correspondence Correspondence and requests for materials should be addressed to Anne K. Church-
land (email: churchland@cshl.edu).

