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Supplementary Figure 1: Uncertainty-dependent exploration is the only model that accounts for be-3

havioral data from all three manipulations Columns: data/predictions for three experimental manipu-4
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lations. Left: unisensory vs. multisensory. Middle: matched vs. neutral. Right: Asymmetric reward.5

a-d: Four candidate models. (a) Ideal observer model predicts no lapses and only changes in sensitiv-6

ity/bias across conditions. (b) Fixed motor error model predicts a constant rate of lapses across condi-7

tions in addition to changes in sensitivity/bias predicted from the ideal observer. (c) Inattention model8

predicts that the overall lapse rate (sum of lapses on both sides) depends on the level of bottom-up at-9

tentional salience, allowing for different rates for unisensory and multisensory. It also predicts that the10

lapse rate on neutral trials should be equal to that on multisensory trials, and that manipulating right-11

ward reward should affect both lapse rates. (d) Uncertainty-dependent exploration model predicts that12

overall lapse rate depends on the level of exploratoriness and hence uncertainty associated with that13

condition, allowing for different lapse rates on unisensory and multisensory trials. It also predicts that14

the lapse rate on neutral trials should be equal to that on auditory trials and manipulating rightward15

reward should only affect high rate lapses. (e) Data from an example rat on all three manipulations.16
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Supplementary Figure 2: Alternative models of inattentional lapses. Predictions of alternative models of18

lapses. (a) Effort-dependent disengagement model: In this model, there is an additional cost or mental effort19

to being engaged in the task which could vary with condition, and an additional random guessing action. If20
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the net payoff of engagement is not greater than the average value of a guess, then it guesses randomly. Such21

a model does not produce lapses if the effort is fixed across trials (left), but could produce lapses if the effort22

fluctuates from trial to trial (center). (b) Proportion of trials on which the animal withdrew prematurely doesnt23

vary between matched and neutral trials, suggesting that rats are not disengaging preferentially on neutral24

trials. (c) Predictions of the effort-dependent disengagement model. The model accurately predicts increased25

lapses on unisensory trials (left panel, green/blue traces) and neutral multisensory trials (middle panel, orange26

trace). However, for asymmetric reward manipulations (right), the model fails to predict our behavioral27

observation (Fig. 4d) that only lapses on the manipulated side are affected. (d) Temporal inattention model:28

in this model, temporal weighting of evidence differs between matched and neutral trials. To test this, we29

compared psychophysical kernels on matched and neutral trials. The temporal dynamics of attention are30

unchanged between the two kinds of trials, arguing against the temporal inattention model. (e) Variable31

precision model: in this model, the sensory noise (or its inverse, precision) fluctuates from trial to trial. The32

model accurately predicts increased lapses on unisensory trials (left panel, green/blue traces) and neutral33

multisensory trials (middle panel, orange trace). However, for asymmetric reward manipulations (right),34

the model fails to predict our behavioral observation (Fig. 4d) that lapses only on the manipulated side are35

affected. Like other models of inattention, it predicts that manipulating reward on one side should affect both36

lapses.37

4



38

Supplementary Figure 3: Uncertainty guided exploration outperforms competing models for average39

and individual data (a) Fits of the four models to average rat data on unisensory (blue-visual, green-auditory)40

and multisensory (red) trials. (b) Exploration model fits to unisensory and multisensory data for 17 individual41

animals (c) Model comparison for individual animals using BIC (left), AIC (right). Darker colors are lower42

BICs/AICs, denoting a better fit. (d) Summed model comparison metrics across animals, showing that43

inattention and exploration models fit the data equally well, and much better than the ideal observer or fixed44

error models. (e) Fits of the four models to average data including neutral trials (orange) provide a stronger45

test of the inattention model. (f) Exploration model fits to multisensory data including neutral trials for 546
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individual animals (g) Model comparison for individual animals. (h) Summed model comparison metrics47

across animals shows that the uncertainty-guided exploration model performs better than other models.48

49

50

Supplementary Figure 4: Thompson sampling, which balances exploration and exploitation, predicts51

lapses that increase with perceptual noise Schematic illustrating the explore-exploit tradeoff in perceptual52

two-alternative tasks. (a) Formulation of perceptual decision making task as a partially observable contextual53

bandit. To solve this task, an observer needs to infer the true category of the stimulus (Low or High) based54
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on noisy observations, and pick the best action given the true category (Left for Low, Right for High). This55

requires accurately learning the expected rewards from all 4 state-action pairs. (b) Beliefs about expected re-56

ward from different actions (L,R) performed in different states (Hi, Lo) showing different levels of uncertainty57

depending on policy. Beliefs are updated based on outcomes using a Bayesian update rule that takes into58

account uncertainty in state estimation. A greedy policy (left) that always picks the best action maximizes59

reward and learns well about the preferred state-action pairs (i.e. Lo-L and Hi-R) but has high uncertainty60

about the non-preferred pairs (Lo-R, Hi-L). A random policy (right) earns reward at chance, but learns61

equally well about all state-action pairs. Thompson sampling (center) implements a softmax decision rule that62

depends on the current uncertainties in each value, and balances immediately reward-maximizing decisions63

with decisions that reduce uncertainty, maximizing average reward in the long term. (c) Learnt beliefs about64

expected reward with Thompson sampling at various levels of perceptual uncertainty. High sensory noise65

(left) leads to large perceptual uncertainty, yielding highly overlapping belief distributions owing to a reduced66

ability to assign obtained rewards to one of the states. Lower levels of sensory noise (center, right) produce67

more separable beliefs. (d) Simulated performance over 2000 trials of the Bayesian learner shown above,68

under a Thompson sampling policy. As the sensory noise decreases (Black to Yellow to Red), the observer69

makes fewer exploratory choices owing to the more separable value beliefs, giving rise to lower lapse rates.70

7



71

Supplementary Figure 5: pStr and M2 receive direct projections from visual and auditory cortex (a)72

Schematic of tracing experiments. AAV2.CB7.CI.EGFP.WPRE.RBG and AAV2.CAG.tdTomato.WPRE.SV4073

constructs were injected unilaterally to primary visual (V1) and auditory (A1) cortices, respectively (V174

coordinates: 6.9 mm posterior to Bregma; 4.2 mm to the right of midline; A1 coordinates: 4.7 mm posterior75

to Bregma; 7 mm to the right of midline). (b) Secondary motor cortex (M2) receives inputs from V1 and A176

as shown by green and red fluorescence. (c) Posterior striatum (pStr) receives direct inputs from V1 and A177

as shown by green and red fluorescence. Yellow signal medial to pStr reflects overlapping passing fibers.78
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Supplementary Figure 6: Histological slices of implanted rats Representative coronal slices of all rats80

implanted with cannulae for muscimol inactivation experiments. (a) 6 rats were bilaterally implanted in81

posterior striatum (pStr). (b) 5 rats were implanted in secondary motor cortex (M2).82
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Supplementary Figure 7: Unilateral inactivation of M2 or pStr biases performance ipsilaterally and84

increases contralateral lapses Performance of the same rats shown in Figure 5b depicted as a function of85

the inactivated side (right or left) and the rate-contingency in which they were trained (standard or reverse).86

Standard contingency: high rate = go right, low rate = go left; reverse contingency: high rate = go left, low87

rate = go right. Each quadrant shows 4 plots: 3 psychometrics for rate discrimination trials and one for88

performance on sure-bet trials. auditory (green), visual (blue) and multisensory (red). (a)-(d) M2 inactiva-89

tion. (e)-(h) pStr inactivation. (a), (d) Rats trained on the standard contingency and inactivated on the left90

hemisphere show increased lapses on the high rates (i.e., fewer rightward choices on high rates). No effect91

on sure-bet trials. (b), (f) Rats trained on the standard contingency and inactivated on the right hemisphere92

show increased lapses on the low rates (i.e., fewer leftward choices on low rates). No effect on sure-bet trials.93

(c), (g) Rats trained on the reverse contingency and inactivated on the left hemisphere show increased lapses94

on the low rates (i.e., fewer rightward choices on low rates). No effect on sure-bet trials. No data for this95
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condition for M2 inactivation. (d), (h) Rats trained on the reverse contingency and inactivated on the right96

hemisphere show increased lapses on the high rates (i.e., fewer leftward choices on high rates). No effect on97

sure-bet trials for pStr inactivated animals; no data for M2 inactivated animals.98

99

100

Supplementary Figure 8: Single rat performance following M2 inactivation Left: inactivation of the101

low-rate associated side. Rat shows increased lapses on high-rate trials on all sensory modalities. Right:102

inactivation of the high-rate associated side. Rat shows increased lapses on low-rate trials on all sensory103
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modalities. Auditory (green), visual (blue) and multisensory (red).104

105

106

Supplementary Figure 9: Single rat performance following pStr inactivation Left: inactivation of the107

low-rate associated side. Rat shows increased lapses on high-rate trials on all sensory modalities. Right:108

inactivation of the high-rate associated side. Rat shows increased lapses on low-rate trials on all sensory109

modalities. Auditory (green), visual (blue) and multisensory (red).110
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Supplementary Figure 10: No significant effect on movement parameters following muscimol inacti-112

vation (a) Mean movement times from the center port to the side ports were not significantly different113

following muscimol inactivation of M2 (left; p = 0.9554 for contralateral, 0.9852 for ipsilateral movements;114

n=5 rats) or pStr (right; p = 0.6629 for contra, p =0.2615 for ipsi, n=6 rats). Control data on the abscissa115

is plotted against inactivation data on the ordinate. Purple, movement toward the side ipsilateral to the116

inactivation site; blue, movement toward the side contralateral to the inactivation site; Error bars (s.e.m.) are117
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not visible because they were obscured by the markers in all cases. (b) Mean wait times in the center port were118

not significantly different following muscimol inactivation of M2 (left; p = 0.7612 for contra, p =0.8896 for119

ipsi, n=5 rats) or pStr (right; p = 0.9128 for contra, p =0.9412 for ipsi, n=6 rats). All p-values were computed120

from paired t-tests. Error bars (s.e.m.) are not visible because they were obscured by the markers in all cases.121

122

123

Supplementary Figure 11: Lapses differentiate perturbations to different stages of the decision-making124
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process (a) Model predictions for biased sensory evidence (left), decreased contralateral action value (center)125

and increased effort in performing contralateral movements (right). The three kinds of perturbations affect126

decisions at the sensory, value or motor stages and predict different effects on lapses (top), but reduce to127

the same effect (horizontal shift) in the absence of lapses (bottom). (b) Model predictions for rightward128

inactivations on standard (top) and reversed (bottom) contingencies - in both cases, the model predicts that129

reduced leftward action values should only affect lapses on the side associated with leftward movements.130

(c) Inactivation data on visual trials from M2 (left) or pStr (Right) shows a pattern of effects consistent with131

action value deficits, irrespective of the stimulus-response contingency.132

15


