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SUMMARY

We determined how learning modifies neural repre-
sentations in primary visual cortex (V1) during acquisi-
tion of a visually guided behavioral task. We imaged
the activity of the same layer 2/3 neuronal populations
as mice learned to discriminate two visual patterns
while running through a virtual corridor, where one
pattern was rewarded. Improvements in behavioral
performance were closely associated with increas-
ingly distinguishablepopulation-level representations
of task-relevant stimuli, as a result of stabilization of
existing and recruitment of new neurons selective
for these stimuli. These effects correlated with the
appearance of multiple task-dependent signals dur-
ing learning: those that increased neuronal selec-
tivity across the population when expert animals
engaged in the task, and those reflecting anticipation
or behavioral choices specifically in neuronal subsets
preferring the rewarded stimulus. Therefore, learning
engages diverse mechanisms that modify sensory
and non-sensory representations in V1 to adjust its
processing to task requirements and the behavioral
relevance of visual stimuli.

INTRODUCTION

Primary areas of the sensory neocortex are thought to faithfully

represent the identity of stimuli in the external environment. Yet

as animals learn the association between a sensory stimulus

and its behavioral relevance, or improve their perceptual capa-

bilities with training, stimulus representations in sensory cortical

areas can change (Schoups et al., 2001; Yang and Maunsell,

2004; Rutkowski and Weinberger, 2005; Blake et al., 2006; Li

et al., 2008; Wiest et al., 2010; Gdalyahu et al., 2012; Goltstein

et al., 2013; Yan et al., 2014). Such changes may lead to

enhanced and more distinct representations of task-relevant

stimuli, and therefore improve the salience of information relayed

to downstream areas.
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The nature and effect sizes of learning-related changes to neu-

ral representations vary strongly between different studies,

potentially depending on modality, sensory cortical area, and

the behavioral task (Schoups et al., 2001; Yang and Maunsell,

2004; Rutkowski and Weinberger, 2005; Li et al., 2008; Ghose

et al., 2002; Law and Gold, 2008). The repeated association

between a stimulus and reward can lead to lasting, task-inde-

pendent changes in cortical representations of that stimulus

(Schoups et al., 2001; Rutkowski and Weinberger, 2005; Golt-

stein et al., 2013). Alternatively, the expression of learning-

related changes to sensory responses can also depend on the

animals being engaged in the task (Li et al., 2004, 2008; Polley

et al., 2006), consistent with observations that even in primary

sensory cortex neuronal responses can be influenced by non-

sensory, task-dependent signals reflecting the animal’s attentive

state, expectations, or behavior (see, for example, Ress and

Heeger, 2003; Shuler and Bear, 2006; Li et al., 2008; Niell and

Stryker, 2010; Keller et al., 2012; David et al., 2012; St�anisxor
et al., 2013; Nienborg and Cumming, 2014). Therefore, the stra-

tegies by which learning can modify cortical sensory processing

are diverse but remain poorly understood. Specifically, how do

individual neurons change their response properties as stimuli

acquire behavioral relevance? To what extent do these changes

persist when the animals are not engaged in the task? How do

learning-induced response changes relate to the appearance

of non-sensory, task-dependent signals? Do these non-sensory

signals act globally, or do they target specific neuronal subsets

encoding behaviorally relevant sensory features?

To address these questions, it is crucial to track the activity of

the same cells over the course of learning. We therefore used

chronic two-photon calcium imaging (Huber et al., 2012; Chen

et al., 2013) in mouse V1 while the animals learned to perform

a visual discrimination task in virtual reality. We observed a

robust and progressive population-wide increase in neural

selectivity in cortical layer 2/3 (L2/3) during learning—an effect

related to greater day-to-day stability of single cell response

preferences as well as to an increase in the number of cells se-

lective for task-relevant stimuli. Improvements in V1 selectivity

were reduced when animals disengaged from the task. Task

acquisition additionally led to the appearance of both anticipa-

tory and behavioral choice-related signals in a specific subpop-

ulation of neurons whose firing predicted the reward. Therefore,
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Figure 1. Rapid Learning of a V1-Dependent

Visual Discrimination Task in Virtual Reality

(A) Schematic of the virtual reality setup.

(B) Task schematic with virtual corridor wall pat-

terns. CR, correct rejection, FA, false alarm.

(C) Changes in licking over learning in an example

mouse. Licks (dots) aligned to grating onset in

vertical grating (left, blue shading) and angled

grating (middle, pink shading) trials. Red dots,

reward delivery; yellow dots, licking after reward

delivery. Right, average running speed for session

shown on left, aligned to grating onset for vertical

(blue) and angled (red) trials. Shading, SEM.

(D) Behavioral performance (behavioral d-prime;

see Experimental Procedures) of five mice imaged

on consecutive training sessions. See also Fig-

ure S1.

(E) Behavioral performance in the visual and an

equivalent odor discrimination task (see Experi-

mental Procedures, average across sessions) as a

function of light intensity during bilateral opto-

genetic silencing of visual cortex. PV-ChR2,

transgenic mice expressing Channelrhodopsin-2

in parvalbumin-positive interneurons (n = 4 mice,

10 visual and 4 odor discrimination sessions). WT,

wild-type mice (n = 3 mice, 7 sessions). *p < 0.05,

***p < 0.001 after Bonferroni correction, Wilcoxon

rank-sum test comparing PV-ChR2 to WT in the

visual task.
learning the relationship between visual cues and their behav-

ioral relevance leads to concerted changes in the representation

of both sensory and non-sensory task-related information in a

primary sensory cortical area.

RESULTS

Behavioral Task
Mice can perform complex visually guided behaviors, but they

often require weeks of training to achieve high performance

levels when head restrained (Andermann et al., 2010; Glickfeld

et al., 2013; Pinto et al., 2013). Virtual reality environments offer

an advantage for training head-fixed animals because they allow

active engagement with the sensory world, for example, when

the animal’s locomotion on a treadmill is directly coupled to optic

flow changes in the visual scene (Hölscher et al., 2005; Dombeck

et al., 2007). We hypothesized that this type of active visuomotor

engagement approximates ethological situations when mice

encounter behaviorally relevant stimuli during navigation, explo-

ration, or foraging. Indeed, we found that this enabled rapid visu-

ally guided learning (see below).

We trained head-fixed mice to discriminate two grating

patterns of different orientations in a virtual reality environment

in which the animals’ running controlled their position in a

corridor (Figures 1A and 1B; see also Movie S1 available online).
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After running through a virtual approach

corridor (walls with black/white circles)

from random starting points, mice were

abruptly presented with a corridor con-

taining either vertical or angled (40� rela-
tive to vertical) gratings on both walls. The abrupt appearance

of the grating corridors provided precise control of stimulus

timing. Mice were rewarded for licking in response to the vertical

grating corridor with a drop of soya milk delivered through a

reward spout (hit trial; reward was given if a lick was detected

in a region a short distance into the grating corridor, referred to

as the reward zone). No punishment was given for licking in

response to the non-rewarded, angled grating corridor (false-

alarm trial). Most mice progressed rapidly from indiscriminate

licking (example lick raster plots in Figure 1C, top) to licking

only within the grating corridors in response to both gratings (Fig-

ure 1C, middle), and finally to nearly exclusive licking in response

to the rewarded, vertical grating (Figure 1C, bottom) and with-

holding licking in the non-rewarded angled grating corridor (cor-

rect rejection trials). Mice typically slowed down while licking in

the rewarded grating corridor and learned to accelerate upon

seeing the non-rewarded grating (Figure 1C, right panels). We

quantified task performance by calculating the behavioral

d-prime for each training session, which is a measure of the dif-

ference in the proportions of hit and false-alarm trials (Figure 1D;

see Experimental Procedures). Mice usually learnt the taskwithin

3–6 days (Figure 1D) and eventually reached high behavioral

accuracies (behavioral d-prime in last session 3.2 ± 0.7, corre-

sponding to 89% ± 8% correct responses, mean ± SD; see

Figure S1).
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We tested whether V1 activity was required for visual discrim-

ination in this task by optogenetically silencing V1 in both hemi-

spheres of fully trained animals in a random subset of trials. We

silenced the cortex during grating corridor presentation by pho-

tostimulation of parvalbumin-positive inhibitory interneurons ex-

pressing Channelrhodopsin-2 in transgenic mice (Boyden et al.,

2005; Lien and Scanziani, 2013; Glickfeld et al., 2013). Visual

discrimination performance decreased progressively when

increasing the intensity of blue light directed to V1 in transgenic

mice, (Figure 1E; Friedman test, c2[4] = 32.44, p < 10�5), but not

in wild-type control mice (Figure 1E; Friedman test, c2[4] = 5.76,

p = 0.22). The same transgenic mice were additionally trained in

an analogous odor discrimination task in the same virtual

corridor (see Experimental Procedures), which they continued

to perform normally even when illuminating V1 with high light in-

tensities (Figure 1E; Friedman test, c2[3] = 0.20, p = 0.98),

demonstrating that only visual processing was affected by this

optogenetic manipulation.

Response Dynamics Underlying Increase in Neuronal
Selectivity during Learning
Having established the necessity of V1 for this visual discrimina-

tion task (see also Glickfeld et al., 2013), we examined how the

activity of neuronal populations in V1 changed during learning.

For this purpose, we expressed the calcium indicator GCaMP6

(Chen et al., 2013) in V1 using AAV vectors, and chronically

recorded calcium signals (32 Hz frame rate) in L2/3 using two-

photon microscopy (Denk et al., 1990) while the animals per-

formed the task (Figures 2A and 2B; on average 199 trials per

session, range 31–342 trials). We imaged the same populations

of neurons (75 ± 27 cells per mouse; mean ± SD) either in each

training session over the entire time course of learning (five

mice, Figure 1D), before and after learning (three mice), or only

after learning (three mice). Neurons exhibited diverse response

profiles during the task (Figures 2A, 2B, and S2). While some

neurons responded to features in the approach corridor (Fig-

ure 2A, cell 1; Figure S7), many cells responded to both the

vertical and angled grating corridors, and their responses were

often stronger to one grating than the other (Figures 2B and

S2). In other neurons, the calcium signal decreased during

grating presentation (Figure 2B, cell 8; Figure S2). Despite vari-

ability in response amplitudes and in the degree of response

selectivity from session to session (see below and Figures 2E–

2G), the majority of neurons maintained their response profiles

over time (Figures 2B, S3A, and S3B).

To quantify how the preference and selectivity of individual

neurons for the two grating corridors changed during learning,

we derived an index of neuronal selectivity for each neuron in

each training session (defined as the difference between the

average responses to vertical and angled gratings in a time win-

dow 0–1 s after grating onset, normalized by the pooled standard

deviation of responses across trials). By binning sessions with

similar behavioral performance (Figure 2C), we observed a

gradual broadening of the distribution of neuronal selectivity

over learning, resulting in both more positive values (higher pref-

erence for the rewarded, vertical grating) and more negative

values (higher preference for the non-rewarded, angled grating).

Consequently, the fraction of selective neurons rose significantly
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over learning (Figure 2D), including an increase in the percentage

of cells preferring the non-rewarded grating corridor (12% to

19%, p = 0.02, bootstrap test), and a larger increase in the per-

centage of cells preferring the rewarded grating corridor (12% to

32%, p < 10�4, Figure 2D; see Figure S4 for individual mice). Re-

stricting the analysis only to neurons with a significant response

increase after grating corridor onset (p < 0.01, Wilcoxon signed-

rank test) yielded similar results (Figure S5).

The increase in neuronal selectivity was caused by an increase

in reliability of responses (mean standard deviation of responses

within 0–1 s window from grating onset, pre learning = 0.088,

post learning = 0.063, p = 0.001, bootstrap test, 27 sessions

before and 52 after learning), as well as an increased difference

in response amplitude to the two gratings with learning (mean

absolute response difference; pre learning = 0.017, post learn-

ing = 0.024, p = 0.016, bootstrap test). However, there was no

consistent strategy by which individual neurons changed their

response amplitudes to the two gratings (Figure S3C).

We next determined whether the increase in selectivity for

grating stimuli was restricted to neurons with specific response

properties. Neurons preferentially responding to either grating

before learning were no more likely to increase their selectivity

during learning than non-selective neurons (R = �0.06, p =

0.20; Figure S3E). Moreover, individual cells showed relatively

large variability in how they changed their selectivity over

learning (Figures S3D and S3F). The increase in selectivity, there-

fore, involved diverse modes of response change distributed

over many neurons across the L2/3 population in V1.

Neuronal responses can show considerable variability from

one day to the next (Huber et al., 2012; Peters et al., 2014; Ziv

et al., 2013). We quantified day-to-day fluctuations of stimulus

preferences of individual cells and how they changed during

learning (Figures 2E–2G). We computed the likelihood of

neurons maintaining their grating selectivity from one day to

the next (persistence of response preference, Figure 2F) within

different stages of learning: before animals showed improve-

ments in their behavioral performance (pre learning), during

learning, and after the behavioral performance had stabilized

(post learning; see Experimental Procedures). While neurons

were relatively more likely to lose their selectivity from one

day to the next before learning, it was rare for neurons to

completely switch from preferring one grating to the other (on

average 3% before learning). Over learning, the persistence of

selective responses increased, and cells preferring either the re-

warded or the non-rewarded stimulus became more stable in

their stimulus preference (Figure 2F; rewarded-grating-prefer-

ring cells, pre = 49% to post = 70%, p < 10�3; non-rewarded-

grating-preferring cells, pre = 17% to post = 55%, p < 10�4,

bootstrap tests). We additionally determined the probability of

non-selective neurons becoming selective from one day to the

next (Figure 2G). As learning progressed, non-selective neurons

became more likely to acquire a preference for the rewarded,

vertical grating, but not for the non-rewarded, angled grating

(Figure 2G, rewarded-stimulus-preferring cells, p < 10�4; non-

rewarded-stimulus-preferring cells, p = 0.29, bootstrap tests).

Therefore, the increasing preference for task-relevant stimuli

in L2/3 of V1 during learning was a result of a stabilization of

response selectivity to both gratings as well as an increased



A B

C D

E F G

Figure 2. Chronic Two-Photon Imaging of

Single Cells across Learning

(A) Example calcium traces of four V1 neurons

during the task in an expert mouse, aligned to

running speed (gray trace on top), licking (black

lines), and reward delivery (red lines). Blue and red

shading indicate time spent in the vertical and

angled grating corridor, respectively.

(B) Average responses and corresponding images

of four additional example cells in four training

sessions aligned to grating onset (dashed vertical

line). Values above each trace on day 6 denote

neuronal selectivity for grating corridors, computed

from responses 0–1 s after grating onset (see

Experimental Procedures).

(C) Histograms of neuronal selectivity (positive

values: cells prefer vertical, rewarded gratings;

negative values: cells prefer angled, non-rewarded

gratings) for different behavioral discrimination

performance levels. Colors denote bins of behav-

ioral d-prime from chance performance (blue) to

expert performance (orange).

(D) Proportions of neurons significantly preferring

the vertical or the angled grating or those without

preference, before (sessions with behavioral

d-prime<1) and after learning (behavioral d-prime>

2); session mean ± SEM computed from responses

0–1 s after grating onset.

(E) Grating selectivity of the same neurons (rows)

across sessions (columns) in the first three and last

three sessions; cells were ordered based on the

selectivity averaged across the middle four ses-

sions; n = 8 mice.

(F) Persistence of response selectivity across con-

secutive training sessions during different stages of

learning. Values are the probability of a neuronwith a

grating preference on one day to maintain this pref-

erence on the next day within each learning stage

(response 0–1 s after grating onset; vertical grating,

Npre = 51, Ndur = 121, Npst = 279; angled grating,

Npre=90,Ndur=95,Npst=200cells).Errorbarsdepict

SEM (determined by bootstrapping with replace-

ment). Pre learning, behavioral d-prime (d0) of both
sessions < 1, andDd0 < 0.5 (14 session pairs); during

learning: d0 first session < 2, d0 second session > 0.5,

Dd0 > 0.5 (14 session pairs); after learning: d0 both
sessions > 2, absolute Dd0 < 0.5 (19 session pairs).

(G) The fraction of non-selective cells becoming

selective for task-relevant stimuli across consecu-

tive training sessions during different stages of

learning (as in F). Values are the probability cells

non-selective on one day (Npre = 549, Ndur = 417,

Npst = 422) to develop a preference for one of the

twogratings thenextdaywithineach learningstage.

n = 11 mice for all panels, except where indicated.

See also Figures S2–S5.
conversion of unselective neurons into those more selective for

the rewarded grating.

Progressive Increase of Population-wide Stimulus
Discriminability in V1 with Learning
We next determined how these learning-related changes in

single-neuron selectivity influenced the ability of neuronal popu-

lations to discriminate the grating stimuli. As a composite mea-
sure of selectivity in a population with both positive and negative

selectivity indices, we computed the root-mean-square of

grating selectivity of all neurons imaged simultaneously (popula-

tion selectivity) over the time course of stimulus presentation

(200 ms sliding window; see Experimental Procedures) for

different training sessions, grouped by behavioral performance

(Figure 3A). Neuronal population selectivity increased progres-

sively with improving behavioral performance (pre learning =
Neuron 86, 1478–1490, June 17, 2015 ª2015 The Authors 1481
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Figure 3. Learning Increases Neuronal Stimulus Selectivity in Populations of V1 Cells
(A) Time course of neuronal population selectivity (see Experimental Procedures) aligned to grating onset (dashed line; 200 ms sliding time window) for different

behavioral performance levels as in Figure 2C. Shading indicates SEM.

(B) Time course of classification accuracy of a linear decoder (probability of correctly identifying vertical versus angled grating corridor trials), based on cumulative

neuronal activity of simultaneously imaged cells from grating onset for different behavioral performance levels. Shading indicates SEM.

(C) Relationship between population selectivity (average value 0–1 s after grating onset) and behavioral performance for individual sessions. Shades of gray

indicate individual mice. n = 11 mice for all panels. See also Figures S6 and S7.
0.26, post learning = 0.46, p < 10�4, bootstrap test, comparison

within 0–1 s window post grating onset), and rose sharply after

grating onset only in well-trained mice.

Additionally, we trained a linear decoder to predict which stim-

ulus the mouse had encountered in each trial (vertical versus

angled grating corridor) from calcium responses of all cells

imaged simultaneously (see Experimental Procedures). The abil-

ity of the decoder to classify trials correctly increased strongly

with improved behavioral performance during learning, such

that classification accuracy exceeded 90% in expert mice (Fig-

ure 3B). Therefore, as mice got better at discriminating the two

gratings, population-level representations of these task-relevant

stimuli became increasingly distinguishable. In individual ani-

mals, neuronal population selectivity closely tracked the ses-

sion-by-session changes in behavioral performance (Figure S6);

there was a high positive correlation between the average pop-

ulation selectivity (0–1 s post grating onset) and the behavioral

d-prime for individual sessions (Figure 3C; R = 0.64, p < 10�9,

n = 78 sessions).

These results suggest that the increased selectivity of V1

neurons during training is a specific effect of learning the discrim-

ination task. Indeed, neither response amplitude nor response

selectivity for stimulus features in the approach corridor increased

during learning (p = 0.38, pre- versus post learning, Wilcoxon

signed-rank test), even though those featuresdidevoke reliable re-

sponses in subsets of cells (Figure S7). Therefore, learning-related

changes inV1activitywere specific to task-relevant grating stimuli

and were not a consequence of repeated exposure to the same

visual environment over multiple sessions (Frenkel et al., 2006).

Task Dependence of Learning-Induced Increases in
Neuronal Selectivity
To what extent did these learning-related changes in V1 repre-

sentations depend on the animals being engaged in the task? To
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address this question, we trained expert mice to switch be-

tween blocks of the visual discrimination task and an analogous

olfactory discrimination task. Mice learned to lick to obtain a

reward in response to one of two different odors while running

through the virtual corridor where they occasionally encoun-

tered the grating stimuli used in the visual discrimination task

(see Experimental Procedures). Mice learned to switch rapidly

between the two tasks within the same session, such that

they successfully discriminated the grating stimuli in the visual

task but ignored the same grating stimuli (while successfully

discriminating odors) during the intervening olfactory blocks

(Figure 4A; see Experimental Procedures, Movie S1, and Fig-

ures S8A–S8F). Although the average response amplitudes to

the grating stimuli did not change in the olfactory blocks (Fig-

ure S9; p > 0.32), most neurons became less selective (Fig-

ure 4B), as the fractions of neurons preferring both the rewarded

and non-rewarded stimuli decreased (Figure 4C; all p values <

10�4, bootstrap test). Consequently, population selectivity for

the same grating stimuli decreased significantly in the olfactory

blocks compared to the visual blocks (Figure 4D, p = 0.014,

bootstrap test), but remained above the pre learning level (p =

10�4). Moreover, when the same visual stimuli were played

back to fully trained but anesthetized mice, the selectivity of

V1 populations was further reduced compared to the olfactory

blocks (p = 0.002) but still higher than before learning (Figure 4D,

p = 0.04). These results indicate that there may be two causes

underlying the learning-related increase in stimulus selectivity

in V1: a more lasting, task-independent change in the visual cir-

cuits, and a task-dependent modulation that depended on the

animals being engaged in visual discrimination. The fact that

the selectivity of most neurons increased during visual discrim-

ination (Figure 4B) suggests that the task-dependent signals

mediating these effects have a widespread influence on

neuronal populations in V1.
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Figure 4. Learning-Related Increase in

Neuronal Selectivity Is Partly Task-

Dependent

(A) Visual discrimination performance (behavioral

d-prime) in interleaved blocks of the visual

discrimination task and an analogous olfactory

discrimination task in which the same grating

stimuli were shown but ignored by the animals

(black circles and lines; shades of gray indicate

individual mice). Odor discrimination performance

in the olfactory blocks is additionally shown (green

circles). n = 4 mice.

(B) Selectivity for grating stimuli of individual neu-

rons during the visual and the olfactory task. The

majority of neurons reduce their selectivity for the

samegrating stimuli duringolfactorydiscrimination.

(C) Proportions of neurons significantly preferring

the vertical or the angled grating, or those without

preference in the visual and the olfactory task

(n = 11 sessions).

(D) Time course of visual stimulus population

selectivity aligned to grating corridor onset

(dashed line) in the visual task (red, gratings rele-

vant), in the olfactory task (black, gratings irrele-

vant), when the same stimuli are presented during

anesthesia (gray, n = 11 mice), and before learning

(blue, n = 8mice). Error bars and shading are SEM.

See also Figures S8 and S9.
Changes in Motor Behavior with Training Cannot
Account for the Increase in Neuronal Selectivity
Several possible causes may underlie the task-dependent

changes of stimulus selectivity in V1 during learning. Responses

to task-relevant stimuli could be specifically modified to give rise

to more distinguishable representations at the population level,

thus allowing for easier perceptual discrimination. In addition,

changes in V1 activity could also reflect signals associated

with the behavioral outcome of the task, including signals related

to the animals’ motor behavior, which are known tomodulate the

activity of V1 neurons (Niell and Stryker, 2010; Keller et al., 2012;

Saleem et al., 2013). Neither the average running speed nor

running speed variability at grating onset changed systematically

over the course of training (median speed = 45.3 cm/s before,

43.4 cm/s after learning, p = 0.46;median SD= 12.2 cm/s before,

13.9 cm/s after learning, p = 0.84, Wilcoxon signed-rank test).

However, the running profile after the animals had identified

the grating did change with training: mice slowed down in

response to the rewarded grating and increasingly accelerated

when detecting the non-rewarded grating during learning (see

Figures 1C and S10 for more examples from different mice).

To determine whether these changes in running behavior or an

associated change in optic flow speed could explain the

learning-related increase of stimulus discriminability in V1, we car-

ried out several independent controls. First, we trained a separate

set of animals inamodifiedversionof the task inwhichexpertmice

encountered grating corridors whose optic flow was uncoupled

from running speed for 1 s and exactly matched to pre learning
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optic flow speed profiles (Figures S11A

andS11B; seeSupplemental Experimental

Procedures). In separate experiments,
gratings were presented at a fixed speed profile during the visual

and olfactory discrimination task (Figures S11C–S11G). Note

that in these tasks, gratings were always preceded by a gray

corridor toensurealso that thevisual inputpreceding the task-rele-

vant stimuli was uniform across conditions. Thus, when the speed

profiles of task-relevant visual stimuli were identical in all condi-

tions, we again found that V1 neurons increased their grating

selectivity over the course of learning, as well as when the animals

engaged in thevisualcompared to theolfactorydiscrimination task

(Figures S11B, and S11F and S11G, respectively).

Second,we tested if locomotion-related responsemodulation in

V1 influenced the learning-related changes in neuronal selectivity.

Wedid not observe any speed-relateddifferences in neuronal pop-

ulation selectivity computed from trials with matched running

speed profiles in all conditions (Figures 5A and 5B). Specifically,

V1 neurons showed increased selectivity after learning indepen-

dent of running speed (Figure 5A; population selectivity within 0–

0.5 s from grating onset, pre- versus post learning, slow: p =

0.02; fast: p = 0.01, bootstrap test). Moreover, while some neurons

showed a correlation between their calcium signal and running

speed, as expected from previous studies (Niell and Stryker,

2010; Keller et al., 2012; Saleemet al., 2013), there was no positive

relationshipbetweenhowstronglycellsweremodulatedbyrunning

and/or optic flow speed and their change in grating selectivity over

learning (Figures S12A and S12D; see Experimental Procedures).

Indeed, the exclusion of neurons whose responses were modu-

lated by running did not alter the increase in V1 population selec-

tivity over learning (Figures S12B and S12C, and S12E and S12F).
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Figure 5. Neuronal Changes during Learning Cannot

Be Explained by Changes in Running Behavior

(A) Population selectivity for different running speeds (thick

traces, fast running trials; thin traces, slow running trials)

matched across sessions before (behavioral d-prime < 1, gray

traces) and after learning (behavioral d-prime > 2, black

traces). Data are from 27 sessions pre learning and 52 ses-

sions post learning. See also Figures S10–S13.

(B) Average running speeds corresponding to conditions in (A).

Solid lines indicate vertical grating trials and dashed lines

angled grating trials. There was no difference in running

speeds within the same speed bin across stimuli, nor before/

after learning (all comparisons p > 0.08).

(C) Time course of decoding performance from grating

onset (probability of correct classification of grating corridor

type, vertical versus angled). Decoder was based either

on cumulative neuronal activity (solid lines) or cumulative

running speed (dashed lines) for different behavioral

discrimination performance levels during learning. n = 11

mice for (A)–(C).

(D) Decoding performance as in (C), before learning (behav-

ioral d-prime < 1, gray lines, 23 sessions, 11 mice), and after

learning (behavioral d-prime > 2) for sessions with delayed

divergence of running behavior in vertical and angled grating

trials (see Experimental Procedures; purple, 8 sessions, 7

mice), and sessions with matched behavioral d-prime but

early divergence of running behavior (black lines, 8 sessions, 6

mice). In all panels, 0 s = grating corridor onset.
Third,while therewas somemodulation of V1 activity by signals

related to the animals’ licking, excluding neurons modulated by

licking did not change the learning effect (Figures S12G–S12L).

Fourth, we found that any signals related to eye position, eye

movements, and pupil size could not account for the increased

neuronal selectivity after learning (see Supplemental Information

and Figures S13A–S13F). Furthermore, we conducted similar an-

alyses to control for any differences in motor behavior during the

visual and olfactory discrimination task (Figures S8G–S8J and

S13G–S13J), and found that variations in locomotion, licking,

eye movements, or pupil size could not explain the task-depen-

dent improvements of neuronal selectivity in V1.

Finally,we trained the lineardecoder introducedaboveoneither

the population activity of V1 neurons or the running speed of the

mouse to predict trial type (vertical versus angled grating corridor;

see Experimental Procedures; Figure 5C). Due to the systematic

divergence of running speed after mice had entered the grating

corridors (see above), the ability of the decoder to classify trials

correctlybasedon runningspeedstrongly improvedover learning.

However, the decoder trained on V1 activity allowed for earlier

classification of the stimulus than the decoder trained on running

speed (Figure 5C, top behavioral d-prime bin V1 activity versus

running speed at 150 ms, p < 10�4, bootstrap test). Indeed, even

the short-latency V1 activity before running speed divergence

(typical divergence > 220 ms after stimulus onset) allowed for a

significant improvement in grating classification during learning

(bottom versus top behavioral d-prime bin at 220 ms, p = 0.001,

bootstrap test). Importantly, in post learning sessions (behavioral

d-prime > 2), during which mice showed a delayed divergence in
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their running speeds in response to the rewarded and non-re-

wardedgratings (runningdivergence>400msafter gratingonset),

neuronal activity allowed for an equally early and accurate classi-

fication of the grating stimuli compared to sessions with matched

behavioral d-prime but with earlier running speed divergence

(neuronal decoding performance early versus late running diver-

gence: p > 0.1 for all time bins 0 – 0.5 s from grating onset; Fig-

ure 5D). Therefore, learning led to improvements in the ability of

V1 populations to discriminate task-relevant stimuli before the an-

imal acted on its decision either to slow down and lick for reward,

or to speed up and suppress licking. Taken together, the increase

of neuronal selectivity in V1 with training cannot be explained by

themodulationofV1activitybyanyof themeasuredmotor param-

eters (running, licking, eye movements, pupil dilation) nor by any

differences in optic flow before and after learning.

The Emergence of Signals Reflecting Behavioral
Outcome during Learning
The information related to the animal’s own action is not the only

non-sensory signal that can influence V1 activity. Other task-

relatedsignals relaying informationabout theattentional state, ex-

pectations, orbehavioral choicehavealsobeenobserved in visual

cortical areas (Moran and Desimone, 1985; Britten et al., 1996;

Shuler and Bear, 2006; St�anisxor et al., 2013; Nienborg and Cum-

ming, 2014). To identify such signals in V1 activity, we compared

responses to the non-rewarded, angled grating during correct

rejection trials (CR, mouse withheld licking and accelerated) and

false-alarm trials (FA, mouse incorrectly licked and slowed

down). Because the visual stimulus identity during CR and FA
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Figure 6. Emergence of Signals Related to Behavioral Trial Outcome during Learning

(A) Average running speed profile in different trial types: hit, correct rejection (CR) and false alarm (FA) (17 sessions). Dashed line indicates grating corridor onset.

(B) Average grating responses of four example cells classified as behaviorally-modulated (cells 3 and 4; responses are different in FA and CR trials) and

behaviorally not modulated (cells 1 and 2; responses are similar in FA and CR trials).

(C) Proportions of neurons not modulated by behavior (only neurons with similar responses in FA and CR trials) which significantly preferred the vertical or the

angled grating and without preference, before (behavioral d-prime < 1) and after learning (behavioral d-prime > 2); sessionmean ± SEM, 0–1 s after grating onset.

(D) Time course of decoding performance, i.e., the probability of correct classification of CR and FA trials based on cumulative neuronal activity for three different

behavioral discrimination performance levels during learning.

(E) Average responses of cells preferring the vertical, rewarded grating (left) or angled, non-rewarded grating (middle) on Hit (blue), CR (red) and False alarm

(black) trials. Right, change in response strength 0–1 s after angled grating onset during FA trials relative to CR trials. n = 11 mice for all panels.
trials was the same but the behavior of the animal was different

(i.e., stopping and licking versus running; see also Figure 6A),

wecould identify neuronswhose responseswere not behaviorally

modulated (no significant response difference between CR and

FA trials despite a strong difference in behavior; Figure 6B) and

those that were (significantly different responses between CR

and FA trials; Figure 6B). When we excluded all behaviorally

modulated cells from the analysis, we still found that the propor-

tion of neurons selective for the rewardedandnon-rewardedgrat-

ings significantly increased over learning (Figure 6C; all p values <

0.04, bootstrap test), similar to the effects for the entire population

(Figure 2D). These results again demonstrate that the improve-

ment in V1 selectivity for both task-relevant stimuli after learning

is not caused by signals related to the change in the animals’

behavior during learning, associated changes in optic flowspeed,

or task-related signals such as reward expectation.

Importantly, however, visually evoked activity of many cells

was modulated by the behavioral response (up to 40% of selec-

tive neurons; Figure 6B). This difference was apparent at the

population level because a decoder trained on predicting the

behavioral choice in response to the non-rewarded grating (CR

versus FA trials) from neuronal activity of all cells performed

above chance and improved with learning (Figure 6D; highest

versus lowest behavioral d-prime, p = 0.01, bootstrap test). Inter-
estingly, on average, neurons preferentially responding to the

rewarded grating showed significantly different responses be-

tween CR and FA trials, while neurons preferring the non-re-

warded grating did not (Figure 6E; rewarded-stimulus-preferring

cells, p < 10�4, n = 336; non-rewarded-stimulus-preferring cells,

p = 0.31, n = 194, Wilcoxon rank-sum test). Therefore, signals

related to the behavioral outcome developed over learning and

mainly influenced a specific subgroup of neurons preferring the

rewarded stimulus.

The Emergence of Anticipatory Signals during Learning
Analysis of neuronal activity just before the onset of the grating

corridors revealed another task-dependent signal that devel-

oped during training, presumably related to the animals’ antici-

pation. While mice started each new trial at a different, random

position in the approach corridor, the abrupt onset of the grating

corridors was always preceded by the same pattern of black and

white circles on the corridor walls (see Figure S7A). Some neu-

rons increased their activity just before grating onset with

learning (Figure 7A), suggesting that they had developed antici-

patory signals (Jaramillo and Zador, 2011; Totah et al., 2013),

which might reflect the animals’ ability to eventually predict

and anticipate the time point of appearance (but not the identity)

of the grating corridors from the preceding corridor wall pattern.
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Figure 7. Emergence of Anticipatory Signals

during Learning

(A) Increase in ramping activity prior to grating

corridor onset (dashed line) in an example cell over

the course of learning.

(B) Average population responses to the vertical

(blue) and angled grating (red) for vertical- (top) and

angled-preferring (bottom) cells in the first training

session (pre learning), in the first session after

learning (post learning, behavioral d-prime > 2), and

during anesthesia post learning.

(C) Relative increase in pre-stimulus activity within

the second preceding grating onset (see Experi-

mental Procedures) for vertical and angled grating-

preferring cells in the first training session, the first

session post learning, and when virtual reality stimuli

were played back to trained animals during anes-

thesia. p values from bootstrap test; error bars and

shading are SEM. n = 11 mice.
Importantly, only the neurons preferring the rewarded stimulus,

and not the neurons preferring the non-rewarded stimulus,

developed this pre-stimulus activity increase during learning

(Figures 7B and 7C, pre- versus post learning, rewarded-stim-

ulus-preferring cells: p = 0.001; non-rewarded-stimulus-prefer-

ring cells: p = 0.14, bootstrap test). The existence of these

specific, putative anticipation signals was supported by a signif-

icant decrease in pre-stimulus activity during anesthesia after

learning only in cells preferring the rewarded grating (Figure 7C,

rewarded-stimulus-preferring cells: p < 10�4; non-rewarded-

stimulus-preferring cells: p = 0.06, trend in the opposite direc-

tion, bootstrap test). Taken together, non-sensory signals, both

before and after appearance of the task-relevant stimuli, seem

to influence primarily a specific ensemble of cells that preferen-

tially responded to the stimulus that predicts the reward.

DISCUSSION

We show that learning leads to concerted changes in how L2/3

neurons in V1 process visual and non-visual signals related to

the behavioral task. By tracking individual neurons during

learning, we observed a net recruitment and stabilization of neu-

rons selective for task-relevant stimuli, resulting in improved

stimulus discriminability at the population level, which closely

correlatedwith the behavioral performance of the animals. These

learning-induced enhancements of stimulus representation in V1

diminished substantially when animals did not engage in the

visual discrimination task, suggesting that putative top-down

signals contribute to increased population-level discriminability.

In parallel, we observed the emergence of additional task-

dependent signals in a specific subpopulation of cells—neurons

preferentially responding to the rewarded stimulus developed

anticipatory responses prior to the appearance of task-relevant

stimuli and additional activity related to the animal’s behavioral

choice after stimulus onset.

Learning-Related Changes in Mouse V1
We developed a visually guided task in which head-fixed mice

learned to discriminate two grating patterns in a virtual reality

environment in which the animals’ running controlled their posi-
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tion in a corridor (Hölscher et al., 2005; Dombeck et al., 2007).

Most mice learned to perform this task with high behavioral ac-

curacy within 1 week (behavioral d-prime > 3, corresponding

to accuracy levels of > 90%). We speculate that task acquisition

was facilitated by the fact that mice had active control over their

visual environment (locomotion coupled to visual feedback), re-

sulting in a more naturalistic visual experience (Gibson, 1979)

that seemed to promote engagement in the task. We showed

that task performance was dependent on visual cortex activity

and, importantly, that responses of V1 neurons to task-relevant

stimuli became progressively more distinguishable, leading to

more selective task-relevant information in V1 circuits.

The closed-loop nature of behavioral tasks in virtual reality

makes it necessary to separate sensory and motor influences

on neuronal responses. Specifically, it was important to control

for the changes in running speed and the resultant changes

in the optic flow speed over the course of training in relation

to the observed changes in V1 activity. The learning-related

increase in neuronal selectivity did not decrease (1) when

comparing responses only in running speed-matched conditions

before and after learning, (2) when comparing responses to

identical optic flow before and after learning, (3) when excluding

neurons from the analysis whose responses were modulated

by running and visual flow speed, and (4) when only including

neurons with similar responses to the same grating in FA and

CR trials even though the animals’ behavior (running speed

and licking) and the optic flow differed. Moreover, learning-

induced increase in V1 selectivity did not diminish when control-

ling for licking, eye position, eye movements, and pupil size.

Therefore, the improvement in V1 stimulus discriminability during

training could not be accounted for by any changes in the ani-

mals’ motor behavior we could measure or by associated

changes in visual input.

Finally, even though somatic GCaMP6 signals the occurrence

of spiking with a slight delay (time to peak for one action potential

>�40 ms; Chen et al., 2013), we found improved discrimina-

bility of task-relevant stimuli in V1 within approximately 200 ms

after stimulus onset, which preceded the animal’s behavioral

response and changes in locomotion. This suggests that

learning may increase the salience of information relayed to



downstream areas to better inform behavioral decisions. Impor-

tantly, these results are comparable with those of a recent study

of learning-related changes in V1 of macaque monkeys using

multiunit recordings (Yan et al., 2014), suggesting that learning

exerts similar effects on a primary sensory cortex in rodents

and primates.

Selectivity Changes in Individual Neurons during
Learning
Tracking the activity of the same identified cells throughout

learning allowed us to investigate which changes in single cells

underlie population-wide improvements in stimulus selectivity.

Previous studies in visual cortex have shown differences in orien-

tation tuning at or close to task-relevant grating orientations

in animals trained in visually guided tasks compared to control

conditions (Schoups et al., 2001; Yang andMaunsell, 2004; Golt-

stein et al., 2013). These results suggest that increases in popu-

lation selectivity might have been mainly due to an increase in

response selectivity of neurons that already had shown some

orientation tuning before learning. However, we did not find

that learning-related changes are especially pronounced in or

even restricted to neurons with particular visual response prop-

erties. Specifically, neurons already selectively responding to

one of the two task-relevant grating stimuli before learning

were not more likely to increase their selectivity than non-selec-

tive neurons during learning.

One change in single cell responses that led to increased

stimulus discriminability at the population level was a

learning-induced decrease in day-to-day fluctuations of selec-

tivity for task-relevant stimuli in individual neurons, akin to

response stabilization observed in the motor cortex (Huber

et al., 2012; Peters et al., 2014). Neurons preferring either the

rewarded or the non-rewarded stimulus became more likely

to maintain their response selectivity across consecutive

training sessions. In parallel, we found an increased recruitment

of previously non-selective neurons to become selective for the

rewarded grating stimulus during training, which may explain

the larger proportion of neurons selective for this stimulus in

expert mice.

Task Engagement Enhances Neural Selectivity in V1
We successfully trained mice to switch between a visual and an

olfactory discrimination task several times within the same

training session. Mice ignored the grating stimuli during the ol-

factory discrimination task, and this allowed us to test whether

the learning-related enhancement in task-relevant visual stim-

ulus processing was hardwired or task-dependent. Population-

level discriminability for grating stimuli was reduced but not

decreased to pre learning levels when expert animals were not

engaged in the visual discrimination task. Therefore, learning

led to both task-independent and task-dependent enhance-

ments in the processing of relevant stimuli in V1. Task-indepen-

dent changes likely reflect more persistent alterations to visual

circuits, akin to those previously observed outside the task or un-

der anesthesia in visual cortex after learning (Schoups et al.,

2001; Yang and Maunsell, 2004; Goltstein et al., 2013). The exis-

tence of task-dependent changes, however, suggests that non-

sensory signals directly contribute to the enhanced processing
of behaviorally relevant stimuli (Li et al., 2004, 2008; Polley

et al., 2006). Such modulatory signals, which depend on the

animals’ behavioral context, could be relayed by excitatory

projections of cortical or subcortical origin (Krauzlis et al.,

2013;McAlonan et al., 2008; Zhang et al., 2014), ormay addition-

ally involve cholinergic input from the basal forebrain (Pinto et al.,

2013). Importantly, we found that these signals seem to increase

the selectivity of most neurons encoding both the rewarded and

non-rewarded stimuli when animals actively engaged in visual

discrimination.

Emergence of Task-Specific Anticipatory and
Behavioral-Choice-Related Signals in V1
Coinciding with the changes in the representations of task-

relevant stimuli, we observed the appearance of two additional

types of task-dependent signals during learning. First, neu-

rons preferring the rewarded stimulus developed anticipatory

responses prior to the appearance of task-relevant stimuli

(Jaramillo and Zador, 2011; Totah et al., 2013). These signals

are unlikely to be visually evoked, as they are not visible in

neurons preferring the vertical grating before learning or under

anesthesia. Instead, they likely arise through the learned asso-

ciation between a specific corridor position and the appear-

ance of a grating stimulus, suggesting that processing in V1

is influenced by stimulus expectation, perhaps to prime activity

in those neurons whose firing best predicts a reward. These

anticipatory signals may thus reflect reward expectation (the re-

warded stimulus will appear with 50% likelihood). For example,

they could be the neural signature of a type of ‘‘wishful

thinking’’ by the animals—stimulus expectation that preferen-

tially evokes the cortical representation of the rewarded and

therefore preferred stimulus.

Over the course of training, some neurons also increasingly

exhibited enhanced responses during error trials in which the

animals incorrectly sought reward in response to angled grat-

ings, suggesting their activity might be related to the animal’s

behavioral choice (Britten et al., 1996; Ress and Heeger,

2003; Nienborg and Cumming, 2014), or reward expectation

as previously observed in V1 (Shuler and Bear, 2006; St�anisxor
et al., 2013). Importantly, both the anticipatory and the behav-

ioral choice-related signals emerged predominantly in neurons

responding preferentially to the rewarded stimulus. We hypoth-

esize that these signals may arise by strengthening of inputs

from areas encoding reward expectation (e.g., orbitofrontal

cortex; Tremblay and Schultz, 1999). Activity-dependent Heb-

bian mechanisms would permit this strengthening to occur

specifically on V1 neurons preferring the rewarded stimulus,

because these are consistently active before and during the

time of reward delivery. With learning, as the animals increas-

ingly develop an expectation of reward (i.e., just before and

during the task-relevant stimulus appearance), neurons prefer-

ring the rewarded stimulus in V1 would be preferentially acti-

vated by projections conveying these putative top-down

signals. This mechanism may act in concert with cholinergic

signaling that has been proposed to explain reward timing-

related plasticity in V1 (Chubykin et al., 2013).

The appearance of non-sensory signals in neuronal ensem-

bles preferring the stimulus associated with a reward contrasts
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with the modulation of sensory stimulus responses when mice

were engaged in the visual discrimination task, which acted

more generally by increasing the selectivity of neurons encod-

ing both the rewarded and the non-rewarded stimuli. Identifying

the sources of these diverse task-dependent signals is an

important next step for clarifying their role in shaping early

sensory processing. The sophisticated genetic tools available

in mice will help elucidate the role of the many cortical and

subcortical areas providing input to V1 during learned behav-

iors, as well as specific inhibitory cell types or different neuro-

modulator systems in the emergence and expression of

learning-related changes.

In summary, as a mouse learns the behavioral significance

of a visual stimulus, the responses of L2/3 neurons in V1

become more selective for task-relevant stimuli, leading to

enhanced stimulus discriminability at the population level. In

parallel, multiple task-dependent signals emerge during

learning and differentially influence the firing of neurons within

the V1 circuit. This demonstrates the remarkable flexibility by

which a primary sensory cortex can tailor its processing to

the requirements of a task and to the behavioral relevance of

sensory stimuli.

EXPERIMENTAL PROCEDURES

Surgical Procedures and Imaging

All experimental procedures were carried out in accordance with the institu-

tional animal welfare guidelines and licensed by the UK Home Office and the

Swiss cantonal veterinary office. A virus expressing GCaMP6f or GCaMP6m

(AAV2/1-hsyn-GCaMP6-WPRE; Chen et al., 2013) was injected in the primary

visual cortex (V1) in the right hemisphere of C57Bl/6J mice (P49–P57). Imaging

and behavioral training started approximately 3 weeks after surgery. We

imaged GCaMP6-labeled neurons in layer 2/3 in 93 training sessions and 12

recording sessions under isoflurane anesthesia in 11 mice with a custom-built

resonant scanning two-photonmicroscope with a frame rate of 32 Hz. Supple-

mental Experimental Procedures contain further details about surgical and

imaging procedures.

Behavioral Tasks

Mice were head-fixed and trained to run on a styrofoam cylinder. A reward

delivery spout was positioned near the snout of the mouse, and licks were

detected using a piezo disc sensor. Mice were then trained in a visual discrim-

ination task in which the running speed on the cylinder was detected with an

optical mouse and used to control the speed at which mice moved through

a virtual environment presented on two screens in front of them. A trial started

when the mouse was positioned at a random starting point in an approach

corridor with walls showing black and white circles on a gray background.

When the mouse reached a specific point in the corridor, it was randomly tele-

ported to one of two grating corridors with either a vertical or an angled grating

on the walls. In the vertical grating corridor, the mouse was rewarded with a

drop of soya milk, for licking the spout after it had entered a ‘‘reward zone,’’

a short distance into the grating corridor. No punishment was given for licking

in the angled grating corridor.

A subset of mice was trained to switch between blocks of an olfactory and

visual discrimination task. In olfactory blocks, mice performed an analogous

olfactory go-no go discrimination task in which they were rewarded for licking

in response to one of two odors. During this task, mice were also presented

with the vertical and angled grating corridor at different positions in the

approach corridor. Mice learnt to ignore these irrelevant grating stimuli while

accurately discriminating the odors. On switching to the visual block, mice

started licking selectively to the rewarded grating as before. See Supplemental

Experimental Procedures for further details about the visual stimulus, behav-

ioral tasks, and training.
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Bilateral Optogenetic Silencing of V1 Activity

Bilateral silencing of V1 was carried out in four transgenic mice (three males,

one female) expressing channelrhodopsin-2 in parvalbumin-expressing inter-

neurons (Hippenmeyer et al., 2005; Madisen et al., 2012). Additionally, three

male wild-type C57Bl/6J mice underwent identical surgical and experimental

procedures. Mice were implanted with two cranial windows over both visual

cortices. Intrinsic imaging was used to determine the extent of V1, and all

regions excluding V1were coveredwith black paint. In expert mice (>90%per-

formance levels), V1 was silenced by illuminating both cranial windows with

470 nm light at one of four intensities shortly before and during the grating

corridor. In 30% of trials no light stimulation was applied. The same mice

were also trained on an olfactory discrimination task as described above (but

without grating stimuli). V1was silenced shortly before and during presentation

of the odors. For further details, see Supplemental Experimental Procedures.

Data Analysis

Image stacks were corrected for motion, and regions of interest (ROIs) were

selected for each cell in each session. Raw fluorescence time series F(t)

were obtained for each cell by averaging across pixels within each ROI. Base-

line fluorescence F0(t) was computed by smoothing F(t) (causal moving

average of 0.75 s) and determining for each time point the minimum value in

the preceding 60 s time window. The change in fluorescence relative to base-

line, DF/F, was computed by taking the difference between F and F0, and

dividing by F0.

To analyze responses to the vertical and angled grating corridors, neuronal

activity was aligned to the onset of the grating corridor for each trial. A Wil-

coxon rank-sum test was used to determine if responses—the average DF/F

in a time window of 1 s after grating onset—in the two conditions were signif-

icantly different (p < 0.05), and the sign of the difference determined the

response preference. The persistence of stimulus preference (Figure 2F) was

defined as the probability that a cell that significantly preferred one of the

two gratings on one day also preferred the same grating on the next day.

Recruitment of non-selective cells (Figure 2G) was defined as the probability

that a cell with no stimulus preference on one day became selective to one

of the two gratings on the next day. We computed these measures for three

stages of learning, based on the behavioral d-prime (bDP) of two consecutive

sessions: before learning (bDP of both sessions < 1, and DbDP < 0.5, Nses-

sion = 14), during learning (bDP of first session < 2, bDP second session >

0.5, and DbDP > 0.5, Nsession = 14), and after learning (both bDP > 2 and ab-

solute change in bDP < 0.5, Nsession = 19). Varying the criteria to define

different stages of learning led to similar results (data not shown).

To quantify the selectivity of neural responses we computed a response

selectivity index (SI) for individual cells from the difference between the

mean response in the first second after grating onset to the vertical and angled

grating corridor, divided by the pooled standard deviation of the responses

SI=
�
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and ni is the number of trials in condition i for k conditions. Therefore, positive

values indicate a preference for the vertical grating corridor and negative

values a preference for the angled grating corridor. Please note that in the

manuscript text the term selectivity substitutes for SI. To obtain a combined

measure of grating discriminability for simultaneously imaged populations of

neurons, population selectivity was computed by taking the average of the

squared selectivity index across cells and taking the square root:
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A bootstrap test (Efron, 1979) was used to test for significant differences

between conditions that contained both dependent and independent data

points. To test whether changes in the proportion of cells preferring the vertical

or angled grating, or without preference across two conditions (typically before

and after learning), were significant, we first computed for each session the



proportions of cells in each category. Next, we randomly picked the same

number of sessions (the minimum across conditions) from both conditions,

and repeated this 10,000 times. We then computed in both conditions the

average cell proportion across sessions, andwe also computed the proportion

after randomly assigning sessions to one of the two conditions. The p value

was given by the number of bootstraps in which the proportion change in

the actual data was greater than the proportion change with randomly as-

signed condition labels. Similarly, bootstrapping was also used to assign sig-

nificance to the differences in population selectivity, decoding performance,

and pre-stimulus activity increase, by comparing the difference in the original

data to the difference with randomly assigned condition labels.

To control for the effect of running speed and optic flow on neural re-

sponses and selectivity across learning, grating responses were compared

specifically in trials that were matched for running speed across sessions

and stimulus conditions (Figures 5A and 5B). First, the average running

speed was determined in sliding 200 ms time windows from –0.5 to +0.5 s

around the onset of the grating corridor (50 ms step size). Then responses

in each time window of each trial were assigned to one of three groups,

depending on running speed (three bins divided equally from the 2.5%

percentile to the 97.5% percentile of the average running speed, across all

sessions). Data for each time window were only included if it contained at

least ten trials of both grating conditions. In the highest speed bin, not

enough matched data were available across learning, thus restricting the an-

alyses to the lowest speed bin (referred to as ‘‘slow’’) and the intermediate

speed bin (‘‘fast’’).

To quantify the accuracy with which two conditions (either trials with vertical

and angled grating corridors (Figures 3B, 5C, and 5D) or FA and CR trials (Fig-

ure 6D) could be classified at time t relative to grating onset, a cumulative

decoder was employed. From training data (30 trials of both conditions), the

decoder constructed for each neuron n a model of the response using as pa-

rameters the mean response to the vertical (mV
n (t)) and angled grating corridor

(mA
n (t)) and the variance of the noise sn tomaximize the observed log-likelihood

of the data under a Gaussian noise model. On test trials (the remaining trials

that were not used as training data), the log-likelihood at time t that trial k be-

longs to conditionC (whereCwas for instance the vertical (V) or angled grating

corridor (A) condition) is proportional to

LCðtÞ= �
XNcell

n

XTstart

0

�
Dn;kðt � TstartÞ � mV

n ðt � TstartÞ
�2.�

2s2
n

�
;

where D indicates deconvolved DF/F (see Supplemental Experimental Pro-

cedures). If LV > LA, the trial was assigned to the vertical condition, otherwise

to the angled grating condition. To obtain at each time point t the cumulative

likelihood LC, the summation only included time points starting from Tstart,

which was the time of the grating onset, up until time t. Note that without

the temporal accumulation of log-likelihood, the decoder would be equiva-

lent to a linear discriminant analysis. To determine the time point at which

there was a detectable divergence of running speed between vertical and

angled grating trials, we performed a Wilcoxon rank-sum test on the average

speed in nonoverlapping, consecutive 50 ms windows. The time of diver-

gence was defined as the center of the first window with p < 0.01 followed

by p < 0.01 in at least four consecutive windows. For Figure 5D, we defined

post learning sessions with delayed divergence as sessions with behavioral

d-prime > 2 and time of running speed divergence greater than 400 ms (n = 8

sessions in n = 7 mice, average d-prime 2.59). We paired each of these ses-

sions to a unique session with the smallest difference in behavioral d-prime,

but with time of divergence < 400 ms (n = 8 sessions in n = 6 mice, average

d-prime 2.61).

To analyze responses during FA and CR trials, only sessions with at least 15

FA trials were included in the analysis (Figure 6). These were predominantly

sessions at intermediate learning stages, as most expert mice made very

few mistakes by the end of training (see Figure S1). Behaviorally modulated

cells were defined as cells with significantly different activity for FA and CR tri-

als in the first second after grating corridor onset (p < 0.05, Wilcoxon rank-sum

tests). To obtain average responses for cells preferring the vertical or the

angled grating corridor (Figure 6E), neurons were classified as vertical (or

angled) preferring if they significantly preferred the vertical (or the angled)

grating corridor in at least one session and never switched preference, and re-
sponses of such cells were averaged across the sessions in which they

showed a significant preference.

The relative response increase before grating onset (Figure 7C) was calcu-

lated for each cell as the difference in the average DF/F signal between two

time windows, �0.25 s to 0 s and �1 s to �0.75 s, divided by the average

DF/F signal in the�1 to�0.75 s window, where t = 0 s is time of grating onset.

To compare pre-stimulus responses before and after learning, responses were

averaged on the first day of training and the first day post learning (behavioral

d-prime > 2) for each cell. Neurons were classified as vertical (or angled)

preferring if they significantly preferred the vertical (or the angled) grating

corridor (p < 0.05, Wilcoxon rank-sum test).
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Li, W., Piëch, V., and Gilbert, C.D. (2004). Perceptual learning and top-down

influences in primary visual cortex. Nat. Neurosci. 7, 651–657.
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