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Cross-orientation suppression in visual area V2
Ryan J. Rowekamp1,2 & Tatyana O. Sharpee1,2

Object recognition relies on a series of transformations among which only the first cortical

stage is relatively well understood. Already at the second stage, the visual area V2, the

complexity of the transformation precludes a clear understanding of what specifically this

area computes. Previous work has found multiple types of V2 neurons, with neurons of each

type selective for multi-edge features. Here we analyse responses of V2 neurons to natural

stimuli and find three organizing principles. First, the relevant edges for V2 neurons can

be grouped into quadrature pairs, indicating invariance to local translation. Second, the

excitatory edges have nearby suppressive edges with orthogonal orientations. Third, the

resulting multi-edge patterns are repeated in space to form textures or texture boundaries.

The cross-orientation suppression increases the sparseness of responses to natural images

based on these complex forms of feature selectivity while allowing for multiple scales of

position invariance.

DOI: 10.1038/ncomms15739 OPEN

1 Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA. 2 Department of Physics, University of California
San Diego, La Jolla, California 92093, USA. Correspondence and requests for materials should be addressed to T.O.S. (email: sharpee@salk.edu).

NATURE COMMUNICATIONS | 8:15739 | DOI: 10.1038/ncomms15739 | www.nature.com/naturecommunications 1

mailto:sharpee@snl.salk.edu
http://www.nature.com/naturecommunications


O
bject recognition relies on a series of complex and overall
poorly understood transformations that ultimately give
rise to our ability to recognize specific objects under

continuous transformations, such as translation, scaling and
rotation1,2. In the cortex this chain of transformations begins
with the primary visual cortex (V1) where neural selectivity can
be summarized as representing edges and bars of different
orientation and position. This selectivity is sharpened by a variety
of nonlinear suppressive mechanisms3–7, but the first-order
responses to edges and bars provide a working framework within
which to quantitatively study neural circuits in V1. Such a
framework is missing for the next visual area V2 where one finds
bewildering forms of feature selectivity compared to V1. There
are multiple anatomical compartments8,9 each with different
types of neuronal subpopulations10–14. Individual neurons in
these subpopulations typically exhibit selectivity to multiple edges
of different orientation and positions12,15,16, specific texture
samples17,18 and texture boundaries13,19–21, as well as other
higher-order patterns19,22,23. The increased complexity of V2
feature selectivity presumably requires similarly complex
suppressive mechanisms to avoid confusion between different
patterns. Previous studies point to the increased role of
suppression in V2 compared to V1 (refs 14,24) as well as in the
area MT25. Yet, how suppressive mechanisms work in V2 to
enhance the selectivity to more complex image features is not
known. The problem is further exacerbated by the larger degree
of position invariance in such neural responses21,26–28.

To address these questions of how feature selectivity in V2 is
organized and sharpened by suppressive mechanisms, we
developed a statistical framework for analysing neural responses
to natural stimuli that brings together two long standing
approaches in computational neuroscience: (i) analysis of multi-
component feature selectivity using methods such as spike-
triggered covariance29–33 and (ii) methods for analysing position
invariant neural responses, such as convolutional models25,34–39.
Applying this modelling approach to neural responses in the
secondary visual area V2 to natural stimuli, we report here that
(1) incorporating position invariance improves prediction
accuracy on novel data sets, (2) multiple excitatory and
suppressive features affect the responses of individual neurons,
even after accounting for position invariance, (3) neurons form
two classes based on diversity of orientation signals they encode,
(4) excitatory and suppressive features pertaining to one neuron
are arranged in an approximately orthogonal manner and
(5) both excitatory and suppressive features form ‘quadrature
pairs’ that correspond to local position invariance. Overall, these
findings show how nonlinear suppressive mechanisms can be
incorporated into hierarchical signal processing schemes, similar
to those proposed theoretically and used in computer vision
algorithms36,40–42 in order to sharpen selectivity to complex
image patterns in the presence of position invariance at multiple
scales.

Results
Quadratic convolutional model. A tested way to find multiple
relevant image features that may affect the neural responses is
to expand the stimulus description from its D-pixel values to
DþD2 values in order to include all pairwise products between
the pixel values29–33. In the expanded stimulus space, one can
compute the filter that, similarly to the spike-triggered
average33,43, best accounts for the neural response (Suppleme-
ntary Fig. 1). Because we are dealing with natural stimuli that
have non-Gaussian statistics32,44,45, the relevant filter will
be computed here by maximum likelihood optimization rather
than simple averaging (see Methods). The resultant filter has

two parts: a D-dimensional vector v(1) that describes the single
most relevant pattern in the original stimulus space and
D2-dimensional filter J that represent the most relevant pattern
in the quadratically expanded space sisj (si are pixel values or
other stimulus components). This second part J of the filter can
be transformed into a square matrix and diagonalized to yield a
set of relevant input dimensions32. The resultant dimensions
either directly correspond to the relevant image features for
a particular neuron or comprise their linear combinations. It is
also noteworthy that the modelling framework can detect
relevant features even if they affect the neural responses only
through higher than second-order interaction. For example, in
Supplementary Fig. 4 we show that it is possible to find relevant
features of a model neuron whose responses are based on a
third-order conjunction between the relevant features. The
reconstruction becomes possible because third- and higher-
order interactions can be approximated as combinations of
multiple pairwise interactions, as has also been demonstrated for
human perception46,47.

Here, we combine the approach of minimal quadratic models
with ideas of methods designed to describe graded position
invariance25,34–39. Specifically, we apply the quadratic stimulus
transformation not to the whole stimulus at once, but separately
to the overlapping patches that together cover the full image
(Fig. 1). Extending the weighting function to different latencies
before the spike25, the approach can also take temporal dynamics
into account.

The overall model, to which we refer as the quadratic
convolutional (QC) model, has three nonlinearities (Fig. 1):
(i) the quadratic function that is applied locally to image patches
and which provides a good description of V1 complex cell
responses14,29,31,48–50; (ii) the sigmoidal function applied
after pooling across all ‘complex cell’ subunits within a given
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Figure 1 | A schematic representation for the QC model. Each input image

is split into overlapping patches. Stimuli from within each patch are passed

through a set of linear filters, followed by quadratic nonlinearity (with a

linear term). The squared filter outputs are added together with different

weights. The weights are positive for excitatory subunits (blue Gabor

outlines) and negative for suppressive subunits (red Gabor outlines).

Applying logistic transformation yields the response of each QLS. The QLS

parameters are the same for all patches. A weighted sum of the QLS

outputs across time and spatial patches describes temporal dynamics and

graded position invariance, respectively. A rectifying nonlinearity applied to

the weighted sum of the QLS outputs yields the predicted firing rate.

QLS, quadratic logistic subunit.
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patch, that is, at one position in the visual field; and (iii) the final
rectifying nonlinearity to produce positive signals suitable
for comparison with the neural spike rate. Removing the
quadratic nonlinearity reduces the method to the convolutional
model, where one seeks to account for neural responses using the
same feature shifted to different positions34,35. On the other hand,
removing the sigmoidal nonlinearity reduces the present model
to the kind described by the spike-triggered covariance and
related methods29–32,37 where all relevant features are found
without taking into account position invariance. Taking position
invariance into account reduces the overall number of features
that need to be estimated, which results in models that can be
interpreted better34,35,51 and which are likely to yield higher
predictive power on novel data sets34,35.

After testing the optimization algorithm on model neurons
(Supplementary Note 1 and Supplementary Figs 1–4 and
Methods), we fit the model parameters to V2 neural responses
to natural stimuli. The results indicate that the full QC model
yielded better predictions compared to reduced models where
either quadratic or sigmoidal nonlinearities have been removed
(Fig. 2). On an average, the QC model outperformed the linear
convolution model by a factor of 3.9. This indicates a strong
impact of multi-component feature selectivity on neural
responses. The incorporation of position invariance also had
a strong impact, because the QC model on average performed
50% better than the quadratic non-convolutional model. The
QC model also outperformed the standard linear-nonlinear
model that accounts for neural responses based on a single
relevant image feature followed by a nonlinearity33,52. In what
follows, we refer to this latter model as linear-non-convolutional
because it uses a specific nonlinearity in common with quadratic
non-convolutional and QC models. We also found that an
alternative model structure with a logistic final nonlinearity
instead of the soft-plus function resulted in systematically
worse performance for all models (Po0.01), Supplementary
Fig. 5. To summarize, both position invariance and selectivity to
multiple image features are necessary to account for the responses
of V2 neurons.

Excitatory and suppressive features of V2 neurons. Even
after factoring out position invariance, the responses of V2
neurons could not be described by a single template and instead
required the presence of multiple relevant image features. For
the vast majority of neurons, the eigenvalue of analysis of
kernel J identified the presence of both multiple excitatory and
multiple suppressive features (excitatory and suppressive features

correspond to eigenvectors of J with positive and negative
eigenvalues, respectively, see Methods). On average, there
were 7.6 excitatory and 5.8 suppressive features. Echoing
previous results14, the distribution of suppressive features was
non-unimodal, as were the distributions of excitatory features and
the distribution of the total number of relevant features per
neuron (Fig. 3). The total number of relevant features is the total
number of significant eigenvectors of J. The number of excitatory
and suppressive features per neuron were strongly correlated
(P¼ 0.016, t-test, two-sided, n¼ 80), indicating that the
complexity of excitatory and suppressive signals co-vary together.

The non-unimodal aspects of the distribution of the number of
features relevant to the responses of individual V2 neurons
suggest the presence of separate populations of V2 neurons. To
understand how these classes might be related to those identified
previously among V2 neurons10–12,14 and what signals V2
neurons from each class represent, we fit the set of relevant
image features for each neuron as a combination of Gabor
patterns. This approach makes it easier to interpret
the reconstruction results in terms of putative inputs from V1
(refs 10,11,14). The excitatory and suppressive features were fit
separately to yield as close as possible match to the J kernel of the
model (Methods). For all neurons, this resulted in statistically
significant correlations between the J kernel and its fit in terms
of combinations of Gabors (Supplementary Fig. 8). The fit yields
not only a set of relevant Gabors for each neuron but also
the weights that characterize how strongly the neuron’s firing
rate is affected by a given Gabor. The weights are positive
for excitatory and negative for suppressive Gabors.

Analysis of the sets of relevant Gabors yielded three
observations. First, both excitatory and suppressive Gabors
formed ‘quadrature pairs’48,49. Within the pair, the two Gabors
have all of the same parameters except for the spatial phase
(Fig. 4a). For the vast majority of neurons, the spatial phase was
offset by a value close to 90�. This is the same phase difference as
between a sine and a cosine Gabor. A sine Gabor can be used to
describe an edge, whereas a cosine Gabor describes a bar.
Together, these two features describe invariance to small shifts in
direction perpendicular to the edge/bar. This type of pairing
has been shown to describe well responses of complex cells in V1
(refs 48,49) and therefore can help interpret the present results in
terms of V1 inputs to V2. On the basis of the observation of
quadrature paring between Gabor features, we refitted J kernels
directly as arising from combinations of different Gabor
quadrature pairs. This resulted in almost no decrease in fit
quality (Supplementary Fig. 8) despite having less than half as
many parameters.
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Figure 2 | QC model outperforms models without either position invariance or multi-component feature selectivity. Extrapolated correlation between

model predictions for a novel test set and the observed responses64 is shown in all panels. The dashed lines indicate the linear regression without a

constant offset. (a) The QC model outperformed the QnC; average improvement is by a factor of 1.5. (b,c) QC also outperformed an LnC and the LC by

factors 3.9 and 4.4, respectively. LC, linear convolutional model; LnC, linear non-convolutional model; QnC, quadratic non-convolutional.
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Analysis of excitatory Gabor pairs has revealed two subpopula-
tions based on the variance of relevant orientations for each
neuron (Fig. 4b, P¼ 0.0061 Hartigans’ dip test, n¼ 77). Neurons
in the first class had smaller variance across orientations
compared to neurons from the second class. For neurons in the
first class, all excitatory orientations typically form one or several
smooth curves of similar orientation (see Fig. 4b insets for
examples). In contrast, neurons in the second class often had
a fan-like pattern of Gabor features. Following ref. 12, we refer
to neurons in the first class as ‘uniform’ and neurons in the
second class as ‘non-uniform’. This classification also connects
with previous classifications of V2 neurons into ‘transient’ and
‘sustained’ classes based on response dynamics11,13,20, because we
found uniform neurons to have biphasic temporal kernels
whereas non-uniform neurons had unimodal (Fig. 4c, inset)
temporal kernels.

For V2 neurons from both classes, excitatory and suppressive
Gabors formed an orthogonal pattern. The effect was more
pronounced for neurons in the ‘uniform’ class (Fig. 4c) compared
to neurons in the non-uniform class (Fig. 4d). Partly this is due to
the fact that ‘non-uniform’ neurons often had a fan-like pattern
(for example, inset in Fig. 4d). The presence of rapidly changing
excitatory orientation at nearby positions in such a pattern can
cause a suppressive Gabor that is orthogonal to one excitatory
Gabor to not be orthogonal to other nearby excitatory Gabors.
Nevertheless the bias towards orthogonality was statistically
significant for both neuron classes (Po10� 13 and Po0.0005,
respectively, w2-test against uniform distribution with seven
degrees of freedom). Further, the trend persisted even when

classes are combined (Supplementary Fig. 9a) and when the
analysis is expanded to include all Gabor pairs beyond the nearest
neighbours (Supplementary Fig. 9b). We also note that the
incidence of iso-oriented suppression, while small, was larger for
excitatory-suppressive pairs that are not nearest neighbours.

Spatial pooling and texture selectivity. The excitatory and
suppressive features discussed so far describe neuronal selectivity
at one spatial position. The last component of the model—the
spatial pooling mask v(2)—describes how signals these signals are
combined across space. For most neurons (66) the spatial pooling
was approximately uniform. An example neuron with such type
of pooling is provided in Supplementary Fig. 6. The uniform
pooling yields selectivity to a patch of texture that is defined by
the observed combination of relevant excitatory and suppressive
features. In addition to uniform pooling, we also observed
biphasic pooling in approximately 34% (26/77) of neurons.
Examples of neurons from class 1 and class 2 with biphasic
pooling masks are shown in Fig. 5. This type of pooling is notable
because it can mediate texture segmentation13,20,21,53, a function
that has received a lot of attention in V2 (refs 11,13,20,21). The
incidence of biphasic pooling was 25% (10/40) for ‘uniform’ class
1 neurons and 45% (16/37) for class 2 ‘non-uniform’ neurons.

Cross-orientation suppression increases response sparseness.
What is the functional significance of suppressive features? In V1,
cross-orientation suppression leads to sharper orientation
tuning and sparser responses3–7. The sharpness of orientation
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Figure 3 | The distribution of the number of relevant image features that affect V2 responses after factoring out position invariance. (a) The total

number of significant dimensions of J (features, 13.4 on average). (b,c) The distribution of excitatory (mean 7.6) and suppressive (mean 5.8) features.

All distributions are non-unimodal with P¼0.0145, 0.0036, 0.0003, respectively, for the Hardigans’ dip test, N¼ 80.
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tuning would not be an appropriate measure in V2 given
the increased complexity of relevant features. However, we
can evaluate the impact of suppressive features on the sparseness
of responses by comparing the sparseness of predicted responses
with and without the suppressive features. We find that
suppressive features have a dramatic effect on sparseness,
increasing the sparseness by a factor of 48 (Fig. 6a). Further,
to evaluate the impact on sparseness of specific orientation
differences between excitatory and suppressive features, we
compared the sparseness of models based on estimated relevant
Gabor features with that of models where orientation of
suppressive Gabors were chosen at random. The decrease in
sparseness was systematic and highly statistically significant

(P¼ 5� 10� 6, Wilcoxon signed rank test, two-sided, n¼ 77),
Fig. 6b.

Discussion
The secondary visual area V2 is notorious for complexity of
its organization. This includes the presence of multiple
anatomical compartments8,9 as well as diversity in the types of
inputs it receives from V1 (ref. 54), orientation selectivity
properties10,12,14,55, temporal dynamics11,13 and the suppression
strength14. Here we used statistical analysis of neural responses to
natural stimuli to find several organizational principles that could
help systematize and understand the complexity of V2 responses.
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A number of prior analyses of V2 responses have indicated the
presence of two or more subpopulations10–14,20,21. The two
classes of V2 neurons that we identify here are most directly
analogous to uniform and non-uniform selective neurons12 and
to the ‘ultralong Gabor’ and ‘complex-shaped’ neurons10. It has
been proposed that ‘uniform’ or ‘ultralong Gabor’ neurons should
correspond to the ‘transient’ subpopulations identified based
on temporal integration properties11. Our finding that ‘uniform’
neurons indeed have biphasic temporal response kernels whereas
‘non-uniform’ neuron have integrative temporal properties
provides support for this hypothesis, thus helping to connect
different studies of V2 subpopulations.

One advantage of the statistical analysis carried out here
is that it can pick up slight differences in the preferred
orientations at nearby positions. Therefore, we find that even
neurons that may be classified as ‘uniform’ or ‘ultralong’, have
multiple excitatory Gabors at slightly different orientations at
different positions that together would form a line of noticeable
curvature (Fig. 4b insets). While the spread of orientations
for ‘uniform’ neurons is nonzero, there is still a clear break
in the distribution of orientation spreads that separates ‘uniform’
from ‘complex-shaped’ neurons (Fig. 4b). This then provides
further justification for the separation of neurons into the two
classes.

Because the QC model explicitly separates position invariance
from complexity of feature selectivity, some of the complex-
shaped neurons that have position invariance, such as complex-
unoriented26 and spot stimuli27, can now be described using
a smaller number of features. Incorporation of position
invariance also improves predictive power on novel data sets
compared to the model with no position invariance10, on average
by a factor of 1.5. While the correlation numbers are lower than
those have been recently reported in higher visual areas such as
V4 (refs 36,56), we note that here the predictive power is
computed with an explicit model that has a fixed nonlinearity
rather than up to an arbitrary one-to-one nonlinearity56 or a
linear36 transformation. The QC model also directly informs our
understanding of the feature selectivity, which is difficult to do in
models based on deep networks36,57.

Neurons from the primary visual cortex project to both V2 and
area MT. Whereas neurons projecting to area MT have consistent
visual response characteristics58, projections to V2 include in
approximately equal proportions neurons that are invariant
and selective for spatial phase54. We find that both excitatory and
suppressive Gabor features for one V2 neuron form quadrature
pairs, and thus occur in combinations that are invariant to spatial
phase. It is possible that strong V1 input that is dominated by
one spatial phase is taken into account by the linear part
of the quadratic model instead of the quadratic part. However,
we find that linear convolutional models yield much worse
predictive power than QC models, on average by a factor
of 4 (Fig. 2). These observations then suggest that when V1
neurons that are sensitive to spatial phase project to V2 they do
so together with other V1 neurons tuned to other spatial phases
with similar orientation/position. Collectively, the contributions
from these V1 neurons would then yield to good descriptions
by models invariant to spatial phase.

We find that excitatory and suppressive signals are
organized locally according to the principles of cross-orientation
suppression3–6. This finding brings considerable simplification to
models of suppressive mechanisms in area V2. Previous studies
using gratings in V2 did not probe suppressive mechanisms at the
same position as excitatory signals12,13. Especially in the case of
‘non-uniform’ neurons, the complexity of orientation tuning
across positions makes it difficult to systematize the contribution
of suppressive mechanisms. Long records of neural responses to

natural stimuli contain this information because of the variety of
edge combinations and other higher-order statistics45,47,53

present in the natural scenes. Extracting this information by
statistical analysis reveals a surprisingly simple pattern of
excitatory and suppressive signals employed by V2 neurons:
even if excitatory signals are organized in a complex manner,
suppressive signals work locally to enhance representation of
excitatory signals through cross-orientation suppression.

In addition to local cross-orientation suppression, we also
detect two kinds of iso-orientation suppression acting on broader
spatial scales. The first kind of iso-orientation suppression
corresponds to those few cases where excitatory and suppressive
Gabors had similar orientations (Supplementary Fig. 9).
The incidence of such cases, while small, was greater for Gabors
that are not nearest neighbours. On the basis of this, we identify
this iso-orientation suppression as most likely originating
from the surround of V1 receptive fields20,59,60. The weakness
of this type of iso-orientation suppression in this experiment
could in part be due the slower dynamics of surround integration
compared to suppression from within the receptive field
center61,62.

The second kind of iso-orientation suppression is represented
by biphasic spatial pooling in the second layer of the model.
This type of subtractive interaction can aid detection of borders
defined by changes in texture20,21,53. The biphasic pooling
was prominent in the data set (34% of neurons), with uniform
pooling observed in the remaining cases. Overall, the observed
patterns of selectivity based on locally orthogonal excitatory and
suppressive features that are repeated across a range of spatial
position could mediate the observed selectivity of V2 responses to
textures17,18 and texture boundaries13,20,21.

Methods
Electrophysiological recordings. We applied our method to a data set of neural
recordings from visual area V2 that was previously published14 and available
through the CRCNS data sharing website63. The data set included recordings from
three awake and behaving male rhesus macaque monkeys. Detailed methods on
electrophysiology are in ref. 14. Briefly, during the recording, the animals
performed a fixation task for a juice reward. The stimulus was a series of patches
from greyscale images presented rapidly for 3–5 s trials. The image patches were
scaled to be 2–4 the size of the classical receptive field (as determined using reverse
correlation with a dynamic sparse noise stimulus).

Quadratic convolutional model. The model seeks to predict a neuron’s
response Yt (measured as a number of action potentials/spikes) given the stimulus
Xt presented to the animal. The first step of the model is to convolve the identical
subunits with the stimulus, which is equivalent to extracting patches xi,t from the
stimulus from different positions and times. The patches are passed through
logistic subunits with identical quadratic filter J, linear filter v(1), and bias a(1) to
produce the first layer’s response

rð1Þi;t ¼ s að1Þ þ vð1Þ � xi;t þ xT
i;tJxi;t

� �
ð1Þ

where s(x) is the logistic function

s xð Þ ¼ 1
1þ exp � xð Þ : ð2Þ

To take into account the possibility of the overall position invariance, the
responses of the quadratic logistic subunits are pooled using the weights v(2) and
rectified

Ŷt ¼ dRþ vð2Þ � rð1Þt þ að2Þ
� �

ð3Þ

where d is a scaling factor, a(2) is another scalar bias, and Rþ (x) is the soft-plus
rectifier

Rþ xð Þ ¼ log 1þ exp xð Þð Þ: ð4Þ
All of the parameters of the model (a(1), v(1), J, v(2), a(2), d) were fit by

minimizing the Poisson negative log-likelihood

NLL Y; Ŷ
� �

¼ Ŷ� log Ŷ
� �
þ log Y !ð Þ ð5Þ

using stochastic gradient descent. For our analysis of V2 data, stimuli were
20� 20-pixels by 10 frames in time, binned at 16 ms. The patches x were
16� 16-pixels by one frame, making v(1) a 256-dimensional vector, and J a
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256� 256 matrix. The offsets in pixel-space were 1-pixel, which produced
a 5� 5 spatial grid for pooling responses of the quadratic subunits defined by
equations (1) and (2). We also used 10 latencies to account for the neural response
dynamics, which in total results in 5� 5� 10¼ 250 dimensional vector v(2).

We divided the training data into fourths and used three-fourths to calculate the
gradient and one-fourth as a validation set to determine when to stop training. For
each neuron, we calculated four models each with a different fourth of the data as
its validation set (Supplementary Fig. 7). The four models for each neuron were
averaged, while variability between these can be used to gauge the impact of noise
variability and stochasticity in the optimization process on model parameters.

The data set also included a separate set of responses to different repeated
movies. Those data were used to evaluate model performance and are separate
from the data used for fitting and early stopping. The model performance was
evaluated in terms of correlation coefficients between measured and predicted
responses after compensating for finite-size effects in the data64.

Eigenvector significance. To determine which eigenvectors of J were significant,
we generated shuffled J matrices to determine the distribution of maximum and
minimum eigenvalues. We began by subtracting the mean of J to avoid the
spurious eigenvalues that can be caused by a nonzero mean of J (ref. 65). We then
randomly shuffled the diagonal and off-diagonal elements separately to create
random symmetric matrices and build distributions of maximum and minimum
eigenvalues. We then checked the eigenvalues of the zero mean J matrix in order of
decreasing magnitude against the distributions to determine the probability to see a
value of that magnitude in a random matrix. If the probability was o0.05, we
considered the eigenvalue and the corresponding eigenvector to be significant.

Fitting gabors. To characterize the feature selectivity of J, we approximated it
using the weighted sum of Gabor wavelets. The equation for the Gabor wavelet is

g ¼ Ae�
x02 þ g2 y02

2s2 cos
2pi
l

x0 þf
� �

ð6Þ

where

x0

y0

� �
¼ x� x0

y� y0

� �
cos yð Þ � sin yð Þ
sin yð Þ cos yð Þ

� �
: ð7Þ

x0 and y0 indicate the location of the Gabor wavelet in the image, y controls the
orientation, g controls the aspect ratio, s controls the size of the Gabor, l controls
the spatial frequency, and f controls the spatial phase. A is a normalization
constant. With a set of Gabor wavelets gi and corresponding weights wi, an
approximation of J can be constructed from the weighted sum

Ĵ ¼
X

i

wigig
T
i : ð8Þ

We fit two variations of this model. First, we fit the J matrix as representing
independent Gabors, with the number of Gabors equal to the number of significant
features. After finding that the Gabors form quadrature pairs (Fig. 4) we performed
a second fit using pairs of Gabors with identical parameters except for f, which was
0 and pi/2 in order to form a quadrature pair.

We fit the parameters of the Gabor wavelets using differential evolution66. We
randomly generated 10 P sets of parameters where P was the number of parameters
of the model. Parameters x0 and y0 were selected uniformly within limits set by the
size of the frame. y was selected uniformly from � p to p. s, g and l were selected
log-uniformly. In each iteration, new sets of parameters were generated using a
combination of the existing sets using the differential evolution variant termed
‘rand/2/bin’:

u0i;j ¼
ur1 ;j þ F ur2 ;j þ ur3 ;j � ur4 ;j� ur4 ;j

� �
if rand 0½ ; 1ÞoCR or j ¼ jrand

ui;j otherwise

�
: ð9Þ

Here, r1 through r5 are the indices of five unique parameter sets excluding i. jrand is
randomly selected from {1,...,P} to ensure u’i differs from ui for at least one
parameter. CR and F were initialized to rand[0,1) and 0.1þ 0.9 rand[0,1),
respectively, for each parameter set and regenerated before generating u0 if
rand[0,1)ot. t was set to 0.1 for both CR and F. The multiplicative parameters
s, g and l were passed through equation (9) as their logarithms make the steps be
changes in scale. The parameters were bound by their initialization ranges. If a new
value was outside of those ranges, it was considered to have infinite error. The new
set of parameters u’i replaced ui if the mean square error was lower. We ran the
algorithm until none of the groups of parameters changed during an iteration. We
ran multiple iterations of the algorithm with different initializations and selected
the parameters with the lowest error.

The excitatory and suppressive parts of J were fit separately to minimize the
mean squared error with the reduced J matrix constructed from only the significant
excitatory or suppressive eigenvectors.

To determine whether the Gabors formed quadrature pairs, we paired the
individual Gabors with similar positions and orientations and measured the
difference in phase according to

Df ¼ f1 �f2 �Dx � �k: ð10Þ

Dx is the difference in the position of the Gabors, and �k is the mean spatial
frequency.

It is important to note that, although the quadratic subunit model of equations
(1) and (2) accounts for neural responses based on combinations of pairwise
features, this model can also identify features that affect the neural responses
through higher than second-order interaction. To illustrate this, we applied the
minimal quadratic model analysis32 based on the equations (1) and (2) to the
responses of a model neuron that was exclusively sensitive to a third-order
interaction between three relevant features53,67

Rt ¼
1

1þ exp aþ u1 � xtð Þ u2 � xtð Þ u3 � xtð Þð Þ : ð11Þ

where ui are three relevant features shown in the top row of Supplementary Fig. 4.
The reconstructed features yield the subspace projection of 0.6 with the model
features even though the form of the model neuron is different from the form of
the model fit to it. The precise level of reconstruction accuracy depends on the
strength of higher-order interactions as well as the correlation between second- and
higher-order interactions. Given that in natural scenes correlations of different
orders are correlated44,46,47, this illustration show performances in close to
worst-case-scenarios for reconstructing higher-order features.

In Supplementary Fig. 6, we show all of the analysis steps for the example V2
neuron. The weighting mask includes both spatial and temporal components that
can be separated using singular-value decomposition. The spatial component
shows a preferred location with the response decreasing as the stimulus moves
from that location. The temporal component shows a preference for stimuli
B33 ms before the spike. If the preferred stimuli are present at longer latencies, the
neuron’s response would be suppressed. The linear kernel (b) shows a preference
for horizontal bars. The quadratic kernel is difficult to interpret and requires
decomposition into its linear components, which we describe next.

The eigenvalue analysis for this neuron’s J kernel indicated the presence of 10
excitatory (c) and eight suppressive features (d). Therefore, the positive and
negative part of the J kernel were fit using 10 and eight Gabors, respectively. The
result of this fit is shown in the top row of c and d. The excitatory Gabors indicate
selectivity to horizontal lines of varying spatial frequency. The middle row shows
these Gabors projected into the dominant excitatory eigenvectors. The close
correspondence between this row and the row above indicates that they are a good
approximation of the neuron’s selectivity. The bottom row shows the dominant
excitatory eigenvectors of J. The broad selectivity for horizontal lines is evident, but
the orthogonality of the eigenvectors obscures the underlying Gabor structure. All
rows are arranged such that the features with the largest weight are on the left.
Analysis of the suppressive feature reveals selectivity to predominantly vertical
Gabors. Thus, excitatory and suppressive Gabors form an orthogonal pattern. To
get a sense for the reproducibility of results, in Supplementary Fig. 7 we show
results for different subsets of the data sets. The consistency of results across
different subsets of the data can be used to gauge stability of results against neural
noise and stochasticity during model optimization.

Because both models based on soft-plus rectifying nonlinearity as in
equation (4) and a saturating nonlinearity as in equation (2) have been used to
analyse properties of extra-striate visual neurons, we have compared the
performance when either of these nonlinearities is used in place of the final
nonlinearity equation (4). We find that for this data set the soft-plus function
produced systematically better predictions of the neural responses on novel data
subsets compared to the model with a saturating final nonlinearity (Po0.01,
Wilcoxon signed rank test, two-sided, n¼ 80, for all pairwise comparisons in
Supplementary Fig. 5).

Code availability. The code is available at https://github.com/rjrowekamp/quad-
ratic-convolution.

Data availability. The data sets analysed during the current study are available at
the Collaborative Research in Computational Neuroscience (CRCNS) data sharing
website, http://crcns.org/data-sets/vc/v2-1.
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