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Materials and Methods 
Inferred rule experiment 

A trial was initiated when the animal fixated a gray central fixation spot (diameter = 
0.5 deg). After a random delay (400-800 ms, uniform hazard), a blue and a red visual 
target (diameter = 1 deg) were presented above and below the fixation point (distance = 7 
deg). The animal had to report its belief about the rule by making a saccade to one of the 
targets within 1000 ms of their appearance (blue for C1 and red for C2). After the rule 
report epoch, the animal had to shift its gaze back to the fixation point to initiate the 
interval discrimination epoch (trial was aborted if re-fixation took longer than 500 ms). 
The trial proceeded regardless of whether the rule was reported correctly. After another 
random delay (400-900 ms, uniform hazard), two 50-ms flashes (diameter = 0.75 deg) 
were presented sequentially, a flash at the center of the screen followed by a flash to the 
left or right of the fixation point (distance = 9 deg). These two flashes demarcated the 
sample interval, ts, which was drawn randomly from a 9-point discrete uniform 
distribution ranging between 530 and 1170 ms. In less than 700 ms after the second flash, 
the animal had to make a prosaccade toward the second flash or an antisaccade away 
from it to report whether its estimate of ts was shorter or longer than a criterion of 850 
ms, which corresponds to the mean of ts distribution. We limited the reaction time to 700 
ms to motivate the monkey to control the preparatory prepotent response inhibition 
dynamically during the interval measurement epoch. At the end of each trial, reward was 
provided (with a green visual feedback at the target location) if both the rule report in the 
first epoch and the interval discrimination in the second epoch were correct. No visual 
feedback or reward was given in error trials. When ts was equal to the criterion (850 ms) 
in which case there was no correct answer for the interval discrimination, the animal got 
reward on a random 50% of the trials if it reported the rule correctly. The trial was 
aborted if the animal broke fixation before the second flash.  

 
Instructed rule experiment 

This task was identical to the rule inference experiment task with the only difference 
that the rule was cued explicitly and therefore the animal did not need to infer the rule 
based on history of errors. To specify the rule, we presented a red or blue disc around the 
fixation spot during the first 3-5 trials after every rule switch and 50-80% of trials until 
the next rule switch. The color of the disc served as an explicit cue for the current rule. 
To make sure the structure of the experiments was identical, in the instructed rule 
experiment, similar to the inferred rule experiment, animals had to first report the rule. 
On trials that the disc was not presented, the animal could infer it from memory of the 
previous trial since all rule switches were explicitly cued. The colored disc around the 
fixation spot disappeared immediately after the animal made a saccade to report the rule 
so that the interval discrimination epoch of the two tasks were identical.  

 
Model for behavior  
We developed a model with two hierarchically organized stages to capture behavior. The 
model is illustrated schematically in Fig. S3 and S4. The first stage captures the 
psychometric function describing the probability of Anti (Pr(Anti)) within a trial as a 
function of rule and td in that trial (Fig. S3). The second stage captures the probability of 



 
 

switch (Pr(Sw)) across trials as a function of feedback, td and rule in the preceding trials 
(Fig. S4). 1 and 2 refer to the parameters associated with the first and second stages, 
respectively. We use simple letter names for either experimentally controlled variables 
(e.g., ts) or observable behavioral variables (e.g., action: A), and letter names with 
superscript (^) for behaviorally unobservable variables (e.g., internal belief about rule, !  , 
or internal estimate of discriminant interval, !"  ) and intended actions (e.g., intended pro- 
or antisaccade, !  ). 

 
Modeling the first level of the decision hierarchy  

We assumed that the observer makes a noisy measure of ts (!"  ). Consistent with 
scalar variability of timing (93, 94), we modeled the noise by a zero-mean Gaussian 
whose standard deviation scales with ts with the constant of proportionality wm, as 
follows:  

 
 

 
The observer compares !"   to an internal criterion, !"   (!" = !$-!&  ), to categorize the 

interval as “Short” or “Long”. We treated !"   as a parameter that was fixed throughout 
each behavioral session but was allowed to change across sessions. Moreover, we 
included a lapse rate, Γ"    to accommodate trials in which the animal categorized ts 
randomly (50% “Short” and 50% “Long”). With this formulation, the probability of an 
intended antisaccade can be written as follows: 

 

 
 
where the first term in the integrant is determined by task contingencies as follows: 
 

 
 
We assumed that the observer uses !   to generate a Pro or Anti action (A). In 

decision making studies, typically there is no need to distinguish between intended and 
executed actions. In our work, this distinction is warranted because animals occasionally 
fail to execute an intended antisaccade (39) when the inhibition to suppress the 
competing prepotent prosaccade is not sufficiently strong (25, 39, 40). To account for this 
asymmetry, the model was augmented with a parameter, Γ"#$%  , to account for the small 
percentage of trials in which an intended antisaccade resulted in an erroneous prosaccade. 
The full model thus used 4 parameters (Ψ" = {%&, (), Γ+, Γ,-+.}  ) to capture the probability 
of antisaccades as a function of ts and C:  

 
 



 
 

 
 
Finally, we assumed that actions across trials were conditionally independent and 

used the sum of the logarithm of individual conditional probabilities to derive the 
maximum likelihood estimate (MLE) of the model parameters: 

 

 
 
where indices i and j count over NAnti antisaccade and NPro prosaccade trials, 

respectively. We fit this model to behavioral data in individual sessions of both the 
inferred rule (subjective rule) and instructed rule experiments.  

 
Modeling the second level of the decision hierarchy 

As a first step, we developed an ideal observer model (IOM) whose switch behavior 
on trial k is governed by posterior odds of rule change compared to no rule change (3), 
denoted !"#$%   . If we index the last rewarded trials by k0-1, !"#$%    has to be computed based 
on the consecutive error trials k0,...,k (denote [k0:k]) following the last rewarded trials: 

 

 
 
The denominator is the probability of no rule change despite negative feedback 

across all [k0:k] trials. For every trial i, the probability of being incorrect without a rule 
change is the product of the probability that no objective rule change occurred multiplied 
by the probability that the interval was discriminated incorrectly. If we denote the 
probability of correctly discriminating ts in trial i by yi, and the probability of objective 
covert rule change in trial i by its hazard function, denoted λi, the probability of an 
incorrect discrimination in the absence of rule change becomes (1-λi)(1-yi). The 
denominator therefore is the product of this probability across all [k0:k] trials. Using a 
similar logic, the numerator is the sum of multiple probabilities including the probability 
that the rule change occurred on trial k0, that it occurred on trial k0+1 but not on trial k0, 
and the all the other terms until the last terms, which corresponds to a rule change on trial 
k with no rule change in the preceding [k0:k-1] trials. Accordingly,	  !"#$%    can be written as 
follows: 

 

 
 
Since yi is a measure of expected accuracy (i.e., the probability of being correct), we 

quantified it based on our model of the subjective psychometric function after 
marginalizing over ts (which the ideal observer does not know). For λi, to avoid over-
parameterizing the model, we did not attempt to model the animal’s subjective hazard 



 
 

function and instead, assumed a constant hazard rate consistent with our experimentally 
imposed block transition scheme. With yi and λi specified, we can fully derive !"#$%    with 
no additional free parameters.  

 
Due to its history-dependent nature, direct use of IOM to characterize animal’s behavior 
is not feasible (i.e., would need far more data that we can collect). As an approximation, 
we developed a simpler confidence-based model (CBM). The behavior of CBM is 
governed by a graded latent variable representing trial-by-trial evidence for a covert 
switch, which we denote by XΣ. In this model, XΣ is incremented after each error with a 
magnitude that depends on the previous trial’s expected accuracy, and leads to a switch 
when XΣ breaches a threshold (θ). To match CBM as closely as possible to IOM, we 
assumed that XΣ on each trial has a Gaussian distribution. We set the mean and standard 
deviation (denoted by µΧΣ and σΧΣ) of XΣ such that !"#$%    (probability that XΣ is above θ 
over the probability it is below θ) was equal to !"#$%    for 1B-Er. Moreover, we assumed 
that switch evidence is subject to diffusive noise across trials; i.e., that variance grows 
linearly with the number of error trials (i.e., σ2

ΧΣ for N errors = Ν σΧΣ for 1 error). We also 
considered a nonlinear relationship between variance and number of trials (Fig. S5D-F) 
but the simple diffusive (linear) model was able to capture animals’ switch behavior more 
accurately. Note that in the main manuscript, we denote latent representation of 
subjective switch evidence as !"  , however, here we use !"   (which is the actual switch 
evidence) for simplicity. 

 
 

 

 
 
Rearranging this equation, we can write: 
 

 
 
which can be solved analytically and numerically to derive µΧΣ in terms of !"#$%    and 

σΧΣ. This formulation enabled CBM to closely approximate IOM. To fit CBM to animal’s 
behavior, we made two simplifying assumptions: XΣ=0 after a rewarded trial, and θ=1. 
These are inconsequential because their effect on behavior can be fully subsumed by µΧΣ 
and σΧΣ.  

 
To account for the deviation of each animal’s behavior from the ideal observer 

model, we augmented µΧΣ by a less-than-one multiplicative ‘perseverance factor’, α. This 
factor reduces the magnitude of increments in XΣ and causes an overall drop in the 
probability of switch. The full model thus has three parameters, µΧΣ, σΧΣ, and α. However 
because of the relationship between µΧΣ, σΧΣ, and the known !"#$%   , µΧΣ is not a free 
parameter. Therefore, our model for rule inference had only two free parameters 



 
 

(Ψ" = {%&', )}  ). In this formulation, the probability of switch (Xy/n=1) can be simplified as 
follows: 

 

 
 
Finally, we assumed that switch decisions were conditionally independent across 

trials and used the sum of the logarithm of individual conditional probabilities to derive 
the maximum likelihood estimate (MLE) of the model parameters. The model fits were 
based on data in the 1B-Er and 2B-Er trials. 

 

 
 
We performed several additional analyses to validate our assumptions about CBM 

and to verify that it was a suitable model: (1) In-silico model lesioning: we assessed the 
necessity of σΧΣ and α by testing the capacity of the model to capture the observed switch 
behavior when either of those parameters were fixed. Results in Fig. S5G-L show two 
examples, one in which σΧΣ was set to 0.5, and α was fitted, and another when α was set 
to 1 and σΧΣ was fitted. However, our conclusions were general and applied to other fixed 
values of σΧΣ and α so long as the fixed values were not identical to those recovered by 
the full model. (2) Model identification: we applied the model fitting procedure to 
simulated data generated by CBM to ensure that parameters could be recovered. Results 
are shown in Fig. S5C. (3) 2-fold cross-validation: to ensure that the success of the model 
was not due to overfitting, we repeatedly fit the model to a random half of each dataset 
and test the model on the remaining half. Results are shown in Fig. S5B. (4) Predictive 
validity: we simulated the model fit to the subjective psychometric function in the 
presence of experimentally imposed covert rule switches, and asked whether it could 
predict the observed objective psychometric function without additional parameterization 
and/or fitting. Results are shown in Fig. 1F.  

 
Model free analysis of switch behavior 

We also evaluated whether switch probability depended on trial difficulty (indexed 
by |td|) and the number of consecutive trials using a simple logistic regression: 

 
!(#$/&'() = Sw|./' , 1B − Er) = )

)(7-(9:;9 <= <=
> ;9?@ABC[?@ABC])

    Equation 1 

 
where 	  !(#$/&'())   represents the probability of switch in trial i+1, !"#   , the discriminant 

interval in trial i, and nB-Er, the number of consecutive error before trial i+1. The 
parameters of the logistic model (β0, β|td|, βnB-Er) capture the baseline, dependence on |!"#   |, 
and dependence on nB-Er of !(#$/&'())  , respectively. We used MLE to fit the model to 
behavior, and used fits to β|td| and βnB-Er to assess the statistical significance of the effect 
of |!"#   | and nB-Er on switch probability, respectively.  

 



 
 

Analysis of single neurons 
We estimated firing rates of each neuron per condition by computing average spike 

counts in 25 ms time bins followed by convolution with a Gaussian boxcar filter (σ =50 
ms). For each neuron, we compared average firing rates during the inter-trial-interval 
(ITI) after rewarded and unrewarded trials (Fig. 2). We also compared responses for both 
rewarded and unrewarded trials further broken down according to whether the preceding 
trial was relatively “easy” or “difficult. We defined “easy” and “difficult” as trial in 
which |td|≥  160 ms and |td|<160 ms, respectively. Collapsing the full range of td to a small 
number of categories was necessary to overcome the limited number of error trials per 
sessions, but the results were qualitatively the same regardless of the criterion for 
defining easy versus difficult trials (we also did all the analyses for |td|≥  80 ms and |td|<80 
ms). We also compared average firing rates as a function of number of preceding 
consecutive errors either across all values of td or after further dividing trials of the last 
error according to trial difficulty (|td|≥  160 ms versus |td|<160 ms). 

 
Retrospective and prospective information in DMFC and ACC 

We used a time-dependent linear regression model to examine the time course of the 
representations of trial outcome (Rw/Er) and switch behavior (Xy/n) across individual 
neurons in DMFC and ACC. We z-scored the firing rates of each neuron across all trials 
and times (r(t)), and formed a regression model that aimed to explain the firing rates as a 
function of trial outcome, Xy/n, and other experimental and behavioral variables as 
follows: 

 
r(t) = βoutcome IRw/Er +βSw Iy/n +βTarget Ileft/right +βA IPro/Anti +βtd td + βRule IC1/C2 +β0  

 Equation 2 
 
In this regression, IRw/Er was set to 1 (Er) or 0 (Rw), Iy/n was set to 0 (no switch) or 1 

(switch), Ileft/right, to -1 or 1 depending on the saccade direction, IPro/Anti, to -1 or 1 
depending on the animal’s action, IC1/C2 to -1 or 1 depending on rule, and td was the 
experimentally imposed variable. Solving this equation yielded βoutcome and βSw as a 
function of time for each neurons. Since our interest was to evaluate the relative strength 
of sensitivity across neurons and areas, we converted βoutcome to a selectivity index by 1) 
taking the absolute value of each βoutcome and 2) normalizing all βoutcome at each time point 
by the average βoutcome across all neurons, areas, and time during ITI. We did the same for 
βSw.  

 

 
 

 
 
Finally, we averaged the selectivity index associated with βoutcome and βSw across 

significantly sensitive neurons in each area and compared the time course of these two 
selectivity indices across the two areas (Fig. 3).  

 



 
 

Sensitivity of population activity in DMFC and ACC to XΣ and Xy/n 
We employed a targeted dimensionality reduction (63) to assess the encoding of 

information about XΣ and Xy/n across the population in DMFC and ACC. This approach 
has been carefully described before (63). Here, we briefly describe the procedure. First, 
we z-scored firing rates of each neuron across all trials and times, and formed a 
regression model that aimed to explain the entire vector of firing rates across the 
population (Z) at each point in time as a function of various experimental and behavioral 
variables as follows: 

 
Z = βoutcome IRw/Er +βXΣ ΧΣ +βSw Iy/n +βTarget Ileft/right +βA IPro/Anti +βtd td +βRule IC1/C2 +β0 

 Equation 3 
 
The regressors are the same as described for Equation 2, with the addition of ΧΣ 

which was inferred on a trial-by-trial basis from the fit of the confidence-based model to 
behavior. Second, we solved the regression model to derive the regression coefficients. 
Third, we denoised the coefficients by finding their projection in the subspace spanned by 
the first 10 principal components (PCs) of data that explained ~70% (or more) of the total 
variance in both areas and animals. To compute the PCs, we applied PCA to data resorted 
to a matrix of dimensions [Nunits,NC×  T] (Nunits: number of neurons, NC: number of 
conditions, T: number of time bins). Fourth, for each regressor, we found the time at 
which the coefficient has the largest norm (i.e., the encoding of the corresponding 
variable of interest was strongest). Fifth, we orthogonalized the coefficients. To do so, we 
applied QR-decomposition to a matrix whose columns were the coefficients, and used the 
columns of the matrix Q as the new orthogonalized coefficients.  

 
Next, we used the orthogonalized coefficients, βXΣ and βSw, to examine how DMFC 

and ACC encoded ΧΣ and Xy/n at the population level. We first describe the procedure of 
βXΣ: 1) we found the projection of data onto βXΣ, which we refer to as ZXΣ; 2) we divided 
ZXΣ into two groups, one containing all the trials that did not lead to a switch and another 
for all the trials that did lead to a switch; 3) we divided trials in each group to 6 
overlapping bins depending on the value of ΧΣ (i.e., low ΧΣ, intermediate ΧΣ, and high 
ΧΣ). The bin and overlapping window were chosen so that the number of trials in each bin 
were nearly equal. 4) we used d’ as a distance metric to quantify the separation between 
the distributions of ZXΣ in each bin to the distribution of ZXΣ associated with rewarded 
trials (i.e., when ΧΣ=0). This distance metric was used to assess the sensitivity of DMFC 
and ACC to ΧΣ. To examine the statistics, the population analysis method was cross-
validated by resampling dataset into equally-sized training and testing sets (bootstrapping 
method, 100-times). The procedure for βSw was identical except that we used the 
projections of data onto βSw (instead of βXΣ), which we refer to as ZSw. Analysis of ZSw 
with respect to ΧΣ enables us to assess the extent to which DMFC and/or ACC encoded 
Xy/n as a binary variable (i.e., independent from ΧΣ). In addition, as a control analysis, we 
conditioned the same subsets of trials on anti/pro-saccades, and separately on left/right 
saccades, and the projections into βXΣ were measured to quantify the action dependency 
of ΧΣ neural state (Fig. S10). 



 
 

 

 
 

Fig. S1. Switch behavior of the two monkeys as a function of saccade location. (A-D) 
Results are shown with the same ordering and format as in Fig. 1E-H. Behavior is largely 
independent of the direction of saccade. There were no significant difference between 
corresponding points on each plot (point-by-point Wilcoxon rank sum test; P > 0.05). 



 
 

 

Fig. S2. Switch behavior of the two monkeys as a function of rule (C1 versus C2) and 
action (Pro versus Anti). Results are shown with the same ordering and format as in Fig. 
1G-H. Behavior is largely independent of the direction of saccade. There were no 
significant difference between corresponding points on each plot (point-by-point 
Wilcoxon rank sum test, P > 0.05).  



 
 

 
Fig. S3. Description of the observer model of time interval discrimination. The 
observer model makes a noisy measurement of the sample interval, ts, denoted !" . 
The measurement noise has a zero-mean Gaussian distribution and its standard 
deviation (σ) scales with ts with constant of proportionality, wm (σ=wmts). The model 
determines the intended action, 	  !   based on rule !   (! = !#  or ! = !#  ) and !"  relative 
to an internal criterion (!"  ). When ! = !#  and !" > !$  , !  , is an antisaccade (Anti), and 
when ! = !#   and !" < !$  , !  , is a prosaccade (Pro). For ! = !#  , these response 
contingencies are reversed. The model also allows for a percentage of ‘lapse’ trials 
(Γ"  ), in which !   is randomly assigned to Pro or Anti (shown as !"?  ). The model’s 
action, A usually follows from !  , but it also allows for a percentage of additional 
lapses parametrized by Γ"#$%   in which ! = #$%   despite ! = Anti   due to a failure to 
inhibit the prepotent prosaccade response. In sum, the model has 4 parameters 
(Ψ" = {%&, (), Γ+, Γ,-+.}  ) to capture the probability of antisaccades as a function of ts 
and !  . The two psychometric functions on the right are examples of the model’s 
behavior for the two rules shown in terms of proportion of antisaccades (Pr(Anti)) 
as a function of the discriminant interval, td. 



 
 

 

Fig. S4. Alternative models for switching behavior. (A) Probabilistic switch model. This 
model implements a variant of the win-stay lose-switch strategy in which the animal 
switches the rule with different fixed probabilities (p and q) depending on trial outcome 
(Rw: rewarded trial, Er: error trial). (B) Delayed switch model. This model switches after 
an error only after a certain number of trial since the last successful switch. The model 
emulates an observer that exploits knowledge about the block-structure in the experiment. 
(C) Confidence-based switch model. This model computes a graded variable, !" , whose 
value is determined by the outcome (Rw/Er) and difficulty (indexed by !" ) of preceding 
trials. !"  is reset to zero after each trial with positive outcome, and is incremented by a 
sample of Gaussian distribution after error trials. The mean and standard deviation of the 
distribution (µΧΣ and σΧΣ) are set so that the model’s behavior approximates the behavior 
of an ideal observer (see Methods). When the updated !"  breaches a threshold, θ, the 
model switches its belief about the rule (! ). The model also uses a perseveration factor 
(α) to account for the deviation of each animal’s behavior from optimality (not shown in 
C but see Methods). Since µΧΣ was determined by the ideal observer, the behavior of this 
stage of the model was fully explained by two parameters (Ψ" = {%&', )} ). (D) Switch 
probability (Pr(sw)) based on simulations of three models. Each model was constructed 
such that it matched as closely as possible to each animal’s subjective psychometric 
function. The data from the probabilistic switch model was generated assuming no switch 
after rewarded trials and 50% switch after error trials irrespective of confidence. The data 
for the delay switch model was generated by assuming that no switch for the first 10 trials 
(consistent with the experimentally imposed hazard) after each successful switch, and 
50% switch for each error trial afterwards. The data for the confidence-based switch 
model are the same as those shown in the main manuscript. For each model, the results 
are shown for 1-back error (1B-Er; solid) and 2-back error (2B-Er; dashed) conditions. 
(E) Percentage error as a function of the discriminant interval, td, for each of the three 
models with the same specifications as in D. The Confidence-based switch model has the 
lowest probability of error in comparison to the the other two models.  



 
 

 

Fig. S5. Cross-validation, identification and lesion studies of the confidence-based belief 
update model. (A) Full CBM model with two parameters α and σXΣ. (B) Validation of the 
full CBM model. Fit of CBM (line) to switch behavior of two monkeys (symbols) in the 
same format as Fig. 1H. The model fits were cross-validated and repeated 10 times for 
random train and validation set. (C) Model identifiability. Fits of CBM to data generated 
from CBM with random choices of α and σXΣ. Inset: Difference between fitted and actual 
value across simulations. There is not significant difference between the fit and true 
values (P > 0.05). (D) Altered CBM in which the standard deviation (instead of variance) 
of noise increases with consecutive trials. The altered component (the one that differs 
from the full CBM) is highlighted by the shaded box. (E) Same as panel B for alternate 
model in D. (F) Comparison of the full and alternate CBM by using RMSE across 10 
cross-validated fits to behavioral data (error bar: SEM). (G) Altered CBM in which α is 
set to 1 (no perseverance) while σXΣ is fitted to behavior. (H,I) Same as E,F for the altered 
CBM in G. (J-L) Same as panels (G-I) for an altered CBM in which σXΣ is set to 0.5 
(instead of being inferred from the ideal observer) while α is fit. 



 
 

 

Fig. S6. Retrospective and prospective computations in DMFC and ACC during ITI, 
separately for the two animals. Results are shown in the same format as in Fig. 3A,B, 
separately for the two animals. 



 
 

 

Fig. S7. No effect of DMFC microstimulation on switch probability. The ordinate shows 
average switch probability (Pr(Sw)) across all sample intervals after 1-back error trials 
separately for trials when DMFC was and was not stimulated. There was no significant 
change in Pr(Sw) in the inferred or instructed experiments as a result of DMFC 
microstimulation (n.s.: P > 0.05). For the instructed experiment, Pr(Sw) is only shown for 
trials where the subjective switch was not cued.  



 
 

 

Fig. S8. Modulation of ACC activity due to DMFC microstimulation shown for the two 
animals separately. Results are shown in the same format as Fig. 3D. We examine the 
statistical significance of the stimulation modulation index in the inferred and instructed 
experiments independently. In each case, we compared the distribution of firing rates in 
the stimulated trials to a null distribution created by random labeling of trials as 
stimulated and unstimulated. We used a shuffling procedure to avoid making arbitrary 
assumptions about the sampling distributions. In the inferred experiment, DMFC 
microstimulation significantly increased the stimulation modulation index in ACC within 
150-300 ms relative to feedback (Monkey K: mean=0.091, P<0.001; Monkey I: 
mean=0.102, P<0.01;). In contrast, there was no significant change in ACC activity in the 
same window after DMFC microstimulation in the instructed experiment (Wilcoxon rank 
sum test, P>0.05). Since the results for the instructed experiment were not significant, we 
did not perform a direct statistical comparison of the inferred and instructed experiments. 
Although the results for both animals were statistically significant, we wish to highlight 
the difference between the two animals as this difference may provide stronger support 
for our hypothesis. The animal for which the effect of stimulation in the instructed task 
was stronger (“monkey I”), was less flexible at alternating between the inferred and 
instructed tasks. This is evident from a careful examination of the behavior. In monkey I, 
who occasionally did not switch following an instructed switch (compare yellow traces in 
Fig. 1G), DMFC stimulation influenced ACC during the instructed experiment. In 
contrast, in monkey K who followed the rule instruction nearly perfectly (Fig. 1G), the 
DMFC-stimulation had nearly no effect on ACC in the instructed experiment. In other 
words, the stimulation effects, when considered in relation to each animal’s behavior, 
seem to suggest that when rule inference via feedback is at play, DMFC stimulation has a 
more prominent effect on ACC, which is consistent with our hypothesis.  



 
 

 

Fig. S9. Mixed representation of !"   and !"/$   at the level of individual neurons in ACC. 
The selectivity of each neuron to switch evidence and switch choice was measured using 
linear regression (see Methods). Colored dots represent neurons with significant 
selectivity (permutation test, 100 times, P < 0.01) to !"   (red) and !"/$   (blue) or both 
(green).  



 
 

 

Fig. S10. Sensitivity of ACC to switch evidence was robust to nuisance parameters. (A) 
After fitting the regression model to ACC (Fig. 4), we separated trials based on saccade 
direction (left versus right) and response type (prosaccade versus antisaccade) to 
characterize the extent to which the encoding of switch evidence (XΣ) was dependent on 
these nuisance variables. Results indicated that representation of XΣ in ACC was present 
for both saccade directions and both response types. All regression slopes were 
significantly larger than zero (P < 0.01). (B) Same as panel (A) for the switch choice 
selectivity (Xy/n). Results indicated that representation of switch choice in ACC was 
present for both saccade directions and both response types (P < 0.01). 



 
 

 

Fig. S11. Representations of switch evidence and switch choice in DMFC. Results are 
shown in the same format as in Fig. 4A,B, separately for the two animals. For the bottom 
panel, the slope of the regression line and the corresponding confidence intervals are 
reported. Regression slopes that were significantly different from zero are in bold.  



 
 

 

Fig. S12. Representations of switch evidence and switch choice in ACC. Results are 
shown in the same format as in Fig. 4A,B, separately for the two animals. For the bottom 
panel, the slope of the regression line and the corresponding confidence intervals are 
reported (slope [confidence interval]). Regression slopes that were significantly different 
from zero are in bold. Note that in ACC, selectivity to switch is largely independent of XΣ 
(bottom row, second and fourth panels from left), and that neural responses strongly 
predict animals’ switch behavior in the next trial (Table below shows the baseline of the 
regression line as a function of Xy/n for the two animals). These results support our 
hypothesis that the decision to switch (i.e., threshold crossing) is likely made in ACC. 

 

 Xy/n 
(Sw) 

Sensitivity to Xy/n 
b0 [CI] 

Monkey K Yes 
No 

2.408, [1.977, 2.840] 
0.707, [0.514, 0.900] 

Monkey I Yes 
No 

1.325, [0.993, 1.657] 
0.788, [0.627, 0.950] 

* CI: 95% Confidence interval. Significant estimates (P < 0.01) are in bold. 
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Fig. S13. The effect of ACC microstimulation on switch probability of the two animals 
separately. The effect of ACC microstimulation (red) compared to stimulation (black) is 
shown as a function of td in the preceding trial for monkey K (A) and monkey I (B). 
Stimulation was performed after a randomly selected 50% of 1-back error trials. The lines 
represent the fit of the confidence-based model (see Methods) to each animal for each 
condition.  



 
 

 

Fig. S14. Coronal section containing ACC from the structural MRI scan of the two 
animals. Magenta shows the recording site in ACC (AG: anterior to the genu of arcuate 
sulcus). 



Parameter 
Inferred rule experiment Instructed rule experiment 

Monkey K Monkey I Monkey K Monkey I 

0.0581 0.0042 0.1024 0.0107 0.0596 0.0043 0.1083 0.0093 

(ms) 850.6 129.7 (C1) 
846.8 129.1 (C2) 

853.3 164.2 (C1) 
 846.0 162.8 (C2) 

848.4 129.4 (C1) 
856.0 130.5 (C2) 

856.6 164.8 (C1) 
 838.7 161.4 (C2) 

0.0084 0.0013 0.0108 0.0021 0.0080 0.0012 0.0095 0.0018 

0.0122 0.0019 0.0150 0.0029 0.0096 0.0015 0.0240 0.0046 

Table S1. Model parameters for the psychometric functions (M SEM). Since the 
responses were asymmetric (prosaccade versus antisaccade), we fit the  for the two rules 
(C1 and C2) separately. However, results indicated that there was not significant 
difference in  between the two rules (P > 0.05). There was no significant difference 
between fitted model parameters in inferred and instructed rule experiments (P > 0.05). 



Parameters Monkey K Monkey I 

0.72 0.03 0.44 0.07 

1.56 0.30 1.09 0.11 

Table. S2. Model parameters for switch probability (M SEM) 



Monkey K Monkey I 

Area DMFC ACC DMFC ACC 

Stereotactic coordinates ML 2-6mm 
AG 0-6 mm 

ML 2-5mm 
AG 0-8 mm 

ML 2-6mm 
AG 0-7 mm 

ML 2-5mm 
AG 0-8 mm 

Recording sessions/trials 18/32148 16/27463 14/18008 17/24672 

Stimulation sessions/trials 4/5738 4/6362 6/8685 8/10062 

Table S3. DMFC/ACC electrophysiology. ML: mediolateral relative to midline; AG: 
Anterior-posterior relative to the genu of arcuate sulcus. DMFC stimulation pertains to 
experiments in which we simultaneously recorded from ACC. Fig. S14 shows a coronal 
section of the two animals’ frontal cortex containing a sample recording site in ACC.  
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