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Cortical information flow during
flexible sensorimotor decisions
Markus Siegel,1,2* Timothy J. Buschman,2,3 Earl K. Miller2

During flexible behavior, multiple brain regions encode sensory inputs, the current task,
and choices. It remains unclear how these signals evolve. We simultaneously recorded
neuronal activity from six cortical regions [middle temporal area (MT), visual area four
(V4), inferior temporal cortex (IT), lateral intraparietal area (LIP), prefrontal cortex (PFC),
and frontal eye fields (FEF)] of monkeys reporting the color or motion of stimuli. After a
transient bottom-up sweep, there was a top-down flow of sustained task information from
frontoparietal to visual cortex. Sensory information flowed from visual to parietal and
prefrontal cortex. Choice signals developed simultaneously in frontoparietal regions and
travelled to FEF and sensory cortex. This suggests that flexible sensorimotor choices
emerge in a frontoparietal network from the integration of opposite flows of sensory and
task information.

O
ur reactions are not always the same to
the same sensory input. Depending on
context, we can map the same input onto
different actions. This involves a distrib-
uted network of brain regions. During

visuomotor decisions, choice predictive activ-
ity has been found in frontoparietal regions,
including the lateral intraparietal area (LIP)

(1–4), prefrontal cortex (PFC) (1, 5–9), frontal eye
fields (FEF) (7), and motor and sensory cortex
(10–13). However, it remains unclear how choice
signals evolve. Do they flow bottom-up, flow
top-down, or evolve concurrently across brain
regions? Do choice signals in sensory regions
reflect their causal effect on the decisions or
feedback from decision stages (12)? Similarly,

little is known about the flow of task signals.
Neuronal activity encodes task rules in prefrontal
(6, 8, 14, 15), parietal (2), and visual (16) cortices.
Task-dependent attention modulates neuronal
activity throughout sensory cortices (17–19). It
remains unknown how task signals evolve across
these regions.
We trained twomonkeys ona flexible visuomotor

task (Fig. 1 and materials and methods). They
categorized either the color (red versus green) or
the direction (up versus down) of a colored visual
motion stimulus, reporting it with a left or right
saccade (Fig. 1A). A visual cue instructed animals
about the task (motion or color, Fig. 1C). Each
task was indicated by two different visual cues
to dissociate cue and task-related activity. Color
and motion spanned a broad range around the
category boundaries (yellow and horizontal) (Fig.
1B and fig. S1). Both monkeys were proficient at
categorizing the cued feature (Fig. 1D) (94% and
89% correct for motion and color tasks, respec-
tively, excluding ambiguous trials with stimuli on
the category boundary).
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Fig. 1. Task, behavior, and neuronal information. (A)
Monkeys categorized the motion, direction, or color of
centrally presented, colored random dot stimuli. Before
stimulus onset, a central cue indicated which feature to
categorize. Monkeys indicated their choice with a
leftward or rightward saccade and held central fixation
throughout each trial until their response. Monkeys
were free to respond any time up to 3 s past stimulus
onset. (B) Stimuli systematically covered motion,
direction, and color space between opposite motion
directions (up and down) and opposite colors (redand
green; lab space). All stimuli were 100% coherent, iso-
speed, iso-luminant, and iso-saturated. (C) Two differ-
ent cue shapes cued each task. (D) Responses were
strongly modulated by motion and color for the motion
and color task, respectively. (E) Time courses of neu-
ronal information in spiking activity about five different
task variables averaged across all units and brain
regions. Information is measured as percent variance
of spiking explained by the variable of interest, inde-
pendent of all other variables (%EV). (F) Percentage of
units per region significantly encoding each type of
information (P < 0.05). Dashed lines indicate chance
level. (G) Average information encoded for each region
and type of information. (H) Schematic display of the
recorded brain regions. lPFC, lateral prefrontal cortex. (I) Time course of average motion, color, and choice information analyzed separately for motion and
color categorization tasks. Information is log-scaled to facilitate comparison between tasks. All error bars denote SEM.
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We recorded multi-unit activity (MUA) from
up to 108 electrodes simultaneously implanted
in six cortical regions acutely each day (Fig. 1H
and materials and methods): FEF (532), dorso-
lateral PFC (1020), LIP (807), IT (57), V4 (155),
and MT (123) (total of 2694 multi-units). For
each multi-unit, we quantified how neural activ-
ity encoded cue identity, task (motion versus
color), stimulus motion direction, stimulus color,
and motor choice. Information was quantified as
spiking variance across trials explained by each
factor. All five types of information were quan-
tified independently; for example, choice mea-
sured only information about the choice that was
not explained by cue, task, color, or motion (see
materials and methods). To rule out activity due
to the saccade itself, we included neuronal activ-
ity up to 5 ms before saccade onset.
Averaging across all units revealed temporal

dynamics of information (Fig. 1E). Cue informa-
tion peaked directly after cue onset and stayed
tonically elevated during cue presentation (latency
to reach half maximum: 74 T 1 ms SE). Task infor-
mation showed a bimodal dynamic. A transient
peak shortly after cue onset had a similar latency as
cue information (100 T 25 ms). This transient peak
was followed by a dip and later rise of sustained
task information (333 T 15 ms). In contrast to cue

information, task information increased during
stimulus presentation. Motion and color informa-
tion rose after stimulus onset with a significantly
shorter latency for color (98 T 2 ms) as compared
with motion (108 T 2 ms) information (P < 0.001).
Last, choice information rose (193 T 1 ms) before
the motor responses (270 ms T 3 ms) and signif-
icantly later than motion and color information
(both P < 0.0001).
We quantified for each type of information the

percentage of units with significant effects (Fig.
1F) and the average amount of information (Fig.
1G). We used the second half of the cue interval
(0.5 to 1 s) for cue and task information, the
interval from stimulus onset to the average re-
sponse latency (1 to 1.270 s) for motion and color
information, and the 200-ms interval preceding
the saccade for choice information. We found
significant encoding of each type of information
in each region (P < 0.05 for all regions and
information), but the regional profiles differed.
In accordance with shape selectivity of V4 and
IT, we found themost frequent and strongest cue
information there. Task selectivity was frequent
in all regions and strongest in V4 and IT. Motion
and color information were strongest in MT and
V4, respectively. Choice information was most
frequent and strongest in LIP, FEF, and PFC.

Task (motion versus color) had little effect on
strength and dynamics of motion, color, and
choice information (Fig. 1I) (20, 21). Therewas no
evidence that only task-relevant sensory infor-
mation was routed to frontoparietal stages and
no evidence that choice information was present
only in the task-relevant sensory region. In sum,
all types of information were encoded across the
entire visuomotor pathway, albeit with different
incidences and strength.
Next, we investigated the temporal dynamics

of information across regions. Cue information
flowed bottom-up, rising first in MT, followed by
LIP, V4, IT, FEF, and PFC (Fig. 2A). Most of the
pairwise comparisons revealed significant la-
tency differences between regions (Fig. 2B, P <
0.001). Task information showed very different
dynamics (Fig. 2C). There was a significant early
transient peak of task information (<150 ms) in
IT and V4 only, without a latency difference
between V4 and IT (P > 0.05). The latency of this
peak in IT (72 ms) was not different (P > 0.05)
from the latency of cue information in IT (also
72 ms). In V4, the transient peak of task infor-
mation was slightly later (96 ms) than cue in-
formation (73 ms) (P < 0.05). Directly after this
transient peak, task information was low in the
PFC, but then appeared there first and flowed
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Fig. 2. Dynamics of cue and task information.
(A) Each row displays for one brain region the
average time course of neuronal information
about cue identity. Left graphs display raw
information (% EV, same scale for all regions). To
support comparison across regions, right graphs
display time courses normalized by maximum
information for the interval of interest. The bottom
right graph shows an overlay of all regions’
information time courses. Cue and stimulus
onsets are at time = 0 s and time = 1 s,
respectively. (B) Comparison of cue information
latencies between regions. Latencies are quanti-
fied as the time to reach half maximum
information. Black dots in the right graph indicate
significant latency differences between regions.
(C) Time courses of task information across
regions. Same conventions as in (A). (D) Com-
parison of task information latencies between
regions. Latencies were separately analyzed for
the early transient peak around 100 ms and for
the later sustained increase of task information
after 200 ms. Early peak latencies were only
estimated for regions that showed a significant
effect (V4 and IT, P < 0.05). Same conventions as
in (B). All error bars denote SEM.0 1
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from PFC to LIP, MT, FEF, V4, and IT. Many
pairwise latency comparisons were significant
according to this pattern (Fig. 2D, P < 0.01). In
particular, task information rose earlier in PFC
and LIP than in FEF, V4, and IT (all P < 0.01). In
summary, IT and V4 first extracted task infor-
mation from the cues along with the encoding
of cue identity. After this transient burst, there
was a flow of sustained task information from
PFC and LIP across the entire sensorimotor
hierarchy.
Motion information rose first in MT, followed

by LIP, V4, IT, FEF, and PFC (Fig. 3A). Color
information rose first inMT, followed by V4, LIP,
FEF, IT, and PFC (Fig. 3C). Most pairwise com-
parisons revealed latency differences between
regions according to these sequences (Fig. 3, B
and D, P < 0.05). Furthermore, color information
appeared significantly earlier than motion infor-
mation in V4, MT, PFC, and FEF (all P < 0.001).
Analyzing motion and color tasks individu-
ally confirmed these results and showed that
neuronal latencies for motion and color in-
formation were almost identical for both tasks
(fig. S2).

Choice signals had a different dynamic. If spon-
taneous fluctuations of activity influenced ani-
mals’ choices, activity would predict the choice
even before presentation of the motion-color
stimulus. Indeed, for all regions except IT, sig-
nificant choice information preceded stimulus
onset (–0.5 to 1 s, P < 0.01). We ruled out that this
prestimulus choice information merely reflected
an effect of the previous trial (see materials and
methods). We next investigated the build-up of
choice information during decisions (Fig. 4).
Because this reflects the forthcoming behavioral
response, we time-locked analysis to the saccade.
Choice information increased in LIP and PFC
before FEF (Fig. 4B, P < 0.05), but there was no
latency difference between LIP and PFC. Choice
information increased later in V4 and MT than
in LIP and PFC (Fig. 4B, all P < 0.05), suggesting
feedback of choices from frontoparietal stages.
Analyzing choice information for motion and
color tasks individually confirmed the above re-
sults (fig. S3).
Our results provide insights into the neuronal

mechanisms underlying sensorimotor choices
(summarized in fig. S4). First, sensory (cue, mo-

tion, or color), cognitive (task), and behavioral
(choice) information was not confined to specific
cortical regions but instead broadly distributed.
This is incompatible with models of compart-
mentalized cortical function. Our results instead
suggest a graded functional specialization of cor-
tical regions with information shared between
regions (22). Second, sensory information flowed
feed-forward from sensory cortex. Third, task
information was first extracted in an early, tran-
sient burst in higher sensory cortex (V4 and IT).
This early transient may reflect the learned cue
associations, that is, the grouping of the two cues
for each task into one representation that is then
fed forward to PFC and LIP. After the early tran-
sient, sustained task information appeared first
in PFC and LIP and then spread to other regions.
Thus, task information may need to reach PFC
and LIP before being broadcast across the
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Fig. 3. Dynamics ofmotion and color information.Time courses and latencies of neuronal information
about (A and B) motion direction and (C and D) color of the categorized stimulus. Stimulus onset is at
time = 1 s. All other conventions as in Fig. 2.
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sensorimotor pathway (23). Fourth, choice pre-
dictive activity was present in sensory (V4 and
MT), frontoparietal (LIP and PFC), and premotor
(FEF) cortex before onset of the decision process.
This suggests a link between spontaneous fluc-
tuations of neuronal activity along the entire
sensorimotor pathway and subsequent decisions.
Fifth, choice signals first and simultaneously built
up in PFC and LIP and then followed in FEF. Our
findings accord with previous reports of ramping
choice predictive activity in LIP (3), PFC (7), and
FEF (7) but shed light on how choices aremade in
this network. Our results suggest that, although
sensory information reaches LIP and FEF before
PFC, the accumulation of sensory evidence occurs
first and jointly in LIP and PFC before decision
signals are relayed to FEF. Similar dynamics in
PFC and LIP could indicate that accumulation of
sensory evidence depends on their recurrent in-
teractions (24, 25). The delayed choice signals in
FEF may reflect the transformation of accumu-
lated evidence into a discrete choice (26). Sixth,
we found an increase of choice signals in LIP and
PFC before MT and V4. This is consistent with
feedback of choice signals from frontoparietal to
sensory cortex (12, 13, 27). This may support co-
operative computations between different hierar-
chical stages (28) and perceptual stability (27). In
sum, flexible sensorimotor decisions are not a
simple feed-forward process but result from com-
plex temporal dynamics, including feed-forward
and feedback interactions between frontal and
posterior cortex.
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COMETARY NUCLEI

The shape and structure of
cometary nuclei as a result of
low-velocity accretion
M. Jutzi1* and E. Asphaug2

Cometary nuclei imaged from flyby and rendezvous spacecraft show common evidence
of layered structures and bilobed shapes. But how and when these features formed is
much debated, with distinct implications for solar system formation, dynamics, and
geology. We show that these features could be a direct result of accretionary collisions,
based on three-dimensional impact simulations using realistic constitutive properties. We
identify two regimes of interest: layer-forming splats and mergers resulting in bilobed
shapes. For bodies with low tensile strength, our results can explain key morphologies of
cometary nuclei, as well as their low bulk densities. This advances the hypothesis that
nuclei formed by collisional coagulation—either out of cometesimals accreting in the early
solar system or, alternatively, out of comparable-sized debris clumps paired in the
aftermath of major collisions.

C
omets or their precursors formed in the
outer planets region, possibly millions of
years before planet formation. Cometary
nuclei may be fluffy condensates (1) or
rubble piles (2) assembled by hierarchical

accretion (3). Alternatively, they may be relics
of catastrophically disrupted progenitors (4).
Whether their interior structures preserve a
record of their original accumulation is much
debated (5, 6), as is their geophysical connec-
tion to the Kuiper belt objects (KBOs) that are
the likely source (7) of 1P/Halley and Jupiter
family comets (JFCs)—all of the comets visited by
spacecraft to date. Models of present-day dynam-
ical evolution (4) suggest that KBOs smaller than
~5 km in diameter have catastrophic disruption
lifetimes shorter than the age of the solar system,
in which case JFCs, even if delivered as intact
KBOs, are unlikely to be primordial. Others (8)
argue that KBOs larger than ~60 km grew by
efficient hierarchical accretion, whereas KBOs
smaller than ~4 km probably survived as pri-
mordial relics. Models based on gravitational
instability along with particle clumping in tur-

bulent flows predict that asteroids and comets
were born big (9, 10) and bypassed the primary
accretion phase of kilometer-sized bodies en-
tirely. If so, then JFCs are secondary collisional
relics from KBO-scale collisions (11, 12). Dynam-
ics is part of the story, chemistry another: In a
thermodynamic sense, JFCs are highly primitive.
The supervolatiles driving cometary activity and
disruption (6) require there to have been min-
imal processing by internal heating and differ-
entiation inside of a parent body and minimal
shock heating by energetic impacts.
Whatever their origin, cometary nuclei come

apart easily due to tides (13) and other gentle
stresses (14). They are weakly consolidated at
scales ~100 m or less (13). Estimated and mea-
sured bulk densities are half that of water ice,
requiring considerable porosity. These data and
other crucial information are obtained from as-
tronomical observations and theoretical inter-
pretations (5, 13), flyby missions (15, 16), and the
European Space Agency’s Rosetta rendezvous
mission to 67P/Churyumov-Gerasimenko (17).
Here we focus on the topographic and structur-
al expressions of cometary nuclei identified by
spacecraft.
There are two structural clues to cometary

origin. First, there is a clear record of layers (18, 19)
in 9P/Tempel 1 and 67P/C-G and possibly also in
19P/Borrelly and 81P/Wild 2. The layers of 67P

SCIENCE sciencemag.org 19 JUNE 2015 • VOL 348 ISSUE 6241 1355
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Materials and Methods 
 
Subjects and recordings 

Experiments were performed in two rhesus monkeys (one male, one female). All 
procedures followed the guidelines of the Massachusetts Institute of Technology 
Committee on Animal Care and the National Institutes of Health. Each monkey was 
implanted with a titanium head bolt to immobilize the head. Following the behavioral 
training, three titanium recording chambers were stereotactically implanted over frontal, 
parietal, and occipitotemporal cortices in the left hemisphere. Through these chambers, we 
simultaneously implanted Epoxy-coated tungsten electrodes in the lateral prefrontal cortex, 
frontal eye fields, lateral intraparietal cortex, inferotemporal cortex (TEO), visual area V4, 
and the middle temporal area (MT). Electrodes were lowered using custom-built microdrive 
assemblies that lowered electrodes in pairs or triplets from a single screw. These microdrive 
assemblies were designed for a high density of electrodes (1 mm spacing for pairs or 0.7 
mm triangular spacing for triples) to maximize the number of simultaneously recorded 
neural signals across the six regions of interest. The electrodes were acutely lowered 
through the intact dura at the beginning of every recording session. Electrodes were 
simultaneously advanced in pairs or triplets of electrodes with penetrations typically angled 
relative to the cortical surface.  We did not aim for a specific layer or fine-tune the 
positioning for specific cells.  Thus, recordings were from all cortical layers with no bias 
for a specific depth. Electrodes were allowed to settle for a minimum of 1 h before 
recording. After each recording session, electrodes were retracted and the microdrive 
assemblies were removed from the recording chambers.  

Neuronal activity was recorded across a maximum of 108 electrodes simultaneously. All 
signals were referenced to ground and recorded broad-band at 40 kHz. Offline, we 
extracted the continuous time-course of multi-unit spiking activity (MUA by filtering the 
broad-band signal between 500 Hz and 6 kHz (2nd-order zero-phase forward-reverse 
Butterworth filter), rectification, low-pass filtering at 250 Hz (2nd-order zero-phase 
forward-reverse Butterworth filter), and resampling at 1 kHz (29, 30).  

 

Behavioral Task  

Monkeys were trained on a flexible visuomotor decision making task. All stimuli were 
displayed on a color calibrated CRT monitor at 100 Hz vertical refresh rate. An infrared-
based eye-tracking system continuously monitored eye position at 240 Hz. Behavioral 
control of the behavioral task was handled by the Monkeylogic program 
(www.monkeylogic.net) (31, 32).  
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Each trial was initiated when the animal fixated on a point at the center of the screen. 
Fixation was required within 1.2° of visual angle of the fixation point. After a short fixation 
period (500 ms), the animal was presented with a visual task cue for 1000 ms. Cues were 
four different gray shapes (Fig. 1C) of about 1.5° visual angle diameter that were presented 
centrally on the fixation spot. Two of the four shapes cued the motion and color task, 
respectively (Fig. 1C). Using two cues for each task allowed us to dissociate neuronal 
information about the cue (the visual shape of the cue) and neuronal information about the 
task at hand (motion vs. color).  

After the cue period, the cue was switched off and a stimulus was presented centrally on the 
fixation spot. Stimuli were colored dynamic random dot patterns with 100% motion 
coherence presented centrally on the fixation spot (stimulus diameter : 3.2°; dot diameter: 
0.08°; number of dots: 400; dot speed: 1.67°/s or 10°/s for half of the recording sessions, 
respectively). To prevent learning of dot patterns, new stimuli were generated for each 
recording session. To rule out effects of stimulus variability on neuronal choice 
information, the same stimulus (dot pattern) was used for all trials per recording session. 
On each trial, all dots moved in the same direction and had the same color. There were 7 
possible stimulus colors and 7 possible motion directions. Colors and motion directions 
were chosen to optimize perceptual equidistance and equivalence within and between 
feature dimensions (Fig. S1). 4 motion directions spanned the range between upward (90º) 
and downward (-90º) motion through rightward motion (0º) in 60º steps (-90º, -30º, 30º, 
90º). In addition, 3 motion directions were placed on (0º) and near (-5º, 5º) the category 
boundary (right). Similarly, 4 colors spanned the range between red (90º) and green (-90º) 
through yellow (0º) in 60º steps (-90º, -30º, 30º, 90º). In addition, 3 colors were placed on 
(0º) and near (-5º, 5º) the category boundary (yellow). To optimize perceptual 
homogeneity, all colors were defined in the CIE L*a*b* space and had the same luminance 
and saturation.  

Depending on the task cued at the beginning of each trial, the animals categorized either the 
color (red vs. green) or motion direction (up vs. down) of the stimulus and reported their 
percept with a left or right saccade. The stimulus-response mapping for each task was fixed 
(Fig. 1C). Two saccade targets were displayed 6º to the left and right of the fixation spot 
throughout the trial. Animals had to respond with one direct saccade to one of these targets. 
Animals were free to respond at any time up to 1s after stimulus onset (Fig. 1A). For 
correct responses, animals were rewarded with apple juice. Animals were always rewarded 
for ambiguous trials with stimuli on the category boundary (yellow and right for color and 
motion task, respectively). These ambiguous trials were excluded for calculating the 
animals’ percent correct performance. 
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Recording locations  

We recorded multi-unit spiking activity (MUA) from a total of 2694 recording sites (1753 
and 941 for the two monkeys) in 48 recording sessions (31 and 17 for the two monkeys) 
across all six investigated regions: FEF: 532 sites, dlPFC: 1020 sites, LIP: 807 sites, IT: 57 
sites, V4: 155 sites, MT: 123 sites.  We recorded from up to 108 electrodes simultaneously 
per session (mean/STD: 56/17 electrodes). For each session, we recorded at least from three 
regions simultaneously. Across all sessions, all pairs of regions were at least once recorded 
simultaneously.  

Recordings were performed through three recording chambers that were stereotactically 
placed over frontal (FEF and PFC recordings), parietal (LIP recordings), and 
occipitotemporal (MT, V4 and IT recordings) cortex according to detailed 3D planning 
using custom MATLAB software and based on high-resolution structural MRIs of each 
animal. Frontal, parietal and occipitotemporal recording chambers were placed about 28 
mm anterior, 2 mm posterior, and 1 mm posterior to the interaural plane, respectively.  

The area definition of each recording site was based on the stereotactic recording location, 
on neuronal responses in a functional mapping task, and on microstimulation results. To 
this end, before recording the main task, we functionally characterized recording locations 
in several recording sessions during passive fixation with manually controlled visual 
stimuli and automatically flashed colored dynamic random dot patterns. Furthermore, on 
each recording session and in addition to the main task, the animals performed a functional 
mapping task. During central fixation, brief (150 ms) dynamic random dot patterns of 
different motion directions and colors were passively flashed on the fixation spot. Stimulus 
parameters were identical to the stimuli used during the main task. Motion directions and 
colors spanned the entire direction and hue space with 30º spacing. These stimuli were used 
to characterize the visual responsiveness and tuning of the recorded spiking activity. 
Following the flashed stimuli and a brief delay, a brief (100 ms) spot of light was flashed at 
one out of six different locations in the periphery. After a memory delay (750 ms), the 
fixation point was extinguished and the animal made a saccade to the remembered location 
of the light spot. This delayed saccade task was used to isolate LIP from surrounding 
regions, as it is the only region in the parietal cortex that shows spatially selective memory 
delay activity (33). Recording sites in the lateral bank of the intraparietal sulcus with 
significant spatially selective memory delay activity (p < 0.05) and/or significant (p < 0.05) 
visual responses to the random dot patterns in the functional mapping task were classified 
as LIP.   

We used microstimulation to demarcate FEF from dlPFC in the frontal recording chamber. 
An isolated pulse stimulator was used for electrical stimulation. Stimulation was delivered 
as a 200 ms train of biphasic pulses with a width 400 µs and an pulse frequency of 330 Hz. 
Stimulation was performed using the same electrodes as for recording. Stimulation current 
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was started at 150 µA and reduced to find the threshold at which an eye movement vector 
was elicited 50% of the time. Sites that had thresholds of stimulation amplitudes <50 µA 
were classified as FEF (34). Anterior sites were classified as lPFC.  

Occipitotemporal recording sites were classified as MT, V4 and TEO based on their 
anatomical location and if they showed significant (p < 0.05) visual responses to the 
random dot patterns in the functional mapping task. MT recordings sites were in the lower 
and medial bank of the posterior third of the superior temporal sulcus. V4 recording sites 
were posterior and ventral to MT sites on the angular gyrus. TEO recording sites were on 
the lateral convexity of the inferior temporal gyrus between the ascending part of the 
inferior occipital sulcus and the posterior middle temporal sulcus. 

 

Information encoded by neuronal spiking activity 

We quantified the information encoded by multi-unit spiking activity (MUA) about several 
task factors. Specifically, we used an analysis of variance (ANOVA) to quantify the 
percentage of MUA variance across trials that could be explained by the following task 
factors: the identity of the cue presented at the beginning of each trial, the task (motion vs. 
color categorization) to be performed, the motion direction of the categorized stimulus, the 
color of the categorized stimulus, and the animals’ motor choice (left vs. right saccade).  

To quantify these types of information we computed a 7-way ANOVA across trials. The 
first three factors of the ANOVA corresponded to the cue of each trial grouped into two 
levels according to all three possible pairwise pairings of the four task cues. The first factor 
corresponded to the cue pairing that reflected the assignment of the cues to the tasks (cross 
or flower (motion) vs. circle or triangle (color); Fig. 1C). The second and third factors 
corresponded to the two other cue pairings that did not reflect the cue-task assignment 
(cross or circle vs. flower or triangle; cross or triangle vs. flower or circle). This 
construction of these three factors ensured equal statistical properties between factors 
(balanced number of trials and levels) and fully capturing cue as well as task related spiking 
variance. Spiking activity that was selective for any or multiple of the four cues yielded 
non-zero explained variance for any of the three factors. In contrast, spiking activity that 
was selective for the task (motion vs. color) irrespective of the specific cue yielded non-
zero explained variance only for the first of the three factors. Thus, we computed cue 
information as the average explained variance of all first three factors, and task information 
as the variance explained by the first factor minus the average variance explained by the 
second and third factor. The fourth and fifth factor of the ANOVA were the motion 
direction (7 levels) and color (7 levels) of the stimulus on each trial, respectively. The sixth 
factor was the choice of the animal on each trial (2 levels, left vs. right). The seventh factor 
was the choice of the animal on the previous trial (2 levels, left vs. right). Including the 
choice on the previous trials as a task factor allowed us to quantify choice-predictive 
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information independent from any potential choice-sequence effects. In other words, we 
could quantify neuronal information predicting the upcoming choice independent of the last 
choice.  

We quantified neuronal information about each task factor independently. Importantly, the 
investigated task factors were not orthogonal. E.g., for the motion and color task, motion 
direction and color were highly correlated with choice, respectively (motion task: r2

motion x 

choice = 0.5, r2
color x choice = 0.002; color task: r2

motion x choice = 0.005, r2
color x choice = 0.5; all P < 

10-16 Spearman rank correlation). Thus, we computed an unbalanced ANOVA, that 
implicitly orthogonalized the different task factors. In other words, we quantified the 
spiking variance explained be each factor that could not be explained by any of the other 
factors. E.g., as choice information we measured only the information about the monkeys’ 
choice that was not explained by cue, task, color, motion or the previous choice.  

We quantified cue and task information across both tasks. We quantified motion, color and 
choice information separately for each task (motion vs. color categorization). We then 
pooled motion, color, and choice information across tasks for several analyses (Figs. 1F, 
1H, 2, 3, and 4). If motion and color information is computed across all trials per task, the 
amount of motion and color information has a different scaling for the motion and color 
tasks, because both factors have a different correlation with the factor choice depending on 
the tasks (see correlation statistics above). There is less motion and color information for 
the corresponding tasks respectively, because there is stronger correlation of these factors 
with the choice. To rule out this effect for the quantitative comparison of motion and color 
information between tasks (Fig. 1I), we computed the ANOVA analysis separately for trials 
from the four quadrants of the stimulus space (Fig. 1B) and both choices. Thus, choices are 
held constant for each group of trials. We then averaged motion and color information 
across quadrants and correct choices. To quantify the amount of significantly encoding 
units (Fig. 1G) we tested for a significant encoding across all trials and both tasks for all 
types of information.  

We estimated the amount of variance explained by each factor ω2 as 

!! = !!!"#$""%!!"#$%& − !" ∗!"#
!!!"#$% +!"#

 

, where !!!"#$""%!!"#$%& = !!"#$% ∗ (!!"#$% − !)!!!"#$%  is the sum of squares between 
G groups (i.e., levels), !!!"#$% = (!! − !)!!

!  is the total sum of squares across N trials, 
!" = ! − 1 are the degrees of freedom, and !"# = (!! − !!"#$%)!!

!  is the mean squared 
error. ω2 is an unbiased estimator of explained variance (35). In particular, and in contrast 
to the estimator η2, ω2 yields a zero-mean statistic under the Null-hypothesis of no 
explained variance independent of small sample size N. For each factor of the ANOVA, i.e. 
for each type of information, we assessed the statistical significance of explained variance 
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ω2 using a non-parametric permutation statistic. We compared the measured explained 
variance to an empirical null-distribution generated by randomly permuting the trial-
condition assignment (1000 permutations).  

To estimate the time-course of neuronal information, we performed a sliding-window 
ANOVA shifting a 50 ms window across the trial in 5 ms steps. For all latency estimates, 
the resulting information time-courses were smoothed with a 50 ms (full width at half 
maximum) Hanning window. To investigate information dynamics relative to cue and 
stimulus onset, trials were temporally aligned to stimulus onset (Figs. 2 and 3). To rule out 
confounds of neuronal information due to the motor response itself in this stimulus-locked 
analysis, for each trial, we only included neuronal activity up to 5 ms before saccade onset.  

To investigate the build-up of choice predictive information before the animals’ response, 
trials were temporally aligned to the choice (saccade onset) (Fig. 4). An important, but 
typically neglected, caveat for such response-locked analysis is that a difference in average 
response time between choices can induce spuriously measured choice information. This is 
because, for different response times between choices, stimulus-locked changes in neuronal 
activity (e.g., phasic responses to stimulus onset) do not temporally align between choices 
relative before the response. This temporal misalignment of stimulus-locked changes then 
leads to erroneously quantifying a difference in neuronal activity as predicting the 
upcoming choice. To rule out that this confounded choice information, for the response-
locked analysis, we equated reaction times between choices by stratification. For each 
stimulus condition (motion direction, color, and task), we randomly removed trials for both 
choices to match the response time distributions for both choices. Before stratification, both 
animals had significantly different reaction times between choices for many stimulus 
conditions (p < 0.05, for 31 and 32 out of 42 motion x color x task conditions). After 
stratification, no significant differences remained (p > 0.05, for both animals and all motion 
x color x task conditions). 

To quantify average amounts of information per region we averaged information time 
courses across the following time windows (Fig. 1 H and I). Cue and task information: 0.5 s 
– 1 s post cue (second half of the cue interval); motion and color information: 1.0 s – 1.27 s 
post cue (stimulus onset to average response latency); choice information: 0.2 s – 0 s pre 
response (200 ms before response) and -0.5 s – 1 s post cue (pre-stimulus interval).  

 

Information dynamics 

We estimated the latency of information as the time at which information reached half its 
maximum. In contrast to measures based on the time at which information reaches 
statistical significance, the employed measure is robust to differences in the strength of 
information or the amount of data. Latencies were not estimated if there was no significant 
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information (P > 0.05) in the interval of interest. This was the case for the transient peak of 
task information being absent in MT, LIP, PFC and FEF. Furthermore, latencies were not 
estimated if there was no significant increase (linear regression, P > 0.05) of information in 
the interval of interest. This was the case for pre-response choice information in IT.  

Choice information was already significant before stimulus onset in most regions. We ruled 
out that differences in such pre-stimulus choice information between regions lead to 
spurious latency differences. To this end, for each region, we subtracted the baseline choice 
information before estimating half maximum latencies (Fig. 4).  

For statistical comparisons of latencies between regions and types of information we 
estimated the standard error of latencies by bootstrap across units (100 resamples). We then 
assessed the significance of latency differences using T-statistics.  

All analysis code was custom written in Matlab and C.  

 

  



! 9 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. S1. Stimulus space. Stimuli covered motion direction and color spaces between 
opposite motion directions (up/down through right) and colors (red/green through yellow). 
All stimuli were 100% coherent, iso-luminant, and iso-saturated. The circular display 
illustrates the analogy between both stimulus features. (A) Employed motion directions. (B) 
Employed colors. Horizontal dashed lines represent the categorization boundaries. 
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Fig. S2. Dynamics of motion and color information during motion and color 
categorization tasks. (A) Time-courses of neuronal information about motion direction of 
the categorized stimulus. Panels display time-courses of information normalized by 
maximum information. (B) Comparison of motion information latencies between regions 
(half maximum information). Black dots in the bottom panels indicate significant latency 
differences between regions. (C) Time-courses of information about the color of the 
categorized stimulus across regions. Same conventions as in (A). (D) Comparison of color 
information latencies between regions. Same conventions as in (B). All error bars denote 
SEM. Dark and bright colors correspond to motion and color tasks, respectively. 
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Fig. S3. Dynamics of choice information for motion and color categorization tasks. (A) 
Response locked time-courses of neuronal information about the animas’ choice. Panels 
display information time-courses normalized by maximum information. (B) Comparison of 
stimulus-locked choice information latencies between regions (half maximum information). 
Black dots in the bottom panels indicate significant latency differences between regions. 
Latencies were not estimated for IT because there was no significant increase of 
information in IT in the investigated interval (linear regression, P > 0.05). All error bars 
denote SEM. Dark and bright colors correspond to motion and color task, respectively. 
There were no significant latency differences for the motion task. 
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Fig. S4. Schematic information flow during sensorimotor decisions. (A) All three types 
of sensory information (cue, motion, and color) flowed bottom-up from MT and V4, to 
LIP, IT, FEF and PFC. (B) Task information was first extracted in a transient burst in V4 
and IT, from where it fed forward to PFC and LIP. Then there was a top-down flow of 
sustained task information from PFC and LIP to FEF and visual cortex. (C) Choice signals 
simultaneously built up in PFC and LIP. Then choice signals flowed to FEF and visual 
cortex. 
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