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Working memory (WM) provides the stability necessary for high-level cognition. Influential theories typically assume that WM depends
on the persistence of stable neural representations, yet increasing evidence suggests that neural states are highly dynamic. Here we apply
multivariate pattern analysis to explore the population dynamics in primate lateral prefrontal cortex (PFC) during three variants of the
classic memory-guided saccade task (recorded in four animals). We observed the hallmark of dynamic population coding across key
phases of a working memory task: sensory processing, memory encoding, and response execution. Throughout both these dynamic
epochs and the memory delay period, however, the neural representational geometry remained stable. We identified two characteristics
that jointly explain these dynamics: (1) time-varying changes in the subpopulation of neurons coding for task variables (i.e., dynamic
subpopulations); and (2) time-varying selectivity within neurons (i.e., dynamic selectivity). These results indicate that even in a very
simple memory-guided saccade task, PFC neurons display complex dynamics to support stable representations for WM.
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Introduction
Working memory (WM) provides the functional backbone to
high-level flexible behavior. WM frees action from direct stimu-

lus dependency, allowing information to be integrated over
time for generating complex behaviors based on longer-term goals
and contextual contingencies. Prefrontal cortex (PFC) is crucial for
WM (Goldman-Rakic, 1987), yet the neurophysiological mecha-
nisms that maintain information in PFC circuitry remain poorly
understood.

According to persistent activity models of working mem-
ory, task-relevant information is maintained by keeping the corre-
sponding neural representations active over memory delay
periods through persistent neuronal firing (Curtis and D’Esposito,
2003; Funahashi, 2015; Riley and Constantinidis, 2016). A rich his-
tory of neurophysiological research has cataloged evidence for such
persistent delay-period activity in prefrontal cortex (Fuster and Al-
exander, 1971; Kubota and Niki, 1971; Compte et al., 2000).

However, several lines of evidence complicate the persistent ac-
tivity account (Barak and Tsodyks, 2014; Sreenivasan et al., 2014;
Stokes, 2015). Persistently elevated, memory-specific delay-period
activity turns out to be the exception for prefrontal cortex neu-
rons, rather than the rule (Brody et al., 2003). Furthermore, neu-
ral activity increases toward the end of a fixed-duration delay
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Significance Statement

Flexible, intelligent behavior requires the maintenance and manipulation of incoming information over various time spans. For short
time spans, this faculty is labeled “working memory” (WM). Dominant models propose that WM is maintained by stable, persistent
patterns of neural activity in prefrontal cortex (PFC). However, recent evidence suggests that neural activity in PFC is dynamic, even while
the contents of WM remain stably represented. Here, we explored the neural dynamics in PFC during a memory-guided saccade task. We
found evidence for dynamic population coding in various task epochs, despite striking stability in the neural representational geometry
of WM. Furthermore, we identified two distinct cellular mechanisms that contribute to dynamic population coding.
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period (Watanabe and Funahashi, 2007) and disappears alto-
gether during simultaneous performance of an attentional task
(Watanabe and Funahashi, 2014), thus highlighting the depen-
dence of persistent spiking activity on attention and/or response
expectation. Decoupling of sustained delay-period activity and
the cognitive persistence of WM has also been observed during
the performance of other WM tasks (Shafi et al., 2007; Barak et
al., 2010). These studies, together with recent human neuroim-
aging studies (Riggall and Postle, 2012), suggest that plural (i.e.,
nonpersistent activity-based) mechanisms for WM maintenance
can be observed in a wide variety of task contexts.

Accumulating neurophysiological evidence suggests an im-
portant role for dynamic population coding in the stable main-
tenance of WM in PFC (Meyers et al., 2008, 2012; Barak et al.,
2010; Stokes et al., 2013). These studies have demonstrated that
population-level activity patterns in PFC vary at the millisecond
timescale during delayed match-to-category tasks (Meyers et al.,
2008) and delayed paired-associate tasks (Stokes et al., 2013), and
that such a dynamic code can be flexibly acquired after training
on a given task (Meyers et al., 2012). These dynamics could reflect
time-varying processes associated with encoding WM into an
“activity-silent” neural state (Stokes, 2015). In particular, com-
putational models demonstrate that WM can be maintained in an
activity-silent form by relying on known mechanisms of short-
term synaptic plasticity (Hempel et al., 2000; Mongillo et al.,
2008; Sugase-Miyamoto et al., 2008; Lundqvist et al., 2016; Mi et
al., 2017).

It is as yet unclear whether dynamic coding previously ob-
served in PFC reflects task-specific cognitive transformations
(i.e., categorization in the study by Meyers et al., 2008; recall of
the associated pair in the study by Stokes et al., 2013) or forms a
more general hallmark of WM. Moreover, very little is currently
known of the underlying mechanisms of dynamic coding. It is
well established that cells within PFC have different onset laten-
cies (Riley et al., 2016), which could give rise to population-level
dynamics (Harvey et al., 2012). On the other hand, dynamic pop-
ulation coding could also be mediated by dynamically switching
selectivity within neurons (Sigala et al., 2008; Rigotti et al., 2013; Enel
et al., 2016). To explore these possibilities, we examine the nature of
PFC coding at the population level and single-cell level during the
performance of variants of the memory-guided saccade (MGS) task.
This task requires only a very simple transformation from stimulus
location to saccade motor plan. For this reason, it has been particu-
larly influential in the development of neural circuit models of WM
(Compte et al., 2000; Wang, 2001), especially in the view that persis-
tent delay activity is the primary substrate of WM maintenance
(Constantinidis and Wang, 2004; Riley and Constantinidis, 2016).

To summarize our core results, across all experiments, we
found consistent evidence that the PFC code for spatial loca-
tion in WM consists of highly dynamic phases corresponding
to cue processing and memory encoding, and a stable code
during the later part of the memory delay, while the represen-
tational geometry remains stable throughout these dynamics
and across all task epochs. This suggests that the mapping
between neural activity pattern and memory content is not
constant. We identified two mechanisms that underpin the
observed dynamic-coding profiles. First, different neural sub-
populations are involved in stimulus coding at different time
points (dynamic subpopulation recruitment). Second, indi-
vidual neurons have time-varying stimulus preferences (dy-
namic selectivity).

Materials and Methods
Subjects and apparatus
Experiment 1. Data from this experiment have been analyzed for different
research questions and reported previously (Watanabe and Funahashi,
2007). Two adult male macaques were used (monkey R: Macaca mulatta;
weight, 8.5 kg; age, 11 years; monkey Z: Macaca fuscata; weight, 5.6 kg;
age, 8 years). The monkeys were housed individually. The light/dark
cycle was 13 h/11 h (light from 8:00 A.M. to 9:00 P.M.). Before starting
the training of behavioral tasks, an eye coil and a stainless steel headpost
were implanted in an aseptic surgical procedure, which has been de-
scribed in detail previously (Watanabe et al., 2006). Following the com-
pletion of behavioral training, craniotomy was performed to make a
small hole (20 mm in diameter) on the lateral surface of the prefrontal
cortex. The position of the craniotomy was determined by structural MR
images taken at the National Institute of Physiological Sciences, Japan.
The stereotaxic coordinates of the center of the hole was 30.0 mm ante-
rior to the interaural line and 15.0 mm lateral to the midline. A stainless
steel recording chamber (20 mm in diameter; Narishige) was attached to
the hole. During training and recording sessions, the monkey was seated
in a primate chair in a dark sound-attenuated room with its head move-
ment restricted by a headpost. The monkey faced a 21 inch CRT monitor
(Flex Scan, Eizo) placed 40 cm away from the face of the monkey. Eye
movements were monitored by the magnetic search coil technique. Con-
trol of behavioral tasks and data collection were accomplished using a
TEMPO system (Reflective Computing).

Experiments 2 and 3. Data from these experiments have been analyzed
for different research questions and reported previously (Single Memory
Task and Dual Memory Task, respectively, from Watanabe and Fu-
nahashi, 2014, 2015). We used two Japanese monkeys that were different
from those used in Experiment 1 (monkey S: male; weight, 9.1 kg; age, 9
years; monkey A: female; weight, 5.5 kg; age, 6 years). The apparatus and
surgical procedures were the same as those in Experiment 1, except that a
lever (customized microswitch) was attached to the front wall of the
monkey chair.

All experimental protocols were approved by the Animal Research
Committee at the Graduate School of Human and Environmental Stud-
ies, Kyoto University, and were in full compliance with the guidelines of
the Primate Research Institute, Kyoto University.

Behavioral paradigm
Experiment 1. We used a standard MGS task (Funahashi et al., 1989) with
a fixed 3 s delay period. The temporal order of task events is shown in
Figure 1a. The monkeys were required to make a memory-guided sac-
cade after a 3 s delay to the location where a visual memory cue had been
presented. Each trial began with the appearance of a fixation point (FP; a
small white circle, 0.5° in visual angle) at the center of the monitor. After
the monkey looked at the FP for 1 s, a visual memory cue (white circle, 1°)
appeared for 500 ms (cue period) at one of four predetermined periph-
eral locations (0°, 90°, 180°, or 270° relative to the FP; 17° eccentricity).
The location of the memory cue was randomized across trials. The mon-
key was required to maintain fixation at the FP until the end of the 3 s
delay period. At the end of the delay period, the FP was extinguished and
monkeys were required to make a saccade within 400 ms (response pe-
riod) to the location where the memory cue had been presented. A drop
of juice was given as a reward for a correct saccade.

Experiment 2. We used a standard MGS task similar to that used in
Experiment 1. However, there are two important differences: the length
of the delay period was randomized across trials (0.5– 8.1 s), and the
location of memory cue presentation was selected from eight locations
equally spaced (between 0° and 315° directions relative to the FP) on an
imaginary circle (13° radius). Only trials with a memory delay duration
of at least 1 s were included in the analyses. The memory cue was on the
screen for 400 ms in this experiment.

Experiment 3. This experiment was performed during the same record-
ing sessions as in Experiment 2. The task used in this experiment con-
sisted of two simultaneously performed cognitive tasks: an attention task
and an MGS task (i.e., dual task). Monkeys were required to attend to one
of three placeholders in the visual hemifield contralateral to the record-
ing hemisphere and to keep a lever depressed. When the cued placeholder

6504 • J. Neurosci., July 5, 2017 • 37(27):6503– 6516 Spaak et al. • Stable and Dynamic Coding for Working Memory



changed color, the monkey released the lever (the attention task compo-
nent). During the delay period of this attention task, the MGS task was
initiated by the presentation of the memory cue. The location of memory
cue presentation was selected from five locations in the visual hemifield
contralateral to the recording hemisphere (including two locations along
the vertical meridian relative to the FP). For full details of the behavioral
tasks in Experiments 2 and 3, refer to the study by Watanabe and Fu-
nahashi (2014).

Data collection
In all three of the experiments, we recorded single-neuron activity from
the cortex within and surrounding the principal sulcus using glass-
coated elgiloy microelectrodes (0.5–2.0 M� at 1 kHz). Electrodes were
advanced by a hydraulic microdrive (MO-95, Narishige). Raw signals
were filtered (300 Hz to 10 kHz) and amplified (DAM80, WPI). Single-
neuron activity was isolated on-line using a window discriminator
(DIS-1, BAK Electronics) and monitored continuously by a loudspeaker
and two oscilloscopes (SS-7802, IWATSU). The monkeys performed the
MGS task while the electrode was advanced into the cortex. We searched
for well isolable neuronal activity that exhibited location selectivity in any
of the task epochs by audiovisual monitoring of acquired signals. If such
activity was not found, we recorded any well isolable neuronal activity
that was encountered during the search. Time stamps of action potentials
and behavioral events were stored in magnetic media by TEMPO for
off-line analyses. In Experiments 2 and 3 only, spike wave forms and raw
signals were digitized at 20 kHz (PowerLab 8/35, AD Instruments) and
stored using custom software (Chart, AD Instruments). In Experiment 1,
neural recording was performed predominantly from the dorsolateral
portion of the PFC, while in Experiments 2 and 3, approximately three-
fourths of recording sites were located in the dorsolateral PFC, with the
rest located in the more ventral subregion of the lateral PFC. To exclude
neurons recorded in the frontal eye field (FEF), intracortical microstimula-
tions (22 biphasic pulses, 0.2 ms duration at 333 Hz, �150 �A) were applied
through microelectrodes. When eye movements were elicited at�50�A, the
site was considered to be in the low-threshold FEF (Bruce et al., 1985), and
data obtained at these sites were excluded from the database.

Data selection and preprocessing
Neurophysiological data were analyzed for successfully completed trials
only. We excluded neurons that exhibited �500 spikes in a session from
the database. The number of trials analyzed per neuron was 48 � 13
(mean � SD) in Experiment 1, 99 � 21 in Experiment 2, and 131 � 36 in
Experiment 3. Binary spike trains were converted to spike rates by con-
volution of a Gaussian kernel with an SD of 50 ms. After the convolution,
data were downsampled to 100 Hz. All data analysis was implemented in
Python using the NumPy (van der Walt et al., 2011), SciPy (Jones et al.,
2001), Matplotlib (Hunter, 2007), and Scikit-learn (Pedregosa et al.,
2011) libraries, as well as custom-written code.

Statistical testing
Unless otherwise indicated, all statistical tests were performed using
cluster-based nonparametric permutation tests (Maris and Oostenveld,
2007). This standard testing approach leverages the inherent correlation
between consecutive time points (or time point pairs, in cross-temporal
analyses) to control for multiple comparisons. Because of this inherent
correlation, any true effect should be detected in several consecutive time
points (or time point pairs), while any false-positive result is just as likely
to show up in an isolated time point as it is in clusters of neighbors.
Therefore, the cluster-based permutation tests compare only the maxi-
mum observed cluster of effects to a randomization-based distribution of
such clusters under the null hypothesis, thus controlling for multiple
comparisons while retaining statistical sensitivity.

Specifically, test statistics (e.g., F value, correlation coefficient, or raw
difference) were computed for every time point or pair of time points.
This was done both for the observed data and for each of 1000 permuta-
tions of randomly shuffled memory cue locations (for selectivity analy-
sis) or time points (for analyses of significant changes through time). At
every time point or pair of time points, candidate clusters were identified by
comparing the observed test statistic to the 95th percentile of the permuta-
tion distribution. Neighboring time points (per pairs) exceeding this thresh-
old were grouped together as one cluster candidate. We computed the
maximum summed cluster test statistic for the observed data and compared
this to the distribution of the maximum summed cluster test statistic across

a b c

d

Figure 1. Overview of experimental paradigm and population-level pattern analyses. a, Classical MGS task. Monkeys were trained to retain fixation and then make a saccade to a cued location
after a fixed (Experiment 1) or variable (Experiment 2) delay. b, Possible locations of memory cues. Black squares represent possible locations in both Experiments 1 and 2; locations depicted with
gray squares were only present in Experiment 2. c, Approximate location of neural recordings for all experiments, shown on a left hemisphere of macaque brain: lateral PFC. d, Mean population firing
rate (gray) and location discriminability of task conditions (blue) as a function of time for Experiments 1 and 2. Bars underneath the axes indicate significant changes from baseline.
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the permutations. This comparison yields the p value of the test (i.e., if the
observed maximum summed cluster test statistic exceeds the 95th percentile
of the permutation distribution of the maximum summed cluster test statis-
tic, the difference in conditions is deemed to be significant).

Time-specific and cross-temporal discriminability analyses
Multivariate discriminability of WM contents within the PFC population
activity was assessed using the analysis described in the study by Stokes et
al. (2013), which lends itself well to the population of those non-
simultaneously recorded (i.e., “pseudopopulation”), of which this data-
set consists. We randomly assigned each trial to one of two independent
data splits, s � { A, B}. We then computed the mean activity x� over all
trials per split Ns, per neuron l, per condition k:

x� k,l
s �t� �

1

Ns
�

n
xk,l,n�t�,

where xk,l,n(t) is the firing rate in an individual trial. Then, for each indepen-
dent split and each neuron, we computed the pairwise differences in
activity between all possible pairs of conditions [a condition is a specific
memory cue location; there are 6 (Experiment 1), 28 (Experiment 2), or
10 (Experiment 3) condition pairs]:

�k1,k2,l
s �t� � x� k1,l

s �t� � x� k2,l
s �t�.

The Pearson correlation of these pairwise differences across neurons
between the two independent splits is a measure of the decodability of
specific condition pairs from the PFC population, as follows:

rk1,k2
�t� �

�t� � l

A
�t� � �A�t��� � l

B�t� � �B�t��
��t� � l

A
�t� � �A�t�� 2�t� � l

B
�t� � �B�t�� 2

,

where we dropped the k subscripts from � for clarity, and the overline
denotes taking the mean over neurons. This metric quantifies to what
extent the population-level pattern discriminating between two con-
ditions is consistent between two splits of the data. If there is no such
pattern, it is by definition not consistent between two splits, and thus the
metric will be near zero. We averaged these condition pair-specific cor-
relations using Fisher’s z-transformation to obtain a single time-resolved
discriminability measure, as follows:

r�t� � tanh��
a
�
b�a

arctanh�rka,kb
�t���.

The measure above is defined for each time point in a given task. It
indicates the discriminability of memory cue location conditions at any
particular time point (Fig. 1d) and is analogous to the ability of a classifier
trained at time point t1 from data split A to decode the memory cue
location condition in data split B at the same time point t1. It is straight-
forward to extend this definition to investigate cross-temporal decoding
as well. For this, we computed the correlation of the pairwise differences
at all time points t1 with all (same or other) time points t2, as follows:

rk1,k2
�t1, t2� �

�t� � l

A
�t1� � �A�t1��� � l

B�t2� � �B�t2��
��t� � l

A
�t1� � �A�t1�� 2�t� � l

B
�t2� � �B�t2�� 2

,

r�t1, t2� � tanh��
a
�
b�a

arctanh�rka,kb
�t1, t2���.

The result serves as a measure of the cross-temporal discriminability of WM
contents (memory cue location condition) from the PFC population activity
(Fig. 2). Although this matrix is not mathematically symmetric, it is concep-
tually symmetric because the two independent data splits are randomly
defined. Significance of discriminability was assessed by the cluster-based
permutation test with randomly shuffled memory cue location conditions.

To test whether there is significant dynamic coding at a particular time
point, we asked whether there was evidence for significant off-diagonal
reduction in discriminability in the matrix r(t1, t2) relative to the corre-
sponding on-diagonal values. Specifically, we computed the quantities
r(t1, t1) 	 r(t1, t2) and r(t2, t2) 	 r(t1, t2) and tested whether these values
were significantly greater than zero using the cluster-based permutation
test in which the null distribution was estimated by randomly shuffling
on-diagonal versus off-diagonal time points. To satisfy our operational-
ization of dynamic coding, both these tests had to yield a significant
effect. In other words, the test of dynamic coding is equivalent to the
following conjunction test:

dyna�t1, t2� � r�t1, t2� � r�t1� ∧ r�t1, t2� � r�t2�.

It should be emphasized that the discriminability is defined using two
independent data splits; therefore, a stronger on-diagonal than off-
diagonal decoding performance is nontrivial (if the two data splits were
nonindependent, this on-diagonal bias would be trivial).

For a convenient index of the amount of dynamic coding over time
(Fig. 2b; also see Fig. 5b), we collapsed the binary significance matrix
dyna(t1,t2) by averaging over the two time dimensions to yield what we
call the dynamicism index (di), as follows:

di�t� �
1

2T��t1


dyna�t1, t�� � �
t2


dyna�t, t2���,

where [x] denotes the Iverson bracket to yield 1 if x is true and 0 otherwise.

Analysis of single-neuron location selectivity
The influence of task conditions on single-neuron activity (Fig. 3) was
analyzed by a standard one-way ANOVA. To correct for multiple com-
parisons, the resultant F statistics were subjected to the cluster-based
permutation test described above. Note that the cluster-based permuta-
tion test conducted for each neuron controls for multiple comparisons
across time, but not across neurons. Therefore, when interpreting the
percentages of neurons showing significant selectivity (or significant
change in selectivity), one should keep in mind that, by chance, 5% of
neurons are expected to show significant selectivity (or significant change
in selectivity).

To examine whether the location selectivity of each neuron changed
over time, we computed the difference in single-neuron activity between
each time point t1 and each (same or different) time point t2 and sub-
jected this difference score to an ANOVA. We tested the resulting 2D
matrix of F statistics for significance using the cluster-based permutation
test, permuting time labels. A significant effect indicates that there was a
change in location selectivity from one time point to another, which is
analogous to an interaction effect between time and memory cue loca-
tion condition. Since such an interaction effect can be also observed in a
neuron that exhibits multiplicative gain in one time point relative to
another (i.e., a neuron that is more responsive to one particular location
at one time point than another but does not change its actual location
tuning), we additionally required neurons to have an absolute angular
difference in preferred location between t1 and t2 to be larger than one
condition bin spacing (four location experiment, 90°; eight location ex-
periment, 45°). Finally, the activity of the neuron was required to be
significantly modulated by the location condition (the main effect of
location in the ANOVA) at both t1 and t2. We imposed this requirement
to exclude neurons that showed a main effect of location at t1 but not at
t2 and vice versa, because these neurons simply lost their selectivity in one
of the two time points (since just a main effect at t1 and no effect at t2 also
satisfies the definition of an interaction).

We additionally computed a continuously varying estimate of the lo-
cation preference of a neuron (Fig. 3, color scale). In accordance with
previous work, one can view each data point as a vector in complex space,
where the angle is given by the cue location of the current trial, and the
magnitude is given by the firing rate of the neuron. The continuous
preferred location across trials is given by the angle of the circular mean,
as follows:
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prefl�t� � arg� 1

N�n xl,n�t� � ei�dirn�,

where xl,n(t) is the activity of neuron l in trial n at time t, dirn is the
(angular) direction of the memory cue on trial n, and arg denotes the
complex argument (Takeda and Funahashi, 2004; Zar, 2014). To prevent
a possible bias due to unequal trial numbers among conditions, we ran-
domly removed trials until trial counts were equal among conditions
before estimating this measure.

Simulation analysis: relative contributions of dynamic
subpopulations and dynamic selectivity
We used a simulation approach to quantify which of the two observed
phenomena, dynamic subpopulation recruitment or fluctuation of loca-
tion selectivity in individual neurons across time, is a driving force un-
derlying the dynamic coding we observed in various task epochs. The
intuitive approach would be to exclude all neurons that significantly
changed location selectivity across time (switching neurons) from the
dataset and simply recalculate the dynamics. However, we note that sim-
ply removing the switching cells does not control for differences in time-
specific selectivity associated with each cell. This could result in a bias
toward reduced dynamic coding due to a lower diagonal of the cross-
temporal generalization matrix.

To overcome this problem, we simulated two new neural populations
based on the observed dataset, one without removing switching neurons
and one with switching neurons removed. Specifically, we quantified the
selectivity profile for each observed neuron l at each time point by com-
puting the mean firing rate over trials per memory cue location condition
k, as follows:

�k,l�t� �
1

N�
N

xk,l,n�t�.

This measures the expected response of a neuron in each memory cue
location condition. Any changes across time in the condition-specific
response pattern (i.e., how �k,l varies as k varies) indicates a switch in
location selectivity. Note that, by design, this is a much looser definition
of selectivity switching than the statistical inference on what constitutes a
switch than we used before; here we just want to capture any possible
change in selectivity pattern.

To simulate the neural population with selectivity switches intact, we
simply draw trials from these sample means, as follows:

x̂k,l,n�t� � �k,l�t�,

which gives the simulated rate for trial n. Binary spike data were drawn
from a Poisson process using this underlying rate. It should be noted that
analyses on this simulated population with switches intact results in a
direct approximation of the actually observed data, with quantitative
variation due to the specific instantiation of the Poisson spiking model.

To simulate the population with switching selectivity removed, we set
the selectivity profile at all time points to be identical to the time point
tpeak at which the neuron had its maximum firing rate. Importantly, the
shape of the condition-specific pattern was fixed across time, but the
overall amplitude was not, to allow any dynamics due to time-varying
amplitude to remain intact:

x̂k,l,n�t� � �k,l�tpeak�
�k�k,l�t��k�k,l�tpeak�

.

Again, binary spike data were drawn from a Poisson process using this
underlying rate.

We computed full cross-temporal discrimination matrices based on
the two simulated populations (switches intact and switches removed)
and computed the difference in off-diagonal versus on-diagonal coding
as a function of time lag (Fig. 4). Time lags throughout the whole trial
were used. The gradient of these functions is an indication for the
amount of dynamic coding: a flat line indicates a fully static code and
a steep gradient indicates a strongly dynamic code. The change in
gradient for switches removed versus switches intact indicates the

contribution of switching neurons to the observed dynamics, with any
remaining dynamics attributable to consistent variation in neuronal onset
latencies.

Analysis of multitask single neuron selectivity
To investigate the modulation of the activity of individual neurons by
combinations and/or interactions of different task factors in Experiment 3
(see Fig. 6c), we performed a 3 � 5 ANOVA followed by cluster-corrected
permutation tests on the three resulting F statistics (main effects of attention
and WM factors, interaction effect). Analogous to the single-factor
ANOVA that was used for the memory task performed alone, we also
computed these statistics on the difference scores between all possible
time-point combinations to assess whether significant changes across
time could be identified.

Results
We recorded single-unit spiking activity from multiple neu-
rons (n 
 698/139/101 for Experiments 1/2/3) in the lateral
PFC (Fig. 1c) of four macaque monkeys, performing a total of
three experiments (two monkeys participated in Experiment
1; two monkeys participated in both Experiments 2 and 3). All
experiments used variants of the MGS task. Monkeys were
presented with a visual memory cue at one of four (Experi-
ment 1), eight (Experiment 2), or five (Experiment 3) possible
peripheral locations distributed uniformly on an invisible cir-
cle around a central fixation spot (Fig. 1a,b). They were
trained to keep the location of memory cue presentation in
mind for a fixed delay period (Experiment 1, 3 s) or a variable
delay period (Experiments 2 and 3, 0.5– 8.1 s; only delays �1 s
analyzed). After the termination of the delay period, the monkey
was prompted to make a saccade to the remembered location by
the disappearance of the fixation spot (go signal). For full exper-
imental details, refer to the Materials and Methods section and
our previous publications on the same datasets (Watanabe et al.,
2006; Watanabe and Funahashi, 2007, 2014). The majority of the
results presented in this report focus on Experiments 1 and 2,
with results for Experiment 3 presented at the end of the Results
section.

Temporal profile of working memory discriminability
In both Experiments 1 and 2, we observed significantly in-
creased population activity (averaged over memory cue loca-
tion conditions and neurons) during the presentation of the
memory cue (Fig. 1d, gray traces). For Experiment 1, this
elevation lasted throughout the (fixed-duration) delay period
and peaked during saccade execution (cluster-based permuta-
tion test; p � 0.001). For Experiment 2, the firing rate returned
to baseline shortly after the offset of the memory cue and
remained at baseline levels throughout the (variable-length)
delay period, only rising again during saccade execution ( p 

0.008). This difference in firing rate elevation between Experi-
ment 1 (fixed delay) and Experiment 2 (variable delay) is potentially
due to differences in the timing of the go signal. In Experiment 1, the
go signal was predictable and the monkey was able to anticipate its
occurrence, whereas the timing of the go signal was unpredictable in
Experiment 2.

To investigate the involvement of the PFC neural population
in the coding of WM contents, we used a variant of a multivariate
analysis method previously developed for population-level anal-
ysis of spiking activity data (Stokes et al., 2013). Briefly, we split
the observed trials into two independent halves and computed
the average firing rate per neuron, per condition, for each of these
halves. Then, we computed the differences in firing rate between
all possible condition pairs. The correlation of these pairwise
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differences across neurons between the two independent splits
provides a continuous, bounded, unbiased measure for how re-
liable the PFC population can discriminate between the task con-
ditions. This correlation is analogous to the performance of a
linear nearest-neighbor classifier trained on split A and tested on
split B (Haxby et al., 2014). For both Experiments 1 and 2, we
observed significantly elevated discriminability throughout the
cue and delay periods (Fig. 1d, blue traces; both p � 0.001). In
Experiment 2, this period of high discriminability coincides with
a time window where the firing rate is predominantly at baseline
levels, thus confirming the ability of PFC neurons to represent
WM-related information in the population-level response, de-
spite low overall levels of activity.

In Experiment 1, we additionally noted that the discrim-
inability reaches a local peak during the cue period, after
which it falls into a distinct lull. Hereafter, the discriminability
increases again throughout the delay period toward the time of
the saccadic response. This pattern of “ramping” delay-period
activity has previously been associated with the preparation
for expected response demands (Barak et al., 2010) and sug-
gests that delay-period activity can be flexibly modulated as a
function of current task relevance, as opposed to it being a
necessary precondition for maintenance per se.

PFC representation generalizes over time, yet shows clearly
dynamic epochs
The discriminability analysis shown in Figure 1d can be ex-
tended to analyze across-time discriminability. The cross-
temporal extension of the generalization test provides an
important index of the time specificity of discriminative pat-
terns (King and Dehaene, 2014). If the underlying representa-
tion is stationary, it should not matter whether a classifier is
trained on one particular time point during the coding epoch
and then tested on another. However, if the discriminative
representation is dynamic, then decoding should be optimal
only when comparing neural patterns between two time
points very close to each other.

To distinguish between these two scenarios, we correlated
the pattern of pairwise condition differences at each time
point t1 with the pattern at every (other or same) time point t2.
The diagonal of the resulting two-dimensional matrix pro-
vides a time course of decodable information and is simply the
time-specific discriminability that was depicted in Figure 1d.
Significant off-diagonal elevation in this matrix is evidence for
a neural population code that generalizes over time. We ob-
served significant cross-temporal generalization of the neural
population code in both Experiments 1 and 2 (both p � 0.001;
Fig. 2a, top row). In Experiment 1, following a dip in discrim-
inability at �0.5–1.0 s after cue offset, there was a clear “ramp-
up” of activity (and generalizability) toward the timing of
saccade execution, which occurred at �3.5 s relative to the
timing of cue offset.

To test for the presence of dynamic population coding, we
examined whether off-diagonal elements were significantly re-
duced with respect to the corresponding values along the diago-
nal. If so, we can conclude that the code for WM content changed
significantly over time.

We observed a significant off-diagonal reduction in cross-
temporal generalization and, hence, significant dynamic population
coding during and following the cue period in both Experiments 1
and 2 (Fig. 2a, bottom row). Additionally, we observed significant
dynamic coding during the response period of Experiment 1. The
delay period in both experiments is characterized by a “plateau”

of robust cross-temporal generalization, starting at �1 s after cue
onset for Experiment 1 and at �800 ms after cue onset for Exper-
iment 2. (Note that the data going into the response-locked anal-
ysis for Experiment 2 is temporally jittered with respect to cue
onset; thus only time-general decoding will show up in this plot.)
These epochs of dynamic coding are clearly identified when we
express the level of coding dynamics as a time-varying scalar
quantity, referred to as the dynamicism index (Fig. 2b; see Mate-
rials and Methods).

Factors contributing to dynamic coding: changing
neuronal selectivity
The evidence for dynamic coding reported above indicates a
changing neural code for WM content over time. Such a changing
neural code could indicate either that neurons change their loca-
tion preference over time (Sigala et al., 2008; Rigotti et al., 2013;
Enel et al., 2016) or, alternatively, that a different subpopulation
of neurons is involved in the coding of memory cue location at
different time points (yet with each neuron having a unique and
stable location preference;). We find evidence for both of these
phenomena.

We computed the magnitude of location selectivity of single
neurons by means of a cluster-corrected test based on F statistics
derived from one-way ANOVA. Then, we sorted all location-
selective neurons (324 of 698 neurons for Experiment 1) accord-
ing to the time of their peak F statistic, and computed the
preferred direction of each neuron (see Materials and Methods
for details). The results of this analysis for Experiment 1 are
shown in Figure 3b (Fig. 3a, example neuron). A clear separation
is visible between neurons predominantly active during the cue
period (presumably reflecting sensory processing and encoding
into WM; Rainer et al., 1999), those predominantly active during
the response period, and those predominantly active during the
delay period. When using a color code relative to the peak pre-
ferred direction of the neurons (Fig. 3b, right), any changes in
selectivity become apparent. Within the dynamic time period
corresponding to cue presentation (500 ms), a small number of
location-selective neurons [8 of 136 neurons (6%)] showed a
significant change in location selectivity (cluster-corrected signifi-
cant interaction between time and task condition). This proportion
barely exceeds the amount expected by chance, given 	
 0.05. After
analyzing the full trial, we found substantially more neurons that
significantly changed their preferred location between different
trial epochs. Of 324 location-selective neurons, 83 (26%) dis-
played significant time-varying location selectivity at any point in
the trial. Focusing only on switches within the delay interval itself,
we again find a negligible proportion of switches [10 of 189
switches (5%)], thus indicating that the switches in selectivity
observed in Experiment 1 are primarily due to switches between
different epochs of the task (in line with previous reports; Jun et
al., 2010).

For Experiment 2, a significant proportion of neurons [24 of 92
neurons (26%)] displayed a significant change in location selectivity
during cue presentation, while 37 of 100 neurons (37%) that exhib-
ited significant location selectivity displayed significant time-
varying selectivity on longer timescales following the cue (Fig.
3c). In Experiment 2, 13 of 73 neurons (18%) displayed signif-
icant changes in location selectivity within the delay period,
although it should be noted that these changes occurred pri-
marily during the early part (first 0.6 s) of the delay period (see
Fig. 6d, cumulative percentage over time). The higher propor-
tion of neurons that significantly changed location selectivity
over time (switching neurons) in Experiment 2 compared with
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Experiment 1 could be explained by task differences. Experi-
ment 2 involved a larger number of memory cue location
conditions (eight) than Experiment 1 (four). Thus, there are
more opportunities to detect a change in location preference
for neurons recorded during Experiment 2 than for those re-
corded during Experiment 1.

Factors contributing to dynamic coding: dynamic
onset cascade
Although individual neurons showed significantly changing lo-
cation selectivity both across different trial epochs and within the
cue period, the plots of location selectivity relative to the pre-
ferred direction of each individual neuron (Fig. 3b,c) also show

a

b

Figure 2. Cross-temporal discriminability analysis shows periods of dynamic and stable coding. a, The cross-generalization discriminability score is color coded (i.e., the correlation of pairwise
condition differences between all combinations of time points). White contours in the top plots indicate significant generalization; white contours in the lower plots indicate significant off-diagonal
reduction (i.e., significant dynamic coding). b, The dynamicism index provides an overview of the dynamic coding profile across time. Peaks in this plot are indicative of a strongly dynamic neural
code, while valleys here correspond to plateaus of robust cross-temporal generalization.
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variation in the peak engagement time of individual neurons.
Thus, as mentioned above, another factor that contributes to
dynamic coding could be that different neurons become active at
different points in time (Riley et al., 2016).

To test this formally, we computed the timing of the peak
firing rate and the peak location selectivity for every neuron in
two independent splits of the data (limiting ourselves to those
neurons that were active during the cue epoch). We found a
strong and significant correlation between these two indepen-
dent splits in both the peak firing times (Experiment 1: Spearman

 
 0.66; p 
 1.2 � 10	18; Experiment 2: 
 
 0.70; p 
 1.2 �
10	16) and the times of strongest location selectivity (Experi-
ment 1: 
 
 0.47; p 
 6.7 � 10	5; Experiment 2: 
 
 0.62; p 

1.5 � 10	9), suggesting that the order of neuronal firing and

selectivity is preserved from trial to trial and is therefore a genuine
property of the neural population.

We next sought to determine the relative contributions of
changes in location selectivity and differences in neuronal onset
latencies to population-level dynamic coding. We performed a
simulation analysis to explicitly quantify the relative contribution
of changes in neuronal selectivity to cross-temporal generaliza-
tion. First, we parameterized the changes in location selectivity in
the observed dataset and simulated trials drawn from that param-
eterization. We then performed the same analyses as before to
recover the reference level of time specificity in the simulated PFC
population. Next, we manually constrained each neuron to a
single selectivity throughout the trial. This removes qualitative,
but not quantitative, differences over time (i.e., any variation in

a

b

c

Figure 3. Single-neuron selectivity analysis reveals neurons with time-varying selectivity. a, Two example neurons, showing a changing location preference over time (left: Experiment 1; right:
Experiment 2). Time windows were determined by a cluster-based permutation test. Angles correspond to the cue location condition. Shaded area corresponds to the SEM. b, c, Color-coded location
preference over time for neurons that showed significant task-related activity modulation for at least one time point. Left panels show the absolute location preference. Right panels show the circular
difference between the preferred location of a neuron at any time point and that at the time point of peak selectivity. Neurons were sorted according to the time point of their peak location selectivity.
a, Experiment 1. b, Experiment 2 (left, pericue period; right, periresponse period).
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onset latencies is preserved; for details, see Materials and Meth-
ods). Results for this analysis are shown in Figure 4. The gradient
of the off-diagonal drop-off curve is a measure of dynamic cod-
ing. While it is clear that the presence of switching neurons con-
tributes to dynamic coding (i.e., the curves become less steep in
the absence of switches), the substantial remaining time depen-
dency can be attributed to systematic differences in neuronal
onset latencies.

Together, the observed time-varying location selectivity (Fig.
3) and the consistent heterogeneity of onset latencies for different
neurons lead us to conclude that it is likely a combination of
dynamic selectivity and dynamic subpopulation recruitment that
leads to the dynamic population code observed in PFC during
WM coding.

Representational space is stable despite a dynamic
population code
The analyses presented so far have focused on the characteris-
tics of the neuronal population code during WM encoding and
maintenance: we found a dynamic coding “ridge” during
memory encoding followed by a stable coding plateau charac-
terized by cross-temporal generalization during the later delay
period. Yet, despite these dynamics, the monkey somehow
maintains a stable representation in working memory, as is
evident from its successful performance of the task. Thus, in
the following section, we examine how the stability of the
mental representation of memory cue location is maintained
during population-level dynamics.

For this, we focus on Experiment 2, because eight different cue
locations (as opposed to four in Experiment 1) allow a detailed
view on the representational geometry of the recorded PFC pop-
ulation. The Euclidean distances in neural space (i.e., the space
spanned by the activity levels of all neurons) between all possible
location– condition pairs describe this representational geome-
try; Kriegeskorte et al., 2008; Kriegeskorte and Kievit, 2013). We
computed these distances for the following two time windows for
Experiment 2: the early cue period (0.05– 0.3 s) and the delay
period (1–1.4 s). The pairwise distance matrices are displayed in
Figure 5a. We find that, even though the underlying population
code is dynamic, the representational state is highly stable (Pear-

son correlation of distance matrices: r 
 0.91, p 
 4 � 10	11).
This is also borne out by the multidimensional scaling (MDS;
Borg and Groenen, 1997) plots based on these distance matrices
(Fig. 5c). During the cue period, the MDS plot almost exactly
mirrors the physical distribution of cue locations (Fig. 5d). Dur-
ing the delay period, the pattern is somewhat less clear cut but is
still strikingly consistent.

To investigate the potential changes in representational geom-
etry over time in more detail, we computed the condition–pair-
wise Euclidean distance matrix for each time point individually in
two independent splits of the data. Next, we correlated these
distance matrices across all time points. Results for this analysis
are shown in Figure 5b, where a clear plateau of cross-temporal
generalization of the pairwise condition distances can be ob-
served. Thus, even though the PFC code is, as demonstrated in
the previous sections, highly dynamic in nature, the representa-
tional geometry is remarkably stable throughout the trial.

Simultaneous performance of a competing task does not
abolish dynamic coding and reveals neurons with complex
mixed selectivity
The two monkeys participating in Experiment 2 also participated
in Experiment 3 (Watanabe and Funahashi, 2014). During this
experiment, monkeys were concurrently engaged in two tasks
(i.e., dual-task experiment). They were presented with a visual
cue for an attention task at the beginning of a trial, while they
were depressing a lever. After an attentional delay, the to-be-
attended stimulus changed its color, prompting the monkeys to
release this lever. The memory-guided saccade task was initiated
(i.e., memory cue presented) during the attentional delay. After
the dual-task demand was resolved (i.e., after lever release), the
task proceeded as the normal MGS task with a memory-guided
saccade after some delay (Fig. 6a).

Replicating our previous results, we observed evidence for
dynamic coding (followed by significant cross-temporal general-
ization) during and just after the presentation of the memory cue
in Experiment 3 (Fig. 6b).

The reported analyses for Experiments 1 and 2 focused on the
selectivity of the neural population for the WM condition. How-
ever, it is becoming increasingly clear that individual PFC neu-
rons often display a very high-dimensional selectivity (i.e., they
tend to respond to complex mixtures of various task parameters;
Asaad et al., 1998; Mansouri et al., 2006; Rigotti et al., 2013).
Therefore, any analysis of selectivity to a single task condition
might underestimate the amount of changing neuronal selectiv-
ity. The data for Experiment 3 allowed us to assess whether this
was the case for the present analyses.

Since the monkeys were involved in two tasks at the same
time, we could now analyze the contribution of both the atten-
tion and the memory factor to the neuronal code. We analyzed
the activity of each neuron using a two-way 3 � 5 ANOVA (cluster
corrected). Results for this analysis are shown in Figure 6c. The
different colors indicate significant effects of (combinations of)
the task factors and their interaction. Clearly visible is an onset
cascade of selectivity to the memory cue (red/magenta/yellow/
white) following cue onset (t 
 0 s). This is preceded by selectivity
only to the attentional task (blue). Interestingly, shortly following
cue onset, many neurons start to become tuned to combinations
of and/or interactions between the two task factors (any color but
pure red or blue). After analyzing the cumulative proportion of
neurons with significantly changing selectivity (Fig. 6d, green
curve), we find that this fraction is indeed higher when multiple
task factors can be taken into account. It should be noted that this

Figure 4. Relative contributions of changing selectivity and onset variability to dynamic
coding. Shown on the y-axis is the degree of discriminability (as in Fig. 2a) on off-diagonal time
points, which are expressed relative to the diagonal. The steepness in dropoff as a function of lag
is an indication of the extent of population-wise dynamic coding. This analysis was performed
on the whole trial and was not limited to any particular task epoch. Simulating a completely
fixed selectivity reduces the extent of dynamic coding. The substantial residual dynamics can be
attributed to neuronal onset variability.
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is a different type of switching selectivity than those between
different angles, as shown in Experiments 1 and 2. However, this
result underlines the idea that typical (low-dimensional) experi-
ments tend to underestimate the dimensionality of the PFC pop-
ulation code.

Discussion
We have provided evidence from three separate experiments for
the existence of dynamic population coding for WM contents in
the lateral PFC. Cue processing, memory encoding, and motor
execution were highly dynamic, while the later part of the mem-
ory delay interval was characterized by robust cross-temporal
generalization. Importantly, we observed this dynamic neural
code while subjects were performing a classic memory-guided
saccade task that has previously been influential in developing
models of persistent activity-mediated WM. We identified two
phenomena that could explain dynamic population coding: a
rapid neural cascade during cue processing; and changing neuro-
nal selectivity over longer timescales. The representational space
of the PFC population remained stable during periods of high
dynamic coding, indicating a flexible mapping between WM rep-
resentation and neural code.

Dynamic coding in working memory
The main result of this series of analyses is that population coding
during both the processing of WM cues, and the early part of the
subsequent maintenance period, is highly dynamic. Previous
studies have highlighted the importance of neural dynamics in
population coding (Romo et al., 1999; Brody et al., 2003; Mazor
and Laurent, 2005; Meyers et al., 2008; Crowe et al., 2010; Harvey
et al., 2012; Stokes et al., 2013; Astrand et al., 2015; Vergara et al.,

2016), which might constitute a general property of neural pro-
cessing (Buonomano and Maass, 2009; Buzsáki, 2010).

We here show dynamic coding during various epochs of a task
in which successful performance is classically associated with sta-
ble, sustained maintenance of task-related neuronal activity. To
date, the majority of evidence for dynamic coding has been found
during relatively complex tasks that presumably engage a number
of cognitive transformations (Meyers et al., 2008; Stokes et al.,
2013) and/or distinct cognitive epochs (Sigala et al., 2008; Barak
et al., 2010). Arguably, transforming stimulus identity into a
category-level representation (Meyers et al., 2008) or a cue
stimulus to a previously learned association (Stokes et al., 2013)
entails distinct cognitive episodes with distinct coding patterns
(Sigala et al., 2008). Cognitive transitions are minimal in the MGS
task studied here. The subject must simply retain the location of
the initial cue and generate the appropriate saccade at the end of
the trial. The simplicity of the MGS task has contributed to the
role of this paradigm in shaping current models of persistent
stable activity (Curtis and D’Esposito, 2003; Funahashi, 2015).

Nevertheless, using population-level analyses, we observe the
hallmark of dynamic coding during several epochs of such a sim-
ple cognitive task. Presumably, some of these dynamics could
reflect transformation from a stimulus to a saccade motor plan.
However, it is evident from Experiment 1 that motor preparation
is unlikely to fully explain the dynamic coding observed at the
beginning of the trial. Specifically, population coding during the
most dynamic 1 s at the start of the trial differs significantly from
the population code during the late delay and subsequent re-
sponse periods. Neural activity in the response period is most
likely to reflect motor execution, which is thus distinct from the

a b

c d

Figure 5. RSA reveals a stable representational geometry. a, Pairwise Euclidean distances in neural space between all pairs of location conditions (Experiment 2). These pairwise distances are
highly preserved between the cue interval (left) and the delay period (right). b, Cross-temporal correlation between distance matrices such as those shown in a, computed for all time points
individually (in two independent data splits). c, MDS plots for the distance matrices shown in a. Two dots with identical color correspond to the two splits of the data. d, Possible locations of memory
cues (color coded).

6512 • J. Neurosci., July 5, 2017 • 37(27):6503– 6516 Spaak et al. • Stable and Dynamic Coding for Working Memory



neural code observed early in the trial. We believe the most likely
explanation for the dynamics in the early part of the delay period
is the transformation from transient sensory input into a stable
working memory representation. This transformation will con-
sist in a high-energy dynamic trajectory through neural state
space, as predicted by a dynamic coding model of working mem-
ory (Stokes, 2015), while the WM representation itself should be
low energy and stationary (potentially because the primary sub-
strate is a “hidden” state of the network; e.g., synaptic connectiv-
ity). These predictions are in accordance with our results.
Critically, we now relate these population-level dynamics to un-
derlying single-cell dynamics.

Stable representational geometry
The parametric memory space used in the eight-location memory-
guided saccade task allowed us to go beyond the neural dynamics
of WM coding and explore the representational geometry of the
mental representation. This approach leverages the relative dis-
similarity in cue locations to characterize the geometry of the
representations in activity patterns. Representational similarity
analysis (RSA; Kriegeskorte and Kievit, 2013) abstracts over the
specific activity patterns to consider how different conditions
relate to one another in “representational space.” These tools

allow us to examine the relative configuration in state space re-
gardless of the specific coordinates, which is particularly impor-
tant for testing the representational structure in dynamic
population coding (Cichy et al., 2014).

The memory-guided saccade task was chosen for the current
analyses of dynamic coding specifically because of the inherent cog-
nitive stability (i.e., keep one location in mind and saccade to that
exact location) associated with this simple paradigm. The represen-
tational similarity analyses confirmed the expected stationarity—the
representational geometry was very stable, despite the rapid dynam-
ics in the underlying patterns of population activity. The PFC pop-
ulation represents the same information throughout the task but
uses different discriminative patterns over time.

Active versus silent (hidden) maintenance of WM
Mongillo and colleagues have proposed a synaptic model of
WM (Mongillo et al., 2008; Barak and Tsodyks, 2014) in which
memories are stored via short-term synaptic plasticity (which is
especially prominent in prefrontal cortex; Hempel et al., 2000)
without concomitantly elevated firing rates. Memories can be
effectively read out via uniform input that drives activity through
the memory-conditioned network to generate a memory-specific
output response. The important principle is that previous stim-

a

b c d

Figure 6. Dynamic coding is preserved during a more complex dual-task scenario. a, Task structure for Experiment 3. Monkeys were engaged in an attention task (red dot and circle) while the
working memory task was initiated (as before, with a location-specific cue; gray square). b, Cross-temporal generalization matrix for the memory cue period in Experiment 3. White contours indicate
significant off-diagonal reduction and thus dynamic coding. c, Results of a per-neuron (cluster-corrected) 3 � 5 ANOVA for the attention (three levels) and memory (five levels) conditions.
Significant effects are color coded using additive color mixing. Neurons with significant selectivity to at least one factor are sorted according to the time point of their peak selectivity to the memory
condition. Note the high fraction of neurons responsive to combinations of task factors. d, Cumulative proportion of neurons changing condition selectivity, as a function of time. The number of
neurons that show a significant change in condition selectivity up to any particular time point, expressed as a proportion of neurons that have any significant selectivity at all, up to that time point.
Note that this is a ratio between two cumulative quantities; thus, negative steps are possible. The dotted line indicates the percentage of neurons (5%) expected to satisfy the criterion for changing
selectivity by chance. The dual task is plotted in green, while the results of the two single-task experiments are plotted in blue and red, for comparison. A richer task structure reveals a more dynamic
view of single-neuron PFC selectivity.
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ulation history can be recovered from the hidden state of a net-
work (Nikolić et al., 2009; Wolff et al., 2015, 2017; Rose et al.,
2016), allowing for an energy-efficient model of short-term
memory that does not rely on continuous maintenance of stable
high-energy activity states (Stokes, 2015).

The MGS task is a classic paradigm used to study delay-period
activity (Funahashi et al., 1989; Goldman-Rakic, 1995) and has
been extremely influential in developing models of the persistent
maintenance of WM contents (Compte et al., 2000; Wang, 2001).
However, the singular nature of the task could have overempha-
sized the mnemonic role of persistent delay activity. Memory-
specificpersistentdelayactivitycouldreflect thefocusofattentionto the
most relevant item in WM (Lewis-Peacock et al., 2012; Riggall
and Postle, 2012), which could benefit efficient readout but
might not be strictly necessary for WM maintenance. This ac-
count would help to explain the ramping delay activity we ob-
served in Experiment 1 as well as previous reports indicating a
reactivation of WM-related firing patterns when the contents of
WM become necessary to guide oculomotor behavior (Watanabe
and Funahashi, 2014). It should also be noted that, under the
synaptic WM hypothesis, WM conditions might still be discrim-
inable from firing rates during memory delays, as even spontane-
ous “background” activity should be patterned according to the
current hidden state. Indeed, in the present study we find (cross-
temporally stable) discriminability of WM conditions even when
mean activity was not significantly different from baseline levels
(Experiment 2; Fig. 1d). Finally, it is also important to note that
persistent activity-based models do not necessarily predict large
overall changes in firing across the population; therefore, the
current results do not directly adjudicate between persistent ac-
tivity models and activity-silent working memory.

Dynamic selectivity, dynamic subpopulations, and the neural
null space
The dynamic code we report was partly explained by different
neurons having different time courses of contribution to task-
related activity. Importantly, these neuronal timing differences
were consistent between independent splits of the data, thus con-
firming the existence of specific cell latencies in PFC (Riley et al.,
2016), which is consistent with a neuronal involvement “cascade”
(Harvey et al., 2012). Furthermore, we found evidence for a signif-
icant proportion of neurons changing their selectivity throughout
the trial, particularly between different task epochs. This finding
further corroborates the dynamic nature of the PFC code and
provides a conceptual link between population-level and single-
unit analyses (Rigotti et al., 2013).

Neuronal dynamic selectivity in particular and, to a lesser
extent, the existence of dynamically active subpopulations have
important consequences for how a downstream region might
“read out” the representational content of a (PFC) population.
Although a static (i.e., time-constant weights throughout the en-
tire trial) linear classifier could in principle discriminate some
relevant information (as evidenced by the presence of cross-
temporal generalization across all task epochs; Fig. 2a), the
observed dynamics mean that this readout will be suboptimal.
Instead, the optimal readout will be different for different task
epochs. If a downstream region is interested in the information
only during one particular epoch, then it could use readout
weights optimized for those time points and thereby “tune out”
to the information at other time points. The only period of the
trial throughout which a static classifier should be able to decode
WM contents as efficiently as a dynamic one is the later part of the
delay period, because this is where we observed a clear plateau of

cross-temporal generalization of the neural code without any
dynamic ridges. This is in line with recent reports of a “mne-
monic subspace” constructed by decomposing time-averaged
neural activity that captures a large proportion of stimulus vari-
ance throughout WM delays (Murray et al., 2017).

In the motor domain, recent research shows that preparatory
cortical activity preceding a movement is likely largely confined
to the “null space” of the projection from cortex to muscle (Kauf-
man et al., 2014). That is, preparatory activity lies in those parts of
neural state space that lead to little or no activity in the down-
stream muscles. This occurs because the synaptic weights in the
corticomuscular projections effectively cancel out any contribu-
tions from preparatory neural patterns that are mainly found in
the delay period. While “blind” to preparatory activity, the down-
stream area can “see” activity meant to actually drive the muscles,
as this will fall outside the null space of the projection. It has been
shown that a similar mechanism is involved in corticocortical
connections (Kaufman et al., 2014).

An intriguing speculation is that the changing code over time
that we observed, along with projections with different null spaces,
might facilitate such selective readouts, while allowing computa-
tions within the PFC itself (e.g., the transformation of a sensory
code to a “prospective” code; Rainer et al., 1999) to take place
without unduly disturbing downstream regions (i.e., such activ-
ity would lie within the null space of all downstream projections).
It is worth noting that the concept of a neural projection null
space has also been instrumental in the development of a com-
putational model of constant representational content under-
pinned by a dynamic neural code (Druckmann and Chklovskii,
2012). Finally, it has been argued that neural dynamics along a
projectional null space tend to result in neurons showing mis-
matches of selectivity among different task epochs (Churchland
et al., 2010; Kaufman et al., 2014), which is in line with what we
report here.
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