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In most adult humans and macaques, inferotemporal cortex (IT) is 
functionally organized into domains that are specialized for different 
biologically important object categories, such as faces, objects, bodies 
and scenes. This organization must be a consequence of visual experi-
ence interacting with innate programs. There are two broad themes 
in learning theory that address the mechanisms of how representa-
tions arise in the brain: nativism, which stresses innate factors, and 
empiricism, which stresses the influence of experience. The reproduc-
ible location of different category-selective domains in humans and 
macaques1,2 suggests that some aspects of IT category organization 
must be innate. However, the effects of early experience on face recog-
nition3, changes in fMRI domains during development4,5, the existence 
of a visual word form area6, the effects of expertise7 and our recent 
finding that novel specializations appear in IT as a consequence of 
intensive early training8 indicate that experience must also be impor-
tant in the formation or refinement of category-selective domains in IT. 
What are the restrictions, or initial constraints, on the organization of 
IT, and how does experience manifest its effect on this organization?

Most educated humans exhibit a domain for written text6, and 
this domain is in approximately the same location in most people, 
irrespective of the language they read. It is unlikely that a domain 
dedicated to processing text evolved by natural selection, given how 
recently literacy has been prevalent, so there must be some other 
explanation for the stereotyped localization of this visual word form 
area. The cultural recycling theory proposes that this stereotyped 
localization is due to exaptation9 of cortical regions that without edu-
cation would normally process the kinds of line junctions that are also 
common in objects and scenes and may be critical for figure/ground 
segregation10. The connectionist model proposes that the stereo-
typed localization arises because processing text requires both visual  
and linguistic connectivity, and that connectivity is innate11. The 
constructivist theory proposes that the stereotyped localization is a 
consequence of the timing of experience or training interacting with  
a programmed developmental trajectory12. Lastly, the expertise theory 

proposes that the stereotyped location is a function of the level of skill 
or categorization required for reading13. We recently reported8 that 
macaque monkeys intensively trained as juveniles to recognize human 
writing symbols develop specialized regions selectively responsive to 
the trained symbols, as compared to visually similar but untrained 
symbols. This novel domain formation was observed in approximately 
the same location in each monkey trained as a juvenile, but was absent 
in monkeys trained identically as adults. Here we extend this model 
using three distinct symbol sets and varied training schedules, with 
the goal of disentangling the effects of expertise, function and order 
of learning on the localization of training-induced effects in IT. To our 
surprise, we discovered no evidence that any of these factors matters 
for the localization of the training-induced domains, leading us to 
explore other possible factors, including shape and eccentricity.

RESULTS
Effects of training on IT organization
Seven juvenile (1–5 years of age) male macaque monkeys were inten-
sively trained to discriminate 3 distinct sets of 26 shapes each (Fig. 1, 
top). The ‘Helvetica’ symbol set consisted of standard digits and let-
ters; the ‘Tetris’ set consisted of patterns made by filling 4 or 5 squares 
in a 3 × 3 grid; the cartoon face symbol set was derived from the 
19-parameter cartoon face set that we previously used to study face 
tuning in the middle face patch14. Each cartoon face symbol had one 
parameter set to one of the extreme values used in this previous study 
and the other 18 parameters set to the neutral value. The monkeys 
were trained using a touch screen mounted in their home cage to asso-
ciate each of the 26 shapes in each set with a particular reward value 
of 0 to 25 drops of liquid. In each trial, they were presented with two 
symbols, and they were rewarded with a number of drops correspond-
ing to the symbol on whichever side they touched first. They were 
rewarded no matter which side they chose (except for value zero), but 
they most often chose the side with the symbol representing the larger 
reward. The monkeys learned the symbols in a given set in increasing 
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Novel domain formation reveals proto-architecture  
in inferotemporal cortex
Krishna Srihasam, Justin L Vincent & Margaret S Livingstone
Primate inferotemporal cortex is subdivided into domains for biologically important categories, such as faces, bodies and scenes, 
as well as domains for culturally entrained categories, such as text or buildings. These domains are in stereotyped locations in 
most humans and monkeys. To ask what determines the locations of such domains, we intensively trained seven juvenile monkeys 
to recognize three distinct sets of shapes. After training, the monkeys developed regions that were selectively responsive to each 
trained set. The location of each specialization was similar across monkeys, despite differences in training order. This indicates 
that the location of training effects does not depend on function or expertise, but rather on some kind of proto-organization.  
We explore the possibility that this proto-organization is retinotopic or shape-based.
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order, until they reached criterion performance on all 26 symbols 
in the set. It took 6–8 months for them to learn a set, and they were 
given at least 1 further month of practice once they mastered that set. 
Different monkeys learned the Helvetica or the Tetris symbol set first. 
Supplementary Figure 1 shows the timeline for all testing and scan-
ning. Some monkeys were better than others at learning these symbols, 
but all three symbol sets were learned to approximately the same level 
of accuracy (Fig. 1; no significant differences between average accu-
racies with a two-tailed t-test: Helvetica versus Tetris, t(12) = 0.888,  
P = 0.392; cartoon face versus Tetris, t(12) = 0.825, P = 0.425; Helvetica 
versus cartoon face, t(12) = −0.074, P = 0.941). The order of learn-
ing did not significantly affect final performance (two-tailed t-test 
between first, second and third learned symbol set performance: first 
versus second, t(12) = 1.147, P = 0.273; third versus second, t(12) = 
1.29, P = 0.221; first versus third, t(12) = −0.295, P = 0.773).

We asked, first, whether learning different symbol sets would result 
in novel domain formation, as we previously found for juveniles learn-
ing the Helvetica symbol set8; second, whether the location of such 
training-induced changes would be the same for different symbol 
sets; and third, whether order of learning within the juvenile period 
would have any effect on location or size of such artificial domains, 
as predicted by constructivist theory12. To do this, we performed 
alert functional MRI on each monkey before and after learning each 
symbol set using a noninvasive helmet restraint system as described 
previously8. The alert monkeys sat comfortably in a sphinx position 
and passively viewed blocks of images. Blocks of the trained symbol 
set (omitting the three lowest value symbols of each set) were pre-
sented in alternation with blocks of visually similar but untrained 
shapes (Supplementary Fig. 2) as controls for the Helvetica and 
Tetris symbol sets and in alternation with monkey faces as controls 
for the cartoon face set. Before training, none of the monkeys showed 
any regions with significantly different responsiveness to any of the 
symbol sets, as contrasted with the appropriate controls (significance 
criterion P < 0.002; cluster size  31 voxels). After training with each 
symbol set, each monkey showed patches in IT that were significantly 
more responsive to the trained set than to its control set (Fig. 2 and 
Supplementary Figs. 3–10). The control and test stimuli did not 
result in differential activations in primary visual cortex (V1) (Fig. 2 
and ref. 8) either before or after training.

We found that, first, training with different symbol sets did reproduc-
ibly result in the appearance of selective responsiveness to the trained 
shapes as compared to control shapes in posterior IT (PIT) (Figs. 2 and 3  
and Supplementary Figs. 3–10). There was no significant relationship  
between the monkeys’ levels of performance and the size or strength of 
the training-induced selectivities (Fig. 1). Second, the training-induced  

activations by the Helvetica symbol set were on average localized to 
a similar region to that described in our previous study that used the 
Helvetica symbol set only8, except slightly more dorsal on average 
(compare Fig. 3c). In addition, we occasionally observed a second, 
smaller patch more anteriorly, in anterior or central IT (AIT and CIT, 
respectively; see Figs. 2a,b and 3), which we had not observed in our 
previous study, between the superior temporal sulcus (STS) and the 
anterior middle temporal sulcus. The new Tetris > control activations 
that appeared in PIT after training with the Tetris symbol set were 
usually located just ventromedially in each monkey to the Helvetica > 
control patch, centered along the occipitotemporal sulcus. In two mon-
keys there was also a small, more anterior Tetris patch in CIT or AIT. 
The larger PIT Tetris-selective region was in approximately the same 
location that a previous study reported to be scene selective15. Before 
cartoon face training, none of the monkeys showed any differential 
localization of cartoon face responsiveness compared to monkey face 
activations. But after cartoon face training, cartoon faces activated a 
patch just ventral to the monkey face activation patch. The cartoon face 
patch was dorsal to the Helvetica patch, between the STS and posterior 
middle temporal sulcus. All monkeys showed bilateral cartoon face 
patches and Tetris patches; two monkeys showed bilateral Helvetica 
patches, three monkeys showed significant Helvetica responses only 
in the right hemisphere and one monkey only in the left.

For each monkey, we defined Helvetica, Tetris and cartoon face 
ROIs using scan data obtained immediately after the end of the train-
ing epoch for that symbol set (using contrasts Helvetica > control, 
Tetris > control, and cartoon faces > monkey faces); the anterior, mid-
dle and posterior face patch ROIs were defined using the conjunction 
of the two contrasts faces > Helvetica and faces > Tetris on scans 
obtained immediately before cartoon face training. Using independent 
data sets, we calculated the average percentage signal change (normal-
ized to the V1 signal change for the same image set, to account for any 
differences in attention or viewing) in each ROI to each symbol set 
and its control before training and after all training was completed. We 
averaged these responses across hemispheres (except for the unilateral 
Helvetica regions) and across monkeys in each IT ROI (Fig. 2d). A 2 × 2  
ANOVA for trained set versus control × before versus after train-
ing was calculated (Online Methods, “ROI analysis”), and a robust 
interaction between stimulus (trained symbols versus control)  
and training (before versus after) was observed in all training- 
induced regions. All the training-induced patches were  
significantly more activated by their trained stimulus category 
than by controls after training, but none of the ROIs showed sig-
nificant differences between their preferred stimulus category  
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Figure 1 Symbol training. Top, the three symbol sets: Helvetica,  
Tetris, and cartoon face. Each symbol in each set represents, in order,  
0 to 25 drops of liquid reward. At the far right of each set is an image 
average of all the symbols. Bottom, percentage larger choices averaged 
over 1 month of daily testing for each monkey (horizontal axis) for each 
symbol set (indicated by color); 50% represents chance performance. 
Numerals 1–3 indicate the order in which the three symbol sets were 
learned by each monkey. To the right are shown the percentage larger 
choices s.e.m. for each symbol set averaged over all monkeys who 
learned each set, and the average percentage larger choices s.e.m.  
for the first, second and third learned sets. We found a negative 
correlation between the size of each symbol set patch and each  
monkey’s performance on that symbol set, but this correlation was  
not significant (Pearson’s linear correlation coefficient r = −0.383;  
P = 0.106). We found no correlation between the average significance 
value of a particular patch and the monkey’s performance (Pearson’s 
linear correlation coefficient r = 0.020; P = 0.937).
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and controls before training. Before training, there was no significant 
difference between monkey faces and cartoon faces in any of the face 
patches, but after training, there was a significantly smaller response 
to cartoon faces than to monkey faces in the anterior and middle face 
patches and a significantly larger response to cartoon faces than to 
monkey faces in the cartoon face patch. Though the changes (Fig. 2d) 
are complex, taken collectively, they indicate that extensive training 
can alter the selectivity of regions in IT.

Despite some variability (Fig. 2), the locations of the different 
training-induced patches were similar across monkeys (Fig. 3), irre-
spective of training order. The three training-induced patches in all 
the monkeys were distributed along the dorso-ventral axis of the 
inferotemporal gyrus, with the cartoon face patch usually lying just 
ventral to the lip of the STS and dorsal to the Helvetica patch, and 
the Helvetica patch dorsolateral to the Tetris patch, which usually lay 
along the ventral surface of the inferotemporal gyrus or even more 
medial, on its medial surface (Supplementary Figs. 3–10).

The localization is easier to see in a computationally flattened map 
(Fig. 3b), where it is clear that the patches are distributed systemati-
cally along the dorso-ventral extent of PIT. This can also be seen in the 
distribution of the centers of mass of each of the patches (Fig. 3c). The 
within-category distances in inflated spherical coordinates between 
patch centers were significantly smaller than the between-category dis-
tances for all three pairwise combinations of categories (Supplementary 
Table 1), indicating that the different training-induced patches were 
indeed in different locations. The location of the selective patch for each 

symbol set did not depend on the relative timing of training, but it did 
differ systematically between different symbol sets (Supplementary 
Table 2). By inspection (Fig. 3c), the centers of Helvetica patches in 
Helvetica-first trained monkeys shifted slightly dorsally (away from the 
Tetris location) after Tetris training, and the Tetris patch centers in the 
two Tetris-first trained monkeys moved slightly ventrally (away from 
the Helvetica location) after Helvetica training.

Exploration of other possible factors
Intensive training with different symbol sets thus resulted in the 
appearance of novel selectivities that mapped, on average, to differ-
ent dorso-ventral locations along PIT. We found no evidence for an 
effect of training order on the localization of these training-induced 
patches. Furthermore, the monkeys were on average equivalently good 
at recognizing the different symbol sets, so the differential localization 
cannot depend on amount of training, degree of expertise, shared 
function (value representation) or level of categorization. The location 
of these novel domains must therefore be a consequence of something 
unique to each set. The kinds of differences among these three sym-
bol sets that could account for this differential localization include 
shape, discriminability and resemblance to natural categories. The 
three symbol sets do have different shapes, in that it would be appar-
ent at a glance to which set any particular symbol belonged. The three 
symbol sets may be differentially discriminable, although the mon-
keys learned all three sets at about the same rate and to the same level  
of expertise; nevertheless, the spatial scale of what distinguishes  
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Figure 2 Effects of training on functional organization of IT. (a–c) Each panel shows overlaid activations from each monkey (collapsed across 
hemispheres; see Online Methods) aligned onto a lateral and a ventral view of a standard macaque brain46,47; the major landmarks of the superior 
temporal sulcus (STS) and V1 are indicated, along with axes (D, dorsal; V, ventral; A, anterior; P, posterior; L, lateral; M, medial). Each of the 
overlaid patches represents a region from a single monkey that was significantly more active to one set of images than to control blocks; the patches 
are transparent so the overlap among different monkeys can be seen, as indicated by the scale. Activations for individual monkeys are shown in 
Supplementary Figures 3–10. (a) Overlaid significant activations after training to Helvetica (blue) and Tetris (green) from monkeys who learned 
Helvetica before Tetris (B1, R2, G2 and G1). (b) Overlaid activations after training to Helvetica (blue) and Tetris (green) from the monkeys who learned 
Tetris before Helvetica (B2 and Y1). (c) Overlaid activations to monkey faces > Tetris and monkey faces > Helvetica (red) before cartoon face training 
and to cartoon faces > monkey faces (cyan) after cartoon face training from all monkeys who learned cartoon faces (B1, B2, R2, G2, Y1 and Y2).  
(d) Pre- versus post-training responsiveness. Average percentage signal change to each image category before and after training was normalized to  
the response in V1 to that same image set from the same data. Monkey face responsiveness was calculated before and after cartoon face training.  
Mean  s.e.m. of values averaged over monkeys; *P < 0.05; **P < 0.01. (e) Average percentage signal change in opercular V1 to the same image sets, 
from the same scan sessions, normalized to the maximum V1 activation among image categories (V1 max).
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elements of each set may differ. Certainly cartoon faces resemble the 
natural category of faces, but it is not immediately obvious what natural  
category Helvetica or Tetris symbols might correspond to. Any of these 
three factors could affect novel domain localization in IT because  
category, eccentricity and shape have all be reported to be systemati-
cally organized across IT15–22. We will explore each in turn.

First, could a pre-existing category organization explain the differen-
tial localization of the trained symbol sets? Macaque IT is organized by 
category in that faces are represented in distinct patches in and along 
the lower lip of the STS2,22,23; objects are represented in a series of 
patches just ventral to those representing faces8,16, and places or scenes 
more ventral still, on the inferior surface of IT15,24. After training with 
cartoon faces, responsiveness of the original face patches to cartoon 
faces relative to monkey faces was reduced, and responsiveness of the 
new cartoon face patch was increased to cartoon faces relative to mon-
key faces (Fig. 2d). If a pre-existing category organization drives the 
localization of training-induced domains, it is not clear why training 
should shift cartoon face responsiveness from the normal face patch 
to a more ventral location. Furthermore it is not clear to what natu-
ral category Tetris and Helvetica should belong. Thus, a pre-existing  
category organization does not account in any obvious way for the 
differential localization of these trained domains.

We then considered eccentricity as a potential organizing principle  
to explain the observed training-induced changes. Early visual areas 
are retinotopic, with a precise map of visual space across cortex.  
IT is not as precisely retinotopic as early visual areas, though PIT 
does show a clear organization of upper versus lower visual field, ipsi- 
versus contralateral visual field, and central versus peripheral visual 
field20,25. Furthermore, this retinotopic organization is correlated 
with category organization, in that face processing is centrally biased 
and object and place processing more peripherally biased17,18,20,25. 
Malach and colleagues17,18,21 proposed that the fundamental organ-
izing principle of IT is eccentricity based, with a center-periphery 
gradient inherited from lower visual areas. Thus because our cartoon 
face patch lies just ventral to the middle face patch, the Helvetica patch 
just ventral to that, and the Tetris patch still more ventral, these three 
novel domains span PIT along this previously reported retinotopic 

gradient20,25,26. To map this eccentricity gradient, we scanned three 
monkeys while they viewed blocks of flickering checkerboard pat-
terns that stimulated the central 3° of visual field, contrasted with 
blocks of checkerboard patterns that stimulated 4° to 10° of eccentric-
ity (Supplementary Fig. 2). The maps for this peripheral-field minus 
central-field contrast confirmed previous reports of an eccentricity 
bias, with central-field representation along the lower lip of the STS 
and peripheral-field represented more dorsally and more ventrally 
(Fig. 4, left). Note that this swath of central visual field representa-
tion, flanked by more peripheral representations, extends not only 
across early visual areas, opercular V1, through V2, V3 and V4, but 
also through most of IT, including PIT, and is still apparent, though 
weaker, through CIT and even AIT.

When the outlines of the cartoon face, Helvetica, Tetris and middle 
face patch of monkey R2 were overlaid on his eccentricity map (Fig. 4),  
the cartoon face activations mapped to a centrally biased part of IT 
and Tetris activations mapped to a peripherally biased region, with the 
Helvetica symbol set mapping intermediately. The stimuli in the three 
sets were on average the same size (Fig. 1, far right), and the most 
salient image-set difference is that the cartoon face symbols do not 
extend as far to the corners of the average template as the Helvetica 
and Tetris symbols do. The monkeys learned these symbol sets while 
they were moving freely in their home cages, so it is unlikely that such 
small differences in image size would have resulted in large differences 
in an eccentricity-biased functional organization. It is more likely that 
differences in size could have caused differences in activation pat-
terns during scanning, but retinotopic activation differences should 
be manifest before as well as after training, which they were not, and 
primarily in early, retinotopic, visual areas, and they were not (Fig. 2). 
Therefore we cannot explain the stereotyped localizations of the dif-
ferent training-induced domains by eccentricity organization, despite 
the presence of an eccentricity-bias organization in this part of IT.

Lastly we consider shape. It has been proposed9,27 that the localiza-
tion of category-selective domains is driven by experience-dependent  
modification of a pre-existing shape organization, and, in support of this 
idea, face-selective regions respond better to curvy stimuli and place-
selective regions to rectilinear stimuli (R.B. Tootell, S. Nasr and X. Yue, 
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Soc. Neurosci. Abstr. 624.604, 2012), suggesting 
that another potential organizing principle in 
IT is shape-based, along a degree-of-curvature 
axis. By inspection, the three symbol sets do 
differ in curvature: every symbol in the car-
toon face set has many curved contours, half 
the symbols in the Helvetica set have at least 
one curved contour and more than half have at 
least one straight contour, whereas none of the 
contours in the Tetris set are curved. To look 
for a correlation between our training-induced 
domains and shape, or curvature, we also 
scanned these same monkeys while they viewed 
blocks of full-field (20° × 20°) patterns that were 
predominantly curvy or predominantly straight 
(curvy patterns were derived from the straight 
patterns by making them wavy or beaded; 
Supplementary Fig. 2). The t-score maps for the contrast straight-patterns  
minus curvy-patterns, also thresholded at t = 2 and averaged over both 
hemispheres of the same monkeys, were indistinguishable for beaded 
curvy and wavy curvy patterns (Fig. 4, middle). These maps confirm 
previous reports (R.B. Tootell, S. Nasr and X. Yue, Soc. Neurosci. Abstr. 
624.604, 2012) that the lower bank and ventral lip of the STS, where 
the face patches lie, are more responsive to curvy than to rectilinear 
shapes, whereas more ventral and dorsal regions, which are scene  
selective15, are more responsive to rectilinear shapes28; indeed, Kornblith 
et al.15 found that single units recorded in a scene-selective region in the 
occipitotemporal sulcus respond strongly to long, straight contours but 
only weakly to short, curved contours.

There is a similarity between the contrast maps for curvature  
selectivity and the contrast maps for eccentricity bias, even in early 
visual cortex (Fig. 4). Curvy patterns tended to activate the same 
swath of cortex as the central-field stimuli, a swath extending from 
central V1, V2, V3, V4 and then along the ventral lip of the STS, 
whereas straight patterns tended to activate the same regions as were 
activated by the peripheral-field stimuli.

Though the similarity between the eccentricity maps and the  
curvature maps is apparent (Fig. 4), it is difficult to assess by inspec-
tion how similar two maps are, given the thresholding, differences 
in relative activation strength of the two image sets, and variability 
between animals. Therefore we used standard correlation analysis29 
to quantify the similarity between different contrast maps from 
the same individuals. To do this, we calculated, for different visual 
areas in each monkey, the voxel-wise correlation between t-values in  
different maps (Fig. 5a–d) and used permutation analysis to establish 
significance (see Online Methods). First, as a proof of principle for this 
approach, given the well-established relationship between eccentricity 

and spatial-frequency tuning, we calculated, for the same three monkeys,  
correlations between eccentricity maps and spatial frequency maps 
(Supplementary Fig. 11) for different visual areas. The central visual 
field has small receptive fields and responds to high spatial frequencies,  
whereas receptive fields at more peripheral eccentricities are system-
atically larger and respond better to lower spatial frequencies30,31.  
Consistent with this well-established relationship between spatial 
frequency tuning and eccentricity, we found significantly positive 
correlations between peripheral-minus-central eccentricity maps and 
low-minus-high spatial frequency maps in V1, V2/V3 and V4 in all 
three monkeys (Fig. 5a). That is, the overall positive correlation in 
early visual areas is consistent with the well-established relationship 
between eccentricity and spatial frequency tuning: regions in early 
visual areas that represent central visual field respond better to higher 
spatial frequencies than to lower, and regions representing the periph-
ery respond better to lower spatial frequencies.

When we then compared the straight-minus-curvy contrast maps 
(Fig. 4, middle) with the periphery-minus-central eccentricity contrast 
maps (Fig. 4, left), we also found significantly positive correlations in all 
three monkeys in V1, V2/V3, V4 and PIT, and in two monkeys in CIT 
and AIT (Fig. 5b). This is not surprising, since the similarity is apparent 
in the maps themselves, although a degree-of-curvature organization 
has not been previously described in V1 or V2. The positive correlation 
means that curvy pattern preference was correlated with central visual 
field and straight pattern preference with peripheral visual field.

Thus, there was a strong correlation not only between eccentricity 
and spatial frequency (Fig. 5a) in early visual areas but also between 
eccentricity and curvature (Fig. 5b), such that central visual field regions 
were more responsive to high spatial frequencies and to curvy patterns 
than to low spatial frequencies and straight patterns, and peripheral 
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visual field showed the reverse preference; this 
preference was strongest in early visual cortex. 
Could the differential mapping of symbol sets 
or curvature be due to the well-established 
gradient for spatial frequency? In the spatial 
frequency power spectra from the Fourier 
transforms averaged over all the images in each set (Fig. 5e–l), there 
was a substantial difference in spatial frequency between the high and 
low spatial frequency image sets, but a negligible difference between the 
straight image set and either of the two curvy image sets, or between 
any of the symbol sets and their controls, except for a small difference 
between cartoon faces and monkey faces. We conclude that the differ-
ential mapping of the curvy and straight patterns is due to curvature, 
not spatial frequency—that is, to differences along contours, not across 
contours—and that the differential localization of the trained symbol 
domains cannot be explained by differences in spatial frequency.

The category contrast maps for the same three monkeys using 
objects minus faces (Fig. 4, right; see Supplementary Fig. 2 for stimuli)  
confirmed previous studies showing that face selectivity maps to 

patches in PIT, CIT and AIT on the lip and ventral bank of the STS, 
with object selectivity ventral, and sometimes dorsal, to that2,16,23. 
There is no clear similarity between maps for eccentricity and cat-
egory or between curvature and category in early visual areas, but 
there is in IT. Regions that are face selective lie along the lower bank 
and ventral lip of the STS, the same general region that is centrally 
biased and selective for curvy patterns25, whereas object-selective  
regions lie mostly ventral to that, on the inferior temporal gyrus, in 
the same general region as more peripheral visual field representation 
and rectilinear bias25,28. Consistent with this impression and with 
previous results, correlations between category and eccentricity were 
not significantly positive in V1 or V2/V3, but they were significantly 
positive for two monkeys in V4, for two monkeys in PIT, for two 
monkeys in CIT and for one monkey in AIT; these positive correla-
tions indicate that there is a tendency for face-selective regions in IT 
to have a central visual field bias, as previously reported20,25,26,32, and 
object-selective domains to be more peripherally biased. Correlations  
between curvature and category were similarly not significantly  
different from zero in V1, V2/V3 or V4, but were significantly  
positive for all three monkeys in PIT and for two monkeys in CIT. 
This is consistent with a previous report that category selectivity is 
correlated with a curvature gradient (R.B. Tootell, S. Nasr and X. Yue, 
Soc. Neurosci. Abstr. 624.604, 2012).

We last asked how the novel training-induced domains were localized 
along both eccentricity and curvature gradients in monkeys Y1, Y2, R2 
and B1. We measured the t-score for each contrast, averaged within mon-
key face, cartoon face, Helvetica or Tetris ROIs, for these four monkeys, 
except monkey Y1, who lacked Tetris training. We then plotted the z-score 
for each ROI averaged across monkeys (Fig. 6). The ROIs were distributed 
along both the eccentricity and curvature gradients in central-to-peripheral  
and curvy-to-straight order: monkey faces, cartoon faces, Helvetica, 
Tetris. The ROIs were distributed along the eccentricity contrast for all 
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four individual monkeys, but there was more variability in the individual 
monkey distribution along the curvature axis, in that in monkey B1 the 
cartoon face ROI was the most straight-biased ROI, and there was no cur-
vature difference in monkey R2 between any of the ROIs except monkey 
faces. Nevertheless, there was, on average and individually, a consistent  
alignment of the four patches with eccentricity and a similar, though indi-
vidually less consistent, distribution according curvature. The distribution 
was consistent with the hypothesis that the localization of these domains 
could have been determined either by shape or eccentricity.

DISCUSSION
Intensive training of macaque monkeys with three different symbol 
sets resulted in localized increased selectivity in IT to the trained 
symbols compared to visually similar but untrained shapes. Many 
previous studies have already established a role for experience in shap-
ing the selectivity of IT in both humans and monkeys33. The fact 
that the visual word form area in humans is more responsive to text 
in a subject’s own language than to visually similar shapes or text in 
languages unfamiliar to the subject34 indicates that symbol training 
in particular can alter selectivity in human IT to text. We had previ-
ously found8 that extensive training of juvenile macaque monkeys 
with a set of human symbols similarly resulted in localized changes in 
responsiveness in IT that could be visualized with fMRI. In this previ-
ous study we used human symbols for training monkeys because we 
knew that educated humans acquire domains selectively responsive to 
these shapes. We used human symbols as one of our symbol sets in the 
present study because of its clear effects in our previous study.

The goal of the present study was to find whether training on shapes 
other than those used in human writing would also result in changes 
in responsiveness in IT and whether order of learning or degree of 
expertise would affect the localization of training-induced effects. 
Our first finding was that training on shape sets other than human 
symbols did result in changes in IT, such that some regions that were 
initially equally responsive to those shapes and to controls became 
more responsive to the trained shapes than to controls. We therefore 
conclude that there is not anything special about human symbols 
that permits the emergence of symbol selectivity in IT, but rather that 
intensive early experience with other shapes can also result in changes 
in IT that can be visualized using fMRI.

Our second main finding was that training on different symbol sets 
produced changes in selectivity in different locations in IT, rather than 
in the same location for all symbol sets. Changes in a single region 
might be expected, given that the training always involved the same 
behavioral task and all the symbol sets represented the same range of 
reward values. Although an anatomically distinct region might have 
been predicted for the cartoon face symbol set, given the spatial seg-
regation of face processing, finding distinct regions for the Helvetica 
versus Tetris symbol sets was unexpected.

Our third, and most surprising, finding was that the locations in IT 
of these training-induced changes were similar for each symbol set, 
regardless, as far as we can tell, of the order in which the symbol sets 
were learned, and despite the monkeys’ being equally expert at rec-
ognizing the different symbol sets. This suggests that some inherent 
characteristics of these symbols determined where expertise-related 
changes would occur and supports the hypothesis that plasticity is 
constrained by some native organization in cortex9,27,35.

If some native organization determines where training-induced 
specializations will occur, why should cartoon face responsiveness 
shift from the part of IT where it is found in untrained animals to a 
new location? Studies in humans have occasionally found shifts in 
selectivity as a function of training: Moore et al.36 found that learn-

ing to read an alphabet of human faces induces responsiveness to 
those faces in the left fusiform area. Moreover, the part of the brain 
that is selectively responsive to text in literate humans is, in illiter-
ate people, responsive to faces37. These studies thus indicate that IT 
can be differentially modified depending on competing influences 
of experience. Close inspection of Figure 3c suggests that learning a 
second symbol set has a small repulsive effect on the localization of 
the first-learned set, but our sample size is too small for us to draw any 
firm conclusions. This small effect is consistent with the hypothesis 
that competitive interactions are involved in domain formation37.

Although our symbol sets were not designed to probe shape or 
retinotopic organization in IT, we nevertheless asked whether any 
native organization of either retinotopy or curvature could explain 
the observed localizations. We confirmed correlations in IT between 
maps of curvature and maps of category selectivity (R.B. Tootell,  
S. Nasr and X. Yue, Soc. Neurosci. Abstr. 624.604, 2012), as well as 
correlations in IT between eccentricity and category selectivity17,20.  
We also discovered that our novel, training-induced domains in IT for 
completely unnatural shape categories were distributed along these 
same gradients of curvature and eccentricity (see also ref. 29).

We discovered a correlation between curvature and eccentricity in 
early visual cortex as well, and this correlation was even stronger than 
the correlation between curvature and eccentricity in IT. This correla-
tion could not be accounted for by differences in spatial frequency, sug-
gesting that curvature tuning is a low-level receptive-field property that 
varies with eccentricity. Different eccentricities have different spatial  
resolution38; this is usually observed as differences in spatial frequency 
tuning31, which is assumed to be governed by receptive-field organiza-
tion perpendicular to the axis of orientation. Yet selectivity for change 
versus continuity not perpendicular to but along the axis of orientation—
that is, curvature—is an important feature of higher visual areas, such as 
V4 (ref. 39). As far as we know, no studies have looked at curvature tun-
ing as a function of eccentricity, but it would be logical for central visual 
fields to prefer higher curvature, or faster change in orientation, because 
central receptive fields are smaller than peripheral receptive fields in all 
dimensions40 and end inhibition is prevalent in both V1 (refs. 41,42) and 
V2 (ref. 43). End-inhibited cells respond better to contours with chang-
ing orientation than to straight contours of the same length44.

Previous studies that found a correlation between category selectiv-
ity and curvature pointed out differences in natural image statistics 
of faces and scenes, with faces containing more curvy contours and 
scenes more straight ones. Because our shapes are completely unnatural 
and behaviorally unrelated to either social or navigational informa-
tion, our results and those of Op de Beeck et al.29 favor a pre-existing 
curvature gradient rather than a curvature bias that derives from a 
category-based organization. Previous studies that found a correlation 
between category selectivity and eccentricity attributed that correlation 
to resolution requirements of different categories or ways these catego-
ries are generally viewed; that is, faces require scrutiny and are usually 
foveated, whereas scenes usually encompass the entire visual field32. 
The correlation of our training-induced changes with an eccentricity 
gradient cannot be explained by viewing bias, since all three symbol 
sets were presented at the same size, in exactly the same manner, for 
the same behavioral task. Yet, in literate humans, letter strings map to 
an even more foveally biased region of the fusiform gyrus than faces18, 
whereas our monkeys showed the reverse order. Our monkeys learned 
symbols that were always 4 cm high, and humans usually read symbols 
that are much smaller, suggesting that both viewing bias and shape bias 
can influence where training effects are localized.

Hasson et al. proposed17 that IT is organized during development 
according to a retinotopic map transmitted or inherited from earlier 
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visual areas. Our results further indicate that a shape organization could 
arise from variations in curvature selectivity with eccentricity. Thus 
experience with different image categories may produce changes in IT 
that will be localized according to their shape statistics and/or view-
ing scale45. An appeal of this idea is the plausibility of an extension of 
existing mechanisms of retinotopic mapping to higher visual areas and 
its provision of a secondary shape-based proto-organization on which 
experience can exert modifying effects. Whether the organization of 
IT is initially established by an inherited retinotopic map20,32, by an 
innate organization for biologically important image categories2,10,19 
or by factors such as connectivity to other structures such as the hip-
pocampus or motor system11 is ultimately, however, a developmental 
question, and the key experiments have not yet been done.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Behavioral training. Seven experimentally naive juvenile male Macaca nemes-
trina monkeys (B1, B2, R2, Y1, Y2, G1 and G2) and two juvenile M. mulatta 
monkeys (Pa and Ba) were trained to recognize sets of 26 distinct symbols as 
representing different reward amounts using a touch screen (Touch Screens, 
Inc., St. George, Utah) mounted in their home cage. Animals were pair or group 
housed under a 12-h light/dark cycle. All procedures conformed to USDA and 
NIH guidelines and were approved by the Harvard Medical School Institutional 
Animal Care and Use Committee. All training occurred before any of the mon-
keys reached puberty (~4–5 years, as identified by testicle descent), but some 
of the scanning occurred after some of the animals reached puberty. A reward 
system dispensed liquid using a gravity feed and a solenoid; each drop was accom-
panied by a beep. Each symbol set consisted of 26 symbols representing reward 
values from 0 to 25 drops (or solenoid openings) of fluid. Two symbols were pre-
sented simultaneously side by side on the screen, and the monkey was rewarded 
with the number of drops of liquid represented by the symbol on whichever side 
he touched first. The values presented on each side were randomly chosen from 
values 0 to 25. The symbols were each 4 cm high. The monkeys were rewarded no 
matter what side they touched (except for value = 0), but they usually chose the 
larger value side. They worked to satiety daily, during the normal light-on period, 
over several hours, usually performing several hundred trials per day. For training 
on each set they started with 0 and 1 (with the solenoid opening set to a long dura-
tion) and new symbols were added sequentially when behavior on the previously 
learned symbol stably exceeded 80% for all choices involving that symbol. During 
the learning period for each set, the solenoid open time was gradually decreased 
as they learned higher value symbols. It usually took 6–8 months of daily training 
for them to master all 26 symbols in a set, then they continued daily training on 
all 26 symbols of that same set for at least 1 more month before scanning. The 
final behavioral testing for the data in Figure 1 was at the end of the last-learned 
symbol set; the monkeys were given at least 1 week refresher training for each set 
before testing for 1 month with each set. See Supplementary Figure 1 for details 
of the training schedule for each monkey.

Scanning. The monkeys were scanned in the alert state, comfortably lying  
in a sphinx position in a primate restraint chair that fit into the bore of the  
scanner. The juveniles were restrained using a noninvasive padded helmet8,50 
and a rigid chin strap with an embedded bite bar for fluid reward delivery for 
fixation. Monkeys B1, R2 and Pa reached puberty after learning their last symbol 
set and were implanted with a plastic headpost fastened with ceramic screws to 
the occipital ridge and to the frontal bone just posterior to the brow, and the 
scans for these monkeys that were done after puberty were accomplished using 
this headpost restraint.

All monkeys were scanned in a Tim Trio 3-T scanner with an AC88 gradient 
insert and custom-made four-channel coil arrays (made by A. Maryam at the 
Martinos Imaging Center). Each session consisted of 10–30 functional scans. 
Stimuli were presented in 20-s blocks with 20 s of a blank screen with a fixation 
spot between each block. Images were presented in random order within each 
block for 0.5 s each. Blocks were presented in different order each session, but 
the same order within each scan. Scan parameters were as follows: EPI sequence, 
repetition time (TR) = 2 s, echo time (TE) = 13 ms, flip angle ( ) = 72°, iPAT = 2,  
1 mm isotropic voxels, matrix size = 96 × 96 mm, 67 contiguous sagittal slices. To 
enhance contrast51, the monkeys were injected with 12 mg/kg monocrystalline 
iron oxide nanoparticles (Feraheme, AMAG Pharmaceuticals, Cambridge, MA) 
in the saphenous vein just before scanning. Only scans in which the monkey 
fixated for >85% of the scan and in which there was no motion >1 mm were 
used for analysis. The maps in Figure 2 and the activations in Supplementary 
Figures 3–10 were all calculated from 30–40 blocks of each image category and 
each control for each monkey. The bar graphs in Figure 2 were all calculated 
from 25–30 independent blocks of each stimulus type for each monkey. The 
eccentricity, curvature, category and spatial frequency maps in Figure 4 and 
Supplementary Figure 11 were each calculated from 20–25 blocks each of each 
pair of image categories. Eye position was monitored by an infrared eye tracker 
(ISCAN, Burlington, MA). The monkeys were rewarded for keeping their gaze 
within a 2° fixation window on which the stimuli were centered.

Stimuli. Visual stimuli were presented on a back projection screen at the end of 
the scanner 50 cm from the monkeys’ eyes, using an LCD projector. The entire 

screen subtended 20° × 20° of visual angle. Helvetica, Tetris and cartoon face 
symbols, as well as the controls and achromatic monkey face controls, were 
presented at 8° of visual angle in height on a 20° × 20° dark gray background; 
the full-field spatial frequency stimuli and curvature stimuli were presented as 
shown in Supplementary Figure 2 and filled 20° × 20° of visual angle; the face 
and object images for category mapping were presented in color on a pink-noise 
background, as shown in Supplementary Figure 2, covering 20° × 20° of visual 
angle. The straight patterns were chosen to represent a variety of rectilinear  
patterns. The wavy curvy patterns were generated by adding waves to the straight 
patterns, and the beaded curvy patterns were generated by adding circular distor-
tions to the straight patterns. Eccentricity (center/periphery) contrast maps were 
generated for peripheral flickering checkerboard patterns (4°–10° eccentricity) 
minus central flickering checkerboard patterns (0°–3° eccentricity). Spatial fre-
quency contrast maps were generated for the contrast of low-spatial-frequency 
stimuli (full-field dynamic patterns of 0.4 cycles per degree) minus high-spatial-
frequency stimuli (full-field dynamic patterns of 2.5 cycles per degree). Curvature 
contrast maps were generated for the contrast between full-field straight patterns 
minus full-field curvy patterns. Category contrast patterns were generated for 
the contrast objects minus faces.

Data analysis. Functional scan data were analyzed using AFNI52 and CARET46,47. 
Functional data from different sessions were first aligned to each monkey’s own 
average functional template using JIP software (http://www.nitrc.org/projects/jip/)  
and then detrended and motion corrected. Scans with movements more than  
1 mm were not used for analysis. We calculated the maximum likelihood maps of 
responses to each learned symbol set using a modified gamma-variate function 
approximating monkey hemodynamic changes in cerebral blood volume51. To 
correct for multiple comparisons, the values for minimum patch size were derived 
from a simulation that estimated the probability of false positive or noise-only 
clusters52. Using this simulation, we calculated the cluster size should be at least 
31 voxels to keep the probability of getting a single noise-only cluster under 
0.02 for a per-voxel P-value of 0.002. The resulting corrected (for false posi-
tives) activations (Supplementary Figs. 3–10) were projected onto a monkey 
template46,47 (Figs. 2 and 3). To visualize the different patches from different 
monkeys together, for each individual monkey we collapsed the thresholded  
t-maps for the two hemispheres onto the standard monkey brain (that is, a voxel 
was counted as belonging to a patch if it was significant for that contrast in either 
hemisphere). All the patches from all monkeys were color coded by symbol set 
and overlaid onto a single map using transparency to allow visualization of any 
patterns common to all monkeys (Figs. 2 and 3). To calculate centers of mass for 
each symbol type for each monkey, we took the thresholded t-score maps for each 
hemisphere and averaged the t-score maps across hemisphere. We then calculated 
centers of mass for each of these patches and projected them onto a single stand-
ard flat map (Fig. 3c). To generate maps of eccentricity bias, curvature, spatial 
frequency and category selectivity in three monkeys (Fig. 4 and Supplementary 
Fig. 11), t-score maps for each contrast were calculated for each hemisphere and 
then averaged over both hemispheres of each monkey and aligned onto a standard 
flat map47,49 of macaque cortex.

ROI analysis. ROIs for selective patches for the graphs in Figures 2d and 6 were 
identified using a localizer data set collected after training on each of the symbol 
sets. Percentage signal changes in these ROIs were then measured from independ-
ent data sets collected immediately before and training with each symbol set and 
after training with all symbol sets. The occipitotemporal ROIs analyzed in Figure 5  
and Supplementary Figure 11 were identified using the maps of Felleman and 
Van Essen48 that are incorporated into CARET47.

A 2 × 2 ANOVA for trained set versus control × before versus after training 
was calculated for each trained-set ROI. Main effects of trained versus control 
were found in all the trained-symbol patches (Helvetica patch (F(1,4) = 3.55,  
P < 0.05; Tetris patch (F(1,4) = 8.6, P < 0.01, cartoon face patch F(1,4) = 2.17, 
P < 0.05). Main effects of training were also found in all the patches (Helvetica 
patch (F(1,1) = 79.42, P < 0.01; Tetris patch (F(1,1) = 2.7, P < 0.05, cartoon face 
patch F(1,1) = 19.29, P < 0.01). Critically, a robust interaction between trained 
versus control and before versus after training was observed in all ROIs (Helvetica 
patch (F(1,4) = 9.88, P < 0.01; Tetris patch (F(1,4) = 6.91, P < 0.01, cartoon face 
patch F(1,4) = 5.07, P < 0.01). Hypothesis-driven tests indicated that the all of 
the training-induced patches were significantly more activated by their trained 
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stimulus category than by controls after training (Helvetica patch t(12) = 2.188, 
P < 0.05; Tetris patch t(12) = 2.74, P < 0.05; cartoon face patch t(12) = −3.97  
P < 0.005), but none of the ROIs showed significant differences between 
their preferred stimulus category and controls before training (all P > 0.05:  
Helvetica patch: t(12) = 0.414, P = 0.687; Tetris patch: t(12) = −0.157, P = 0.878;  
cartoon face patch: t(12) = 0.642, P = 0.533). The pattern of results in the cartoon 
face and Helvetica regions showed a larger response to the trained stimuli after 
training than before (cartoon face patch t(12) = −4.97 P < 0.001; Helvetica patch 
t(12) = −3.10 P < 0.01) and no change in response to control stimuli. The Tetris 
patch developed a post-training selectivity to Tetris via reduced responsiveness 
to controls after training (t(12) = −2.60 P = 0.02), but no significant change 
in responsiveness to Tetris (t(12) = 1.16, P = 0.27). There was no significant 
difference between monkey faces and cartoon faces before training for any of 
the face patches (before training monkey faces versus cartoon faces: anterior 
face patch t(12)=0.219, P = 0.830; middle face patch t(12) = 0.304, P = 0.766; 
posterior face patch t(12) = 0.417, P = 0.684; cartoon face patch t(12) = 0.642,  
P = 0.533), but after training, there was a significantly smaller response to cartoon 
faces versus monkey faces in the anterior (t(12) = 2.45 P < 0.05) and middle face 
patches (t(12) = 2.19, P < 0.05).

Correlation coefficients. We calculated the similarity between pairs of contrast 
maps (curvy/straight, faces/objects, high/low spatial frequency and central/
peripheral) by calculating correlation coefficients between the t-values of each 
voxel in a given area in each pair of contrast maps in Figure 4 and Supplementary 
Figure 11. The correlation coefficient can range between −1 and 1; a positive 
correlation coefficient means the two maps vary in parallel across the area, zero 

means there is no relationship between the maps and a negative correlation means 
the two contrasts are anticorrelated. To estimate confidence limits for the null 
hypothesis (null hypothesis: the two contrast maps are not correlated at all in a 
given visual area), we randomly shuffled the identity of the stimuli assigned to 
the stimulus blocks 32 independent times, then calculated contrast maps for each 
of the 1,024 possible pairwise combination of identity-shuffled response blocks. 
We then calculated correlations between pairs of shuffled contrast maps for each 
area to find the 95% limits. Correlations for the unshuffled data were considered 
significant if they exceeded this limit.

Confidence limits for average t-score plots. To estimate confidence limits for the 
average t-scores across each ROI in Supplementary Figure 12, we used the same 
scans and randomly shuffled the identity of the stimulus (curvy versus straight 
or central versus peripheral) assigned to each stimulus block 1,000 times, then 
calculated t-scores for each voxel in each ROI based on shuffled stimulus blocks. 
We then found 95% limits for each ROI.

A Supplementary Methods Checklist is available.

50. Srihasam, K., Sullivan, K., Savage, T. & Livingstone, M.S. Noninvasive functional 
MRI in alert monkeys. Neuroimage 51, 267–273 (2010).

51. Leite, F.P. et al. Repeated fMRI using iron oxide contrast agent in awake, behaving 
macaques at 3 Tesla. Neuroimage 16, 283–294 (2002).

52. Cox, R.W. AFNI: software for analysis and visualization of functional magnetic 
resonance neuroimages. Comput. Biomed. Res. 29, 162–173 (1996).

np
g

©
 2

01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.


