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SUMMARY

Cognitive flexibility is fundamental to adaptive intelli-
gent behavior. Prefrontal cortex has long been
associated with flexible cognitive function, but the
neurophysiological principles that enable prefrontal
cells to adapt their response properties according
to context-dependent rules remain poorly under-
stood. Here, we use time-resolved population-level
neural pattern analyses to explore how context is en-
coded and maintained in primate prefrontal cortex
and used in flexible decision making. We show that
an instruction cue triggers a rapid series of state tran-
sitions before settling into a stable low-activity state.
The postcue state is differentially tuned according to
the current task-relevant rule. During decision
making, the response to a choice stimulus is charac-
terized by an initial stimulus-specific population
response but evolves to different final decision-
related states depending on the current rule. These
results demonstrate how neural tuning profiles in
prefrontal cortex adapt to accommodate changes
in behavioral context. Highly flexible tuning could
be mediated via short-term synaptic plasticity.

INTRODUCTION

The brain must constantly adapt to accommodate an enormous

range of possible scenarios. In a complex dynamic environment,

the behavioral relevance and/or meaning of sensory input criti-

cally depends on context. Therefore, changes in behavioral

context demand a shift in the way information is processed.

Here, we explore how coding in prefrontal cortex (PFC) rapidly

shifts between specific processing rules according to experi-

mentally manipulated context.

Prefrontal cortex has long been associated with flexible cogni-

tive function. Damage to PFC is classically associated with

reduced cognitive flexibility in both humans (Luria, 1966) and

nonhuman primates (Rossi et al., 2007). Similarly, in studies

using fMRI, lateral PFC is typically more active when participants

perform tasks that demand cognitive flexibility (Wager et al.,
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2004). Numerous influential theories propose a key role for

PFC in representing task-relevant content and rules in a tempo-

rary working memory (WM) store for guiding flexible behavior

(Baddeley, 2003; Miller, 2000; Miller and Cohen, 2001).

Neurophysiological recordings suggest that PFC is capable of

maintaining task-relevant information in a durable distractor-

resistant WM format (Miller et al., 1996) that reflects future

behavioral goals (Rainer et al., 1999). Previous studies have

also suggested that activity in single prefrontal cells reflects

the current task rules (White and Wise, 1999), such as a variable

stimulus-response mapping (Wallis et al., 2001). However, it

remains unclear exactly how activity states representing such

important task parameters can be used to guide subsequent

decision making and action. An adaptive coding model

proposes that context-specific task parameters directly shape

the tuning profile of PFC (Duncan, 2001; Duncan and Miller,

2002). Prefrontal neurons are not inherently tuned to specific

features in the world, but rather adapt their tuning profiles to

represent input according to task relevance. Within this frame-

work, changing task parameters shift the response properties

of the network, altering the way stimuli are coded and behavior

produced.

Classification learning tasks demonstrate the basic principles

of adaptive coding in PFC (Cromer et al., 2011; Freedman et al.,

2001; Li et al., 2007; Roy et al., 2010). After monkeys have been

trained to classify novel stimuli according to an arbitrarily defined

category boundary, individual neurons in PFC display tuning

profiles that are aligned with the task-relevant decision space

(Freedman et al., 2001). Multivariate pattern analyses of the

same data confirm task-dependent coding at the neural popula-

tion level (Meyers et al., 2008). Similar shifts in tuning have been

observed in human PFC using pattern analytic methods to infer

the representational nature of the population response

measured with fMRI (Li et al., 2007). In some cases, extensive

training could establish novel tuning profiles in PFC via mecha-

nisms of long-term synaptic plasticity. However, analogous

tuning shifts can also be observed without extensive training in

human PFC (Woolgar et al., 2011) and in monkey PFC, despite

trial-by-trial shifts in decision rules (Roy et al., 2010; Watanabe,

1986). A rapid mechanism for adaptive coding in PFC is neces-

sary for implementing such flexible shifts in context-dependent

tuning.

In this study, we explore trial-by-trial shifts in coding within

monkey PFC using a delayed paired-associate task. An
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Figure 1. Task, Recordings, and Overall Activity Profile

(A) Arbitrary associations between cue and target stimuli were learned prior to the recordings reported here.

(B) The cue stimulus at trial onset determined the current target. There followed a series of 0–3 nontargets, followed by the cued target, all in the same location

(right or left of fixation, randomly varying across trials). The animal was required to maintain central fixation until offset of the target and was then rewarded for

a saccade to the stimulus location. Each nontarget was randomly either a neutral stimulus (a stimulus never used as a target (see A) or a stimulus paired with

a different cue and hence serving as a target on other trials (here termed distractor). The presentation order in the task schematic is illustrative only. Actual

presentation was randomized but always ended with the target.

(C) Schematic diagram of recording sites, illustrated by red and blue symbols for monkeys A and B, respectively. Recording sites for monkey A (right hemisphere)

have been transferred to the left.

(D)Meanfiring rate of the recordedpopulationduring eachepochof the task, as a function of time fromeachstimulus onset. Theduration of stimuluspresentation is

indicated by the gray rectangle. Significantly elevated firing rate relative to 100ms pretrial baseline is indicated by the thin (p < 0.05) and thick (p < 0.0001) blue line.
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instruction cue at the start of each trial controls how subsequent

choice stimuli should be categorized as behavioral targets or

nontargets. Time-resolved pattern analysis of a population of

neurons in PFC reveals a dynamic trajectory through multidi-

mensional state space triggered by the instruction cue. Popula-

tion-level activity then settles into a low-activity state during the

memory delay. Although behavioral context (classification rule)

can be decoded during this delay period, the discriminating

pattern is orthogonal to the neural patterns that discriminate

either cue or target stimuli at the time of presentation. These

results suggest that the stable activation state observed during

maintenance reflects the temporarily configured network state

in PFC that is dynamically tuned to respond to input according

to the current task goals.

The response to choice stimuli further confirms that the cue-

configured network state is adaptively tuned to map stimuli to

the appropriate behavioral decision based on task context.

The temporarily tuned prefrontal network rapidly transforms

the coding space from differentiating the physical properties of

choice stimuli to settle into a state that clearly represents the

context-dependent behavioral choice. We suggest that cue pro-

cessing could trigger a temporary but systematic shift in synaptic

efficacies within a network of prefrontal cells (Zucker and

Regehr, 2002). This distinct neurophysiological state could

then shape a trajectory through state space that effectively

maps distinct stimuli to the appropriate decision value according

to context (Jun et al., 2010; Machens et al., 2005).
RESULTS

As described in more detail previously (Kusunoki et al., 2009,

2010; Sigala et al., 2008), monkeys were first trained to associate

three cue stimuli to three choice stimuli (Figure 1A). Neurophys-

iological data were then collected in a delayed paired-associate

recognition task, with a cue at the onset of each trial indicating

the current target (see task structure in Figure 1B). Data were re-

corded from a sample of 627 randomly selected neurons in

lateral PFC (Figure 1C). Unless otherwise stated, data were aver-

aged across visual hemifields and smoothed with a 50ms sliding

average. Themean activity profile for the population of prefrontal

neurons is shown in Figure 1D as a function of time and stimulus

type (cue and types of choice stimuli: neutral, distractor, and

target; for definitions see Figure 1, legend). Each stimulus

increased overall network activity, peaking around 150–200 ms

and largely returning to baseline by stimulus offset. The data

suggest that peak response was higher for distractor relative

to neutral stimuli and maximal for the target.

In this task, trial types 1 to 3 were defined by the cue at trial

onset, indicating which stimulus was currently the target. The

task required that trial type information be maintained

throughout each delay to enable correct classification of the

next choice stimulus. Similarly, the decision for each choice

stimulus was to be maintained until stimulus offset, when the

‘‘go’’ versus ‘‘no-go’’ response could be made (see Figure 1,

legend). Despite these maintenance demands, the activity of
Neuron 78, 364–375, April 24, 2013 ª2013 Elsevier Inc. 365
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Figure 2. Neural Population Dynamics

(A) Schematic of two different trajectories through

a three-dimensional state space. The distance

between two condition-specific states at time

t reflects the multidimensional distance in the

population response: d(P1t, P2t). Within-condition

distance between earlier and later states repre-

sents change in position as a function of time, i.e.,

velocity: d(P1t-n, P1t+n)/2n.

(B) The mean multidimensional distance between

the three trial types is shown in blue as a function

of time, and the significant periods of

above-chance discrimination are indicated by

the significance bar along the x axis (p < 0.05,

cluster-based correction of multiple compari-

sons, see Experimental Procedures). For refer-

ence, the overall mean activity level (network

energy) is shown in gray (right axis) and gray the

significance bar indicates above-baseline activity

(p < 0.05).

(C) Bar plot of the multidimensional distance

between trial types calculated for the first delay

period in a trial (delay preceding first choice

stimulus), a second delay period (present only

when first choice stimulus was a nontarget), and

a third delay period (present only when first two

choice stimuli were nontargets). Error bars repre-

sent 95% confidence intervals.

(D) Multidimensional distance between trial types

is visualized using multidimensional scaling

(MDS). Data points are four independent esti-

mates of the population response associated with each trial type, plotted as a function of the first two dimensions at 0 ms, 250 ms, 500 ms, and 750 ms from

cue onset. The complete time course of trial type-specific clustering in state space is available as Movie S1.

(E) The top panel plots the estimated instantaneous velocity through multidimensional state space for each trial type, as a function of time. The bottom panel

shows the equivalent velocity plot for overall energy change.
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the PFC population as a whole was characterized by bursts of

activity at the onset of each stimulus, followed by return to

a net low-activity state between each stimulus and the next.

Cue Processing: Population Dynamics
The evolution of neural processing can be traced through multi-

dimensional space, where the activity state is an n-dimensional

coordinate representing the instantaneous firing rate of

n neurons at time t (Figure 2A). The coding trajectory is the

path linking the sequence of activation states at each time point,

and the multidimensional distance between positions in state

space for specific conditions reflects the difference in the overall

population response. Euclidean distance is always positive and

scales with activity level; therefore, we subtract the median of

the null distribution (estimated via randomized permutation

testing, see Experimental Procedures) from themultidimensional

distance measures.

A significant difference between trial types emerges as early

as 50 ms after the presentation of the cue stimulus (Figure 2B).

The trajectories continue to diverge until reaching a peak

distance at around 230 ms before reducing to a lower plateau

in the delay period. For comparison, we also replot in gray

mean activity across the whole cell sample to show the overall

energy of the activation state. The cue-related separation of pop-

ulation trajectories coincides with increasing energy level, but

differentiation also persists even after the overall activity has re-
366 Neuron 78, 364–375, April 24, 2013 ª2013 Elsevier Inc.
turned to baseline in the delay period. These results show that, in

the delay period, the network has settled back into a low-energy

state that nevertheless differentiates between the context condi-

tions. For completeness, we also estimated themultidimensional

distance between trial types during the second and third delay

periods within a trial (Figure 2C). The bar plot shows a reduction

in pattern differentiation after each stimulus. A similar reduction

in trial type discrimination was previously described using

univariate statistical approaches (Kusunoki et al., 2009), though

here we additionally find evidence that significant trial type

discrimination persists into the second delay period (p < 10�3).

There was also a trend for above-chance trial type discrimination

in the third delay period (p = 0.056).

The evolution of trial type discrimination in the prefrontal

network was visualized using multidimensional scaling (MDS,

see Experimental Procedures). Four independent estimates of

population activity for each trial type (color coded) are plotted

against the first two dimensions (see Figure 2D), revealing a clear

transition toward a state space that differentiates activity associ-

ated with the three trial types. In line with the above analyses,

clustering becomes somewhat weaker, though still clearly

visible, with offset of the cue and entry into the subsequent delay

(the full time course is provided in the Movie S1).

The speed with which the response trajectory travels through

state space is calculated from the average rate of change

in state space within each condition as a function of time
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Figure 3. Pattern Classification

(A) The pattern classifier is trained to discriminate trial types based on the population response observedwithin a 50ms timewindow and validated using test data

at the same equivalent time window (within-time classification) or at a different time window (cross-temporal classification; see Figure 4).

(B) Meanwithin-time classification index between trial types is shown in blue as a function of time. For reference, the overall populationmean firing rate is shown in

gray (right axis). Thebluebar along the xaxis indicatesperiodsof above-chanceclassification, andgray significancebar indicatesabove-baselineactivity (p<0.05).
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(d(P1t-n, P1t+n)/2n in Figure 2A). There was an initial rapid accel-

eration at around 40 ms (Figure 2E, top), which peaks in velocity

at around 60 ms. This early peak is followed by a subsequent

velocity dip at 85 ms, before accelerating again to a peak at

around 110 ms. The first peak approximately corresponds to

the earliest separation of cue-related trajectories observed in

the distance metric (Figure 2B), whereas the second velocity

peak approximately corresponds to the rapid increase in the

separation between cue conditions beginning at 100 ms. Simi-

larly to the overall firing rate, velocity of the cue-related trajecto-

ries also returns to prestimulus baseline levels by 400 ms. This

suggests that the low-energy state in the delay period is also

stable across time.

Importantly, this velocity metric is sensitive to changes in the

state of the network, even if the overall energy of the system

remains constant. Therefore, multidimensional velocity provides

a richer measure of the population dynamics than overall change

in activity levels (shown in Figure 2E, bottom), which reveals only

a single dominant peak at around 85 ms corresponding to the

initial increase in firing at stimulus onset, followed by a second

smaller increase in energy change at around 250–300 ms that

tracks the gradual decrease in firing rate observed across the

population.

Overall, these initial analyses show that the transient increase

in neural firing triggered by the instruction cue is associated with

a rapid configuration of activity in state space that differentiates

trial type. Activity then settles into a relatively low-energy stable

state toward the offset of the cue and into the delay period.

Although separation by trial type becomes less distinct during

this more quiescent phase, the population response remains

statistically separable.

Dynamic Population Coding of Trial Type: Time
Specificity versus Time Stability
To explore the dynamic evolution of activity states discriminating

different trial types, we exploited a cross-temporal variant of

pattern classification (see schematic in Figure 3A). First, we

demonstrate that the general classification approach is able to
decode information content from the pattern of activity observed

after the cue presentation. This time-resolved pattern analysis

demonstrates significant coding of the cue at around 100 ms

(Figure 3B), corresponding to the time of rapid divergence

observed in the distance metric (Figure 2B). Pattern classifica-

tion also peaks at around 230 ms and remains relatively uniform

into the delay period.

To directly assess the time stability of the activity state differ-

entiating trial types, we decoupled the temporal windows used

for train and test (see schematic in Figure 3A; see also Crowe

et al., 2010; Meyers et al., 2008). If accurate generalization is

observed across time (train at time t, test at time t+n), we can

infer that the population code that differentiates trial type at

time t is significantly similar to the coding scheme at time t+n.

At the extreme, if the coding schemes were completely time

stable, pattern classification should not be sensitive to which

time points are used for test or train—by definition a stationary

code does not vary across time. Conversely, if classifiers trained

at time t are unable to decode patterns observed at time t+n,

then we can conclude that population coding is time specific.

Cross-temporal classification results for trial type are pre-

sented in Figure 4. Different color traces represent classification

performance for classifiers trained on data from corresponding

shaded time windows and tested throughout the cue and delay

epochs. For reference, the within-time classification perfor-

mance is shown in gray in each plot to illustrate the envelope

of trial type coding in the population response, i.e., the maximal

trial type information at each time point.

Evidence for time-specific coding is most apparent at the

onset of cue processing (see Figure 4A). Classifiers trained on

the population response at 100–150 ms postcue onset (in red)

only successfully discriminate between trial types for test data

taken from proximal time windows: 100 ms to 200 ms. Classifi-

cation is no better than chance at discriminating trial type from

data taken at later times. This failure cannot be attributed to

any lack of discriminative information at these subsequent time

points after cue onset. On the contrary, within-time classification

actually peaks at around 200 ms and is relatively sustained
Neuron 78, 364–375, April 24, 2013 ª2013 Elsevier Inc. 367
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Figure 4. Cross-Temporal Pattern Analysis

(A) Cross-temporal pattern classifiers were trained to discriminate trial type using data from the shaded 50 ms time window and tested throughout the cue

duration and subsequent delay period. For reference, within-time classification performance is shown in gray to illustrate the upper limit of trial type information at

each time point and significant periods of above-chance cross-temporal classification are indicated by the color-coded significance bar below the corresponding

trace. The complete time course of these cross-temporal analyses is available online as Movie S2.

(B) Cross-temporal classification results from (A) overlaid.

(C) Cross-generalization was extended to the target epoch to test for prospective target coding following same conventions as (B), with gray trace reflecting the

within-time classification for target type.

(D and E) Full cross-temporal classification matrix. Classifiers are trained to discriminate trial type at each 50 ms time window (1 ms increments) during the cue

and first delay period, and trial type discrimination is tested throughout the cue (D), first delay, and target period (E).
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thereafter (shown in gray, Figures 4A). Therefore, the specific

pattern of activity that differentiates condition between 100–

150 ms is unique to this early stage of cue processing and

does not persist beyond 200 ms or into the delay period.

Temporal specificity is also evident at the next training

window, 200–250 ms. Again, pattern classification is optimal

for data taken from the equivalent time period, relative to other

time points, although there is a broader window of above-

chance classification (at least 150–300 ms). This implies an

increasing degree of time stability; however, cross-generaliza-

tion still returns to chance levels before the offset of the cue stim-

ulus. There is more evidence for time stability at 300 ms, and by

400–450 ms, there is clear evidence for stable coding into the

delay period. This profile of increasing time stability accords

with the reduction in multidimensional velocity observed toward

the end of the cue onset period and into thememory delay period

(Figure 2E).

Since the pattern of activity that drives robust classification

during cue processing does not persist into the delay period,

coding during the delay is unlikely to reflect passive persistence

in firing. To test whether delay activity reflects prospective

coding for the target stimulus (Rainer et al., 1999), we extended

the cross-temporal analysis to the presentation of the target (Fig-
368 Neuron 78, 364–375, April 24, 2013 ª2013 Elsevier Inc.
ure 4C). Again, the gray trace in Figure 4C illustrates the envelope

of significant target-related information that was decodable

using within-time pattern classification, i.e., train and test at

equivalent time points after target onset. All other traces reflect

the accuracy of target classification using the neural patterns

observed during the color-coded windows in the cue period.

At no stage does the pattern from cue and delay periods reflect

the population response observed during any time of target pro-

cessing, even though the population response contains signifi-

cant target-discriminating information, as shown by the gray

trace.

The full cross-temporal classification analysis is shown in

Figures 4D and 4E. The diagonal axis through this matrix is iden-

tical to the within-time classification of trial type shown in gray in

Figures 4B and 4C. Figure 4D clearly demonstrates the time

specificity of population coding during the cue processing

period, whereas population coding in the delay period is more

time stable. Again, there is no evidence for cross-generalization

of coding during the cue or associated delay period to the target-

related response (Figure 4E).

The results so far suggest that information concerning trial

type is maintained through the delay period as a stable low-

energy state. Although the population response differentiates
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Figure 5. Trial Type Coding in Patterns Driven by a Fixed Neutral

Stimulus
(A) Multidimensional distance between the network responses to neutral

stimuli presented within each trial type is plotted as a function of time, and the

blue bar along the x axis indicates periods of above-chance classification.

(B) The multidimensional distance is visualized using the first two dimensions

defined by MDS. Each data point reflects an independent sample of the

population response to neutral stimuli presented within each trial type (color

coding as in Figure 1D). The complete time course of the temporary emer-

gence of condition-specific clustering in state space is available online as

Movie S3.
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between the three alternative contexts, the underlying code

does not resemble patterns observed during cue processing

or the expected target. This nonstationary coding scheme

contrasts with classic models of WM that posit persistent main-

tenance of the initial input representations (Miller et al., 1996;

Wang, 2001) or preactivation of the expected target/memory

probe (Rainer et al., 1999). We suggest that the postcue state

could reflect a temporary reconfiguration of the tuning profile

in prefrontal cortex for flexible behavior, i.e., to discriminate

choice stimuli according to context for ‘‘go’’/‘‘no-go’’ decision

making.

Classification Driven by the Neutral Stimulus:
Differential Patterns Elicited by Fixed Input
A systematic reconfiguration of the network state in prefrontal

cortex would also be expected to alter the response character-

istic of the network to fixed input (Mongillo et al., 2008;

Sugase-Miyamoto et al., 2008). Indeed, we find that the popula-

tion response to the neutral stimulus clearly differed as a function

of trial type (Figure 5A), even though the same neutral stimulus

was used for all trial types (see Experimental Procedures). This

suggests that the activation profile of the network is patterned

according to trial type. To visualize the separation of activity

states driven by the fixed neutral stimulus, we plot four indepen-

dent estimates of the activity pattern associated with each trial

type (color coded) onto the first two dimensions determined by

MDS (Figure 5B; the full time course is captured in the Movie
S3 available online). Data points clearly cluster as a function of

trial type at 250 ms after stimulus onset, reflecting systematic

activity states that differentiate the response to the fixed neutral

stimulus according to context.

Cue-Dependent Processing of Choice Stimuli
We propose that cue processing establishes a state in PFC that

temporarily tunes prefrontal neurons to respond according to the

current task context, i.e., to decide the appropriate behavioral

response to choice stimuli. In a final set of analyses, we exam-

ined responses to the three choice stimuli that, according to

the rule established by the current cue, could serve as either

a ‘‘go’’ or ‘‘no-go’’ signal for the behavioral response.

We defined stimulus 1 as the stimulus serving as a target with

cue 1, but a distractor with cues 2 or 3, and similarly for stimulus

2 (target with cue 2) and stimulus 3 (target with cue 3). First, to

track stimulus-driven coding, we trained the pattern classifier

to discriminate between choice stimuli on trials in which they

served as distractors (e.g., distractor 1 versus distractor 2) and

tested classification performance on trials in which the same

stimuli served as targets (e.g., target 1 versus target 2) within

the corresponding time window. This procedure was performed

for each possible pairing, and the results were averaged to

calculate an overall classification score for stimulus-specific

coding. Importantly, this cross-condition analysis tests specifi-

cally for context-independent coding of the physical properties

of the choice stimuli. Only the pattern difference between stim-

ulus types that is evident in both targets and distractors can

contribute to decoding.

We also explored the stimulus-independent coding of behav-

ioral category. For each of the stimuli 1–3, we trained classifiers

to discriminate behavioral category (e.g., target 1 versus distrac-

tor 1) and tested performance on category discrimination of

a different stimulus (e.g., target 2 versus distractor 2) within cor-

responding time windows. Again, the multiple pairwise tests

were averaged to derive a single index of stimulus-invariant

coding for the behavioral category: target versus distractor.

The results in Figure 6A reveal the transition in PFC from stim-

ulus-dependent to context-dependent coding. Initially, the pop-

ulation response discriminates between the physical properties

of the different stimuli (from �90 ms, gray trace), but shortly

afterward, stimulus-invariant coding for task-relevance also

emerges in the pattern of activity (from �140 ms, black trace).

This transition from stimulus-specific to context-dependent

coding corresponds in time to a transient increase in the overall

activity of the network. As the network again begins to settle

toward a low-energy state (see Figure 1D), pattern differentiation

is dominated by the choice decision (see Figure 6A).

The transition from stimulus-specific coding to context-

dependent coding for choice events can also be visualized in

the first two dimensions derived through MDS (Figure 6B).

Data points correspond to four independent estimates of the

multidimensional response to the three choice stimuli (color

coded) presented as a target (filled circles) or distractor (unfilled

circles). The first coherent organization in state space is

observed around 100 to 125 ms and separates the response

as a function of stimulus identity. There is very little separation

by decision value (i.e., behavioral choice). Separation according
Neuron 78, 364–375, April 24, 2013 ª2013 Elsevier Inc. 369
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Figure 6. Evolution of Coding during Choice Processing

(A) Cross-generalization pattern analysis reveals the time course of stimulus-dependent coding (in gray) and context-dependent coding (in black). Significant

periods of above-chance discrimination are indicated by corresponding significance bars along the x axis.

(B) State space is represented by the first two dimensions fromMDS. Data points correspond to four independent estimates of the population response to each of

the choice stimuli presented as a target (filled) or distractor (unfilled). Blue, stimulus serving as target with cue 1; red, stimulus serving as target with cue 2; green,

stimulus serving as target with cue 3. The full time course of the coding transformation in state space is available online as Movie S4.

(C) Evidence for a ‘‘go’’ or ‘‘no-go’’ decision to choice stimuli is plotted as a function of time after the presentation of each stimulus type within each trial type

(separate plots). Color coding for the three stimuli are as in (B). Choice-related evidence is traced in heavy lines for ‘‘go’’ stimuli (i.e., targets) and in a thin line for

‘‘no-go’’ stimuli (i.e., distractors). Evidence for each choice is quantified relative to an independent reference pattern that differentiates go/no-go stimuli at the end

of the trial: target minus distractor. Consequently, positive values reflect positive evidence for a ‘‘go’’ decision, whereas negative values reflect positive evidence

for a ‘‘no-go’’ decision. Also see Figure S1 in online Supplemental Information.
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to both parameters is evident by 150 ms, but by the end of the

trial, the state space is most clearly differentiated by behavioral

choice.

To explore in more detail how evidence for the choice-related

response evolves in PFC, we track the evolution of the pattern

match between the population response and either decision

state (‘‘go’’ versus ‘‘no-go’’). Results are plotted as a function

of stimulus (color coded) separately for each trial type (Fig-

ure 6C). The reference pattern for differentiating decision values

was determined for each trial type by contrasting target and dis-

tractor population response observed at the end of the trial (i.e.,

350–550ms) in the other two trial types. Consequently, the refer-

ence pattern was statistically independent from the test data.

Moreover, this cross-comparison approach also ensures that

the decision-related coding scheme is shared across trial types.

As such, accurate readout is determined according to a refer-
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ence pattern that is effectively invariant with respect to time

and trial type. Although this is a conservative estimate of behav-

iorally relevant coding, this level of abstraction would be ideal for

robust decision making across contexts. The same readout

strategy can be used irrespective of time or condition.

Finally, additional analyses presented in Supplemental Infor-

mation show that positive evidence is accumulated for both

decision values (i.e., some neurons are more active for ‘‘go’’

decision relative to ‘‘no-go,’’ whereas others show the opposite

pattern; see Figures S1A and S1B; see also Kusunoki et al.,

2010). Moreover, we found no evidence that the eventual deci-

sion state was represented by a distinct population of neurons

functionally distinguishable from early stimulus-selective cells

(see Figure S1C). Rather, the final decision state appears to

emerge within the same functional network that initially codes

the physical properties of the choice stimuli.
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Figure 7. A Simple Schematic of the

Proposed Tuning Mechanism

Depending on the context, input matching

a particular choice stimulus is routed along

a context-dependent trajectory toward an activity

state that codes behavioral choice.
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DISCUSSION

In this study, we use dynamic pattern analysis to characterize

how prefrontal cortex establishes, maintains, and uses flexible

cognitive states for task-dependent decision making. Popula-

tion-level analyses demonstrate how an instruction cue triggers

a complex trajectory through state space, beginning with a rapid

sequence of highly reliable cue- and time-specific patterns

during themost active phase of the evoked response. After these

high-energy state transitions, the population returned to a less

active stable state that persisted throughout the first delay

period. Although activity patterns in the delay period were

context specific, coding of trial type in this relatively quiescent

state did not resemble the representational structure of previous

cue or anticipated choice stimuli. Thus, we find no evidence that

cue-related activity persists as an active representation in WM

or that delay activity reflects preactivation of the target stimulus.

Rather, we argue that delay activity reflects a distinct neurophys-

iological state established during cue processing. This context-

dependent state temporarily sets the tuning profile of PFC

according to the current task demands, i.e., to classify each

subsequent choice stimulus as either a go or no-go response

signal.

Consistent with this proposal, we found that coding in PFC

during the decision-making process initially reflected the phys-

ical properties of the choice stimulus before differentiating

between the two alternative decision values: ‘‘go’’ versus ‘‘no-

go’’ (Figure 6). In separate analyses, we also demonstrate that

positive evidence for both these decision values contributes to

the choice-discriminating coding scheme (Figures S1A and

S1B). We also find no clear functional delineation between

neurons coding the stimulus properties during the earliest pro-

cessing phase and the neurons that ultimately code for the

behavioral choice (Figure S1C). Analyses of choice processing

thus demonstrates how tuning in this population of prefrontal

cells is determined by task context. This distinct state deter-

mines a trajectory through activity space that effectively maps

distinct stimuli to the appropriate decision value according to

context (see schematic in Figure 7).

Representing Behavioral Context
To solve the sequential demands of this task, information about

trial type needs to be maintained across delays and interference

to inform decision making at each choice stimulus. Prefrontal

cortex has long been associated with distractor-resistant main-

tenance in WM (Miller et al., 1996) via persistent firing of stim-
Neuron 78, 364–3
ulus-specific neurons (Wang, 2001).

Possibly, therefore, the temporal gap in

this task might be bridged by an active
WM representation, allowing decision making to operate directly

on two sources of information: memory representation of the cue

and perceptual representation of the choice stimulus. However,

we find that the cue triggers a series of time-specific activity

states rather than a persistent static state. Although activity

does eventually stabilize during the delay period, the coding

scheme is effectively orthogonal to coding driven by the cue

stimulus. Cross-temporal pattern analysis has previously identi-

fied similar dissociations between the stimulus-driven response

and subsequent memory-related delay activity in prefrontal and

parietal cortex across a range of tasks (Barak et al., 2010; Crowe

et al., 2010; Meyers et al., 2008).

This task could also be solved by selectively preactivating the

target-related pattern in response to the cue and in anticipation

of the choice stimulus (Rainer et al., 1999). The behavioral deci-

sion could then be made according to the match (or mismatch)

between the internal target representation and the sensory

input. Preactivation of a target representation has often been

proposed as a critical aspect of attentional control, for example,

in biasing attentional competition (Desimone and Duncan,

1995), and preactivation in visual cortex has been described

in both human (Stokes et al., 2009) and monkey (Chelazzi

et al., 1998). In our case, however, PFC did not engage similar

mechanisms.

Although we find no evidence that delay activity resembles

target-related coding (Figure 4), our data are not inconsistent

with previous evidence that preparatory activity in PFC reflects

target expectation (Rainer et al., 1999). Using a paired-associate

WM task, Rainer et al. (1999) found that delay activity was more

selective for the anticipated stimulus than the memory stimulus.

However, selectivity was assessedwithin isolated timewindows,

so it was not possible to test whether prospective coding

reflected preactivation of the target representations per se.

Using a variant of their paired-associate task, we now extend

their key findings to show that selectivity is unique to the delay

period. Our data are still broadly consistent with a prospective

coding model, insofar as the memory state is configured for

future task demands, but we suggest that prospective coding

is not implemented through preactivation of a sensory target

representation.

Our results may also be compared with those from the oculo-

motor delayed response task (e.g., Takeda and Funahashi,

2004), in which an initial cue (a stimulus in the peripheral visual

field) is followed after a delay by a saccade to the cued location.

In this case, the strong tendency is for prefrontal neurons to have

matched spatial preferences across cue, delay, and response
75, April 24, 2013 ª2013 Elsevier Inc. 371
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epochs (Takeda and Funahashi, 2004). If the response is to be

made to a location that is different from the initial stimulus loca-

tion, then spatial vectors of population activity rotate through the

trial period from an initial coding of stimulus location to a final

coding of response position, again presuming fixed spatial pref-

erence in individual cells. Importantly, in the oculomotor delayed

response task, response preparation can begin at the time of

initial stimulus presentation, unlike the case in cued paired-asso-

ciate or delayed matching tasks. When a cue instructs an arbi-

trary rule for classification of subsequent stimuli, our data

show that patterns of cue, delay, and target coding can be

entirely independent.

Context-Dependent Decision Making
Analysis of choice processing demonstrates an early stimulus-

driven response pattern, which is rapidly transformed into

a more stable choice-related coding scheme (Figures 6A and

6B). Effectively, the context provided by each trial type allows

context-independent stimulus coding to be transformed into

a stable state coding for the appropriate behavioral response

(Figure 6C). Interestingly, choice stimuli appear to drive positive

evidence for both decision values (Figure S1; see also Kusunoki

et al., 2010). This is more consistent with adaptive routing of pro-

cessing trajectories for context-dependent decision making

(Figure 7) than an attentional gate to filter out task-irrelevant

stimuli. In this task, both ‘‘go’’ and ‘‘no-go’’ signal signals are

important for correct behavior; the challenge, therefore, is to

discriminate between these signals, rather than simply to detect

the target stimulus. Attentional gating might be more important if

competing stimuli are presented simultaneously (e.g., Chelazzi

et al., 1998).

Finally, we also found that transient stimulus-specific coding

during the initial response to choice stimuli was distributed

within the same neural population that later settles into the

more stable decision state (Figure S1). This suggests that the

trajectory through the state space remains effectively within

the same neural population (see also Jun et al., 2010),

presumably via a complex web of local interconnections.

Decision making in this region of prefrontal cortex is therefore

best characterized as a transition from a context-invariant

state to context-dependent coding within the same functional

network.

Dynamic Population Coding
Our results are consistent with an adaptive coding model of

prefrontal cortex in which flexible goal-oriented behavior is

mediated via dynamic changes to prefrontal tuning properties

(Duncan, 2001; Duncan and Miller, 2002). As in previous studies

(e.g., Freedman et al., 2001; Meyers et al., 2012; Watanabe,

1986), we show that PFC processes input as a function of task

relevance. Here we provide a detailed picture of the underlying

network dynamics, from rule encoding and maintenance to

context-dependent decision making.

A plausiblemechanism for flexible tuning is activity-dependent

short-term synaptic plasticity (Zucker and Regehr, 2002). Short-

term plasticity has recently been identified as a possible basis for

maintaining information in WM (Erickson et al., 2010; Fujisawa

et al., 2008; Mongillo et al., 2008). If patterned activity leaves
372 Neuron 78, 364–375, April 24, 2013 ª2013 Elsevier Inc.
behind a patterned change in the synaptic weights of the

network (i.e., hidden state), then subsequent stimulation will be

patterned according to the recent stimulation history of a network

(Buonomano and Maass, 2009). Thus, any driving input to the

system will trigger a systematic population response that could

be used to decode the recent stimulation history of the network

(Nikoli�c et al., 2009). Exactly this phenomenon is seen in our data

during the presentation of the neutral stimulus (Figure 5).

Although this stimulus was fixed across trials, the population

response was patterned according to the identity of the previous

cue, providing a more reliable readout of the memory content

than the population response observed during the relatively

quiescent delay period. Recent WM studies in human (Lewis-

Peacock et al., 2012) and nonhuman primate (Barak et al.,

2010) have also proposed a similar mechanism for maintaining

the contents of WM.

Short-term synaptic dynamics could also explain nonsta-

tionary population activity profiles, as observed here (Figure 4)

and in other studies (Barak et al., 2010; Crowe et al., 2010;

Meyers et al., 2008). If the hidden state of the network is

continually altered by each pattern of activity, then even

constant input to the system should result in time-varying

patterns (Buonomano and Maass, 2009). Indeed, it could be

relatively difficult to engineer a network that maintains a static

activity state in the presence of activity-dependent short-term

plasticity.

Finally, adaptive changes in tuning mediated by short-term

synaptic dynamics could also explain the differential activity

states observed during the delay period. Analysis of the neutral

stimulus suggests that differences in the underlying hidden

state can be revealed by increasing overall activity in the

network. Following the same logic, baseline spontaneous firing

within the network could also be sufficient to emit a decodable

response pattern (Sugase-Miyamoto et al., 2008). In this

respect, delay activity could be thought of as the response func-

tion of the network, rather than active maintenance of a static

firing state.

Here, we highlight short-term synaptic dynamics as an attrac-

tive putative mechanism for rapid adaptive coding in PFC (see

also Buzsáki, 2010; Deco et al., 2010). However, other

phenomena that systematically shift the response properties

of a population could also contribute to adaptive coding. For

example, temporary activity-dependent changes in membrane

potentials could also shift the tuning profile of the network (Buo-

nomano and Maass, 2009). Moreover, a systematic shift in the

baseline activity state of the network could reroute processing

via conditional logic gates (McCulloch and Pitts, 1943) and/or

exploiting nonlinear dynamics (Izhikevich, 2007). Finally, neural

synchrony might be especially important for temporary shifts

in effective connectivity (Fries, 2009). Phase synchrony has

been implicated in WM (Axmacher et al., 2010; Buschman

et al., 2011; Fell and Axmacher, 2011), and a recent study has

further shown how rapid configuration of synchronized

networks in PFC is specific to different rules states (Buschman

et al., 2012). These mechanisms might also be able to imple-

ment the functional change we describe here—a context-

dependent shift in network dynamics, altering the mapping of

sensory inputs to final behavioral decisions.
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EXPERIMENTAL PROCEDURES

Subjects

Subjects were two male rhesus monkeys (Macaca mulatta), weighing 11 and

12 kg. All experimental procedures were approved by the UK Home Office

and were in compliance with the guidelines of the European Community for

the care and use of laboratory animals (EUVD, European Union directive 86/

609/EEC).

Task and Stimuli

The cued target detection task is schematized in Figure 1B. Each trial

commenced with a 500 ms baseline period, during which the monkey held

fixation on a red central fixation point accompanied by two dim gray circles

(location markers) 6� to left and right on the horizontal meridian. Next, one of

three cue stimuli was presented for 500 ms at either the left or right (random-

ized) location marker. The cue determined the spatial location of all subse-

quent stimuli within that trial and also the direction of the eventual saccade

response at the end of the trial. Most importantly, the cue identity also in-

structed which choice stimulus would be the target stimulus for the current

trial. During initial training sessions, monkeys learned to associate three

specific cue stimuli with three specific target stimuli. An additional stimulus

served as a neutral nontarget item. All pictures were randomly drawn from

the same set of images (2� 3 2�). New stimulus pairs and neutral pictures

were occasionally introduced and maintained for a number of sessions. Data

were included only after at least six training sessions with a given stimulus

set, at which time this set was highly familiar and performance had reached

asymptote (see Kusunoki et al., 2009).

After cue presentation, between zero and three nontarget stimuli were pre-

sented at the same location as the cue and finally the cue-associated target.

Each stimulus was presented for 500 ms, with a random delay of 400–

800 ms between each stimulus and the next. Nontarget stimuli were randomly

drawn with replacement from the set of two stimuli serving as targets on other

trials (‘‘distractors’’) and the neutral stimulus. Target probability remained

constant at 0.3 for the first three sequential positions after the cue. If three

nontargets had been presented, target probability increased to 1.0, thus obvi-

ating the need for cue-specific stimulus categorization. Consequently,

responses to targets presented after three nontargets were not analyzed. At

target offset, monkeys were required to make a saccade to the location place-

holder on the side of stimulus presentation.

Correct performance (accurate saccade with latency <500 ms) was re-

warded with a drop of juice. The trial was immediately terminated after any

other break from fixation. The window size for both central fixation and end

point of saccade to target location was%3.5� 3 3.5� for 78.4%of the recorded

cells and 5� 3 7� (fixation) and 5� 3 5� (target location) for the remaining cells.

Recordings

Each monkey was implanted with a custom-designed titanium head holder

and recording chamber (Max Planck Institute), fixed on the skull with stainless

steel screws. Chambers were placed over the lateral PFC of the right hemi-

sphere for monkey A at anterior-posterior = 32.0, mediolateral = 22.2, and

the left hemisphere for monkey B at anterior-posterior = 25.8, mediolateral =

21.2. Recording locations for each animal are shown in Figure 1C, which

included BA 8, 9/46, and 45.When task training was completed, a craniotomy

was made for physiological recording. All surgical procedures were aseptic

and carried out under general anesthesia. We used arrays of tungsten micro-

electrodes (FHC) mounted on a grid (Crist Instrument) with 1 mm spacing

between adjacent locations inside the recording chamber. The electrodes

were independently controlled by a hydraulic, digitally controlled microdrive

(Multidrive 8 Channel System; FHC).

Neural activity was amplified, filtered, and stored for offline cluster separa-

tion and analysis with the Plexon MAP system (Plexon). Eye position was

sampled at 100 Hz using an infrared eye tracking system (Iscan) and stored

for offline analysis. We did not preselect neurons for task-related responses;

instead, we advanced microelectrodes until we could isolate neuronal activity

before starting the search tasks. Data were obtained from a total sample of 627

cells. At the end of the experiments, animals were deeply anesthetized with

barbiturate and then perfused through the heart with heparinized saline fol-
lowed by 10% formaldehyde in saline. The brains were removed for histology,

and recording locations were confirmed on dorsal and ventral frontal convex-

ities and within the principal sulcus.

Data and Analysis

Physiological data were analyzed from only successfully completed trials, on

average including 50 repetitions for each combination of trial type (cues 1–3)

and choice stimulus. All statistical analyses were performed using MATLAB

(MathWorks).

Mean Activity

Unless otherwise specified, the instantaneous firing rate was estimated by the

mean spike count within a 50 ms sliding window. The overall population

response to each stimulus typewas assessed relative to the prestimulus base-

line period (�100 to 0 ms) with univariate statistical analyses.

Network Dynamics

The activation state of the full population was represented as a 627-dimen-

sional coordinate in Euclidean space, where each dimension represents the

instantaneous firing rate of a single neuron estimated within 50 ms sliding

windows. The dynamic trajectory through this state space is the path that

passes through the multidimensional coordinate of each time point.

To explore the dynamic behavior of this network, we first calculated the

Euclidean distance between trajectory pairs (e.g., D(Cue1,Cue2)) as a function

of time. Distances between all contributing pairs of conditions (e.g., all pairs of

cues) were then averaged to yield a single summary statistic for each time

point. Randomized permutation tests were performed using exactly the

same approach but with randomized condition labels for each sample.

Because distance is always positive, distance values were expressed relative

to the median of the permutation test, and statistical significance was inferred

relative to the observed null distribution. This distance measure is closely

related to the population coding metric described below—accurate pattern

decoding critically depends on a reliable multidimensional distance between

conditions. Position in state space was visualized using classical MDS. For

each analysis, we made four independent estimates of the population activity

for each condition of interest by averaging every fourth trial within that condi-

tion. MDS was then performed on the Euclidean distance matrix. Data were

plotted against the first two dimensions. The distribution of the four within-

condition data points provides a sense of the tightness of condition-depen-

dent clustering.

We also consider the speed of activity trajectories through state space. In

general, the instantaneous velocity at time t can be estimated by calculating

the difference in activity state as a function of time: d(P1t-n, P1t+n)/2n. Here,

we used n = 20 ms. As in all other analyses, firing rate was estimated within

a 50 ms sliding window. This metric is equivalent to summing the absolute

slope of each firing rate (see Kusunoki et al., 2009) and is sensitive to mean

changes in the overall activation level of the system. However, most impor-

tantly, this metric is also able to identify changes in patterns that are not asso-

ciated with a mean change in energy. For comparison, we can also consider

the change in mean firing rate across neurons, i.e., the overall change in the

energy level of the system.

Population Decoding

Pattern analysis was also performed on the full population vector (n = 627) of

instantaneous firing rates estimated within 50 ms sliding windows for each

condition of interest. For each pairwise test (e.g., cue 1 versus cue 2; cue 1

versus cue 3; cue 2 versus cue 3), we first subdivided the samples into train

and test data sets using an interleaved approach (e.g., averaging across

odd and even cue 1 and cue 2 trials). Using an interleaved subdivision of the

data reduces extraneous differences between train/test subdivisions caused

by drift in the neural response across the testing session. Next, we contrasted

the activity profiles between the conditions of interest to derive two indepen-

dent estimates of the condition discriminative pattern across neurons, e.g.,

TrainCue1-Cue2; TestCue1-Cue2. Finally, the pattern similarity between these

differential population vectors was quantified by a Fisher-transformedPearson

correlation, r0. A positive correlation coefficient indicates reliability across the

independent data sets and thus evidence for a reproducible condition-specific
Neuron 78, 364–375, April 24, 2013 ª2013 Elsevier Inc. 373
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difference across the neural population. For multiclass decoding (e.g., cue 1

versus cue 2 versus cue 3), we repeated this for each pairwise combination

and used the mean correlation coefficient as the overall summary statistic.

Statistical significance was assessed using randomized permutation testing

(see below).

To establish the temporal evolution of information coding in PFC, we first

applied pattern analysis by training and testing classifiers on data from equiv-

alent time points. This analysis is conceptually very similar to the multidimen-

sional distancemetric described above but using ameasure of similarity to test

the generalizability of condition-specific patterns, rather than a measure of

dissimilarity to quantify the absolute difference between activity vectors.

Importantly, the classification approach can be easily extended to test for

cross-generalization over different time points. In this cross-temporal exten-

sion, we train and test at different equivalent time points. Above-chance

cross-temporal generalization provides evidence for a time-stable population

code, whereas a failure to generalize across time suggests that coding is time

specific.

The cross-generalization approach is also easily extended to test for simi-

larity between coding schemes. For example, we also trained our pattern clas-

sifier on differences between the physical identities of two choice stimuli on

trials in which they were targets (e.g., target 1 versus target 2) and tested on

trials in which the same stimuli were distractors (e.g., distractor 1 versus dis-

tractor 2). This provides a formal measure of the shared pattern between the

two contexts.

Statistical Analyses

We used standard parametric univariate statistics to examine the overall mean

firing rate. All other statistical significance testing was performed using

assumption-free randomized permutation testing. For the multidimensional

distance analyses, the null distribution was estimated from 1,000 permutations

of randomly shuffled condition labels using exactly the same procedure as the

main test. The median of the distribution of randomized distances was then

subtracted from the observed distance between conditions, and the 95%

confidence intervals were used to determine the threshold for detecting

a significant difference from chance (i.e., p < 0.05, two-tailed). To control for

multiple comparisons in the time course analyses, we also estimated the distri-

bution of the number of contiguous above-threshold classifications expected

by chance. Only temporal clusters exceeding the 95% cutoff threshold were

presented in each plot. Exactly the same procedure was performed for the

classification-based pattern analyses.

SUPPLEMENTAL INFORMATION

Supplemental Information includes one figure, Supplemental Experimental

Procedures, and four movies and can be found with this article online at

http://dx.doi.org/10.1016/j.neuron.2013.01.039.
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