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A Two-Stage Process Model of Sensory Discrimination:
An Alternative to Drift-Diffusion

Peng Sun and X Michael S. Landy
Department of Psychology and Center for Neural Science, New York University, New York, New York 10003

Discrimination of the direction of motion of a noisy stimulus is an example of sensory discrimination under uncertainty. For stimuli that
are extended in time, reaction time is quicker for larger signal values (e.g., discrimination of opposite directions of motion compared with
neighboring orientations) and larger signal strength (e.g., stimuli with higher contrast or motion coherence, that is, lower noise). The
standard model of neural responses (e.g., in lateral intraparietal cortex) and reaction time for discrimination is drift-diffusion. This
model makes two clear predictions. (1) The effects of signal strength and value on reaction time should interact multiplicatively because
the diffusion process depends on the signal-to-noise ratio. (2) If the diffusion process is interrupted, as in a cued-response task, the time
to decision after the cue should be independent of the strength of accumulated sensory evidence. In two experiments with human
participants, we show that neither prediction holds. A simple alternative model is developed that is consistent with the results. In this
estimate-then-decide model, evidence is accumulated until estimation precision reaches a threshold value. Then, a decision is made with
duration that depends on the signal-to-noise ratio achieved by the first stage.
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Introduction
Sensory discrimination under uncertainty is an everyday task that
can be visual (“Is this light yellowish or bluish?”), auditory (“Is
this pitch higher than that?”), or multisensory (“How long did
the thunder occur after the lightning?”). Consider, for example,
the oft-studied motion direction discrimination task. A set of
randomly positioned dots is displayed in which a subset moves
either to the left or right and the rest move in random directions.
The task is to indicate motion direction. For fixed-duration stim-

uli, signal-detection theory (SDT; Green and Swets, 1988) makes
a distinction between signal and noise. For discrimination, these
correspond to stimulus “value” (e.g., �5° rather than �90° from
vertical) and stimulus “strength” (motion coherence). (Note that
we do not use the term “value” here in its economic sense.)
Performance is a function of the signal-to-noise ratio: identical
performance can result from a large-signal/high-noise (discrim-
inating �90° motion directions, low coherence) or weak-signal/
low-noise (�5°, high coherence) stimulus. This characterization
applies to a wide variety of tasks. For example, for orientation
discrimination, identical performance can result from discrimi-
nating �45° orientations at low contrast or �5° at high contrast.

The difficulty of a discrimination task is reflected in response
accuracy as well as speed [reaction time (RT)]. SDT links re-
sponse accuracy to stimulus discriminability (signal-to-noise ra-
tio) but provides no prediction of RT. To model performance in
a reaction time setting for stimuli that are extended in time, the
drift-diffusion model (DDM) has been influential (Ratcliff and
Rouder, 1998; Ratcliff, 2001; Palmer et al., 2005; Ratcliff and
McKoon, 2008; Forstmann et al., 2016; Ratcliff et al., 2016). In
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Significance Statement

Sensory decision-making under uncertainty is usually modeled as the slow accumulation of noisy sensory evidence until a
threshold amount of evidence supporting one of the possible decision outcomes is reached. Furthermore, it has been suggested
that this accumulation process is reflected in neural responses, e.g., in lateral intraparietal cortex. We derive two behavioral
predictions of this model and show that neither prediction holds. We introduce a simple alternative model in which evidence is
accumulated until a sufficiently precise estimate of the stimulus is achieved, and then that estimate is used to guide the discrim-
ination decision. This model is consistent with the behavioral data.
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this model, each instant yields a piece of evidence about the stim-
ulus in the form of a log likelihood ratio of the two possible
decision outcomes (e.g., leftward or rightward motion direction).
The observer accumulates this evidence (forming an overall log
likelihood ratio: the sum of the momentary fragments of evi-
dence) and responds when it is deemed sufficiently strong (pos-
sibly also incorporating a log prior). Typically, experiments used
to study evidence accumulation use fixed, large stimulus values
(such as �90° direction discrimination), and stimulus strength
(e.g., motion coherence) is varied (Shadlen and Newsome, 2001;
Roitman and Shadlen, 2002; Huk and Shadlen, 2005; Palmer et
al., 2005; Kiani et al., 2008; Drugowitsch et al., 2012; Bitzer et al.,
2014; de Lafuente et al., 2015). Since SDT and the drift-diffusion
model base performance entirely on the signal-to-noise ratio, this
approach is intuitively reasonable. This account of perceptual
decision-making makes full use of sensory information at any
point in time (Bogacz et al., 2006; Bitzer et al., 2014).

The drift-diffusion model has had a strong impact on the field.
Neural responses in several brain areas appear to implement the
accumulation of sensory evidence, including lateral intraparietal
cortex (Gold and Shadlen, 2001; Shadlen and Newsome, 2001;
Roitman and Shadlen, 2002; Yang and Shadlen, 2007; Kiani et al.,
2008; Meister et al., 2013; Park et al., 2014; de Lafuente et al.,
2015; Shadlen et al., 2016) and the frontal eye fields (Gold and
Shadlen, 2000, 2003; Ding and Gold, 2012). This is viewed as
confirmatory evidence of the drift-diffusion model (Gold and
Shadlen, 2007).

We question the assumption of the drift-diffusion model that
RT is solely a function of the signal-to-noise ratio. In Experiment
1, we measured RT in three visual discrimination tasks while
varying both stimulus value and strength. The effect of these two
variables on RT was additive, contradicting any model such as
drift-diffusion that depends solely on the signal-to-noise ratio.
We developed a simple alternative model that splits the decision
process into two stages. The first stage depends only on stimulus
strength, whereas the second stage depends primarily on stimulus
value. This model is consistent with the results of Experiment 1.
The two-stage model further predicts that RT depends on accu-
mulated evidence strength even when the response is cued, pre-
venting further evidence accumulation. This was verified in
Experiment 2 using a cued-response discrimination task.

Materials and Methods
Experiment 1a
Subjects. Three subjects (age, 32–37; two males and one female) partici-
pated in Experiment 1a. S2 is the first author. S1 and S3 are researchers in
the psychology department at New York University. Both were naive to
the purpose of the experiment. S1 was amblyopic and had not had much
experience running visual psychophysical experiments. S2 and S3 have
normal or corrected-to-normal vision.

Apparatus. The experiments were controlled by a Macintosh Intel
computer running Matlab with the Psychophysics Toolbox package
(Brainard, 1997). Stimuli were displayed on a 15-inch Dell Trinitron
VGA monitor with 1344 � 1280 resolution running at a 60 Hz refresh
rate. Stimuli were presented using a linearized 10-bit lookup table. The
mean luminance of all the stimuli and of the background was 54 cd/m 2.
The viewing distance was fixed at 56 cm maintained by use of a chinrest
(resulting in 41 pixel/°).

Stimuli. (1) Orientation-discrimination task: the stimulus was a Gabor
pattern superimposed on (summed with) a dynamic binary texture
patch. The texture had 20% Michelson contrast. The modulating Gauss-
ian envelope’s width (1 SD) was 0.45°. The Gabor was surrounded by a
1.5° diameter black circle that helped subjects maintain fixation. The
spatial frequency of the Gabor’s sinewave component was 1.3 cycle/° with

randomized phase. The independent variables were Gabor contrast C
and orientation �g (relative to vertical).

(2) Location-discrimination task: the stimulus was a 2°-wide (1 SD)
Gaussian blob superimposed on (added to) a dynamic binary texture
with 20% Michelson contrast. The Gaussian blob was displaced horizon-
tally by a distance �S from the fixation point (the fixation point over-
lapped and occluded the Gaussian). The contrast C and spatial offset �S

were the two independent variables.
(3) Direction-discrimination task: the stimulus was a two-frame life-

time random-dot kinematogram (RDK) stimulus containing 80 0.05°
black dots. In every pair of two frames, a subset of the dots (signal dots)
moved coherently in one direction whereas the other dots (noise dots)
randomly changed their locations. After every frame, the previous signal
dots were now designated as noise dots, and a new set of signal dots was
drawn from the noise dots of the previous frame. Therefore a signal dot never
moved for more than two frames. The speed of the signal dots was 3°/s. The
independent variables were the fraction of the signal dots (coherence C) and
the motion direction �m (relative to vertical) of the signal dots.

Procedure. (1) Orientation-discrimination task: subjects indicated by
keypress whether the Gabor was oriented counterclockwise or clockwise
relative to vertical. Subjects were required to respond as quickly as pos-
sible while maintaining a 95% accuracy rate. Feedback was provided after
each trial. In addition, information on overall accuracy was provided
every 50 trials. The intertrial interval was random and uniform from 0.3
to 1 s. Five different values of contrast C and six different values of
orientation �g (�12, �15, and �45°; eight for S1: �12, �15, �22, and
�45°) were tested. Each of the 30 (40 for S1) conditions was repeated 40
times in random order, resulting in a total of 1200 (1600 for S1) trials that
were completed in three (four for S1) separate blocks. In an initial control
experiment, the contrast threshold for the orientation-discrimination
task for �g � �45° was estimated using a three-down, one-up staircase
procedure. The lowest test contrast was set to double the subject’s thresh-
old contrast. The test contrast levels were as follows: 15, 25, 35, 45, and
55% for S1; 8, 16, 24, 32, and 48% for S2 and S3.

(2) Location-discrimination task: subjects indicated by keypress
whether the Gaussian blob was located left or right of the central fixation.
Five different values of contrast C and six different values of �S (�0.25,
�0.5, and �1°) were tested. Each of the 30 conditions was repeated 40
times in random order. The procedure was otherwise similar to the
orientation-discrimination task. The lowest test contrast was again set to
double each subject’s threshold, but in this case, it was the threshold for
the location-discrimination task for �S � �0.5°. The test contrast levels
were as follows: 10, 20, 30, 40, and 50% for S1 and S3; 8, 12, 20, 32, and
64% for S2.

(3) Direction-discrimination task: subjects indicated by keypress
whether the motion direction was predominantly leftward or rightward.
Five different coherence levels C and six different motion directions �m

(�8, �22, and �90°) were tested. For the diagonal conditions (�8 and
�22°), the motion could be rotated away from upward or downward,
chosen randomly. Each of the 30 conditions was repeated 40 times for a
total of 1200 trials. The lowest test motion coherence was set to double of
each subject’s threshold coherence estimated using a three-down,
one-up staircase procedure in which subjects performed the same
motion-discrimination tasks for �m � �90°. The test coherence levels
were as follows: 12.5, 15, 20, 27.5, and 40% for S1 and S3; 7.5, 10, 15, 22.5,
and 35% for S2. Other details were the same as in the other two discrim-
ination tasks.

Experiment 1b
Experiment 1b was identical to Experiment 1a except for the following
minor differences. Subject S2 and an inexperienced, naive subject, S4
(age 26, male), also participated. S4 was paid $10 per hour. Six contrast
and coherence levels were tested. These stimulus values were more evenly
spaced than in Experiment 1a. The Gabor orientations �g tested in the
orientation-discrimination task were �12, �22, and �45°. The test con-
trasts were 8, 10, 14, 22, 38, and 60% for S2 and 4, 6, 10, 18, 34, and 64%
for S4. The test contrast levels of the location-discrimination task were
15, 17, 21, 28, 40, and 60% for S2 and 10, 12, 16, 22, 30, and 50% for S4.
Motion directions �m tested in the direction-discrimination task were
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�8, �22, and �45°. The test coherences were 7.5, 9, 12.5, 17.5, 25, and
40% for S2 and 7.5, 10, 15, 22.5, 32.5, and 45% for S4.

The motivation of Experiment 1b was to use a wider range of contrast/
coherence levels and to test more evenly spaced stimulus values. In some
conditions in Experiment 1a, most of the stimulus values were near the
reference. Such a prior distribution of values could affect participants’
response strategy.

Experiment 2
Subjects. Subject S2 and a newly recruited subject, S5 (age 25, female),
who was paid $10 per hour, participated in Experiment 2. The inexperi-
enced subject S5 was not associated with New York University and had
never been tested with a RDK stimulus. Before conducting the main
experiment, S5’s threshold for identifying left versus right direction was
obtained by a similar adaptive procedure to the one used in Experiment
1. Test coherence levels for S5 were chosen accordingly.

Procedure. In each trial, an RDK stimulus was displayed for a variable
time period, followed by a cue sound that lasted 100 ms. Signal dots
moved either horizontally to the left or to the right (i.e., only two possible
directions). The stimulus disappeared after the onset of the cue. The time
period between the onset of the stimulus and the onset of the cue is called
the stimulus onset asynchrony (SOA). Subjects were required to indicate
the direction (left or right) of the signal dots immediately after hearing
the sound. The deadline to make a valid response was 350 ms after the
onset of the cue, creating pressure for subjects to respond as quickly as
possible. Key presses made outside this window (either sooner or later)
would generate a message, warning that the previous response was in-
valid. Invalid trials were repeated at the end of each block. If responses
still missed the deadline for a repeated trial, the RT of the second attempt
was recorded and used in the analysis. Extensive training was provided.
Initially, subjects missed the response deadline about half of the time.
After extensive practice, responses were on time for all trials for S2 and
98% of trials for S5. Removing those 2% late trials for S5 would not affect
any of our conclusions. In the main experiment, all SOAs were equally
likely. All SOA and coherence conditions were interleaved, and each
condition was repeated 50 times. In a control experiment, the occurrence
of different SOAs followed a truncated exponential distribution to min-
imize the potential effect of varying hazard rates (Kiani et al., 2008). The
mean of the exponential distribution was 420 ms. Only SOAs within the
range 100 – 800 ms were used. Other than the specific coherence values
and stimulus durations, the motion stimuli were identical to those used
in the direction-discrimination task in Experiment 1.

Results
We begin by developing a version of the drift-diffusion model
based on a neural population code. For a given stimulus, the
stimulus strength (e.g., contrast) determines the noise level and
the stimulus value (e.g., angular difference) determines the signal
level. These two factors interact in the model in determining
mean reaction time (RT is a function of the signal-to-noise ratio).
We test this prediction in three different tasks and find no such
interaction. Then, we develop a simple alternative two-stage
model that is consistent with the results. Finally, we discuss a
second behavioral experiment that is again inconsistent with the
drift-diffusion model but, rather, provides further evidence for
our two-stage model of perceptual decision-making.

Single-stage drift-diffusion model
The drift diffusion model is perhaps the most popular model to
account for the perceptual decision-making process involved in
many cognitive and perceptual tasks (Ratcliff, 1978; Ratcliff and
Rouder, 1998; Palmer et al., 2005; Ratcliff and McKoon, 2008;
Simen and Contreras, 2009; Purcell et al., 2010; Krajbich and
Rangel, 2011; Krajbich et al., 2011; Drugowitsch et al., 2012; Mul-
der et al., 2012; Guest et al., 2015). The central machinery of a
drift-diffusion model is a drifting particle whose momentary
movement is subject to stochastic variation (Fig. 1). In the con-

text of decision-making, the diffusion process is thought to reflect
the accumulation of noisy evidence. The decision outcome is
determined by the terminating position of the particle relative to
a reference position. In a two-alternative, decision-making pro-
cess, the sign of the particle’s relative position indicates which
alternative to choose. The distance indicates the degree of belief
about choosing this alternative. Practically (and also supported
by evidence from neurophysiology), the momentary sensory ev-
idence is often computed as the log likelihood ratio of the two
alternatives given the stimulus (Bogacz et al., 2006; Kira et al.,
2015). Here we introduce a neural population code as the source
of the momentary sensory evidence in the standard drift-
diffusion model. We will show that this model makes interesting
predictions about the reaction time of correct responses.

Momentary evidence for discrimination
Consider, for example, a task in which the subject is to judge whether
the orientation of a Gabor pattern is clockwise or anticlockwise of
vertical. Because the Gabor pattern is embedded in a noisy back-
ground and because the contrast and orientation of the Gabor are
not known ahead of time, this perceptual task requires the subject to
make the decision based on sensory information accumulated over
time. Obviously, the higher the contrast or the more oblique the
orientation, the easier is the task, leading to a more rapid response.

Suppose, at any short time interval [�t�1,�t], a Gabor pattern
G(C,�0) causes a population of orientation-tuned neurons to fire
spikes count nt � (n1,t,…,nM,t), where C and �0 are the contrast
and orientation of the Gabor pattern, respectively, and ni,t is the
number of spikes generated during the interval [�t�1,�t] by the
neuron whose tuning curve peaks at �i. Thus, the neural activity
nt provides the momentary sensory information on which the
brain may base its decision.

Assuming a Poisson process for neural activity, conditional
independence between the neurons, and observer knowledge of
the stimulus contrast, then the posterior distribution over orien-
tation is as follows (Ma et al., 2006):

pt���nt, C� �
p�nt��, C�p���C�

p�nt�C�
�

�
i

e
�g�C� fi�� �g�C�ni,tfi���

ni,t/ni,t!

�p�nt��	, C�d�	

,

(1)

where the firing rate of neuron i is assumed to be a separable
function of stimulus orientation and contrast, fi(�)g(C); fi is the
“shape” of the tuning curve for neuron i; and g is a common
contrast gain. We further assume that the shapes of the tuning
curves are identical, differing only in preferred orientation. Con-
trast gain g depends only on stimulus contrast C and the length of
the time interval [�t�1,�t]. The prior p(��C) is assumed to be flat.
Rearranging the numerator and expanding the denominator,
Equation 1 becomes the following:

pt���nt, C� �

e
�g�C��

i

fi�� ���
i

g�C�ni,t

ni,t!
�e�i

ni,tlog fi�� �

e
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fi�� ���
i

g�C�ni,t
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��e�i
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d�	

,

(2)

where the exponential term was taken out of the integral in the
denominator by assuming that �

i
fi��� is a constant independent
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of �. Canceling common terms, Equation 2 becomes the
following:

pt���nt, C� �
e�i

ni,tlog fi�� �

�e�i

ni,tlog fi��	�
d�	

� Kte
�

i

ni,tlog fi�� �
, (3)

where Kt is a constant that depends only on momentary popula-
tion activity nt but not on C or �. Since Equation 3 does not
depend on contrast, we can drop C in subsequent expressions for
pt. This also means that the subject does not need to know or
estimate C to perform the task (Ma et al., 2006). The visual dis-
crimination task can be solved by computing the following:

pt�� � 0�nt� � �
�
0

pt���nt�d�

pt�� � 0�nt� � 1 � pt�� � 0�nt�,

(4)

where pt(��nt) is given in Equation 3. The log likelihood ratio

Dt � log
pt�� � 0�nt�

pt�� � 0�nt�
(5)

serves as the momentary evidence for the orientation-discri-
mination task. For each time interval [�t�1,�t], Dt is stochastic
and may be insufficiently reliable to support a decision. But if the
brain has access to this momentary evidence and accumulates it
over time, then the accumulated evidence will eventually lead to a

more reliable decision. An example of such a diffusion process is
illustrated in Figure 1.

Effect of C and �0 on the reaction time of correct responses
The single-stage drift-diffusion model predicts there is an inter-
action between the effects of C and �0 on the reaction time of
correct responses. Intuitively, since firing rates of neurons are a
separable product g(C)fi(�0) and probabilistically pooled firing
rates (Eqs. 3– 4) determine the quality of the evidence, the con-
tributions of C and �0 multiply so that an increase in one leads to
an amplification of the effects of the other. This multiplicative
effect, filtered through the diffusion process, leads to an interac-
tion in reaction time: a reduction of C leads to a greater increase
in reaction time for small (difficult) �0 than for large (easy) �0.

To verify this intuition, it helps to consider an alternative
measurement of momentary evidence D	t � pt(� 
 0�nt) � pt(� �
0�nt) for which the mean stopping time of the diffusion process
has a simple analytic form. Note that pt(��nt) is a stochastic func-
tion of � given that nt is a random vector. However, E(pt(��nt)) is
a deterministic function of �. Suppose E(pt(��nt)) is of approxi-
mately Gaussian shape with unbiased mean �0 and variance � 2.
Then the expected value of D	t is as follows:

E�D	t� � �
�
0

E� pt���nt��d� � �
��0

E�pt���nt��d�

� ����0

��� � �1 � ���0

���

Population neural 

C C   C  

t 

S 

Time 

t 

S 

t

S 

D1 D2 DtDecision variable Dt

Posterior distribution 
pt ( | nt )

activity nt

Trajectory of decision 

variable St = Dt
t

0 0 0

0, 1[ ] 1, 2[ ] t 1, t[ ]

Figure 1. Schematic illustration of the single-stage model. Noisy discrimination evidence Dt is obtained at every time interval [�t�1,�t] by inferring from momentary population neural activity

Dt � log
pt�� � 0�nt�

pt�� � 0�nt�
. Discrimination evidence is accumulated over time until it hits a boundary.
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� 2���0

�� � 1 � 2���0fC�C�� � 1, (6)

where fc(C) � 1/� is a monotonically increasing function of the
contrast C, because estimation uncertainty � decreases with in-
creasing contrast. The variance of D	t has a more complex form. It
is a function of C but is independent of �0. The mean stopping
time for a diffusion process using D	t is largely inversely related to
its expected value (Shadlen et al., 2006):

E�RT� 	
B

E�D	t�
�

B

2���0fC�C�� � 1
, (7)

where B is a constant primarily determined by the terminating
boundary. The interaction between C and �0 is attributable to the
product in the denominator.

Because of its neural plausibility, we choose to use Dt (Eq. 5) in
our drift-diffusion model, instead of D	t. But unlike E(D	t ), E(Dt)
is difficult to work with analytically. To verify the interaction of C
and �0 with Dt, we simulated the model. A spike train was gener-
ated by simulating Poisson responses of 36 orientation-tuned
neurons with orientation preferences evenly spaced between
�	/2 and 	2. Tuning curves were circular Gaussians with SDs
equal to 1 radian. A diffusion step was taken every 50 ms. The gain
term in Equation 1 was arbitrarily defined as g(C) � Klog(1 
C/C0), where C0 represents, for example, the contrast of back-
ground noise in the stimulus. K was set so that the maximal firing
rate was 80 spikes/s. This arbitrary function captures the acceler-
ating and decelerating sections of simple cells’ contrast transfer
function. Since the function depends on C but not on �0, it does
not create or remove the interactive effect between C and �0. The
exact shape is not critical for our purposes. The stopping time at
the correct boundary was taken as the reaction time for a correct
trial. The boundary height was set so that the diffusion process
ended up at the correct side 95% of the time. Simulated mean
reaction times are shown in Figure 2. The interaction between
contrast and orientation is obvious, consistent with the intuition.
Drift-diffusion models usually include a parameter for non-
decision time (i.e., neural delays and time after the decision to
initiate and perform the motor response); we do not include
nondecision time as it is irrelevant to the interaction we are
trying to demonstrate.

Experiment 1: reaction time in three
visual discrimination tasks
Reaction times in three visual discrimina-
tion tasks (orientation, location, and di-
rection discrimination) were measured
to determine whether stimulus strength
(e.g., contrast or motion coherence) and
value (e.g., spatial or angular offset) inter-
act in their effects on reaction time. Ac-
cording to the drift-diffusion model, they
should.

Accuracy for all subjects in all tasks was
above 92% in Experiment 1a and 88% in
Experiment 1b. Accuracy and RT values
across conditions were consistent with
speed-accuracy trade-off and changing
difficulty across conditions, i.e., lower re-
action times were associated with higher
accuracy. But because the ranges of accu-
racy were small (because of the instruc-

tions to subjects), the accuracy data were less informative than
RT. Therefore, our analysis is primarily built around RT.

Figure 3A shows mean reaction time for correct responses in
the orientation-discrimination task in Experiment 1a for naive
subject S1 who achieved 98% accuracy across all conditions and
above 95% for almost every individual condition. Data for differ-
ent signs of the same stimulus value were pooled. RT decreases
with increasing stimulus contrast C and stimulus orientation �g.
(Note that the data for �22 and �45° were very similar, so we
omit the data for �22°.) The relationship between mean RT and
contrast appears to be similar across orientation conditions. Solid
lines are fits of a model of the form RT � K/log(1  C
/C0)  �i. C0

was fixed at 0.01 for all subjects, tasks, and stimulus values. 
 was
varied across subjects and tasks to fit the data but was indepen-
dent of stimulus value and strength for a given subject and task. �i

was allowed to vary across stimulus strength condition i (e.g., the
orientation condition in Fig. 3). Figure 3B shows the same data as
a function of C̃ � 1/log(1  C 
/C0). Similar transformations
have been used to linearize mean reaction time plotted against
stimulus strength for saccade data (Reddi et al., 2003; Carpenter,
2004). In this plot, K represents the slopes of the fit lines and �i is
the y-intercept. Using a single value of K for the three orientation
conditions in Figure 3, this model accounts for 99.6% of the total
variance. We test for interaction by comparing this model to one
in which K is allowed to depend on orientation condition. The
accounted variance improves to 99.8%, but at the cost of three
more parameters (for the four orientation conditions, only three
of which are shown in Fig. 3).

Mean RTs of correct responses for all subjects and tasks of
Experiments 1a and 1b are shown in Figures 4 and 5, respectively.
For easier visual examination of interaction effects, data are plot-
ted against transformed contrast or coherence C̃. The lineariza-
tion of RT curves is determined by 
 (see Table 1 for values for
each subject and task). 
 carries information as to how RT varies
with stimulus strength and is unimportant for our purposes here.
What we are interested in is K. Visually, curves of mean RT as a
function of C̃ are by and large parallel for different orientations,
locations, and directions (Table 2). Generally, a common value of
K for all orientations explains most of the variance. Allowing K to
vary for different orientations does not improve the fit by much
and, in most cases, not significantly. These separately fit values of
K do not differ (Fig. 6) for all cases except one subject (S4) in the

R
ea

ct
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n 
tim

e 
(s

) 

0.15 0.25 0.45 

12° 

20° 

45° 

0.25 

0.15 

0.35 

0.45 

0.35 

12° 

20° 

45° 

Transformed contrast           Contrast 
0.424 0.427 0.43

Figure 2. Simulated mean reaction time as a function of Gabor contrast and orientation. Note that nondecision time for
stimulus encoding and motor delay was not included. The two figures are two different representations of the same simulated
mean RTs. On the right, simulated mean RTs are plotted against transformed contrast, resulting in nearly linear curves. (See Fig. 3
and text for further details.)
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orientation-discrimination task (Fig. 5 (top right), Fig. 6B (first
column); Table 2, top right cell].

Note that subjects were asked to maintain 95% accuracy. In
fact, all subjects either surpassed this criterion or at least came

close to achieving it in all three tasks. This requirement was im-
posed to prevent subjects from responding early on difficult trials
if they did not care about accuracy. Previous studies have shown
that when a task is difficult, subjects tend to respond faster than
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Figure 3. Mean reaction time for correct responses for subject S1 in the orientation-discrimination task of Experiment 1a. Error bars represent 95% confidence intervals. A, The abscissa represents
stimulus contrast C. Solid lines are fits of a model that includes no interaction term (see text for details). B, The same data plotted as a function of transformed contrast C̃ � 1/log(1  C 
/C0),
linearizing the relationship between transformed contrast and reaction time.
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they should (Drugowitsch et al., 2012; Moran, 2015). This may
reflect a strategy in which overall reward is maximized by ending
difficult trials early so as to increase the total number of trials,
spending more time on the easier trials that more often lead to
reward (thus maximizing the overall reward rate). If this strategy
were adopted consciously in our task, subjects would rush on
trials with low stimulus strength or low stimulus value, possibly
masking any interaction effect that would otherwise be present in
the RT data. Fortunately, we found no evidence of an interaction
across a wide range of performance levels, and observers main-
tained high performance levels across conditions, so we are con-
fident in our interpretation of the data.

As for the exceptional case of S4 in the orientation-
discrimination task, the effects of contrast and orientation on

reaction time clearly interact (Fig. 5, top
right). Allowing K to vary for different
orientation conditions improves the fit
significantly and substantially. K de-
creases as orientation increases, whereas
the fit values of � (the y-intercepts) do not
change substantially. The accuracy for this
particular subject and task was 97%, in
line with the other subjects for the same
task in Experiments 1a and 1b. The possi-
ble causes of this interaction will be dis-
cussed in the next section.

In summary, no obvious interaction
for reaction time can be found in any of
the three visual discrimination tasks of
Experiment 1a, and an interaction was
found in only one case in Experiment 1b.
In most cases, there is a strong indication
that mean RT decreases with increasing
stimulus strength by the same amount in-
dependent of the stimulus value. Al-
though an interaction between stimulus
strength and value may have many causes,
the lack of interaction places a strong con-
straint on models of the decision pro-
cesses involved in these tasks. This led us
to consider an alternative model, as de-
scribed in the next section.

The two-stage
estimate-then-decide model
The drift-diffusion model consists of a
single stage in which evidence is accumu-
lated until sufficient evidence is available
for a decision. The accumulating evidence
combines and conflates stimulus strength
and value through the signal-to-noise ra-
tio. As a result, drift-diffusion predicts an
interaction of these two stimulus variables
(Fig. 2). We now develop what we con-
sider the simplest model consistent with

the results of Experiment 1. This two-stage estimate-then-decide
(ETD) model offers a simple explanation for these results: the deci-
sion process is composed of two separate subprocesses that operate
sequentially. The additive relationship between the RT curves results
from the cascade nature of the ETD model (McClelland, 1979); the
duration of one subprocess is a function only of stimulus strength,
and the other’s duration is a function of stimulus value. The pro-
cesses are performed sequentially, so their durations sum, leading to
no interaction between stimulus value and strength.

In the first stage of the ETD model, evidence is accumulated
until a sufficiently reliable posterior distribution of �0 is pro-
duced. The second stage makes use of the estimated posterior
distribution of �0 to decide whether �0 
 0, i.e., it makes the
discrimination judgment. The most notable difference between
the ETD and the drift-diffusion model is that discrimination ev-
idence is not available until a reliable posterior distribution is
obtained. By separating the process into two substages, the effects
of stimulus strength and value are decoupled.

Stage one: the evolution of the posterior distribution
The ETD model begins with a framework similar to drift-diffu-
sion: a population of orientation-selective neurons with Poisson
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Figure 5. Experiment 1b. Mean reaction time of correct responses in three discrimination tasks (top, orientation; middle,
location; bottom, direction) for two subjects. Different symbols represent different Gabor orientations (�g � �12, �22.5, and
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Table 1. Fitted � values for each subject and in each discrimination task

Experiment 1a Experiment 1b

S1 S2 S3 S2 S4

Orientation discrimination 2.23 1.03 0.46 1.5 0.91
Location discrimination 0.58 0.82 0.3 1.46 0.43
Direction discrimination 0.59 0.51 0.97 0.71 1.13

Sun and Landy • Two-Process Discrimination Model J. Neurosci., November 2, 2016 • 36(44):11259 –11274 • 11265



B
es

t f
it 

K

0.2

0.3

B
es

t f
it 

 (
s)

 

Orientation offset (°) Spatial offset (deg) Direction offset (°) 

0

0.5

0

0.9

12 22

S2 

45

S4 

12 22 45 .25 .5 1

S2 S4 

.25 .5 1 7.5 22 45

S2 

7.5 22 45

S4 

0

0.5 0.5

B
es

t f
it 

K

0

0.2

0.3

B
es

t f
it 

 (
s)

 

Orientation discrimination Location discrimination Direction discrimination 

.25 .5 1

S1 

.25 .5 1

S2 

.25 .5 1

S3 S1 S2 S3 

7.5 4590 7.545 90 7.545 90

A 

B 

0.12

0.15

0.2

12 15 22 45

S1 

1215 45

S2 

1215 45

S3 

0.5

0.3

0.2

0

0.9

0

0.9

0.3

0.2

0.3

Figure 6. Best-fit values of K as a free parameter and best-fit values of � for different values in Experiments 1a (A) and 1b (B). Error bars represent 95% confidence intervals, assuming normality
of error residuals after fitting mean reaction time data to linear models.

Table 2. F-test for goodness of fit for the parallel case (common K) versus the nonparallel case (variable K across stimulus values)

Experiment 1a Experiment 1b

S1 S2 S3 S2 S4

Orientation discrimination F(3,11) � 2.3 F(2,8) � 0.83 F(2,8) � 1.7 F(2,11) � 0.33 F(2,11) � 99
p � 0.13 p � 0.47 p � 0.23 p � 0.72 p � .000

v1k � 99.6% v1k � 98.9% v1k � 98.8% v1k � 94.3% v1k � 94%
v3k � 99.8% v3k � 99.1% v3k � 99.2% v3k � 94.6% v3k � 99.9%

Location discrimination F(2,8) � 3.3 F(2,8) � 1.5 F(2,8) � 1.6 F(2,11) � 3.8 F(2,11) � 3.2
p � 0.08 p � 0.26 p � 0.25 p � 0.05 p � 0.08

v1k � 98.1% v1k � 96.8% v1k � 99.2% v1k � 96% v1k � 97.3%
v3k � 98.9% v3k � 97.5% v3k � 99.9% v3k � 97.6% v3k � 98.3%

Direction discrimination F(2,8) � 0.63 F(2,8) � 1.4 F(2,8) � 4.1 F(2,11) � 0.63 F(2,11) � 2.5
p � 0.45 p � 0.28 p � 0.05 p � 0.55 p � 0.13

v1k � 95.3% v1k � 97.4% v1k � 96.8% v1k � 97.4% v1k � 98.2%
v3k � 95.8% v3k � 98.0% v3k � 97.6% v3k � 97.7% v3k � 98.7%

v1k and v3k represent the variance accounted by the common K and variable K models, respectively.
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spiking statistics. In the first stage, neural activities are not pooled
across the population immediately, but rather are accumulated
for each individual neuron over time (Beck et al., 2008). More
specifically, for a stimulus (C,�0), the first stage obtains a vector of
summed population neural activities Nt � (N1,t,…,NM,t):

Ni,t � �
j�1

t

ni, j. (8)

The accumulation terminates when the width (SD) of the pos-
terior distribution p(��Nt) (computed using Eq. 3) shrinks
below a fixed threshold. The top portion of Figure 7 illustrates
this process.

Stage two: judging whether �0 
 0 based on the
posterior distribution
The aim of the second-stage process is to introduce a secondary
RT component that depends on the significance of the evidence
given the estimated posterior distribution p(��Nt). A simple pro-
cess that can generate such an evidence-dependent RT compo-
nent is a particle linearly rising to a boundary. The boundary
height is fixed, and the starting position of the particle is propor-
tional to the magnitude of the evidence. That is, given the esti-
mated posterior distribution, to judge whether �0 
 0, the brain
pools neural activities across the population to compute the de-
cision variable D � p(�0 
 0�Nt) � p(�0 � 0�Nt). The travel time
of the hypothetical particle in stage two is then given by the
following:

RT � B � k � � D � , (9)

where B is the fixed boundary height in the second stage and k is
a constant independent of D. We use the bounded quantity D
rather than the log likelihood ratio, which is unbounded. In a
single trial, the discrimination evidence D is constant. However,
the estimated posterior distribution varies across trials and thus
D also varies across trials, introducing further variation of overall
reaction time. Note that the second stage does not produce re-
sponse errors. All response errors are attributed to the first stage,
i.e., if the posterior distribution happens to center on the wrong
side. The analogy of a linearly rising particle for stage two follows
the convention of a similar decision model (Carpenter and Wil-
liams, 1995; Reddi and Carpenter, 2000; Reddi et al., 2003; Car-
penter, 2004; see Discussion).

The composition of two sequential processing stages is remi-
niscent of Carpenter’s Linear Approach to Threshold with Er-
godic Rate (LATER) model of saccadic latency (Carpenter, 2004).

In the LATER model, a decision signal rises linearly from thresh-
old for initiating the response and with a rate of rise on different
trials that follows a normal distribution. We compare the two
models in the Discussion.

Effect of C and �0 on the reaction time of correct responses
The overall reaction time is the sum of the time taken to complete
each stage. If the time to complete one stage depends primarily on
C and the other on �0, then the effects of these two variables will
not interact. Stage one terminates based on a threshold on the
width of p(��Nt). The time taken to reach that width is a function
of C and is independent of stimulus value �0 for an isotropic
neural population (Eq. 3). The time taken by stage two is a func-
tion of the likelihood ratio D. D is effectively a signal-to-noise
ratio; the signal depends on �0, and the noise is fixed by the
threshold on the width of the posterior distribution and thus is
independent of C. Thus, additivity (Figs. 3–5, parallel curves,
absence of interaction) is consistent with the ETD model: stimu-
lus strength primarily affects the duration of the first (estimation)
stage whereas stimulus value primarily affects the duration of the
second (decision) stage.

But, if ETD predicts absence of interaction, how does it explain
the obvious interaction observed in S4’s data in the orientation-
discrimination task of Experiment 1b? In fact, an interaction can
happen if the subject is able to flexibly adjust the precision criteria �

according to the estimated angle �̂ given p(��Nt). The boundary
might change, following the changing mode of the posterior. More

specifically, for a �̂ that is close to vertical, a higher precision (smaller

�) is adopted. For a �̂ that is far from vertical, a low precision (large
�) is adopted. With this additional flexibility, ETD can produce an
interaction as found in Figure 5 (top right).

It is important to consider whether flexible control of the
boundary height in the drift-diffusion model will allow it to be
consistent with the parallel RT functions that dominate Figures

3–5. This requires the DDM to raise the boundary for values of �̂

that are far from the reference relative to �̂ closer to the reference,
which is counterintuitive. Second, to do so, it must first estimate
the presented orientation rather than merely computing the log
likelihood ratio, complicating the model. Finally, for the DDM to
produce parallel RT curves requires specific values of boundary
placement for each estimated orientation, whereas ETD produces
parallel curves by default. Our data suggest that parallel curves
occur most of the time. For these reasons, we find the flexible
DDM a less plausible explanation.
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Figure 7. Illustration of the two-stage ETD model. In the estimation stage, neural spikes are accumulated over time until the width (SD) of the posterior distribution drops below a threshold,
yielding a relatively accurate estimate of �0. In the decision stage, the decision variable D is computed as D � P(� 
 0�Ncrit) � P(� � 0�Ncrit), the difference between the probability of �0 
 0
versus �0 � 0. The decision process is then modeled as a hypothetical particle linearly rising to reach a second boundary, starting from a position that is proportional to D. D fluctuates across trials
(shaded red) producing additional variation in the reaction time.
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Speed versus accuracy, RT distribution and incorrect-trial RT
The ETD model is broadly consistent with many well known
characteristics of human RT data reported in the literature. Here
we focus on three common characteristics.

Speed and accuracy are typically linked in reaction time
experiments. Difficult trials lead to slow reaction times and
less accurate responses, whereas easy trials lead to fast reaction
times and more accurate responses. The ETD model predicts
this behavior. For stimuli of low contrast or coherence, the
evolution of posterior distribution takes longer to achieve the
target precision. Despite the integration of more stimulus in-
formation, the posterior distribution is still more likely to
appear on the wrong side of the reference for more difficult
trials. Figure 8 shows an example of this phenomenon for S3 in
the orientation-discrimination task for � � �12° and corre-
sponding simulation results for the ETD model. This condi-
tion is chosen for illustration because the accuracy range is the
largest. The accuracy ranges for other subjects and conditions
are too small to clearly show this effect. The parameters for the
ETD model were chosen so that mean RT fell roughly in the
same range as the data, and ETD clearly shows the same pat-
tern of RT and response accuracy.

In RT experiments, the distribution of RT is asymmetric with
a long tail for longer RTs (Luce, 1986). More importantly, the
variance of the RT distribution tends to increase with the mean.
These characteristics are true of our experimental data and con-
sistent with simulations of the ETD model (Fig. 9).

Finally, we focus on the difference between RTs for trials with
correct and incorrect responses. Incorrect RTs are typically

slower than correct RTs, although not always (Luce, 1986). This
pattern is also observed in our experiments (Fig. 10). However,
the standard DDM predicts identical RTs for correct and incor-
rect responses (Ratcliff, 1978; Shadlen et al., 2006; Ratcliff and
McKoon, 2008). Likewise, the population-code, drift-diffusion
model developed above predicts equal correct and incorrect RT
distributions (Fig. 10).

We are aware of three possible remedies for the standard
DDM to generate slower RTs for incorrect responses: (1) the
fixed drift rate in the standard DDM varies randomly across trials
(Ratcliff and McKoon, 2008); (2) the noise term of the diffusion
process is non-Gaussian (Shadlen et al., 2006); or (3) the decision
variable is modulated by a gain function that increases monoton-
ically with time (Ditterich, 2006). However, there is no obvious
modification of the population-code, drift-diffusion model
equivalent to solution (1) or (2) to generate slower incorrect RTs.
A direct application of solution (3) to our population-code, drift-
diffusion model produces slower error-trial RTs. However, in our
hands it also produces predictions that are inconsistent with
other aspects of human behavior such as error-trial RTs that are
independent of stimulus strength (simulation data not shown).
Therefore, in addition to parallel RT curves, slower incorrect RTs
is another feature of the human data that the population-code,
drift-diffusion model cannot explain.

On the other hand, the ETD model predicts slower incorrect
RTs (Fig. 10). The intuition is as follows. The ETD produces error
responses when the posterior distribution happens to fall on the
wrong side of the reference. On average, the distance between the
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Figure 9. The ETD model and RT distributions. The three left columns show histograms of three subjects’ RT in the orientation-discrimination task of Experiment 1a. The top and bottom rows
correspond to the lowest and highest contrasts used in the experiment for each subject. The right column shows the histogram of simulated RT for the ETD model based on parameters that put RT
roughly in the same range as S3’s data.
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posterior distribution and the reference is smaller when it is on
the wrong side than when it is on the correct side. A smaller
distance results in a longer duration of the second stage of ETD
(smaller D in Eq. 9). Therefore, on average, incorrect responses
have larger RTs.

Leaky accumulation in the estimation stage
The current implementation of the ETD model assumes perfect
accumulation of spike counts in the estimation stage. However,
leaky accumulation is probably more realistic. This could be
achieved by convolving the accumulated spike counts with an
exponential function that decays with time. In so far as the esti-
mation and decision processes are separate and take place se-
quentially, an ETD model with leaky accumulation in the
estimation stage will still produce parallel RT curves.

Specification of the decision stage
The decision stage represents a process that operates based on
accumulated sensory information. Its operation involves deriv-
ing a decision plan and implementing the derived plan. Specify-
ing the exact computation of the decision stage is beyond the
scope of the current study. What is critical is that its duration
depends on sensory information accumulated during the estima-
tion stage. Here, this dependency is modeled as a linear function
(Eq. 9). Other forms of this relationship are possible (e.g., divi-
sion rather than subtraction), and we do not claim superiority of
Eq. 9 over other alternatives.

Experiment 2: reaction time in a cued-response,
direction-discrimination task
The results for the direction-discrimination task in Experiment 1
are particularly interesting. Our interpretation goes against a rich
body of literature that models the perceptual decision processes
in motion-discrimination tasks as a diffusion process similar to
the one that is rejected here (Ratcliff and Rouder, 1998; Palmer et
al., 2005; Kiani et al., 2008; Drugowitsch et al., 2012; Mulder et al.,
2012). The motion-discrimination task typically used in those
studies is a special case of the one used in the current experiment,
so it seems reasonable to expect that the underlying perceptual
decision process in our task is the same as in those studies. How-
ever, one might argue that stimulus conditions used in those
experiments differ from ours. In a typical experimental setting,
only two opposite motion directions (e.g., left vs right) are tested,
whereas 10 directions were interleaved in our direction-discri-
mination task. Perhaps the inclusion of so many possible motion
directions triggered a different strategy than when only two di-
rections are used. Although we find it difficult to articulate a
reason for such a strategy shift, we next test the model using a
two-alternative, cued-response task.

In a cued-response task, subjects do not respond until a “go”
signal is given. The cue time is usually defined as the time between
the onset of the stimulus and the onset of the go signal, the stim-
ulus onset asynchrony. In this task, the estimation stage is termi-
nated by the cue. SOA determines the length of time during
which sensory evidence is accumulated. When the first-stage es-
timation process is terminated by a response cue, the evidence
(effectively a signal-to-noise ratio) is passed on to the second-
stage decision process. RT is entirely a function of the decision
stage. Shorter SOAs lead to reduced evidence and hence a flatter
posterior distribution over, for example, motion direction. This
leads to a weaker decision signal D for the decision stage and
consequently a longer reaction time after the cue. Weaker stim-
ulus strength or smaller stimulus value also result in a weaker
decision signal D and therefore longer RT. In summary, in a
cued-response task, the ETD model predicts that RT should de-
crease with increasing stimulus strength, with increasing stimu-
lus value, and with increasing SOA.

On the other hand, the single-stage drift-diffusion model pre-
dicts constant reaction times for different SOAs and stimulus
strengths and values. A typical diffusion model is composed of a
diffusion process and a nondecision component that contributes
an additive term to the overall reaction time. Importantly, this
additive term is independent of the diffusion process and of stim-
ulus properties (Palmer et al., 2005). The cued-response task ter-
minates the diffusion process so that RT is determined only by
nondecision time and hence should be independent of SOA and
stimulus value. The decision maker only needs to respond with
the sign of the current position of the particle.

Note that for the above logic to work, the response cue should
not be too early. For direction discrimination, nondecision time
is typically �300 ms, which includes stimulus encoding time and
motor latency (Palmer et al., 2005). Monkey physiological data
suggest that monkey MT activity peaks and stabilizes 100 –200 ms
after motion onset, independent of stimulus strength (Gold and
Shadlen, 2007). MT neurons are thought to provide the encoded
sensory input to the brain region that performs the decision pro-
cess. At the same time, there is a latency to process the response
cue itself. It seems reasonable to avoid response-cue SOAs shorter
than 100 ms to ensure that the response cue, once processed,
occurs after the latency to process the initial stimulus informa-
tion so that evidence accumulation has already begun.

In Experiment 2, RT was measured as a function of SOA and
coherence in a direction-discrimination task in which response
time was cued. Tested SOAs range between 120 and 800 ms,
presumably covering a large section of the decision process ac-
cording to fit drift-diffusion model parameters reported in the
literature. In Figure 11, the top row shows mean reaction time as
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a function of SOA for two coherence levels. Consistent with the
two-stage model, RT decreases with increasing SOA and increas-
ing coherence. This pattern of relationships remained intact even
after the hazard rate was approximately equated across SOA in
the control experiment (Fig. 11, middle row).

RT varies systematically with SOA and motion coherence as
predicted by the ETD model and is inconsistent with the single-
stage drift-diffusion model. However, there are possible modifi-
cations of the single-stage model that would be consistent with
these results, which we discuss in turn.

Postcue evidence accumulation
The cued-response experiment is intended to tap into the instan-
taneous state of the decision process at the time of the cue. How-

ever, although the stimulus has disappeared after cue onset,
residual neural signals in the “pipeline” may continue to be inte-
grated until a boundary is reached (Kiani et al., 2008). Although a
very narrow RT window was imposed to prevent the postcue
evidence accumulation, it is hard to rule out this possibility com-
pletely. For short SOA or weak stimuli, the particle in the DDM is
more likely to be far from the boundary at the time of the cue. If
evidence continues to be accumulated after the cue, it will take
longer to reach the desired boundary for particles that are further
away. That is, RT should decrease with increasing coherence and
SOAs, exactly as observed here.

However, this account of postcue evidence accumulation for
the DDM makes a different prediction for the variance of RT than
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(every 100 ms) in the control experiment where occurrence of different SOAs followed a truncated exponential distribution. The difference in RT between the shortest and the longest SOA is
significant for both subjects ( p � 0.0001) as is the difference between the high and low coherences for both subjects ( p � 0.01 and p � 0.03). Bottom row, SD of RT.
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the ETD model. The cue essentially divides the process into two
drift-diffusion processes. RT is the duration of the second post-
cue drift-diffusion process. Therefore, like standard DDM, its
variance should increase with its mean.

On the other hand, the ETD model predicts that, in a cued-
response experiment, the variance of reaction time should in-
crease with SOA, not with mean RT. To provide an intuition for
this, consider a simplified ETD model that consists of a standard
diffusion process followed by a ballistic process in which the par-
ticle continues to linearly rise to a fixed boundary (Fig. 12). This
simplified ETD bears some resemblance to the LATER model
(Carpenter et al., 2009). It is also consistent with the fact that,
during a perceptual decision-making process, average LIP neural
activities initially rise at different rates for stimuli of different
coherences, but their rates converge toward the end of the process
(Gold and Shadlen, 2007). Recall that for ETD, RT in the cued-
response task depends on the evidence strength at the time of the
cue. Therefore, the variance of RT increases with the variance of
the evidence strength, i.e., the variance of the magnitude of D in
Equation 9. Since D is the sum of a series of independent random
variables over time, its variance increases with SOA. Therefore,
the RT in a cued-response task will increase with SOA. This is
what we find in the data. Note that RT variance appears to de-
crease slightly with increasing SOA for the shortest SOAs (near
200 ms). This initial dip may correspond to the incomplete en-
coding process before the decision process. For monkeys, the
decision process has been found to occur at least 200 ms after
stimulus onset (Gold and Shadlen, 2007; Kiani et al., 2008).

Note that the simplified ETD model predicts equal variance
for strong- and weak-coherence stimuli. S5’s data appear to be
consistent with this prediction, but S1’s data do not: they show a
larger variance for weaker stimuli. However, it is easy to make the
simplified ETD model produce a larger RT variance for weaker
stimuli in a cued-response task by increasing the noise SD for
weaker stimuli.

Divided attention
The time required to respond to the auditory response cue may
depend on the amount of attention allocated to monitoring au-
ditory input. Accumulating visual sensory evidence could limit
the resources available for monitoring the auditory cue. For long
SOAs, the accumulation process may terminate before the cue,
allowing the subject to allocate additional resources to monitor

and respond to the upcoming cue. Such a model would make two
predictions. First, it predicts a constant RT for short SOAs
(shorter than any possible termination of the diffusion process)
and a sudden change to decreasing RT once the SOA is long
enough to allow the diffusion process to reach the boundary for
some trials. The sudden change in mean RT should be more
obvious for stimuli of strong coherence than for stimuli of weak
coherence. This is because the boundary crossing time for strong
stimuli will be less variable; therefore, the transition should be
sharper. Second, the RT distribution in general should be bi-
modal, with one mode corresponding to the case where evidence
accumulation has not ended before the cue and RTs are long, and
the other when it has ended and RTs are short. For very short
SOAs, the RT distribution is dominated by the slow mode. For
very long SOAs, the RT distribution is dominated by the fast
mode. As the SOA increases from short to long, the RT distribu-
tion should transition from the slow to the fast mode. As a result,
the variance of RT should rise and then fall. In examining the
data, however, we find none of these predictions hold. The im-
provement in RT with SOA is gradual, taking place as early as
200 ms and continuing all the way to SOAs of 800 ms (Fig. 11).
The shape of this improvement does not differ between weak and
strong stimuli. The RT distributions do not appear bimodal, and
RT variance by and large increases with increasing SOA. These
observations argue against this account of shared processing re-
sources.

A motor component sensitive to the strength of
accumulated evidence
The nondecision component after the diffusion process may in-
corporate a mechanism that depends on the degree of belief re-
sulting from the preceding diffusion process, as implied by Joo et
al. (2016). This way RT will depend on SOA and coherence in the
same way as observed here. However, with this modification,
the single-stage diffusion model essentially becomes a two-
stage model. In fact, to produce the pattern of RTs observed
here, the decision process must comprise two separate stages:
one deals with sensory information accumulation and the
other deals with decision-making based on the information
that has been accumulated.

To conclude, the drift-diffusion model and ETD model make
distinct predictions about RT in a cued-response task. Our results
favor the account of the ETD model for the decision-making
process underlying typical visual direction-discrimination tasks
where only two motion directions are to be discriminated.

Discussion
We have provided evidence against the drift-diffusion model of
decision-making. First, in three visual discrimination tasks, we
find that the influences of stimulus value and strength on RT are
mostly additive, whereas drift-diffusion predicts an interaction
(because RT should only depend on the signal-to-noise ratio).
Second, we find that RT in a cued-response task varies with both
SOA and stimulus strength. For drift-diffusion, the decision re-
quired at the time of the cue is merely to report the sign of the
current accumulated evidence; RT need not be affected by stim-
ulus value or SOA. We introduce a two-stage ETD model consis-
tent with both findings.

The drift-diffusion model
The drift-diffusion model has been suggested widely as a model
for decision-making in the brain. For example, in a direction-
discrimination task, neural responses in cortical area LIP typi-

t 

Boundary 

Estimation Decision 

Cue 

Figure 12. Simplified ETD model for a two-alternative decision process in a cued-response
experiment. The estimation stage is abstracted as a diffusion process for which the particle’s
height represents the strength of accumulated evidence (the precision of the current estimate).
In the decision stage, the particle continues to rise linearly after the cue to a fixed boundary. This
structure is consistent with Equation 9.
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cally increase throughout the trial until reaching a common firing
rate when the animal initiates the saccade that indicates its deci-
sion. Thus, the accumulation process might be identified with the
pooled firing of neurons in LIP (Platt and Glimcher, 1999; Gold
and Shadlen, 2001; Shadlen and Newsome, 2001; Roitman and
Shadlen, 2002; Yang and Shadlen, 2007; Kiani et al., 2008; de
Lafuente et al., 2015; Shadlen et al., 2016). The instantaneous
firing rate in LIP should reflect the decision outcome. However,
there are alternative accounts of the role of LIP in decision-
making (Meister et al., 2013; Park et al., 2014; Latimer et al.,
2015). In particular, Park et al. (2014) found that individual LIP
spike trains encoded multiple factors of a given trial (fixation
point, appearance of saccadic targets, noisy motion stimulus,
saccadic response) along with interspike correlations. Al-
though accumulated evidence toward a decision could be de-
coded from LIP activity, that activity reflected all of these
components combined.

Other problems with the drift-diffusion model have been
noted previously. The model seems “optimal” in the sense that it
accumulates sensory evidence in a manner (as summed log like-
lihood ratios) that is consistent with an ideal Bayesian computa-
tion. Coupled with a starting point for the particle corresponding
to prior log-odds, the particle’s position may be interpreted as the
current log-posterior odds. Comparing log-posterior odds with a
fixed threshold is appropriate if by optimal the intention is to
maximize the expected gain from the current trial. However, an-
imals do not always appear to optimize the reward in each trial. In
some situations, they spend less time on difficult trials as if they
are trying to optimize rewards per minute rather than rewards
per trial (Drugowitsch et al., 2012, 2014, 2015). This problem has
been addressed by suggesting that there is a cost of time (Hanks et
al., 2011; Thura et al., 2012) or by imposing bounds that collapse
as the trial progresses (Hanks et al., 2011). In effect, the diffusion
process rapidly “forgets” the initial prior, and yet if the diffusion
takes too long, it is preferable to invoke the prior and move on to
the next trial. To complicate matters further, a recent study shows
that subjects may not even optimize rewards per minute; they
spend far too much time on difficult trials for which reward was
deliberately made small (Oud et al., 2016).

The drift-diffusion model is also tied to tasks in which there
are only two opposing options. Extending the two-alternative
drift-diffusion model to explain the multialternative decision
process remains a challenge. An obvious solution is to introduce
a diffusion process for each possible choice and appropriate in-
teractions between them (Niwa and Ditterich, 2008; Ratcliff and
Starns, 2013). However, the ETD model begins with stimulus
estimation, making it a simple matter to extend the model to
more complex tasks by using those estimates to make the subse-
quent decision. In real-life situations, estimation of the visual
world occurs generically and ubiquitously; we are always estimat-
ing world properties. However, decision-making is task specific.
It makes sense to have a general-use estimation stage and a task-
specific decision stage that follows it.

Implications for perceptual decision-making
The most provocative claim in this study is our rejection of the
drift-diffusion model of perceptual decision-making compared
with the proposed ETD model. This calls into question what
exactly is accumulated during a simple perceptual decision pro-
cess such as motion direction discrimination. The drift-diffusion
model accumulates evidence for “which” action should be taken;
the ETD model accumulates evidence for “what” stimulus was
presented. However, the success of the drift-diffusion model

should not be overlooked. For the ETD model to provide a seri-
ous alternative to drift-diffusion, one must show that the ETD
model can account for all the known characteristics of perceptual
decision-making consistent with the predictions of drift-
diffusion. In this study, we tested three major characteristics of
perceptual decision-making and showed that the ETD model is
consistent with all three without introducing any further compli-
cations to the model. Exhausting the entire list, however, is be-
yond the scope of the current study. However, we are optimistic
based on the success of a different but related model, LATER
(Carpenter and Williams, 1995; Reddi and Carpenter, 2000;
Reddi et al., 2003; Carpenter, 2004).

The LATER model
In LATER, on each trial a particle rises at fixed speed to a bound-
ary; the travel time constitutes the model’s prediction of RT. The
speed of particle travel varies randomly from trial to trial after a
normal distribution. The second stage of our two-stage model is
very similar to the LATER model. The LATER model was origi-
nally proposed to characterize saccade latency after target onset.
For medium to high target contrasts, LATER predicts the saccade
latency distribution well (Carpenter and Williams, 1995). Studies
and commentaries have suggested that the LATER model pre-
dicts the RT distribution under a wide range of testing conditions
(Reddi et al., 2003) and that the LATER model and the drift-
diffusion model “show signs of convergence” (Ratcliff, 2001).

The ETD model versus LATER
The main criticism of LATER is that although it has a stochastic
latency component (predicting RT distributions), it does not
have a stochastic response component (predicting response er-
rors and their covariation with RT). To explain response errors,
the LATER model has been elaborated to include a diffusion
process preceding the linear rise stage (Carpenter et al., 2009).
This diffusion process represents a detection stage that integrates
noisy signals over time. The detection stage may falsely detect a
signal (false alarm) and trigger an incorrect response.

The ETD model is similar in structure to the elaborated
LATER model: its first stage is a stochastic process, and its second
stage is a constant-speed rise to threshold. However, the ETD
model differs from the elaborated LATER model in some notable
ways. First, the ETD model explicitly spells out the mechanism of
the preceding stochastic process. In the LATER model, the first-
stage diffusion process is meant to represent the process of de-
tecting a signal, but its physiological interpretation is unclear.
Second, the LATER model does not explain the origin of the
trial-by-trial variability of the second stage. In the ETD model,
the variability results from the variability in the standard devia-
tion and location of the posterior distribution over stimulus value
estimated by the first-stage process. Third, in the elaborated
LATER model, the mean particle speed is fixed across stimulus
strength, therefore the mean duration of the second stage is in-
dependent of stimulus properties (Carpenter et al., 2009). In the
ETD model, the speed is fixed but the starting location is propor-
tional to the accumulated sensory evidence, thus the duration
depends on a range of factors, including stimulus strength, stim-
ulus value, and duration of accumulation.

Bayesian inference
In deriving predictions of a population-code drift-diffusion
model, we assumed that the brain extracted all of the information
contained in the population response via Bayesian inference.
Would a suboptimal drift-diffusion model yield a qualitatively
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different prediction? We expect not, but obviously there is a huge
class of possible suboptimal drift-diffusion models. We have im-
plemented one such model in which the pooled activity of all
neurons tuned clockwise of the reference angle was compared
with that of neurons tuned counterclockwise. Again, an interac-
tion of stimulus value and strength on RT was found (as in Fig. 2).
In fact, it is the pooling of neural activities across the population
that effectively combined the impact of stimulus strength (con-
trast) and value (stimulus orientation) into a single factor con-
tributing to reaction time in the drift-diffusion model. In so far as
momentary evidence pools neurons across population, an inter-
action of stimulus value and strength appears likely in the drift-
diffusion model.

Conclusion
To conclude, we have provided evidence against the drift-
diffusion model for visual discrimination. We proposed a two-
stage estimate-then-decide model as an alternative. In stage one,
the brain accumulates sensory evidence until a reliable estimate
of the stimulus value is obtained. Based on this estimate, a deci-
sion is made in stage two. Stage two takes a variable length of
time, depending on the estimated value and the uncertainty of the
estimate at the time of the decision. We offer this two-stage model
as an alternative account of perceptual decision-making.
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