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Influence of spiking activity on cortical local field
potentials
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Key points

• The intra-cortical local field potential (LFP) reflects a variety of electrophysiological processes
and is a fundamental signal used to enhance knowledge about neuroscience.

• For most investigations, spike-free LFPs are mandatory for valid conclusions, but spikes can
contaminate LFPs and falsify findings despite low-pass filtering or other attempts to remove
spiking activity from LFPs. The extent of this fundamental problem remains unclear.

• Using spikes recorded in the awake monkey, we revealed how spike amplitude, spike duration,
firing rate and noise statistic influence the extent to which spikes contaminate LFPs.

• Contamination varies with these parameters and can affect LFPs down to around 10 Hz; below
this it is theoretically possible but unlikely. LFP frequencies up to the (high-) gamma band can
remain unaffected, but signals above must always be carefully analysed.

• We propose a method to reveal modulations in spectrograms, which also allows the detection
of spike contamination, and provide a systematic guide to assess spike contamination of
intra-cortical LFPs.

Abstract The intra-cortical local field potential (LFP) reflects a variety of electrophysiological
processes including synaptic inputs to neurons and their spiking activity. It is still a common
assumption that removing high frequencies, often above 300 Hz, is sufficient to exclude spiking
activity from LFP activity prior to analysis. Conclusions based on such supposedly spike-free LFPs
can result in false interpretations of neurophysiological processes and erroneous correlations
between LFPs and behaviour or spiking activity. Such findings might simply arise from spike
contamination rather than from genuine changes in synaptic input activity. Although the subject
of recent studies, the extent of LFP contamination by spikes is unclear, and the fundamental
problem remains. Using spikes recorded in the motor cortex of the awake monkey, we investigated
how different factors, including spike amplitude, duration and firing rate, together with the
noise statistic, can determine the extent to which spikes contaminate intra-cortical LFPs. We
demonstrate that such contamination is realistic for LFPs with a frequency down to ∼10 Hz. For
LFP activity below ∼10 Hz, such as movement-related potential, contamination is theoretically
possible but unlikely in real situations. Importantly, LFP frequencies up to the (high-) gamma
band can remain unaffected. This study shows that spike–LFP crosstalk in intra-cortical recordings
should be assessed for each individual dataset to ensure that conclusions based on LFP analysis
are valid. To this end, we introduce a method to detect and to visualise spike contamination, and
provide a systematic guide to assess spike contamination of intra-cortical LFPs.
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Introduction

Typical intra-cortical neuronal signals recorded with
open filters (0.1 Hz–10 kHz) exhibit a 1/f α spectrum and
reflect a superposition of a variety of electrophysiological
processes (Buzsaki et al. 2012). Such broadband
recordings allow for simultaneous investigation of spikes
and oscillations in non-spiking activity (synaptic, gap
junctions, etc.). Whereas spikes are mainly considered as
the output activity of single neurons, the physiological
meaning of the remaining, non-spiking signal remains
of debate. Both signal components can be correlated,
anti-correlated or independent. However, it has become
evident that non-spiking signals can provide a source of
information about behaviour (Mehring et al. 2003; Schalk
et al. 2007; Waldert et al. 2008; Zhuang et al. 2010).
Investigating both signal types and their relationship
could not only help to better understand neuronal
processes but also yield higher performance and stability
in brain–machine interfaces (BMIs, Waldert et al. 2009).

The traditional approach to separate spiking and
non-spiking signals is to use a single threshold in a
frequency domain, e.g. 300 Hz (Logothetis, 2003). Signals
above this threshold are used for analysis of spiking activity
and the low frequency component is usually referred
to as the local field potential (LFP) and assumed to be
spike-free. Although this approach is widely used, the
above assumption is incorrect for two main reasons: the
spike shapes may contain frequency components below
the chosen frequency threshold (Zanos et al. 2011; Zanos
et al. 2012) and spike trains may be mistaken for low
frequency oscillatory activity (Bair et al. 1994). Both
factors result in spike contamination of LFP and possible
misinterpretation of neuronal activity. Several studies have
shown that increased LFP power in frequencies around
90 Hz (high-gamma) might in fact indicate high spiking
activity (Quilichini et al. 2010; Ray & Maunsell, 2011;
Belluscio et al. 2012; Schomburg et al. 2012). Spikes can
contaminate the LFP in frequencies below 90 Hz (Ray
et al. 2008b; Zanos et al. 2011) and as low as 50 Hz (Ray
et al. 2008a; Ray & Maunsell, 2011) if genuine neuro-
nal oscillations are weak or absent. Furthermore, spike
contamination of electrocorticograms (ECoG) might be
possible (Ray et al. 2008a).

Such findings obviously do not exclude the existence
of genuine non-spiking synaptic oscillations but they do
necessitate a systematic assessment of the extent of spike
contamination aiming at validation of LFP analysis for the
individual dataset under investigation.

We first introduce an alternative, simple method for
scaling spectrograms which allows for an optimal visual
inspection of amplitude/power modulation over time.
This method clearly reveals the effects of spikes on
LFP power. We then provide a systematic guide as to
which frequencies of LFPs are contaminated by spiking

activity. This guide is based on simple and realistic
simulations in which we systematically investigated four
parameters characterizing broadband electrophysiological
signals with spiking activity: spike rate, signal-to-noise
ratio (spike amplitude), spike duration and noise statistic
(1/f α). These parameters can be estimated from a given
dataset, and guidance about safe, non-contaminated LFP
frequencies can be inferred from our results or auto-
matically determined by a freely available script which
we provide.

Methods

Ethical approval

All experimental procedures were approved by the
UCL Institute of Neurology Ethical Review Procedures
committee and carried out in accordance with the UK
Animals (Scientific Procedures) Act.

Cortical recordings

Spikes were recorded from cortical motor areas of one
awake purpose-bred macaque monkey, which was pre-
pared for recording using deep general inhalational
anaesthesia (isoflurane 1.5–2% in oxygen). Full aseptic
procedures were used throughout and a full course of
post-operative analgesics was given.

Spectrogram – reveal amplitude modulations

LFP amplitude modulations over different conditions or
time are represented as spectrograms (colour-coded) or
spectra (line plots). Due to the 1/f α, α > 0, decay of
amplitude with increasing frequency, modulations in the
raw presentation are dominated by lower frequencies,
i.e. modulations in higher frequencies are too small
to be visible. This problem is partly overcome by
normalising the spectra/spectrogram: for each frequency
bin separately, all amplitude values are divided by the
amplitude of a defined baseline. While this can improve
the presentation, modulations in higher frequencies
are still prone to be overlooked. In addition, the
normalisation depends strongly on the validity of the
baseline. We propose the following method to overcome
these deficiencies and, thereby, equally reveal modulations
across all frequency bins in the highest possible detail:

a′
t,f = at,f − min(a:,f )

max
(

a:,f

) − min(a:,f )

where at,f is the raw amplitude at time t for the frequency
bin f and a:,f is a vector of raw amplitudes across time
for the frequency bin f . To avoid influence of outliers
or extreme signal fluctuations on estimates of min and
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max, normalisation can be computed based on a certain
percentile range of the corresponding frequency bin, for
example the 1st to 99th percentile. Depending on the data,
this range can be asymmetric but should be sufficiently
wide (e.g. coverage of at least 95% of all values or ±2
standard deviations) for an optimal presentation.

Simulations

The strength of spike contamination was investigated by
comparing the spectrum of pink noise with the spectrum
of the same noise after real spikes had been added.

Pink noise. Noise was generated using an inverse Fourier
transformation with coefficients for each frequency
determined by 1/f α, 0.8 ≤ α ≤ 2 (Little et al. 2007).
Simulations were performed for the following noise
statistics: α = 0.8, 1, 1.2, 1.4, 1.6, 1.8 and 2.

Poisson process with refractory period. Sequences of
delta pulses ranging from 1 to 150 pulses s−1 were created
using a Poisson-like process with a refractory period
of 1.5 ms and a temporal precision of 25 kHz. Pulses
were created for a period of 1.31 s and then replaced
using real spikes with the trough aligned to the pulse.
Although neurons rarely fire at 150 spikes s−1 for such a
long period as 1.31 s, we have chosen these parameters
(a) for a high frequency resolution of 0.763 Hz in the
frequency decomposition and (b) to also approximate
multi-unit activity – for example four neurons producing
30 spikes s−1 correspond roughly to one neuron firing
120 spikes s−1.

Spike recordings. Spikes were extracted from real
neuronal signals sampled at 25 kHz using movable
platinum–iridium microelectrodes (Thomas Recording
GmbH, Giessen, Germany; tip impedance 1–2 M�) from
primary motor (M1) and premotor (area F5) neocortex
in one awake purpose-bred macaque monkey trained to
grasp or observe the grasp of different objects. Details
about the experimental paradigm and setup have been
described previously (Vigneswaran et al. 2013; monkey
M47).

Spikes recorded from 35 neurons in different sessions
were discriminated using modified Wave_clus software
(Quiroga et al. 2004) and extracted from the high-pass
filtered signals (300 Hz acausal butterworth, 3th order)
using a window of 1.36 ms (35 samples) around the
spike’s trough (Fig. 1A). The number of spikes in each
of the 35 resulting spike pools was on average 2854 (range
271–8173). Average spike waveforms were added to the
pink noise according to the Poisson process.

The 1.36 ms window around a spike’s trough was chosen
to cover all major characteristics of the spike wave-
form. The high-pass filter used was chosen to prevent
adding potential genuine non-spike oscillations to the
noise along with the average spike. The filter attenuates
signals below 100 Hz by a factor smaller than 0.04. This
attenuation is sufficient to reduce the strength of all
signals <100 Hz below detection threshold; for example,
a genuine spike-locked 10 Hz oscillation of more than
90 mV would be required to be detected in the noise.
Neuronal oscillations of this strength are unlikely.

Although in this study we did not want to add any
genuine spike-locked oscillations, we had to recognise that
the spike itself contains genuine neuronal components
below 300 Hz, which are attenuated by the filter and
thereby excluded from the analysis. Applying a 300 Hz
high-pass filter before adding spikes thus results in
a safe but possibly incomplete estimation of spike
contamination. For comparison, we performed additional
simulations with average spike waveforms obtained
from 0.5 Hz high-pass filtered signals. We also tested
rectangular (1.36 ms) or delta pulses instead of real spike
waveforms.

Signal to noise ratio (SNR). The spike amplitude
for each of the 35 neurons was calculated as the
peak-to-peak (peak-to-trough, min-to-max) amplitude of
the corresponding average spike waveform. The noise was
quantified as the root-mean-square (rms) of the spike-free
pink noise. The SNR was defined as:

SNR = average spike amplitude/rms (noise)

The root-mean-square was used as an estimator of
the average noise power and is identical to the standard
deviation if the mean is zero. The resulting SNR is thus
directly comparable to other SNR definitions (Fig. 1B);
for example, the SNR used here is two times that used
by Suner et al. (2005) and Jackson & Fetz (2007). Spike
amplitudes were assumed to reach maximal values around
1 mV with SNRs up to 30 (experience in this laboratory
and, for example, Jackson & Fetz, 2007). Simulations were
performed for the following SNRs: 0 (control), 1, 1.5, 2,
2.5, 3, 3.5, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25 and 30.

Frequency analysis. A Blackman–Harris taper was
applied to the 1.31 s (exact value: 215 samples at 25 kHz) of
noise or noise plus spikes before Fourier transformation
(Matlab 2012b, blackmanharris and fft). These parameters
were chosen for high frequency resolution (0.763 Hz) and
reduced bias and variability in the spectra/spectrograms.
Note that this window length does not mean that spike
trains have to occur for a period of 1.31 s for the presented
results to be correct. For spike contamination to occur
around 10 Hz, the duration of a spike train can be much

C© 2013 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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shorter than 100 ms, a period which is not unrealistic
(see, for example, Fig. 3A). Contaminations in higher
frequencies can occur for even shorter spike trains; for
example, for contamination around 100 Hz the duration
of a spike train can be shorter than 10 ms.

The same parameters were used for estimation of the
frequency composition of the spike waveforms, whereas
the 1.31 s window was padded with zeroes outside the
waveform.

Statistical tests. For each neuron, spike rate, SNR and
noise statistic (1/f α), 100 datasets of noise and the identical
noise plus spikes were created. Amplitudes for each
frequency bin were computed for both conditions: noise
without spikes and noise with spikes. These 100 amplitude
values per condition were tested for significant differences
using Wilcoxon’s signed-rank test. Resulting P-values were
corrected for multiple testing using false-discovery rate
(FDR) correction (Benjamini & Hochberg, 1995) with
P < 0.05 for each spike rate/SNR dataset, i.e. separately
for each neuron and noise statistic.

Determination of risk zone boundaries. For each neuron,
SNR and noise statistic, the corrected P-values were
arranged in a plane with axes ‘spike rate’ and
‘frequency’. In these planes, critical boundaries separating

regions of non-significant (towards low spike rates and
frequencies) from significant (towards high spike rates and
frequencies) spike contamination were determined as
follows. First, we searched in each frequency bin for trans-
itions from non-significant to significant neighbouring
P-values along the ‘spike rate’ axis. The smaller spike
rate of each transition was saved as x-coordinate and
the frequency bin as y-coordinate. A curve was fitted to
these coordinates using a two-dimensional robust linear fit
(Matlab 2012b, smooth with parameters 0.1 and ‘rlowess’).
Finally, the fitted curve was shifted by 3 Hz (−92 dB
highest sidelobe peak, Blackman–Harris, window length
215 at 25 kHz) towards higher frequencies to compensate
for any bias in the frequency analysis and to obtain a
conservative boundary.

Results

Dynamic spectrograms

We introduced here an alternative method to rescale
spectrograms. The method reveals amplitude modulations
equally across all frequencies and is independent of the
choice of baseline level. To illustrate this method we
applied it to the LFP recorded in primary motor cortex
of an awake, behaving macaque monkey performing a
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Figure 1. Average spike waveforms and SNR comparison
A, normalised average spike waveforms (extracted from 300 Hz high-pass filtered signal) for all 35 neurons used
in the simulations and the 1.36 ms window used to extract the part of the spikes which was added to the pink
noise. Neurons with blue and red waveform were used in Figs 6 and 9. Brightness of waveform reflects spike
duration: dark, short spike duration; bright grey, long spike duration. B, comparison of different measures for the
SNR (spike amplitude: ptt, peak to trough; t, trough; RMS, root mean square; 2 · std, 2 times standard deviation;
|noise|, amplitude 5th to 95th percentiles; first measure used in this study).
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grasping task (Vigneswaran et al. 2013). Figure 2A shows
the raw amplitude spectrum (computed as described in
the Methods) averaged over multiple trials and aligned to
movement onset at time zero. Due to the 1/f α property
of the spectrum, the low frequencies (<10 Hz) clearly
dominate the plot and conceal amplitude modulations
at higher frequencies. Well-known phenomena such as a
power increase in gamma range and drop in beta range
(∼20 Hz) accompanying movements (Pfurtscheller, 1989;
Arroyo et al. 1993) are hardly apparent in this type of
presentation. Different techniques were introduced to
overcome this problem. One of the most common is
normalisation of the amplitude spectrum to a predefined
baseline activity (Fig. 2B). In addition, one can also take
a logarithm of the baseline-normalised spectrum and
present the results in decibels (Fig. 2C). Although these
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Figure 2. ‘Dynamical’ normalisation compared to other types
of spectrograms
Spectrograms for the same intra-cortical LFP recorded in macaque
monkey primary motor cortex. The monkey started movement at
time = 0 s and grasped, pulled and held (red dash) an object before
releasing (green dash) the object and returning to a home pad (blue
dash). The time window comprises −3.34 to +3.34 s around
movement onset (t = 0 s). A, raw spectrogram; B, normalised to a
baseline (mean over first three time steps at the beginning of the
time window); C, first normalised to a baseline as in B, then
converted to decibels; and D, ‘dynamic spectrogram’ obtained using
the method proposed here.

methods clearly improve presentation of the data, they
significantly depend on the choice of the baseline period.
Furthermore, amplitude modulations at some frequencies
can still overshadow smaller but significant changes at
other frequencies.

We normalised the amplitude spectrum for each
frequency bin to the minimum and maximum amplitude
for this frequency bin in the presented time window (here
−3.34 s to 3.34 s, see Methods for details). Our method
considers all frequencies independently and utilises the
full dynamical false-colour range for presentation of each
frequency bin (Fig. 2D). Dynamical spectrograms are also
independent of a baseline choice.

Influence of spiking activity on LFPs

We applied the proposed method ‘dynamic spectrogram’
to the intra-cortical broadband signal, which includes
both LFP and spiking activity, as shown in Fig. 3A.
The dynamic spectrogram clearly reveals an increase in
amplitude during the period of spiking activity (0.5–1.5 s)
up to the Nyquist frequency (12.5 kHz; Fig. 3B) and, even
more relevant for this study, also for frequencies below
150 Hz. Is this increase caused by spiking activity in the
recording or does it represent genuine changes in brain
oscillatory activity? To answer this question, we performed
extensive realistic simulations by artificially adding real
spike shapes to the background activity and varying (1)
the amplitude of spikes relative to the background activity
(SNR), (2) spike rate, (3) spike duration (by using 35
different neurons) and (4) background activity statistics
(α of 1/f α spectrum).

Figure 4A (top left subplot) visualises an excerpt
of pink noise (SNR 0, 1/f 1.4) and (other small sub-
plots) the identical noise with a sample spike train
generated according to a Poisson-like spiking process with
a refractory period (see Methods) and scaled according
to the SNR indicated on the plot. Figure 4A (centre)
shows the colour-coded ratio of the amplitude spectra
of pink noise with added spikes to the spectra of the
same pink noise without spikes. It summarises the changes
across frequencies, SNR and a range of realistic firing
rates. With increasing spike rate and SNR, the degree
of spike contamination increased and affected more and
more frequencies, including lower frequencies. Starting at
low firing rates and SNRs, an increase in amplitude was
first observed for frequencies between around 500 and
3000 Hz, frequencies commonly included in investigations
of spiking activity. The affected frequency range then
became wider with higher spike rates and SNRs, eventually
contaminating frequencies below 150 Hz. To illustrate the
spectral changes with increase in firing rate (Fig. 4B) we
calculated a raw spectrum for constant SNR and noise
statistic (5, 1/f 1.4). Even low spike rates (∼30 spikes s−1)

C© 2013 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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caused non-uniform, waveform-dependent amplitude
increases across a wide range of frequencies, and were
apparent in spectrograms for activity with frequencies as
low as 25 Hz (Fig. 4B).

To estimate what level of spike contamination leads to
spurious results, i.e. false conclusions about significant
changes in LFP due to genuine oscillatory activity, we
statistically compared (Wilcoxon’s signed-rank test) 100
simulations of pink noise versus the same pink noise (per
simulation) but with spikes added. The test returned P
values for each spike rate, SNR and noise statistic (Fig. 5,
example). All P values were corrected for FDR of multiple
testing (see Methods). In addition to this correction, the
finding that significant (grey shades) and not significant
(white) P values are not randomly distributed but instead
form contiguous regions (clusters) speaks against this
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Figure 3. Real intra-cortical signal and corresponding
‘dynamic’ spectrogram
A, a real intra-cortical signal with spiking activity recorded in monkey
primary motor cortex during a reach and grasp task. B, spectrograms
calculated using the ‘dynamic spectrogram’ method.

result being due to false positives (Type I errors) and
corroborates the interpretation of which LFP frequencies
are contaminated. The boundaries (Fig. 5, red line)
separating the region of non-significant from significant
spike-related amplitude increases (spike contamination)
were determined automatically (see Methods).

Using these boundaries, we could confirm that
spikes already significantly affect frequencies below the
often-used 300 Hz threshold (Fig. 6). While the neuron
presented in Fig. 6A (blue waveform in inset and Fig. 1A)
shows less severe contamination, the neuron presented
in Fig. 6B (red waveform in inset and Fig. 1A) shows
how readily spike contamination of LFP can occur
even for low SNRs and spike rates (e.g. SNR 2 and
30 spikes s−1). Moreover, we found that spikes significantly
affected frequencies below 100 Hz for realistic values
of SNRs (7–16) and spike rates (<100 spikes s−1). Even
more importantly, these results indicate that spikes can
contaminate neuronal oscillations down to around 10 Hz
(using pink noise as surrogate for cortical, electro-
physiological ‘noise’).

While Fig. 6 shows the extent of spike contamination
for just two examples of different single neurons, neuro-
nal recordings can contain the spiking activity of multiple
neurons. When multiple neurons fire (independently),
their spike rates roughly add up and boost spike
contamination; for example, three neurons each spiking
with 20 spikes s−1 and equal SNR would correspond to one
neuron spiking with 60 spikes s−1. Although only results
obtained from single-unit activity are presented, spike
contamination for multi-unit activity can thus be inferred
from Fig. 6 and the following figures.

The results so far were based on a pink noise with a
constant α = 1.4 (1/f 1.4), an average value we found in our
recordings. As the noise parameters might differ between
different brain areas or recording conditions, we simulated
noise with other plausible α and found that it substantially
affects the strength of spike contamination (Fig. 7). This is
especially apparent for spikes with low SNRs: while there
was no contamination in frequencies below 300 Hz for
small α (e.g. 1/f 0.8, curves for SNR <2 not present), spikes
with an SNR as low as 1 contaminated frequencies down
to around 65 Hz for large α (1/f 2, top curve SNR = 1). The
effect of noise was much weaker for higher SNRs.

While the previous results were obtained for individual
neurons, Fig. 8 shows the median (continuous lines) and
maximal contamination (dashed lines) across 35 arbitrary
neurons (Fig. 1) for typical SNRs. As the spike amplitude
was normalised in terms of SNR before calculations were
carried out, the variability in strength of contamination
across neurons must have originated from differences in
the spike waveforms. Frequency analysis of the waveforms
(see Methods) revealed that broad spikes have stronger
components in frequencies below ∼1 kHz than short
spikes (Fig. 9A). This result also explains the stronger

C© 2013 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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contamination of the wide-spike neuron (peak to trough:
0.76 ms) as compared to the short-spike neuron (peak
to trough: 0.24 ms) as presented in Fig. 6B and 6A,
respectively.

One parameter directly characterising the spike wave-
form is spike duration. Consistent with the frequency
composition of corresponding waveforms (Fig. 9A), we
found that the strength of contamination depends sub-
stantially on the spike duration; the wider the spike (peak
to trough) the larger the extent of spike contamination
(Fig. 9B). The neuronal data contributing to Fig. 6 are
representative of narrow spike neurons (brief wave-
forms, weak contamination) and of wide spike neurons
(long spike duration, strong contamination, cf. insets
and Fig. 1A). If neurons fire even broader spikes,

contamination can potentially be stronger than shown in
Fig. 6B; however, contamination strength seems to plateau
at these broad spike durations (Fig. 9B).

The dependency between spike duration and strength of
contamination was significant (P < 0.05, FDR corrected)
for all spike rates above 2–3 spikes s−1 and SNRs above
7. For lower SNRs the spike rate had to be higher to be
significant (Fig. 9C).

The results presented so far were based on spike wave-
forms obtained by averaging real spikes from 300 Hz
high-pass filtered intra-cortical recordings (see Methods).
This precaution was taken to prevent adding potential
genuine spike-locked oscillatory activity in low frequencies
along with the average spike waveform to the pink noise.
This procedure might also remove signal components
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of the spikes below 300 Hz and result in an incomplete
estimate of spike contamination. However, using a 0.5 Hz
high-pass filter before averaging the spikes resulted
qualitatively in the same results. The script provided along
with this study (http://www.carmen.org.uk/portal) auto-
matically estimates the extent of spike contamination for
both filter cutoffs.

In our simulation using real spikes, contamination was
(1) for almost all neurons larger than using a delta pulse
as an approximation of a spike and (2) for all neurons
smaller than using a rectangular 1.36 ms pulse as another
approximation (Fig. 9B). This emphasises the necessity of
using real spike waveforms in estimations of the extent of
spike contamination in LFP recordings.

Discussion

We have introduced an alternative method to rescale
spectrograms, investigated the contamination of LFP by
spikes and provided a guide to the contribution of spikes
to recorded LFP activity.

Dynamic spectrogram

The ‘dynamic spectrogram’ method reveals amplitude
modulations equally across all frequencies. It is
independent of any baseline and allows for visual pre-
sentation of the spectrogram in great detail. The method
can be applied to any type of recording (LFP/ECoG/
electroencephalography (EEG)/magentoencephalograp-
hy (MEG)) to reveal amplitude modulations, which may
otherwise remain undetected. In contrast to commonly
used methods such as normalisation or log-normalisation,
this method overcomes common problems in the pre-
sentation of spectrograms. First, higher amplitudes and
amplitude modulations at low frequencies do not mask
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modulations at higher frequencies. Secondly, the method
is robust to artefacts as only the frequency bins containing
the artefact are affected and the percentile range on
which the minimum and maximum is calculated can be
adapted to the dataset analysed. Thirdly, as it is baseline
independent, it is not necessary to search for an optimal
baseline and ongoing brain activity or artefacts during a
baseline period do not affect analysis of other task phases.

The proposal to use this method for displaying
(dynamic) spectrograms should not be misinterpreted
as questioning the validity of normalising spectrograms
to a baseline period. If a neurophysiologically justified
and artefact-free baseline can be defined, baseline
normalisation is a different but valid approach. Dependent
on study objectives and careful statistics, frequency
bins can also be separately normalised by individually
selecting appropriate baseline values from a pre-defined,
pre-stimulus time window (e.g. Waterstraat et al. 2012).
However, ‘dynamic spectrograms’ guarantee that the full
false-colour space is used for every individual frequency
bin, which is essential to equally reveal and present
modulations in high detail across all frequency bins.

These optimizations are achieved by sacrificing a direct
quantitative comparison across frequencies or different
experimental conditions, which can still be carried out
using rigorous analysis.

Spike contamination

Using simple and realistic simulations, we showed that,
first, spikes can contaminate LFPs in frequencies below
300 Hz, which is in line with previous studies reporting
contamination down to 100 Hz (Quilichini et al. 2010;
Ray & Maunsell, 2011; Belluscio et al. 2012; Schomburg
et al. 2012). Moreover, we (1) systematically investigated
spike contamination and (2) demonstrated how easily
frequencies <100 Hz, often considered to be ‘safe’, can
be affected in realistic recordings and that contamination
can even occur down to around 10 Hz.

As the spike waveform itself already contains frequencies
down to 100 Hz (Fig. 9A, cf. Zanos et al. 2012), it is evident
that even a few spikes can significantly contaminate the
LFP. However, another factor is the presence of spike
trains effectively resulting in an amplitude increase in a
broad, contiguous range of frequencies. The pattern of
this increase (Fig. 4B) depends on the spike waveform.
Neurons firing broader spikes contaminate the LFP to
a greater extent because their waveforms have stronger
components in lower frequencies than short spikes
(Fig. 9).

Pacemaker neurons that fire coupled to a certain rhythm
and spike synchrony can increase the extent of spike
contamination. The boundaries suggested in this study
would then have to be shifted further down in frequency.
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A similar effect can occur for uncorrelated multi-unit
spiking activity as here spikes can temporally overlap,
which effectively increases the SNR. However, even for
higher spike rates such incidents are relatively rare due to
the brevity of individual spikes.

Consequences of spike contamination

We showed that even a simple analysis in the frequency
domain can be affected by spike contamination. The
same arguments hold for other analyses in the frequency
domain, e.g. spike–LFP coherence. Any analysis in the
time domain is even more prone to spike contamination
because it requires spike removal from the data, and
low-pass filtering is not sufficient to achieve this. As the
amplitude of spikes can be orders of magnitudes larger
than that of LFPs (e.g. up to 1 mV vs. a few microvolts),
higher spike-related frequencies remain after filtering. For
example, a 200 Hz (450/1000) signal fluctuation of 100 μV
(10/1) would remain if a third-order 100 Hz low-pass
Butterworth filter was applied to a signal containing
spikes with an amplitude of 1 mV (for the aforementioned
frequencies). The spike-triggered average of LFPs is even

more prone to this misinterpretation since after averaging
the amplitude of the spike is maintained but the noise level
scales down with the square-root of the number of spikes
used for averaging (assumption: Gaussian noise). Even
very low-amplitude filter residuals in frequencies above
the low-pass filter cut-off can emerge.

Furthermore, a single spike also contains very low
frequencies. Although low in amplitude, these frequencies
can emerge if the noise is reduced sufficiently by averaging
the LFP with reference to a large number of spikes. The
spike-triggered LFP must be generated using unfiltered
data recorded with an as high as possible sampling rate
and only filtered after the spike had been removed.

By contrast, interaction between spikes and neuronal
oscillations (Buzsaki et al. 2012), either by genuine electro-
physiological processes or by spike contamination, can
have useful applications. Even if reliable spiking activity
cannot be recorded, LFPs can reflect their activity and
therefore be used as a BMI control signal for example.
Furthermore, the LFP is partly predictable from spiking
activity (David et al. 2010) and vice versa (Hall et al.
2012).

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300

1

1.5

2

2.5

3.5
5
8
25

SNR

Spike rate (spikes s–1)

F
re

qu
en

cy
 (

H
z)

B
1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300

5

6

7
8
9
10

12

16
20
25

SNR

F
re

qu
en

cy
 (

H
z)

A

500μs

500μs

Figure 6. Spike contamination for
different SNRs and two typical
neurons
Frequencies above each curve are
significantly affected by spike
contamination. For clarity, only sample
SNRs are shown and labelled. Increasing
SNRs consistently caused contamination in
progressively lower frequencies.
Representative neurons exhibiting weak
spike contamination (A, Fig. 1 blue curve
and inset), and strong spike contamination
(B, Fig. 1 red curve and inset).

C© 2013 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.



5300 S. Waldert and others J Physiol 591.21

Hence, our results have direct implications for the
stability of LFP recordings and usefulness of the LFP as
a control signal for BMIs. Changes in spiking activity
can substantially alter the LFP down to 10 Hz and thus
change the BMI input signal. Stable recordings of LFP
would in certain situations be comparable to those of

identified neurons (Dickey et al. 2009; Fraser & Schwartz,
2012).

However, LFPs in frequencies below ∼7 Hz do carry
substantial information about movement parameters
(Waldert et al. 2009). A better long-term stability might
thus be expected for low-frequency BMIs.
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Can spike contamination be prevented?

If the signal was recorded with broad filters, i.e. it is
possible to identify spikes in the recordings, spike removal
algorithms can be used to mitigate spike contamination
(Galindo-Leon & Liu, 2010; Zanos et al. 2011). Replacing
spike samples with interpolated values (Oostenveld et al.
2011), a mean value or noise, for example, can ameliorate
contamination mainly of low LFP frequencies in case
of high-amplitude, detectable spikes, i.e. high SNRs.
However, even though spike contamination is gradually
weakened with every spike removed, it can only be
completely prevented if all action potentials, including
those which cannot be separated into activity of single
neurons, are removed. To this end, algorithms would
have to be tuned to detect low-amplitude spikes as well,
whereas standard ones are optimised to identify relatively
large spikes rather than all spiking activity. Low-amplitude
spikes can remain undetected and, as this study has
shown, contaminate LFPs (e.g. Fig. 7, α = 2: below 75 Hz
(high-gamma), SNR = 1 (top curve) or below 50 Hz,
SNR = 1.5). Contamination is even more severe for noise
with an α > 2 or for multi-unit spiking activity, which can
temporally produce spike rates far above 150 spikes s−1 if
multiple neurons coincidentally fire spikes or spike bursts
around the same time.

Even more importantly, if the LFP signal was low-pass
filtered before recording, spike removal techniques cannot
be applied and hence spike contamination cannot be
prevented. Low-pass filter in the recording system must
thus be chosen as high as possible (>2 kHz). Other
factors might include whether brain tissue has low-pass
filtering properties (Nunez & Srinivasan, 2006; Logothetis
et al. 2007) and whether low-impedance electrodes

may still record low-frequency components of spiking
activity contaminating the LFP. In all cases high-frequency
components necessary for spike detection (and sub-
sequent spike removal) would not be available and spike
contamination of the LFP unavoidable, even in the case of
originally higher SNRs.

One indicator for the presence of spike contamination
or spikes, even if concealed by low-pass filtering, is an
amplitude increase in wide continuous frequency bands
as revealed with the proposed ‘dynamic spectrogram’
(Fig. 2).

Genuine neuronal oscillations despite spikes

Our concern over possible contamination of LFP with
spiking activity should not be interpreted as under-
mining the importance of genuine oscillations in LFP
activity. In many realistic scenarios, LFP frequencies up
to the high-gamma band do reflect genuine neuronal
oscillations despite the presence of spikes in the recorded
data. This statement is based, first, for example on
observations of neuronal oscillations in these frequency
ranges showing anti-correlated changes in spiking activity
and amplitudes of oscillations (Ray & Maunsell, 2011).
Secondly, high-gamma oscillations are observed in ECoG,
EEG and MEG, techniques providing signals of lower
spatial resolution and information content than LFP
(Waldert et al. 2009). While there are models showing that
synchronous spikes could potentially generate currents
detectable with ECoG (Ray et al. 2008a), ECoG is thought
to be dominated by extra-dendritic currents and not
spikes. EEG and MEG, characterized by an even larger
source–sensor distance and thus unlikely to be affected by
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spikes, reflect neuronal oscillations in high frequencies
(Gonzalez et al. 2006; Cheyne et al. 2008). Electrical
stimulation of the median nerve was reported to elicit
MEG oscillations as high as 600 Hz (Haueisen et al. 2001;
Waterstraat et al. 2012). A maximum possible frequency
of neuronal oscillations has not yet been deduced.

However, note also that EEG/MEG above 20 Hz is
prone to a contamination by electromyography (EMG)
(Whitham et al. 2007). Indicators for genuine neuronal
oscillations instead of spike (LFP) or EMG (EEG/MEG)
contamination can be amplitude increases in distinctive
rather than contiguous frequency bands, as revealed by the
proposed ‘dynamic spectrogram’, or uncorrelated changes
in spiking activity and amplitudes of oscillations.

Assessment of spike contamination

This study demonstrated the difficulty in excluding
spiking activity from LFP analysis, even if detectable
spikes were removed. Applying frequency cut-offs through
low-pass filters or any frequency-based analyses can
be sufficient in some situations but must be chosen
carefully, i.e. either very low or individually adjusted to the
dataset. The systematic, straightforward guide provided
through Figs 6–9 helps to estimate the extent of spike
contamination and thus to choose the cut-off for the data
under investigation.

To further support the assessment of spike
contamination, we provide a script which analyses the data
the researcher is interested in and returns the boundary.
This script is easy to use as it requires as input only the
data to be analysed. It then returns for every time point the
estimated frequency above which the LFP is contaminated
by spikes. However, this script can only provide an estimate
for periods with detectable spikes. The LFP above ∼100 Hz
should always be investigated with great care. Even if no
spikes are detectable, low-amplitude spikes (SNR = 1–1.5)
might be present and contaminate the LFP. Spike removal
techniques cannot overcome this problem.

Conclusions

Spikes can generate significant signal changes that
appear as neuronal oscillations in almost all commonly
investigated frequency bands: alpha/mu, beta, gamma
and high-gamma. In signals below 10 Hz, such as the
movement-related potential, delta or theta bands, spike
contamination is theoretically possible but unrealistic. The
extent of spike contamination is strongly influenced by
noise, spike amplitude, rate and duration. It is crucial to
assess spike contamination for each individual dataset;
simply applying a frequency threshold or spike removal
cannot fully prevent such contamination. The present
study helps to identify spike contamination and provides a

systematic, straightforward guide (findings and script) to
assessment of spike contamination in intra-cortical LFPs.
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