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Intelligent organisms are capable of tracking objects even when they temporarily disappear from sight, a cognitive capacity commonly
referred to as visual working memory (VWM). The neural basis of VWM has been the subject of significant scientific debate, with recent
work focusing on the relative roles of posterior visual areas, such as the inferior temporal cortex (ITC), and the prefrontal cortex. Here we
reexamined the contribution of ITC to VWM by recording from highly selective individual ITC neurons as monkeys engaged in multiple
versions of an occlusion-based memory task. As expected, we found strong evidence for a role of ITC in stimulus encoding. We also found
that almost half of these selective cells showed stimulus-selective delay period modulation, with a small but significant fraction exhibiting
differential responses even in the presence of simultaneously visible interfering information. When we combined the informational
content of multiple neurons, we found that the accuracy with which we could decode memory content increased drastically. The memory
epoch analyses suggest that behaviorally relevant visual memories were reinstated in ITC. Furthermore, we observed a population-wide
enhancement of neuronal response to a match stimulus compared with the same stimulus presented as a nonmatch. The single-cell
enhancement preceded any match effects identified in the local field potential, leading us to speculate that enhancement is the result of
neural processing local to ITC. Moreover, match enhancement was only later followed by the more commonly observed match suppres-
sion. Altogether, the data support the hypothesis that, when a stimulus is held in memory, ITC neurons are actively biased in favor of
task-relevant visual representations and that this bias can immediately impact subsequent recognition events.

Introduction
Visual working memory (VWM) is the cognitive capacity to tem-
porarily represent, manipulate, and monitor visual information
that is no longer readily available to the peripheral sense organs
(Baddeley, 1996). The role of VWM ranges from aiding the con-
struction of temporally contiguous perception to planning and
guiding future actions. A vast network of cortical areas underlies
VWM (Fuster and Alexander, 1971; Goldman-Rakic, 1987; Pes-
soa et al., 2002; Todd and Marois, 2004; Pasternak and Greenlee,
2005; Xu and Chun, 2006), with recent work stressing the impor-
tance of the prefrontal cortex (PFC) in reactivating the appropri-
ate neural representations in posterior sensory areas (Ranganath
and D’Esposito, 2005). In this framework, the contents of VWM
are represented by neural activity in unimodal visual cortex,
whereas what allows these activity patterns to persist throughout
the memory interval is a top-down maintenance signal from PFC.
This view has lead to a resurgence of studies reconsidering the
function of sustained activity in high-level visual areas (Mikami,
1995; Nakamura and Kubota, 1995; Petrides, 2000; Druzgal and
D’Esposito, 2003; Ranganath et al., 2004; Lee et al., 2005; Fiebach
et al., 2006; Zaksas and Pasternak, 2006; Lewis-Peacock and
Postle, 2008). For visual object WM specifically, the hypothesis

predicts that neural activity within the inferior temporal cortex
(ITC), a visual association area critical for the perception and
recognition of visual objects (for review, see Logothetis and Shei-
nberg, 1996), temporarily represents complex object information
that is no longer visible.

Indeed, early lesion studies had suggested that ITC contrib-
utes to the retention of visual information (Mishkin, 1982) and
single-cell recordings in ITC in subjects performing delayed re-
sponse tasks showed visually selective delay period activity (Fus-
ter and Jervey, 1982; Miyashita and Chang, 1988). Despite these
initial reports, additional work revealed the selective delay period
activity in ITC to be susceptible to the presence of intervening
sensory information (Miller et al., 1993); concomitantly, it was
shown that PFC neurons were resistant to such interference
(Miller et al., 1996). Nonetheless, the acknowledged involvement
of ITC in VWM extends beyond mere encoding and into the
memory epoch as it has been shown recently that a population of
ITC neurons does regain category selectivity toward the latter
stages of the delay interval (Meyers et al., 2008). In addition, ITC
is involved in the matching phase of VWM because some ITC
neurons respond more strongly to a stimulus if it matches the one
actively held in mind or more weakly if a stimulus simply repeats
itself, effects commonly referred to as match enhancement and
match suppression, respectively (Baylis and Rolls, 1987; Eskan-
dar et al., 1992; Miller et al., 1993; Miller and Desimone, 1994). In
fact, match enhancement is hypothesized to reflect the biasing of
visual activity in ITC by PFC feedback (Miller and Desimone,
1994; Miller et al., 1996). The precise cortical origins and circuitry
underlying match effects, however, remain elusive.
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In this study, we reinvestigated the activity of ITC neurons
during VWM by recording from highly selective single neurons
in ITC as monkeys engaged in a more physically realistic same/
different VWM task. Using an occlusion-based VWM paradigm,
we could also explore neural processes associated with represent-
ing the implied presence of an object, which is believed to depend
on the context in which it disappears from sight (Baker et al.,
2001; Kaufman et al., 2003, 2005). Our careful examination of the
temporal evolution of the single-cell responses, individually and
jointly as a population, during the various phases of VMW leads
us to conclude that ITC is an integral component of the working
memory system for visual objects. Importantly, by comparing
single-cell activity with local field potential (LFP) dynamics, we
show that match enhancement is likely a consequence of neural
processing occurring within ITC, supporting the view that it
plays a central role not only in object perception but also in the
matching component of VWM. Although our results clearly sup-
port the view that ITC activity depends on both the physical
visual world and memory demands for objects within that world,
data from our task and our nonhuman subjects provide no clear
evidence that manipulations thought to affect perceived object
permanence (e.g., mode of disappearance) have a direct impact
on neural activity in this cortical region.

Materials and Methods
Subjects and surgery. Two male adult macaque monkeys (Macaca mu-
latta; monkey M and monkey R), weighing between 9.0 and 11.0 kg,
participated in the experiment. The monkeys were first familiarized with
the behavioral setup and then implanted with titanium head posts for
head restraint. To gain access to ITC, we placed a custom chamber either
over the left hemisphere (monkey M) or the right hemisphere (monkey
R) (Horsley-Clark coordinates, �15 anterior, �20 lateral). All surgeries
were performed under isoflurane anesthesia, in accordance with the
guidelines published in the National Institutes of Health Guide for the
Care and Use of Laboratory Animals and approved by the Brown Univer-
sity Institutional Animal Care and Use Committee.

Recording methodology. For monkey M, each recording session began
with the insertion of a guide tube (25 gauge) just beyond the surface of
the dura (�5 mm). Monkey R had a permanent, but adjustable, guide
tube ending �15 mm below the dura. Both approaches allowed us to
explore an area approximately �5 mm in radius in the x–y plane of the
brain at the depth of our recordings. Using a hydraulic micropositioner
(David Kopf Instruments), a single tungsten microelectrode [1.0 –1.5
M� (Alpha Omega) or 7.0 M� (FHC)] was then advanced through the
guide tube and into the cortical tissue. The neural signal was passed
through a head stage, split into two independent channels, filtered, and
amplified (model 15LT Bipolar; Grass Instruments). One channel was
bandpass filtered between 0.3 and 300 Hz, and the other channel was
bandpass filtered between 100 Hz and 6 kHz. The low- and high-
frequency channels were digitized and stored at 2.5 and 34 kHz, respec-
tively. Single units were sorted online using a threshold and dual ampli-
tude windows (custom software) but were sorted offline using previously
described clustering software (Quiroga et al., 2004). ITC was located on
the basis of the overall electrode depth, the number of gray/white matter
transitions, and the shape and magnitude of the visually evoked poten-
tial, as well as the visual object selectivity of the encountered neurons. In
one monkey (monkey R), recording locations were confirmed with a
magnetic resonance imaging scan (supplemental Fig. S1, available at
www.jneurosci.org as supplemental material).

Eye signal. Eye movements were recorded using the EyeLinkII video
tracking system (SR Research) running at 500 Hz. The analog output
from the eye-tracking system was sampled at 1 kHz by our acquisition
system and stored to disk as a running average at 200 Hz.

Stimulus presentation and behavioral control. The stimuli were pre-
sented on a dual-processor graphics workstation, which ran a custom-
written, OpenGL-based visual stimulation program under WindowsXP

(Microsoft). The screen had a resolution of 1024 � 768 and a vertical
refresh rate of 100 Hz. The slave graphics system was controlled via a
network of interconnected computers all running the QNX real-time
operating system (QNX Software Systems). This hub of computers pro-
vided deterministic control and acquisition of button responses and eye
position and communicated with the graphics workstation via an iso-
lated high-speed Ethernet and digital input/output. Experimental con-
trol and data acquisition software consisted of custom-written C
programs.

Behavioral paradigm and daily recordings. The stimulus set used in this
study consisted of 125 full color images of everyday objects (Hemera
Technologies). Each stimulus subtended �2.0 o � 2.0 o. Example stimuli
are presented in Figure 1 E. Both monkeys were familiarized with the
images before recording, but neither monkey had ever been trained to
associate a particular image in this set with a specific eye or hand move-
ment. Although the monkeys had extensive experience with the full set of
images, in any given recording session, the monkey worked with only a
subset of seven images. This ensured that we obtained a sufficient num-
ber of repeats per stimulus per condition. Two of the seven images were
tailored to the response properties of the recorded neurons such that one
of them drove the isolated cell much more reliably and robustly than the
other. The other five stimuli were picked completely randomly and were
intended to keep the monkey engaged (one of these stimuli served as the
complex occluder; see below). The characterization of single neurons was
done via online inspection of rasters and spike density functions (SDFs).
Although all well isolated neurons were quickly inspected, only those that
showed a differential response to any arbitrary effective and ineffective
pair were chosen for actual data collection. Before and after the behav-
ioral task, we collected neural responses to the seven stimuli during a
viewing-only task (for examples, see Fig. 2 A). In this task, images were
centrally presented on a uniform gray background (luminance, 5 cd/m 2).
Each trial consisted of five stimuli with a 200 ms presentation time and a
200 ms interstimulus time, and the monkey had to maintain fixation
throughout the trial. Each of the seven stimuli was repeated 10 times,
resulting in 14 trials per block (1 preblock � 1 postblock � 28 trials
total).

The monkeys performed four variants of a same/different task. All
trials started only after the monkey had acquired a central fixation spot
for 300 – 450 ms. In the “disappear” condition, the monkey encoded a
sample image for 1000 ms, retained its identity through a 1000 ms blank
memory interval, and then compared the choice stimulus with the en-
coded sample (Fig. 1 A). The monkey’s task was to indicate with either a
right or left button press whether the comparison stimulus was the same
or different as the sample stimulus. In the “invisible occluder” condition,
a square of the same color as the background was presented above the
sample image (Fig. 1 B). This invisible square was located 4° above the
center of the display. During the ensuing 1000 ms sample presentation
time, the invisible square gradually occluded the sample, reaching full
occlusion at the onset of the delay interval; thus, the invisible square
translated at a rate of 4 o/s. At the end of the delay, the comparison
stimulus was presented. The “square occluder” condition was very sim-
ilar to the invisible occluder condition except that the occluder was black
and therefore visible (Fig. 1C). Furthermore, the black square remained
visible throughout the delay, giving an impression of object permanence.
At the end of the delay, the comparison stimulus instantaneously re-
placed the black square. The “complex occluder” condition was identical
to the square occluder condition except the black square occluder had a
complex visual image embedded inside (Fig. 1 D). This condition had the
dual role of implying object permanence as well as introducing the pres-
ence of intervening sensory information during the delay period.

During the sample, delay, and comparison epochs (until button re-
sponse) of all conditions, the monkey was required to maintain its eye
position within a bounding box subtending 2.5 o � 2.5 o of visual angle.
This ensured that the monkey was looking at the black square occluder
and the complex occluder during the delay period as well as at the com-
parison stimulus during the choice period. To guarantee a robust dataset,
the two images that differentially drove the cell (effective/ineffective)
were repeated slightly more frequently than the other randomly chosen
images. In particular, each block of trials contained 96 trials split evenly
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between the four conditions (24 trials/condi-
tion). Of these 24 trials, six were reserved for the
effective stimulus, six were reserved for the in-
effective stimulus, and three each were reserved
for the four random stimuli, with one of the
seven stimuli serving solely as the complex oc-
cluder; thus, the monkeys could actively ignore
the complex occluder because the image em-
bedded in it was never the sample or the choice.
Of the 96 trials in a block, 48 were of the “same”
type and 48 were of the “different” type. Only
cells that could be held for at least three full
blocks of behavioral trials plus two full blocks of
viewing-only trials were analyzed further.

Each recording session refers to such a set of
blocks. Because the monkeys performed the tri-
als relatively quickly, on many occasions we
were able to gather a full dataset for one set of
seven images, move a few hundred micrometers
(�200 �m), isolate another cell, and gather an-
other dataset. Therefore, it was possible to have
multiple “recording sessions” per day. In all, we
had 69 (monkey M, 34; monkey R, 35) record-
ing sessions during which we collected data
from 134 cells. There were more cells than re-
cording sessions because, on most days, we had
multiple units on a single electrode, although in
most situations only one of the cells on an elec-
trode was analyzed. This is reflected in the fact
that only 79 of the 134 cells met additional cri-
teria and were analyzed (see below). Figure 1 F
shows the average performance of the two
monkeys collapsed across all recording ses-
sions. As can be seen, behavior was excellent
(�90%) in the three simpler conditions and
slightly lower but still well above chance in the
complex occluder condition.

Data analysis. All data analysis was per-
formed with custom-written scripts, the IMSLS
C library (Visual Numerics), the R statistical
computing environment (www.r-project.org)
and Matlab (MathWorks). To analyze spike
data, we first convolved the spike trains with a
Gaussian kernel (resolution, 1 ms; � � 10 ms).
To compute firing rates, we integrated the re-
sultant SDFs, divided by the appropriate time
bin, and averaged over trials. To quantify the
stability of our recorded cells, we computed
Pearson’s r coefficient between the responses to
the seven images in the first and second
viewing-only blocks (responses were integrated
from 75 to 375 ms after stimulus onset). To
quantify the selectivity of our recorded sample
of cells, we computed the stimulus selectivity
index (SSI) based on the firing rates of the cells from 75 to 375 ms after
stimulus onset during the viewing-only task. The SSI has the formula
(Reff � Rineff)/(Reff � Rineff), where Reff and Rineff are the firing rates
elicited by the effective and ineffective stimuli, respectively, and ranges be-
tween 1 and�1. A value of 1 signifies a total lack of response to the ineffective
stimulus, whereas �1 indicates no response to the effective stimulus.

To quantify how reliably an individual neural response could discrim-
inate between the effective and ineffective stimulus, we constructed re-
ceiver operating characteristic (ROC) curves from the neural firing rates
(Green and Swets, 1966). For our purposes, it sufficed to summarize the
whole curve by computing the area under the curve (AUC). The value of
the AUC ranges between 0 and 1, with 0.5 equal to chance performance
and values nearer 0 and 1 indicating more pronounced reliability in
discriminating the two distributions of interest. Whether the AUC is
above or below 0.5 depends on which distribution is given the “noise”

label and which is given the “signal” label. The effective stimulus was
designated the signal.

Depending on the specific analysis, the AUCs incorporated neural data
segments of varying lengths. The following list summarizes the primary
analysis epochs. (1) To compute the AUCs during the viewing-only task,
firing rates obtained from 75 to 375 ms after stimulus onset were used.
(2) For the sliding window analyses, we used step sizes equal to 10 ms and
window sizes equal to 100 ms. In this case, the plotted AUC is centered on
the window of interest (e.g., the value at 0 ms is the AUC calculated from
the firing rates between �50 and 50 ms). (3) Delay period AUCs (see Fig.
4C) were based on the firing rates from the last 750 ms of the delay period.
In cases in which different parts of the delay period were explored, the
750 ms epoch was divided into three equal and nonoverlapping segments
(early, middle, and late). (4) In instances in which integration time was of
interest, the ROC analysis included firing rates computed from longer

Figure 1. Task, stimuli, and behavioral performance. A, Disappear condition. A sample was presented for 1 s, followed by a 1 s
blank delay period, at the end of which a choice stimulus appeared. The monkey’s task was to indicate with either a right or left
button press whether the choice matched the sample. B, Invisible occluder condition. Same as in A, except that, during the 1 s
sample presentation time, a square of the same color as the background gradually occluded the sample, reaching full occlusion at
the onset of the delay interval. C, Square occluder condition. Same as in B, but the occluder was now a black square. D, Complex
occluder condition. Same as in C, but there was a complex visual stimulus embedded inside the black square. All conditions (A–D)
required the monkey to first fixate a small spot in the center of the display before trial onset. E, Example stimuli. Twelve of the 125 stimuli
used throughout the recording sessions. F, Performance of the two monkeys averaged across all recording sessions and sorted by condi-
tion. Error bars indicate SD of performance across the 69 sessions. Notice the slightly worse and more variable performance in the complex
occluder condition. G, Cumulative distribution of the reaction times of all recording sessions sorted by condition. The more difficult
conditions (square and complex occluder) led to longer reaction times (F(3,272) � 180.58; p 		 0.0001).
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and longer time windows, beginning 25 ms before visual latency and
ending at 125 ms after visual latency (see Fig. 7 D, E). The windows were
�25 to �20, �25 to �15,…, �25 to 120, �25 to 125 ms.

The AUC computed with the trapezoidal rule is related to the Mann–
Whitney U test statistic via the following relationship: AUC � U/(n1 �

n2), where n1 and n2 are the sample sizes of the two distributions (Hanley
and McNeil, 1982). Thus, the two measures are equivalent. This relation-
ship allowed us to circumvent the need to do permutation tests to com-
pute the significance values of individual AUCs; instead, we simply used
the p values obtained from the Mann–Whitney U test (see Fig. 4C).

To quantify how well a population of neurons could discriminate
between the effective and ineffective stimulus, we used a linear classifier
known as the support vector machine (SVM) (Cristianini and Shawe-
Taylor, 2000). If we assume that a dataset is linearly separable, then the
SVM classifier can be defined as H(z) � sign(�w, z� � b), where the pair
(w, b) defines a hyperplane that separates points belonging to one class
from points belonging to the other class, and z is a feature vector in the
original input space; in the case of neuronal population data, z is the set of
firing rates across multiple neurons. The defining attribute of an SVM is
that the pair (w, b) is chosen to maximize the minimum margin between
the two classes. As this particular optimization problem is undercon-
strained, to make it computationally tractable one introduces the appro-
priate set of constraints, namely Ck(�w,Zk� � b) � 1 for 1 � k � N, where
Ck is the true class of the point being classified (Ck � {�1, 1}). A given
real-world dataset is not likely to be linearly separable; in this case, one
can either perform a nonlinear transformation on the original input
space and/or introduce slack variables sk, where Ck(�w,Zk� � b) � 1 � sk,
sk � 0, and � is the cost parameter governing the penalty associated with
each sk. Throughout the text, we used a � � 1, but performance was
relatively unaffected through a rather wide range of �. Because we sought
to make the classifier more biologically plausible, we refrained from us-
ing nonlinear transformations and instead used a linear kernel only. All
fitting was performed in R with the svm function found in the e1071
package (Dimitriadou et al., 2008). Data were scaled internally to have
zero mean and unit variance.

The procedure used to train and test the classifier was very similar to
that outlined by Meyers et al. (2008). To obtain an adequate estimate of
generalization performance, we restricted this analysis to cells that had at
least 12 correct effective and 12 correct ineffective trials in the condition
of interest, leaving 79, 79, 79, and 76 cells for the disappear, invisible
occluder, square occluder, and complex occluder conditions, respec-
tively. For each time window in the sliding window analysis (see Fig. 5A)
(step, 10 ms; window, 100 ms), we randomly selected 64 cells and then
from these cells randomly sampled 12 effective and 12 ineffective trials.
We trained the classifier on 16 trials (eight effective and eight ineffective)
and tested on the remaining eight trials (four effective and four ineffec-
tive). This step was repeated three times per random population of cells,
with a different subset of trials serving as training (and testing) sets. We
then averaged performance across the three cross-validation runs. To
obtain a bootstrap-like estimate of the performance mean and SD at each
time point, we repeated the entire procedure 100 times, selecting a new
random population of cells and set of trials on every iteration. The error
bars shown in the plots in Figure 5 and reported throughout the text are
the SDs obtained across the 100 bootstrap-like iterations.

For the population delay period analysis (see Fig. 5B), we averaged
spike counts over the entire last 750 ms of the delay. We performed the
same training and testing procedures on these spike counts as outlined
above, except we systematically varied the number of cells used to train
and test the classifier’s performance (n � 1, 2, 4, 8, 16, 32, or 64). The data
were then fitted with a function of the form proportion correct �1 � 0.5
� e�(n/�)�

(Quick, 1974), where n is the number of cells, � is the number
of cells needed to reach 82% correct, and � is the slope parameter. This
equation is derived from the cumulative distribution function of the
Weibull distribution. Fitting was performed with the nls (nonlinear least
squares) function in R using a Gauss-Newton algorithm.

To explore the relationship between visual responses and reaction
times, we defined visual latency to be the first of 25 consecutive millisec-
onds to exceed 25% of the maximum visual response, with only re-
sponses to the effective stimulus included in the analysis. [The same

visual latencies were used in the integration analyses (Fig. 7 D, E)]. To
obtain a similar latency measure for visual selectivity (match suppres-
sion), the same analysis was repeated on the difference SDFs obtained by
subtracting the ineffective (match) SDF from the effective (nonmatch)
SDF. The latencies in this case could not occur before visual response
latency. Before all the latency computations, the responses were zeroed
by subtracting the mean firing rate in the last 100 ms of the delay (1900 –
2000 ms absolute time). All latencies were computed separately for each
condition, yielding four latencies per cell. If the condition latency of a
particular cell could not be found as outlined above (approximately two
cells), its latency was defined as the average of the other cells. To normal-
ize latencies across days, we subtracted from the condition latency of each
cell the average of its four conditions.

To obtain z-normalized reaction times, we first subtracted the mean
and then divided raw reaction times by the SD observed on that day; we
then averaged reaction times for each condition and for each day sepa-
rately. Because on some days a single instance of reaction times corre-
sponded to more than one cell (more than one cell/electrode), some
reaction times were replicated so that lengths of the two vectors matched.
To quantify correlation, we used Pearson’s correlation coefficient. For
Figure 6, B and D, reaction times were restricted to trials that had the
effective or ineffective stimulus as the comparison stimulus.

To investigate match effects, we only included cells that had at least five
match and five nonmatch trials. For the effective stimulus, this reduced
our cell counts to 73, 77, 73, and 69 for the disappear, invisible occluder,
square occluder, and complex occluder conditions, respectively. The in-
effective stimulus yielded 76, 78, 78, and 74 cells, respectively. Although
we observed quite robust visual selectivity in the LFP (supplemental Fig.
S3, available at www.jneurosci.org as supplemental material), the LFP
match effects were not stimulus dependent (supplemental Fig. S5, avail-
able at www.jneurosci.org as supplemental material). As such, the LFP
analyses shown in Figure 8 were collapsed across all stimuli.

The statistical test used to determine when a particular effect became
significant was based on the nonparametric test developed by Blair and
Karniski (Blair and Karniski, 1993; Appelbaum et al., 2006). Briefly, if we
have an n � m matrix where each of the m columns corresponds to a
difference time series from a single cell or site, we derive a vector of t
scores from this matrix by computing the n � 1 mean difference wave-
form and dividing by the SEM. Now, the null hypothesis states that there
is no distinction between conditions A and B; therefore, the difference
SDF of each cell or the difference LFP of each site can be sign inverted
with no effect. To get a true reference distribution for one’s statistic of
choice, one could in theory compute every single combination of real and
inverted differences, but in this case that would be 279 (or 269) combina-
tions. To get an estimated reference distribution, for each of 10,000 ran-
dom permutations, we computed a t score vector and extracted the max-
imum absolute t value. To achieve an � level of 0.05 for a two-sided test,
the critical quantities become the t values that cut off the top and bottom
2.5% of the reference distribution. By comparing the actual vector of t
scores to these critical values, we determined when the differences
achieved significance. We verified the lack of spurious results by repeat-
ing the same analysis on the fixation period, defined as �310 to 0 ms
relative to trial onset (supplemental Fig. S6, available at www.jneurosci.
org as supplemental material). SDFs were normalized before the analysis
according to the formula (R � Rbaseline)/(Reffmax � Rbaseline), where R is
the original response, Reffmax is the maximum response to the effective
image obtained from the average SDF in the viewing-only blocks, and
Rbaseline is the average firing rate in the 200 ms before trial onset.

Results
Task and behavior
To investigate the contribution of ITC neural activity to VWM,
we trained two monkeys to perform four variants of a same/
different task. In all conditions, the monkeys were required to
encode a sample stimulus, maintain its identity through a 1-s-
long interval, and then report with either a right or left button
press whether the comparison stimulus matched or differed from
the sample (Fig. 1A–D). Importantly, with the aid of gradual
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occlusion, two of the manipulations, the square and complex
occluder conditions (Fig. 1C,D), allowed us to imply the physical
presence of the object during the memory period (Baker et al.,
2001). Furthermore, the complex occluder condition (Fig. 1D)
made it possible to examine the impact of intervening sensory
information on stimulus-selective delay period responses. As is
clear from Figure 1F, both monkeys performed well in all four
conditions (�80%), with the complex occluder condition prov-
ing to be most difficult. The square and complex occluder condi-
tions also led to slower reaction times, again highlighting the
differences in difficulty among the conditions (Fig. 1G) (F(3,272)

� 180.58; p 		 0.0001). Although we sought to establish a rela-
tionship between LFP oscillations and object permanence
(Tallon-Baudry et al., 1998; Kaufman et al., 2003, 2005), defined
as the cognitive ability to understand the continued physical pres-
ence of an object that occurs when objects do not simply vanish
but instead disappear in a manner consistent with their contin-
ued existence (e.g., gradual occlusion), we found no systematic
differences related to our permanence manipulations (see sup-
plemental Results and supplemental Fig. S4, available at www.
jneurosci.org as supplemental material).

Stimulus selectivity during passive fixation
We recorded from a total of 134 neurons (monkey M, 57 neu-
rons; monkey R, 77 neurons). Because previous reports have sug-
gested that highly selective ITC neurons may be preferentially
involved in VWM (Mikami, 1995), we specifically sought neu-
rons whose responses could reliably discriminate an arbitrarily
chosen pair of effective and ineffective stimuli. Figure 2A shows
the rasters and SDFs obtained during a viewing-only task for
three such neurons. To quantify selectivity and reliability of the
differential responses, we used the SSI and the area under an ROC
curve (see Materials and Methods). Only neurons with SSI � 0.25
(SSI mean of 0.70), AUC � 0.75 (AUC mean of 0.98), and firing
rates that remained consistent from the beginning to the end of
the recording session (Pearson’s r � 0.75; Pearson’s r mean of
0.94) (see Materials and Methods) were included in additional
analyses. This restricted our sample to 79 neurons (monkey M, 35
neurons; monkey R, 44 neurons). We feel confident that this
subset of neurons contained some of the most differentiable re-

sponses (as pertains to the arbitrary effective/ineffective pair) to
be found in ITC (Fig. 2B). All subsequent analyses concentrate on
this selective pool of neurons.

Stimulus selectivity during encoding and delay periods
of VWM
Single-cell analyses
The goal of the present study was to characterize the activity
patterns of individual ITC neurons during the various phases of
VWM. Figure 3, A and B, shows the firing rate modulations of
two sample neurons during the encoding and memory periods of
four variants of a same/different task. Both neurons exhibited
pronounced bursts of activity to the presentation of the effective
stimulus and much reduced increases to the ineffective stimulus.
Sliding window ROC analyses (step, 10 ms; window, 100 ms)
revealed that the AUCs of both neurons approached values of 1.0
during the encoding periods of all four conditions (Fig. 3C,D),
indicating highly separable distributions of encoding-related
neural responses.

During the delay itself, the two neurons showed strikingly
different behaviors. A comparison of the firing rates in the last
500 ms of the delay period for the first cell (Fig. 3A) shows clear
evidence for persistent stimulus selectivity in all four conditions.
As a result, this particular neuron had delay period AUCs that
were well above chance; crucially, this was the case even in the
complex occluder condition, in which there was another complex
image in view of the monkey (Fig. 3C, blue line). In the second
example (Fig. 3B), the same comparison shows that, whereas the
AUCs for the disappear and invisible occluder conditions do re-
bound toward the latter stages of the delay (Fig. 3D, red and
magenta lines), those for the square and complex occluder con-
ditions remained at chance throughout the whole memory inter-
val (Fig. 3D, green and blue lines).

To examine the AUC time courses for all individual neurons,
we constructed AUC color plots. In these plots (Fig. 4A), which
have been split by condition, the x-axis specifies time, hue indi-
cates AUC, and each row represents the AUC time course of one
cell. For each condition separately, we have arranged the cells
from top to bottom in descending order of delay period AUCs
(see below). It appears that all conditions, including the complex

Figure 2. Selectivity of cells during a viewing-only task. A, Three typical cells. Each row of plots depicts the responses (rasters and spike density functions) of one cell to the presentation of the
effective, ineffective, and complex occluder stimuli as well as to four other randomly chosen objects. Notice the robust selectivity as pertains to the effective and ineffective pair. B, Population
averaged spike density functions sorted by effective, ineffective, and complex occluder labels. The plot includes data only from cells that had SSIs � 0.25, AUCs � 0.75, and Pearson’s r � 0.75 (for
additional details, see Materials and Methods). Note the large and extended differences between the effective and ineffective response time courses. Also, although the complex occluder was chosen
randomly, it is evident that it rarely elicited a response much bigger than the ineffective stimulus.
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occluder condition, contained a collection of neurons that exhib-
ited stimulus-selective activity during the memory epoch. This is
most evident by inspecting the top portions of the panels, in
which individual cells have reddish AUCs in various parts of the
delay (right of the second dashed line).

Figure 4B shows the average AUCs for the entire sample of
neurons. The population average shows that there is an obvious
loss of selectivity after the disappearance of the stimulus, but that
the three simpler conditions partially regain their selectivity in
the latter stages of the delay. [Because the disappear condition
allowed the sample stimulus to be fully visible for the whole du-
ration of the encoding epoch (Fig. 1A), its AUCs took longer to
decay.] To quantify the recovery of stimulus selectivity, we di-
vided the last 750 ms of the delay into three nonoverlapping
segments of 250 ms each (early, middle, and late delay) and com-
puted the AUC for each cell and for each segment separately and
averaged across cells. For the disappear condition, we then com-
pared the middle with late periods and for the three occluder
conditions the early to late periods; indeed, the comparisons re-
vealed significant increases for the three simpler conditions (data
not shown; paired t tests; disappear, 
AUC � 0.05, p 	 0.0001;
invisible occluder, 
AUC � 0.06, p 	 0.0003; square occluder,

AUC � 0.08, p 	 0.0001; complex occluder, 
AUC � 0.00, p �
0.94). This suggests that stimulus-selective delay activity in ITC is
not the result of information passively spilling over from the
encoding epoch but rather the neural correlate of the contents of
the working memory store (Miyashita and Chang, 1988; Meyers
et al., 2008).

By averaging the AUCs across cells (Fig. 4B), we implicitly
assumed that all neurons represent the stimulus in the same short
100 ms intervals throughout the memory interval. This, however,
need not be the case. For example, one neuron could represent
the stimulus from 1500 to 1600 ms, whereas another neuron
could represent the stimulus from 1600 to 1700 ms. Averaging
across cells could obscure this information, underestimating the

contribution of ITC to memory mainte-
nance. To avoid this problem and get a
more reliable estimate of delay period se-
lectivity, we recomputed delay period
AUCs based on the activity over the entire
last 750 ms of the delay. Population histo-
grams of these delay period AUCs, again
sorted by condition, are shown in Figure
4C. The means of the distributions con-
firmed that the three simpler conditions
exhibited population-wide delay period
selectivity, whereas the complex occluder
condition itself did not (Fig. 4C) (two-
tailed t tests; disappear, 0.65, p 	 0.0001;
invisible occluder, 0.64, p 	 0.0001; square
occluder, 0.59, p 	 0.0001; complex oc-
cluder, 0.52, p � 0.24).

Interestingly, 41.8% (33 of 79) and 45.6%
(36 of 79) of cells during the disappear and
invisible occluder conditions, respectively,
had significantly selective responses to the ef-
fective stimulus (reffective � rineffective) during
the delay period (Fig. 4C, black bars to the
right of 0.50). These proportions were higher
than previously reported for ITC (Fuster and
Jervey, 1982; Eskandar et al., 1992; Mikami,
1995; Miller et al., 1996) (but see Miyashita
and Chang, 1988), likely reflecting the selec-

tive nature of our neurons. In addition, 12.7% (10 of 79) of cells
showed significantly selective responses to the effective stimulus
(again, reffective � rineffective) during the memory epoch of the com-
plex occluder condition. Despite our relatively small sample of cells,
this percentage was greater than expected by chance, assuming
one erroneously rejects the null hypothesis in 5% of cases (bino-
mial test; p � 0.006). Furthermore, repeating the delay–rise anal-
ysis on this subset of selective cells yielded a robust AUC increase
from the early to late delay periods (Wilcoxon’s signed ranks test,

AUC � 0.09; p � 0.0098) (see supplemental Fig. S2, available at
www.jneurosci.org as supplemental material), again suggesting
that stimulus selective delay period activity is functionally dis-
tinct from passive decay.

Population analyses
The ROC analyses reported above treated the contribution of
each cell to coding stimulus identity individually. To investigate
how well our selective population of cells could signal stimulus
identity throughout the trial if their informational content were
combined, we trained and tested the ability of a linear SVM to
decode the effective and ineffective stimuli based on the joint
activity of 64 randomly selected cells (see Materials and Meth-
ods). Crucially, the test data were always separate from the train
data. The results of this sliding window population analysis (step,
10 ms; window, 100 ms) are shown in Figure 5A, split by condi-
tion. Similar to the ROC analyses, the population approach was
essentially perfect at decoding stimulus identity throughout the
duration of the encoding epoch, regardless of the condition. Fur-
thermore, for the disappear and invisible occluder conditions,
there was a significant amount of stimulus information through-
out the majority of the delay. By comparing it with the average
single-cell AUC values (dotted lines), it is evident, and not sur-
prising, that the population of neurons considerably outper-
formed single cells. Importantly, we see a trend for the perfor-
mance of the classifier to rise toward the latter stages of the delay.

Figure 3. Encoding and delay period activities of two example neurons. A, B, Spike density functions of two example neurons
sorted by image effectiveness and condition. Observe the robust response differences during the encoding epoch of all conditions
in both A and B. The differences become much smaller during the delay period, vanishing altogether in the square and complex
occluder conditions in B. C, D, Sliding window ROC analyses (step, 10 ms; window, 100 ms) for the same two neurons. Each AUC
line compares the responses to the effective versus ineffective stimulus for one condition. Note that the neuron in C sustained its
stimulus-selective response throughout the delay periods of all conditions. The neuron shown in D, however, exhibited no
stimulus selectivity during the delay periods of the square and complex occluder conditions.
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Although the square and complex occluder conditions had no-
ticeably lower performance during the delay compared with the
other conditions, we again see better performance for the popu-
lation than for the single cell; moreover, the performance of the
classifier exhibited the same climbing pattern as the delay epoch
neared its end.

The sliding window SVM analyses are subject to the same
considerations as outlined for the sliding window ROC analyses;
namely, we assumed that all cells signal stimulus identity in the
same short epochs throughout the memory interval. To remove
this assumption, we repeated the SVM analysis but, just as for the
analogous ROC analysis, integrated spike counts over the entire
last 750 ms of the delay (1250 –2000 ms). To examine how well
populations of various sizes could do, this analysis was run sepa-
rately for population sizes of 1, 2, 4, 8, 16, 32, and 64. The results
are shown in Figure 5B. We subsequently fit these points with a
function of the form proportion correct �1 � 0.5 � e�(n/�)�

,
where n is the number of cells, � is the number of cells required to
reach 82% correct, and � is the slope parameter (see Materials
and Methods).

Three remarks can be made with regard to the points and their
corresponding fits. First, performance with 64 cells was well
above chance in all four conditions (disappear, 0.995 � 0.013;
invisible occluder, 0.994 � 0.016; square occluder, 0.914 � 0.065;

complex occluder, 0.803 � 0.088). Thus, combining the activities
of multiple cells leads to, on average, much better decoding per-
formance than reading out the activity of only one cell. Second,
the thresholds of the fitted functions were smaller for the disap-
pear, invisible occluder, and square occluder conditions (disap-
pear, � � 8.41 cells; invisible occluder, � � 9.24 cells; square
occluder, � � 26.69 cells) than for the complex occluder condi-
tion (complex occluder, � � 71.25 cells). The slopes of the
Weibull fits exhibited the converse pattern, namely the complex
occluder condition had the shallowest slope (disappear, � � 0.74;
invisible occluder, � � 0.68; square occluder, � � 0.66; complex
occluder, � � 0.64). This particular combination of parameters
for the complex occluder condition suggests that more cells
would be needed to achieve the same level of performance as in
the simpler conditions. This is consistent with the notion that,
when there is no intervening stimulus or the stimulus is not op-
timal for ITC, such as the black square, the contents of working
memory can be more easily decoded from a population of ITC
cells. Third, extrapolating the fits to n � 100 yielded performance
values of 1.00, 1.00, 0.95, and 0.86 for the disappear, invisible
occluder, square occluder, and complex occluder conditions, re-
spectively. These values were very similar to the average perfor-
mance of the two monkeys (0.98, 0.97, 0.96, and 0.86 for the
disappear, invisible occluder, square occluder, and complex oc-

Figure 4. Analysis of encoding and delay period AUCs. A, AUCs of individual neurons sorted by condition. The plots show the AUCs for all neurons (ordinate) as a function of time (abscissa) and
condition (panel). AUC values are color coded, with hotter colors illustrating values closer to 1.0. For every condition independently, we have sorted the neurons in descending order of delay period
AUCs (as computed in C). Note, by inspecting the top parts of the panels, that every condition had a subpopulation of neurons that exhibited stimulus-selective responses during the delay. B,
Population averaged AUCs. Each curve depicts the sliding window AUCs averaged across the entire population of neurons for one condition. Shaded regions indicate �1 SEM. The two vertical dotted
lines in A and B indicate sample and delay onset, respectively. C, Population histograms of delay period AUCs. The AUC values were computed from the entire last 750 ms of the delay period. The black
bars indicate individual cells that were significant at the �� 0.05 level (Mann–Whitney U test). The arrows denote the population means of the distributions. Notice that the population means for
the three simpler conditions were all significantly above 0.50 ( p 	 0.0001 in all cases). Although the complex occluder condition did not have a population mean significantly different from 0.50,
10 individual cells (of 79) did have significantly increased responses to the effective stimulus, more than expected by chance (binomial test, p 	 0.006).
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cluder conditions, respectively). This suggests that �100 highly
selective (with respect to the encoding epoch) cells would be
sufficient to mirror the behavioral performance of the subjects.

In summary, we believe the collection of delay period analyses,
both at the single-cell and population level, support the hypoth-
esis that ITC activity contains information about the visual prop-
erties of items currently represented in working memory.

Visual latency and stimulus selectivity during comparison
period of VWM
We next shifted our focus to the comparison epoch. During
this epoch, the subject must encode the choice stimulus, com-
pare it with the remembered sample, and make a decision as to
whether the two stimuli match. Figure 6 A shows the popula-
tion averaged SDFs sorted by condition and image effective-
ness. Sliding window ROC analyses (step, 10 ms; window, 100
ms) confirmed the high discriminability of the neural re-
sponses elicited by the effective and ineffective stimuli (Fig.
6 B). Thus, as expected, ITC neurons are likely critical to the
encoding of the choice stimulus.

Visual inspection of Figure 6A exposed a forward masking
effect not present in the sample encoding phase. Specifically, the
visual response was slower to develop in the conditions in which
some stimulus was present during the delay (square and complex
occluder). To explore this in more detail, we quantified the visual
latency for each neuron and for each condition separately (see
Materials and Methods). Indeed, visual latencies varied consid-
erably across conditions (F(3,312) � 32.11, p 		 0.0001; disappear,

mean of 117.91 ms; invisible occluder, 118.63 ms; square oc-
cluder, 134.38 ms; complex occluder, 149.56 ms). Such an order-
ing of latencies led us to consider its connection with reaction
times (compare Figs. 1G, 6A). To make this relationship explicit,
we correlated the two measures; as anticipated, we observed a
strong association between the onset of visual responses and re-
action times (Fig. 6C) (r � 0.66; p 		 0.0001).

Although the above results indicate that the time of arrival of
visual information into ITC is strongly related to the subjects’
decisions, we sought to strengthen the behavioral link by corre-
lating reaction times with the latency of visual selectivity (Fig.
6D) (see Materials and Methods). As expected, the correlation
between selectivity latency and reaction times (r � 0.71; p 		
0.0001) was even greater than that between visual latency and
reaction times. Taken as a whole, the robust and significant cor-
relation analyses suggest that neural activity in ITC is involved in
linking the encoding of visual objects with behavioral decisions
about the identities of the objects.

Match enhancement and match suppression effects in
single cells
To address the role of ITC neurons in the matching phase of
VWM, we closely examined match effects, which are differences
in neural activity that depend on whether the comparison stim-
ulus is a match or nonmatch. In general, these analyses (except
when otherwise noted) were restricted to the responses to the
effective stimulus. As can be seen in Figure 7A, after the initial
burst of activity, all conditions exhibited a clear match suppres-

Figure 5. Population analyses using linear SVM. A, Sliding window SVM analyses. Each panel plots the results of the sliding window SVM analysis (step, 10 ms; window, 100 ms) for one condition.
In every case, 64 randomly selected cells were used to train and test the classifier. Shaded regions indicate �1 SD across 100 bootstrap-like iterations of the training and testing procedure. For every
single time point and for every single iteration of the resampling procedure, a new set of 64 randomly selected cells was used. For comparison, we have replotted the average AUC values from Figure
4 B (dotted line). Notice the consistently better performance for the population of cells compared with the single cell. Also, note the rise in classification performance as the delay epoch draws to a
close. B, Performance of the linear SVM classifier for the entire delay period (1250 –2000 ms) as a function of the number of cells and condition. Error bars indicate �1 SD across 100 bootstrap-like
iterations. Lines indicate best-fit Weibull functions. Note the well above chance performance for 64 cells in every single condition (rightmost points). Also, observe that the complex occluder Weibull
fit had the highest threshold and shallowest slope, indicating that more cells would be needed to achieve the same level of classifier performance as in the other conditions.
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sion effect wherein responses to the non-
match stimulus were stronger than to the
match stimulus. What is less evident at
that scale, however, is a small, but remark-
ably consistent, match enhancement effect
apparent very early in the visual response
(Fig. 7B). We note that this enhancement
could also be viewed as a decrease in re-
sponse latency, but we refer to it as en-
hancement because, at any one time point
during this epoch, the response to the
match stimulus is elevated compared with
that of the nonmatch. To quantify the di-
rection and reliability of the match effects,
we performed ROC analyses in which
AUCs below 0.5 indicated match suppres-
sion and AUCs above 0.5 match enhance-
ment (step, 10 ms; window, 100 ms). Av-
eraging the AUCs across cells revealed that
all conditions exhibited a reliable early
match enhancement that later reversed
and became match suppression (Fig. 7C).
Thus, at the onset of the visual response, a
match stimulus elicited earlier/greater ac-
tivity than the exact same stimulus when it
was a nonmatch.

To gain a better understanding of the
match effects, for each cell and for each
condition separately, we aligned match/
nonmatch responses on the time point 25
ms before the visual latencies and recom-
puted the AUCs in increasing steps of 5 ms
(Fig. 7D). In other words, the step at 5 ms
contained spike data from �25 to �20 ms,
the step at 10 ms contained data from �25
to �15 ms, and so on, until �25 to 125 ms.
The analysis revealed that, for all condi-
tions, what was at first a significant match enhancement effect
was quickly obscured by a robust match suppression effect. Spe-
cifically, average AUCs over the first 50 ms were significantly
greater than 0.5 (two-tailed t tests; disappear, p 	 0.0001; invisi-
ble occluder, p 	 0.0001; square occluder, p � 0.00017; complex
occluder, p � 0.001), whereas those over the last 50 ms were
significantly less than 0.5 (two-tailed t tests; disappear, p 		
0.0001; invisible occluder, p 	 0.0001; square occluder, p 	
0.0001; complex occluder, p � 0.0014). The match enhance-
ment effect was stimulus specific as responses to the ineffective
stimulus exhibited solely match suppression (Fig. 7E). Thus,
whether the match effect is interpreted as match enhancement
or match suppression depends not only on the integration
window but also on the specific inputs driving individual cells.

From the collection of match analyses, we conclude that the
population of ITC cells retained enough information about the
encoded sample to initially respond more strongly/quickly and to
later dampen its response to a matching comparison stimulus.
Crucially, this memory trace persisted through the presentation
of intervening sensory information, a topic to which we return in
Discussion.

Latencies of single-cell and LFP match effects
To gain additional insight into the potential origin of the ob-
served match effects, we computed visual selectivity and match
suppression latencies for each cell and for each condition inde-

pendently (Fig. 7F) (see Materials and Methods). If match sup-
pression were simply fed into ITC, a scatter plot of the two mea-
sures should have most of its points around the unity line;
however, most of the points lie above the line. In fact, the emer-
gence of match suppression lagged visual selectivity by, on aver-
age, 35.37 ms (two-tailed paired t test, p 		 0.0001), consistent
with recent ITC studies exploring the dynamics of repetition sup-
pression (Sawamura et al., 2006; McMahon and Olson, 2007; Liu
et al., 2009). This suggests to us that match suppression could be
a marker of finished cortical processing, which occurs faster for
the matching compared with the nonmatching stimuli.

Another means of exploring whether the neural processing
steps required to produce the match effects take place before or
within ITC is to compare single-cell activity with LFP modulation
(Monosov et al., 2008). Because the LFP is thought to reflect the
synaptic input to and local processing within a cortical area, if the
match effect is first evident at the single-cell level and only later
shows up in the LFP, one can hypothesize that ITC underlies the
generation of the match effects. Of course this analysis hinged on
actually observing match effects in the LFP; indeed, match and
nonmatch stimuli elicited reliably different LFP waveforms (Fig.
8A, collapsed across all stimuli), which is more readily appreciated
by inspecting the difference waveforms (Fig. 8B) (for LFP difference
waveforms sorted by stimulus, see supplemental Fig. S5, available at
www.jneurosci.org as supplemental material).

To see when the differences achieved significance, we con-

Figure 6. Analysis of choice epoch responses. A, Population averaged spike density functions sorted by image effectiveness
and condition. Note the temporal staggering of the responses reflecting the forward masking effect from the square and complex
occluders. B, Population averaged sliding window ROC analyses sorted by condition (step, 10 ms; window, 100 ms). Shaded
regions indicate �1 SEM. The graph confirms the high discriminability of the responses elicited by the effective and ineffective
stimuli. C, Scatter plot of the visual latencies of individual cells and the monkey’s average standardized reaction times (RTs).
Observe the highly significant correlation between the two measures. D, Scatter plot of the selectivity latencies of individual cells
and the monkey’s average standardized reaction times. Note that the relationship is even stronger than between visual latency
and reaction times. In both scatter plots, the colors indicate from which condition the points came and the line is the best
least-squares fit to the data.
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verted the difference waveforms into t scores and found the times at
which these exceeded the t scores expected by chance (two-sided
permutation test, p 	 0.05) (see Materials and Methods). Figure 8
shows the t-transformed differences separately for each condition
(Fig. 8C–F, dark lines), with the dark bars at the bottom of the plots
indicating when the differences achieved statistical significance. To
directly compare the LFP differences with spike differences, we re-
peated the same analysis on the difference SDFs (Fig. 8C–F, light
lines and bars). In all four conditions, the earliest significant differ-

ences (in this case match enhancement) al-
ways arose in the single-unit activity. This
finding supports the conclusion that the ob-
served match enhancement is the result of
neural processes local to ITC.

The comparison of significant differ-
ences in single-unit activity and local field
potentials revealed very early differences
in the spike signal, particularly in the case
of the invisible occluder condition in
which the spike match enhancement
reaches significance only �20 ms after
stimulus onset (Fig. 8D). This would im-
ply that the match enhancement occurs
before the onset of the induced visual re-
sponse. Indeed, we do not deny this possi-
bility but certainly do not think that this is
attributable to chance. Because the single-
cell match analysis was restricted to only
the effective image, match trials always
contained the effective image as the re-
membered sample. Nonmatch trials, con-
versely, contained any of the other, usually
not as effective, images as the remembered
sample. This means that match enhance-
ment, in its current definition, extends the
delay period selectivity analysis into the
comparison epoch (with the caveat that the
“ineffective” trials contain not only the inef-
fective image but also some random images).
As such, match enhancement could arise be-
fore visual response onset. The fact that the
complex occluder condition, which did not
exhibit consistent single-cell delay period se-
lectivity, still demonstrated match enhance-
ment indicates that match enhancement is in
fact real and can be partially dissociated from
delay period selectivity. We speculate on the
possible relationship between delay period
selectivity and match enhancement below.

Discussion
For more than three decades, it has been
known that neurons in prefrontal cortex
exhibit persistent activity during the delay
periods of working memory tasks (Fuster
and Alexander, 1971). The view that this
activity is the neural correlate of short-
term storage has come under close scru-
tiny recently (Rushworth et al., 1997;
Rowe et al., 2000; Lebedev et al., 2004),
with some proposing that the major role of
PFC in VWM maintenance is not storage
per se but rather the reactivation of the
appropriate visual representations (Ran-

ganath and D’Esposito, 2005). In this latter framework, activity in
both the PFC and ITC is necessary to accurately recall visual
memories, but the actual memory reinstatement occurs within
ITC. Here, we have shown that the reliability with which individ-
ual ITC neurons signal stimulus identity increased toward the
latter stages of the delay period, suggesting that the relevant
memory was reactivated just before the subject was to be faced
with a same/different decision. This rise in stimulus selectivity

Figure 7. Single-cell match enhancement and suppression effects. A, Population averaged spike density functions sorted by
match status and condition, restricted to the effective stimulus. Note the large but delayed match suppression in all conditions. B,
Zoomed in view of the spike density functions sorted by match status and condition. This plot reveals a small but reliable match
enhancement in all conditions. C, Sliding window ROC analyses comparing match with nonmatch responses (step, 10 ms; window,
100 ms). Values above 0.5 indicate enhancement, whereas values below 0.5 indicate suppression. Shaded regions indicate �1
SEM. The analysis confirmed an early match enhancement effect that was succeeded by match suppression. D, Match enhance-
ment and suppression as a function of counting window. Shaded regions indicate �1 SEM. In all conditions, we see a reliable
match enhancement that is obscured by match suppression if the integration time is allowed to be long enough. The �log( p
value) of Wilcoxon’s signed ranks tests done on all data points indicate that indeed both enhancement and suppression were
significant [the bottom dashed line indicates�log(0.05)] (for more details, see Results). E, The match enhancement was stimulus
specific, because repeating the same analysis outlined in D on the ineffective stimulus yielded only match suppression. F, Scatter
plot of match suppression latencies as a function of visual latencies. The dashed line is what would be expected if selectivity and
suppression arose simultaneously. Match suppression is unlikely to be purely bottom up because, on average, it was delayed by 35
ms relative to the first sign of visual selectivity ( p 		 0.0001). Colors denote from which conditions the points came.
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was also apparent when the activities of
multiple neurons were combined, consis-
tent with a previous population analysis
showing the same phenomenon but with
regard to category instead of stimulus
identity information (Meyers et al.,
2008). It is appealing to speculate that
feedback projections from PFC, known
from anatomical studies to be abundant
(Pandya and Yeterian, 1990), were re-
sponsible for reinstating stimulus-
specific neural activity within ITC. This
conjecture is further supported by stud-
ies showing anticipatory delay period ac-
tivity within PFC itself (Rainer et al.,
1999; Rainer and Miller, 2002).

Another possible source of feedback to
ITC is the medially adjacent perirhinal
cortex (PRh). Although both ITC and PRh
have the ability to respond robustly to a
non-optimal stimulus if it signals the pre-
sentation of the preferred stimulus, this re-
trieval signal appears first in the PRh and
only later in ITC, suggesting that it flows
backward from PRh to ITC (Sakai and Mi-
yashita, 1991; Naya et al., 1996, 2001).
Most germane to this discussion is the ob-
servation that delay period selectivity in
both PRh and ITC persists through dis-
tractors only for the sought after target and
not for the stimulus that cued the retrieval
of that target (Takeda et al., 2005). In our
task, the cue and target were the same
stimulus so it is difficult to tease apart cue-
and target-related activities. However, if
for the moment we assume that the rise in
delay period selectivity is target related
and PRh neurons have the ability to re-
trieve the same item that served as the
cue, then it is possible that PRh neurons
participate in reinstating working mem-
ory contents in ITC. Other medial tem-
poral lobe structures, for example, the
entorhinal cortex (Suzuki et al., 1997),
could also contribute to this process, but
their relevance to visual object retrieval
specifically is less well understood.

The question remains as to why we see
fewer neurons regaining their stimulus-
selective discharge during the delay of the
complex occluder condition than in the other three conditions. We
consider three alternative possibilities. First, we note that the mon-
keys’ performance was most affected by this condition, which could
be the result of a decreased proportion of ITC neurons exhibiting
delay period selectivity. In other words, the subjects had a more
difficult time reinstating visual memories when viewing other irrel-
evant visual information. This would be consistent with the notion
that, when bottom-up input and short-term memory meet in ITC,
bottom-up input dominates, allowing for a more veridical represen-
tation of the sensory environment.

Second, we showed that using the combined activity of up to
64 neurons dramatically improved the reliability with which we
could decode stimulus identity during the delay. Thus, by use-

fully incorporating small amounts of information from many
neurons, the monkey could do much better than by listening to
only a single neuron, obviating the need for ITC to have large
numbers of highly selective delay period neurons. Indeed, by
extrapolating our population analyses, we showed that the behav-
ior of the monkeys could be well matched with �100 cells. These
cell numbers, although obtained using a significantly longer time
bin (�750 ms), are in line with previous studies using linear
classifiers to decode stimulus information from a population of
ITC neurons (Hung et al., 2005; Meyers et al., 2008). Although
caution should be exercised in interpreting these results because
the linear classifier does not care whether the effective stimulus
elicits more or less activity than the ineffective stimulus during

Figure 8. LFP match effects and their relation to spike match effects. A, Raw LFP waveforms averaged across all stimuli and
sessions and sorted by match status and condition. Note the small but reliable differences in the match/nonmatch waveforms. B,
LFP difference waveforms (match � nonmatch). Notice the consistent differences across the four conditions. C–F, t-transformed
LFP differences (dark lines) and SDF differences (light lines). The times at which the LFP or SDF differences became significant is
indicated by the dark or light bars, respectively, at the bottom of the plots. Note that, in all cases, the very first significant match
effect was present in the single-cell responses. Also, observe that the LFP differences seem to be lagging the SDF differences.

5504 • J. Neurosci., April 29, 2009 • 29(17):5494 –5507 Woloszyn and Sheinberg • Visual Working Memory in ITC



the delay interval, as long as the responses are different, it is
possible that ITC neurons convey different stimulus information
during the encoding and delay epochs.

Third, and perhaps most importantly, the lack of firing by a
neuron does not mean that the cell does not contribute to storing
the contents of working memory. For example, recent computa-
tional work by Mongillo et al. (2008) has shown that synaptic
calcium kinetics in a recurrent network of neurons can be used to
store traces of past spiking activity. Additional modeling work by
Sugase-Miyamoto et al. (2008) has focused on the ability of ITC
neurons to store past visual inputs by “remembering” specific
patterns of synaptic activity that occur at the time of encoding.
Both of these models hypothesize that memory traces are implic-
itly stored in synapses and only explicitly read out in spiking form
at the time of a memory recall signal and/or new visual input.
Such quiescent storage models are compatible with the evidence
presented in this paper, wherein individual neurons during the
complex occluder condition do not show widespread delay pe-
riod selectivity but do exhibit match enhancement that occurs
essentially simultaneously with the arrival of new visual informa-
tion. In other words, it could be the case that, if ITC spiking delay
selectivity is washed out by interfering visual input, an implicit
synaptic memory trace persists that manifests itself in the form of
match enhancement at the time of recall. In fact, delay period
selectivity itself could be reflecting synaptically stored memories,
which would suggest a tight link between the neural processes
underlying delay period selectivity and match enhancement.

Match enhancement has been hypothesized previously to re-
flect the augmentation of task-relevant visual representations
(Miller and Desimone, 1994; Miller et al., 1996). In agreement
with the original proposal (Desimone and Duncan, 1995; Miller
and Cohen, 2001), we believe that, by biasing information flow in
posterior visual areas, feedback from PFC and/or PRh, as well as
intrinsic ITC circuitry, allows ITC neurons to respond more
strongly and/or more quickly to the remembered stimulus. The
present study has clarified the nature of this augmentation by
showing that it specifically targets those neurons essential for the
representation of the stimulus, because nonpreferred stimuli did
not elicit an enhanced response. Furthermore, we have shown it
to be more evident in ITC than previously thought, likely a result
of the selectivity of our sample of neurons. Finally, our compar-
ison of the single unit and LFP response differences leads us to
believe that the processes underlying the generation of match
enhancement may be localized to ITC.

An objection could be raised that we did not observe match
enhancement per se but rather a speeding of the neural response
that underlies perceptual priming, a phenomenon wherein be-
havioral responses to a repeat presentation of a stimulus are
quicker and/or more accurate (Tulving and Schacter, 1990).
Indeed, it could be that the monkeys relied on some sort of
behavioral priming strategy to solve the task. However, the
priming observed here cannot be an entirely implicit process;
rather, it would have to operate on a trial-by-trial basis be-
cause all the images appeared frequently and repeatedly in a
single experimental session. We do not think that this alterna-
tive interpretation is at odds with our main conclusion that a
memory trace of the encoded sample is reinstated in ITC. The
fact that single-cell match enhancement consistently preceded
any LFP match effects argues further against a purely
bottom-up explanation of match enhancement.

Interestingly, the presence of match enhancement did not
preclude the appearance of, in the same population of cells, the
much more frequently observed match suppression effect. In

fact, it has been proposed that the relative prevalence of match
suppression (Baylis and Rolls, 1987; Eskandar et al., 1992; Miller
et al., 1993; Sawamura et al., 2006; Liu et al., 2009) reflects its role
as the neural correlate of perceptual priming, although direct
evidence linking ITC suppression to priming is scarce (Sayres and
Grill-Spector, 2006; McMahon and Olson, 2007; Schacter et al.,
2007). One specific hypothesis relating match suppression to
priming is the sharpening of neuronal responses. In this view,
activity patterns are pruned via suppression, with the repeat
encoding of a stimulus carried by a smaller, but more selective,
pool of neurons (Desimone, 1996; Wiggs and Martin, 1998).
Given our sample of selective cells, this model would have
predicted that we should see minimal suppression. Contrary
to this prediction, we observed robust suppression. Thus, it is
unlikely that the sharpening model can fully account for our
data (McMahon and Olson, 2007).

Instead, we believe the late suppression reflects a more general
phenomenon in which a matching or familiar stimulus is more
quickly and efficiently processed (Freedman et al., 2006; Ander-
son et al., 2008). From this perspective, suppression is a marker of
process completion, supporting, to some extent, the facilitation
model of suppression (James et al., 2000; Grill-Spector et al.,
2006; James and Gauthier, 2006). This interpretation is bolstered
by three results. First, match suppression did not appear until
�35 ms after visual selectivity, and this presuppression epoch
may be sufficient for the signaling of behaviorally relevant infor-
mation (Allred and Jagadeesh, 2007). Second, suppression reli-
ably followed enhancement, with enhancement speculated to be
the more pertinent of the two signals to solving the task (Miller
and Desimone, 1994; Desimone, 1996; Miller et al., 1996). Third,
we believe that the initial significant differences in the LFP differ-
ence waveforms (Fig. 8C–F) are a consequence of the matching
waveforms advancing more rapidly than their nonmatching
counterparts. This is most easily seen by comparing the solid and
dashed blue curves in Figure 8A.

We also believe that the last of the three significant LFP match
effects (Fig. 8C–F) is the LFP signature of suppression. Because
this particular effect arose after spike suppression, we hypothesize
that match suppression may also first be present at the level of
ITC. If indeed suppression reflects finished computations, this
finding would support the hypothesis that ITC activity, and not
the entire visual cortex, is responsible for the more efficient en-
coding of a repeated object’s identity.

In conclusion, by recording from extremely selective neurons,
we have shown that delay period selectivity in ITC, an area
thought to be most important for visual object encoding, is quite
prevalent, reaching significance in an unprecedented fraction of
neurons (45.6 and 49.4% in the disappear and invisible occluder
conditions, respectively, if we include all significantly modulated
cells, not just reffective � rineffective). This extensive delay period
selectivity is unlikely to simply be a consequence of passive, re-
sidual encoding activity because its reliability significantly in-
creased in the latter stages of the memory epoch. Although the
magnitude of stimulus-selective delay responses was attenuated
in the presence of a distracting stimulus, there remained a small
but significant fraction of cells that represented the relevant ob-
ject identity. This delay selectivity was augmented considerably if
we simultaneously used the activity of multiple neurons, even in
the complex occluder condition. Furthermore, in all conditions,
we observed an early match enhancement effect, which could
ultimately be the signal of most relevance to the monkey for the
behavioral task we have explored. Coupled with the fact that
activity in ITC was so intimately linked with reaction times, we
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believe that the data support the hypothesis that neural activity in
ITC, with the help of modulatory feedback most likely arising
from PFC and/or PRh, contributes not only to the encoding
phase of VWM but also to the temporary representation of no
longer available complex visual input.
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