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SUMMARY

Primates can learn to recognize a virtually limitless
number of visual objects. A candidate neural
substrate for this adult plasticity is the inferior
temporal cortex (ITC). Using a large stimulus set,
we explored the impact that long-term experience
has on the response properties of two classes of
neurons in ITC: broad-spiking (putative excitatory)
cells and narrow-spiking (putative inhibitory) cells.
We found that experience increased maximum
responses of putative excitatory neurons but had
the opposite effect on maximum responses of puta-
tive inhibitory neurons, an observation that helps to
reconcile contradictory reports regarding the pres-
ence and direction of this effect. In addition, we
found that experience reduced the average stim-
ulus-evoked response in both cell classes, but this
decrease was much more pronounced in putative
inhibitory units. This latter finding supports a poten-
tially critical role of inhibitory neurons in detecting
and initiating the cascade of events underlying adult
neural plasticity in ITC.

INTRODUCTION

Visual perception is a consequence of the concerted activity of

neurons throughout the visual system. At the same time, the

response properties of single neurons in the visual system

depend on visual experience for their proper development

(Hubel and Wiesel, 1965). Therefore, to understand visual

perception, one must understand the effects of visual experi-

ence. Although receptive field properties of cortical neurons in

early visual areas become less plastic with age (Hubel and

Wiesel, 1970), neurons later in the visual hierarchy exhibit plas-

ticity well into adulthood. In particular, neurons in the functionally

mature inferior temporal cortex (ITC)—a collection of areas in the

primate brain hypothesized to underlie visual object recognition

(DiCarlo and Cox, 2007; Logothetis and Sheinberg, 1996;

Tanaka, 1996)—can adapt their responses to the statistics of

visual input (Erickson and Desimone, 1999; Li and DiCarlo,

2008, 2010; Miyashita, 1988) and to a behavioral task’s percep-
tual demands (Baker et al., 2002; Freedman et al., 2006; Koba-

take et al., 1998; Logothetis et al., 1995; Op de Beeck et al.,

2006). Neuronal activity in ITC is thus a joint product of accrued

past experience and current input, and its investigation can shed

light on the question of how memory and perception interact

continuously at the level of single neurons.

Visual experience with a set of objects can be induced exper-

imentally by mere exposure (Anderson et al., 2008; Freedman

et al., 2006), by discrimination training (Baker et al., 2002;

Freedman et al., 2006; Kobatake et al., 1998; Logothetis et al.,

1995; Sigala and Logothetis, 2002), or by explicit memorization

(Sakai and Miyashita, 1991). To infer the impact of visual experi-

ence on ITC, neuronal responses to familiar or learned stimuli are

compared to a pre-exposure baseline (De Baene et al., 2008), to

responses in untrained subjects (Kobatake et al., 1998), or most

commonly, to responses to novel or unlearned stimuli (Anderson

et al., 2008; Baker et al., 2002; Freedman et al., 2006; Logothetis

et al., 1995; Miyashita et al., 1993). The resulting neuronal

changes remain a matter of debate. Early studies reported that

single neurons in ITC, on average, developed strong responses

to a small (and different) subset of learned stimuli, which were

larger than the maximal responses across the unlearned set

(Kobatake et al., 1998; Logothetis et al., 1995; Miyashita, 1993;

Sakai and Miyashita, 1994). Such strengthening of specific

responses could amplify the neurons’ impact on downstream

areas, whichwould, in theory, facilitate behavior driven by recog-

nition of well-known objects. However, recent studies have

reported no change or even decreased maximal responses to

familiar as compared to novel stimuli as well as a concomitant

experience-dependent decrease in the overall population

response (Anderson et al., 2008; Baker et al., 2002; Freedman

et al., 2006;OpdeBeeck et al., 2007, 2008). Thesedivergent find-

ings have been attributed to more unbiased single-unit selection

procedures, to comparisons within rather than across animals,

and to more finely controlled stimulus exposure protocols. Inter-

estingly, while both firing rate increases and decreases can

increase single-cell selectivity (i.e., narrow the tuning bandwidth),

recently reported modulations have been on the order of a few

spikes per second (Baker et al., 2002; Cox and DiCarlo, 2008;

De Baene et al., 2008; Freedman et al., 2006), leading some to

propose that visual experience results only in subtle neuronal

plasticity in ITC (Op de Beeck and Baker, 2010). Behavioral

data, on the other hand, indicate that the impact of visual experi-

ence on recognition behavior can be large (Gauthier and Tarr,

1997; Logothetis et al., 1995; Mruczek and Sheinberg, 2007).
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Figure 1. Experimental Paradigm and Spike Wave-

form Clustering

(A) Passive fixation task during which ten stimuli were

presented for 200 ms each with a 50 ms interstimulus

interval. Familiar and novel stimuli were interleaved.

(B) All recorded spike waveforms, aligned by their troughs

and labeled according to their cluster membership.

Waveform amplitudes have been normalized by their

heights. a.u., arbitrary units.

(C) Distribution of spike widths (trough-to-peak durations)

and the two clusters that emerged from the k-means

algorithm. The bars above the distributions show mean ±

SD of the respective distributions.
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Experience-Dependent Changes in IT Neurons
Two factors have impeded progress in our understanding of

the effects of visual experience on single-unit responses in

ITC. First, it is unclear with which stimuli to sample the tuning

functions of individual ITC neurons. Advances have been made

on this issue (Brincat and Connor, 2004, 2006; Rust and Dicarlo,

2010; Sáry et al., 1993; Tanaka, 1996; Yamane et al., 2008), but

we are far from predicting responses to arbitrary visual patterns.

The lack of increased responses and small selectivity increases

to learned stimuli could thus be a result of not selecting the

appropriate images to drive individual neurons; using large stim-

ulus sets can partially ameliorate this issue. The second problem

has been the averaging of responses over several distinct cell

classes. We know that cortex comprises many different cell

types (Connors and Gutnick, 1990; Markram et al., 2004; Peters

and Jones, 1984), which mediate different functions within

circuits. One means of distinguishing cell classes is by the

shapes of their extracellularly recorded spikes (Barthó et al.,

2004; Mitchell et al., 2007; Niell and Stryker, 2008). Data indicate

that neurons that generate narrow spikes correspond primarily to

fast-spiking inhibitory cells, whereas broad-spiking neurons

correspond primarily to excitatory pyramidal cells (Barthó

et al., 2004; Henze et al., 2000; Kawaguchi and Kubota, 1997;

McCormick et al., 1985; Nowak et al., 2003). No studies to

date, however, have probed the potential differential effect of

visual experience on distinct cell classes in ITC.

Here, we show that experience caused putative excitatory

neurons to respond much more robustly to their best familiar

compared to their best novel stimuli. In contrast, familiarity

caused a dramatic decrease in the maximum and average rates

of putative inhibitory neurons. Together, the results suggest that

visual experience can profoundly alter visual object representa-

tions in ITC.

RESULTS

To understand how long-term sensory input sculpts the

responses of individual ITC neurons, we first familiarized each

of two monkeys with 125 color images of real-world objects

(Hemera Photo-Objects: Vol. 1, 2, and 3) (see Figure S1A avail-
194 Neuron 74, 193–205, April 12, 2012 ª2012 Elsevier Inc.
able online). The monkeys were trained to both

passively fixate the stimuli and to perform

a short-termmemory task with them. This expo-

sure phase lasted between 3 months (monkey I)

and 12 months (monkey D), resulting in an esti-
mated number of exposures equal to 1,000 (monkey I) and

3,000 (monkey D) repetitions per image, split roughly evenly

between the two tasks. Once familiarization was completed,

we recorded the activity of well-isolated single units in ITC

(n = 50 frommonkey D; n = 38 frommonkey I) in a passive fixation

task (Figure 1A). Each neuron was screened with 125 familiar

and 125 novel stimuli. The 125 novel stimuli were picked

randomly on a daily basis from the same database as the familiar

set (for examples, see Figures S1B–S1D). We recorded all units

deemed visual by inspection of online stimulus-locked raster-

grams. Both monkeys provided qualitatively similar data, so

the results have been combined across subjects. Any notable

differences are acknowledged (see Figure S3 for themain results

split by monkey).

As a means of correlating visual response properties with

specific cell classes, we characterized the recorded sample of

single units by the trough-to-peak widths of their extracellular

spike waveforms (Figures 1B and 1C). Consistent with previous

studies (Diester and Nieder, 2008; Hussar and Pasternak, 2009;

Mitchell et al., 2007), we observed that the distribution of these

widths was bimodal, and we thus divided the neurons via a

k-means algorithm into two categories: broad spiking and

narrow spiking (Figure 1C). Previous results have suggested

that narrow spikes correspondprimarily to inhibitory, fast-spiking

interneurons, whereas broad spikes correspond primarily to

excitatory pyramidal neurons (Barthó et al., 2004; Connors and

Gutnick, 1990; McCormick et al., 1985). For clarity, we thus refer

to the narrow-spiking neurons as putative inhibitory and to the

broad-spiking ones as putative excitatory.

Example Cells
Figures 2A–2G show the activity of seven representative single

units. Each unit was stimulated with the same set of 125 familiar

stimuli but with a different set of 125 novel stimuli. The top five

rows (Figures 2A–2E) correspond to putative excitatory cells. In

general, these units exhibited an enhanced response to the

best familiar compared to the best novel stimulus. This advan-

tage, however, was restricted to the highest ranked stimuli

(with the notable exception of the unit shown in Figure 2C).
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Figure 2. Example Neuronal Responses to Familiar and Novel Stimuli

(A–E) Five representative putative excitatory cells. (F and G) Two representative putative inhibitory cells. In all rows the column on the far left shows both the mean

spike waveform of each cell and the cluster to which the waveformwas assigned (blue, broad spike; red, narrow spike). In the middle-five columns are plotted the

spike density functions (SDFs, spike times convolved with a Gaussian kernel with s = 20 ms) for the top five stimuli from the familiar set (black) and the top five

stimuli from the novel set (green). These rankings were determined not on the basis of the peak value of the SDF but rather from the spike counts in the interval

75–200 ms after stimulus onset, which is shown as a light-gray bar abutting the time axis. The insets in these graphs show the actual familiar and novel images

eliciting the response. The column on the far right shows each neuron’s entire distribution of mean firing rates, sorted according to rank. Again, the mean firing

rates were computed from the spike counts in the interval 75–200 ms after stimulus onset, and the rankings were done independently for the familiar and novel

sets. The numbers in the top right of the rank plots show the magnitude of the sparseness metric that was used to quantify single-cell selectivity.

Neuron

Experience-Dependent Changes in IT Neurons
Furthermore, note that the best familiar stimulus elicited a robust

firing rate that reached a peak level of around 100 Hz in every

neuron, suggesting that we were able to find highly effective

stimuli for activating these neurons. The increased firing rates

of putative excitatory cells to top-ranked familiar stimuli

compared to top-ranked novel stimuli translated directly into
increased selectivity (sparseness) for the familiar stimulus set

(Figures 2A–2E, right column).

The bottom two rows (Figures 2F and 2G) correspond to

putative inhibitory cells. Putative inhibitory cells nearly always

showed a greater response to the best novel compared to the

best familiar stimulus, an effect that appeared after the initial
Neuron 74, 193–205, April 12, 2012 ª2012 Elsevier Inc. 195
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Figure 3. Visual Experience Increases Maximum

Responses of Putative Excitatory Cells but

Decreases Maximum Responses of Putative Inhib-

itory Cells

(A and B) Sliding window analyses (step size = 5 ms,

window size = 50 ms) of maximum firing rates to familiar

(black) and novel (green) stimulus sets, averaged sepa-

rately for the putative excitatory (A) and putative inhibitory

(B) cells. Shaded regions indicate ± SEM. Tick marks

denote the time points at which the differences between

the maximum familiar responses and maximum novel

responses achieved statistical significance according to

a permutation test (p < 0.05).

(C) Distribution of individual cells’ responses to the best

familiar (x axis) and best novel (y axis) stimulus during the

early epoch (75–200 ms). Each data point represents the

activity of a single unit. Cells are color labeled according to

cluster membership (blue, putative excitatory; red, puta-

tive inhibitory). Error bars represent mean ± SEM across

individual repetitions of the best familiar or best novel

stimulus. Histogram in the top right shows the distribution

of differences for both subpopulations. Shaded bars show

individually significant cases (p < 0.05, Mann-Whitney

U test). Arrows denote mean maximum response differ-

ences across either the putative excitatory (blue) or

inhibitory (red) cells.

(D) A magnified view of the plot in (C), emphasizing the

distribution of effects in the putative excitatory cells.

(E and F) Same as in (C) and (D) but for the late epoch

(200–325 ms).

Neuron

Experience-Dependent Changes in IT Neurons
visual transient. These units also responded with an elevated

rate to a much larger portion of stimuli than putative excitatory

cells, regardless of stimulus set (Figures 2F and 2G, right

column), and their firing rates could reach high peak values

(�200 Hz; see Figure 2F). In addition, note that the reduced firing

rates of putative inhibitory cells to familiar stimuli could span the

entire range of ranks (Figure 2F, right column). While these expe-

rience-dependent firing rate changes could also result in selec-

tivity increases, these were less reliable than those observed in

putative excitatory cells (Figures 2F and 2G, right column).

Visual Experience Increases Maximum Responses
of Putative Excitatory Cells but Decreases Maximum
Responses of Putative Inhibitory Cells
We began with a simple question: Did experience with a set of

stimuli result in the emergence of stronger ITC responses, and

if so, did this effect depend on cell class? Because neurons in

ITC can exhibit marked selectivity, and thus fail to be activated

by many stimuli independent of experience, we narrowed the

focus of this query to just the maximum responses. In particular,

for every neuron we extracted a pair of mean firing rates: one

elicited by the single most effective familiar stimulus, and one

by the single most effective novel stimulus.
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To gain insight into the time course of experi-

ence-dependent maximum firing rate differ-

ences, we first computed this statistic with

a sliding window (step size = 5 ms; window

size = 50ms). In Figure 3Awe see that, averaged

across the population of putative excitatory
cells, the maximum responses to the familiar set were much

greater than to the novel set, and this difference emerged at

about the same time as the onset of the visual response (earliest

significant difference = 120 ms; p < 0.05, permutation test,

corrected for multiple comparisons; see Supplemental Experi-

mental Procedures). In contrast, averaged across the population

of putative inhibitory cells (Figure 3B), the maximum responses

to the familiar set were much smaller than to the novel set, and

this difference did not emerge until after the initial visual transient

(earliest significant difference = 170 ms).

We next examined experience-dependent maximum firing

rate differences in individual units. We divided the data into

two time epochs: an early epoch of 75–200 ms, and a late

epoch of 200–325 ms. In Figures 3C–3F, we plot for each epoch,

and at two different scales to emphasize the distribution of

putative excitatory units, the magnitude of each cell’s response

to its single best familiar and to its single best novel stimulus.

In the early epoch (Figures 3C and 3D), the majority of

putative excitatory cells (blue points) lie below the diagonal

line, indicating that for these neurons the best familiar stimulus

elicited a stronger response than the best novel stimulus.

Averaged across the population of putative excitatory cells, the

firing rate to the best familiar stimulus was 16.55 ± 2.22 Hz
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Figure 4. Visual Experience Decreases Average

Stimulus-EvokedResponses of Putative Excitatory

and Inhibitory Cells

Conventions same as in Figure 3 with the notable excep-

tion that the metric of interest is the average, not

maximum, response across the 125 familiar or 125 novel

stimuli. Error bars in (C) and (D) represent mean ± SEM

across the 125 familiar or 125 novel (mean) firing rates.

Individually significant cases in histograms of (C) and (D)

were determined with a t test (p < 0.05).
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(mean ± SEM) greater than the firing rate to the best novel stim-

ulus (blue arrow in Figure 3C; p < 0.001, paired t test), an increase

of nearly 50% (52.69 Hz compared to 36.14 Hz). In the late epoch

(Figures 3E and 3F), this difference diminished (blue arrow in Fig-

ure 3E, familiar � novel, 4.40 ± 2.41 Hz; p = 0.07).

Putative inhibitory cells led to a different distribution of

maximum firing rate differences (Figures 3C and 3E, red points).

In both the early (Figure 3C) and late (Figure 3E) epochs, most

putative inhibitory cells were driven to a much higher firing rate

by their best novel than by their best familiar stimulus (red points

above unity diagonal). In the early epoch the population-aver-

aged difference in maximum firing rate was 27.63 ± 7.97 Hz in

favor of the novel set (red arrow in Figure 3C; p = 0.004, paired

t test) but significant only in one monkey (compare Figures

S3C and S3D), whereas in the late epoch it rose to 53.65 ±

12.11 Hz (red arrow in Figure 3E, novel � familiar; p < 0.001)

and became significant in each monkey.

Visual Experience Decreases the Average
Stimulus-Evoked Firing Rate in Putative Excitatory
and Inhibitory Cells
We next asked how neuronal responses to familiar and novel

stimuli differ when averaged across the entire ensemble of

stimuli. Such an analysis offers a glimpse into ITC neurons’

more typical firing rate modulations, that is, their stimulus-

evoked firing rates to a randomly chosen, as opposed to their

most effective, stimulus. We computed for each cell its average

stimulus-evoked response, which we defined as the average

over the mean firing rates to each of the 125 stimuli within either

the familiar or novel set (Figures 4A–4D). Paralleling previous

reports that have grouped neurons into two distinct classes

based on extracellular spike waveform (Diester and Nieder,
Neuron 74
2008; Mitchell et al., 2007), we first note that

putative inhibitory units had much larger stim-

ulus-driven activity than putative excitatory

units. This can be appreciated by comparing

the axes in Figure 4A (putative excitatory) and

Figure 4B (putative inhibitory) and by comparing

the blue (putative excitatory) and red (putative

inhibitory) points in Figures 4C and 4D. To quan-

tify this difference, we compared the average

stimulus-evoked firing rates of putative excit-

atory cells to those of putative inhibitory cells

within each unique combination of stimulus set

(familiar/novel) and time epoch (early/late). All

comparisons were highly significant (mean ±
SEM Hz for putative excitatory versus putative inhibitory:

familiar early, 8.62 ± 0.70 versus 35.12 ± 3.24; familiar late,

5.90 ± 0.60 versus 22.96 ± 3.54; novel early, 9.20 ± 0.92 versus

44.26 ± 4.21; novel late, 7.79 ± 0.91 versus 44.00 ± 4.01; p <

0.001 for every comparison, uncorrected, two-sample t tests).

Because it has been shown that current injections can drive

fast-spiking inhibitory units to very high firing rates (McCormick

et al., 1985), the higher average responses of narrow-spiking

units further support the labeling of this cell class as putative

inhibitory. We observed a similar difference in firing rates

when we looked at spontaneous activity, which we took as the

last 500 ms of the fixation epoch (putative excitatory, 5.20 ±

0.68 Hz; putative inhibitory, 15.01 ± 2.87 Hz; p = 0.004, two-

sample t test).

Notably, we found that in both cell classes the novel set eli-

cited higher average responses than the familiar set (Figures

4A–4D). Like the maximum response effect in putative inhibitory

units, these experience-dependent differences in average firing

rate emerged, in both cell classes, after the initial visual transient

(Figures 4A and 4B). In particular, in the early epoch (Figure 4C),

the population-averaged difference for the putative excitatory

cells was small and not significant (familiar � novel, mean ±

SEM, �0.59 ± 0.42 Hz; p = 0.17, paired t test), and whereas

the difference was larger and significant in the putative inhibitory

subset (familiar � novel, �9.14 ± 2.85 Hz; p = 0.006), it was only

observed in one monkey (compare Figures S3C and S3D). It was

in the late epoch (Figure 4D) that population-averaged differ-

ences in average firing rate for both classes of cells became

significantly different from zero (familiar � novel; putative excit-

atory, �1.90 ± 0.67 Hz, p = 0.006; putative inhibitory, �21.04 ±

4.01 Hz, p < 0.001; in one monkey the putative excitatory effect

was marginally significant, p = 0.09). Consistent with these
, 193–205, April 12, 2012 ª2012 Elsevier Inc. 197
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Same conventions as in Figures 3 and 4, except that the

metric investigated is sparseness across the 125 familiar

or 125 novel stimuli. Individually significant cases in

histograms of (C) and (D) were determined with a permu-

tation test (p < 0.05).
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observations, we also observed that experience led to

decreases in the proportion of stimuli eliciting a significant eleva-

tion in firing rate and to increases in the proportion of stimuli elic-

iting a significant reduction in firing rate (Figure S4). Furthermore,

although both cell classes showed reduced average responses

to familiar stimuli, this decrease was much larger in putative

inhibitory than excitatory cells (early epoch, p = 0.001; late

epoch, p < 0.001; two-sample t tests; early epoch effect not

significant in the same monkey whose effects tended to arise

later), which can be seen by comparing the red and blue arrows

in the histograms of Figures 4C and 4D.

Visual Experience Increases Selectivity of Putative
Excitatory Cells
To convey information, neurons modulate their firing rates. The

greater and/or more reliable this modulation, the more informa-

tive the neuron’s firing rate becomes about the presence (or

absence) of some stimulus. Because we have shown that visual

experience not only led to an increase in maximum response (in

putative excitatory cells) but also to a decrease in average

response, we have already implicated visual experience in

sharper stimulus selectivity. Here, we make this idea explicit.

To capture increases in selectivity with a single metric, we

computed the value of (lifetime) sparseness (Olshausen and

Field, 2004; Rolls and Tovee, 1995; Vinje and Gallant, 2000;

Zoccolan et al., 2007) (see Experimental Procedures). Sparse-

ness quantifies how much of a single neuron’s total firing rate,

across a stimulus set, is concentrated within a few stimuli. A

neuron with high sparseness will be quiet most of the time, but

there will be a few stimuli that elicit robust firing rates. By defini-

tion, this is a selective neuron. An unselective neuron, one with

low sparseness, will respond with an elevated firing rate to

many stimuli. We calculated the sparseness of cells’ responses
198 Neuron 74, 193–205, April 12, 2012 ª2012 Elsevier Inc.
across the familiar and novel stimulus sets, first

with a sliding window (Figures 5A and 5B) and

then in the previously defined early and late

epochs (Figures 5C and 5D).

As with the average response analyses, one

of the more conspicuous features of the data

was that putative inhibitory units had much

lower sparseness than putative excitatory units

for every combination of stimulus set and

epoch (mean ± SEM putative excitatory versus

putative inhibitory; familiar early, 0.53 ± 0.03

versus 0.16 ± 0.02; familiar late, 0.65 ±

0.03 versus 0.32 ± 0.04; novel early, 0.42 ±

0.02 versus 0.17 ± 0.02; novel late, 0.57 ± 0.02

versus 0.24 ± 0.02; p < 0.001 for every compar-

ison, uncorrected, two-sample t tests). The
broad tuning of putative inhibitory units is consistent with recent

functional data (Kerlin et al., 2010; Liu et al., 2009; Sohya et al.,

2007) as well as neuroanatomical data showing that these units

can receive highly convergent and heterogeneous input from the

surrounding excitatory population (Bock et al., 2011).

Importantly, we found that the sparseness of putative excit-

atory cells was significantly greater for familiar than novel stimuli,

in both the early and late epochs (compare black and green

curves in Figure 5A; see blue points and arrows in Figures 5C

and 5D; mean ± SEM familiar � novel; early epoch, 0.11 ±

0.01; late epoch, 0.08 ± 0.02; p < 0.001 in both instances, paired

t tests).

In the putative inhibitory population, we observed a somewhat

different and less conclusive set of results. First, note that the

familiar sparseness for this population of cells did not reach its

peak value until late in the visual response (black curve in Fig-

ure 5B). Averaged across the population of narrow-spiking

neurons, sparseness for familiar stimuli was significantly greater

than for novel stimuli only in the late epoch (compare black and

green curves in Figure 5B, see red points and arrows in Figures

5C and 5D; mean ± SEM familiar � novel; early epoch, �0.01 ±

0.01, p = 0.43; late epoch, 0.08 ± 0.04, p = 0.04; paired t tests)

and only in one monkey (late epoch, monkey D, p = 0.19;

monkey I, p = 0.01).

The selectivity analyses argue that the sparseness of putative

excitatory, and possibly putative inhibitory cells, in ITC is not

a static property but rather one that visual experience can

increase. In general, sparseness can be increased either by

increasing the proportion of near-zero responses (Tolhurst

et al., 2009) or by increasing the response magnitude to a subset

of the most effective stimuli. We have already shown that in the

early epoch, putative excitatory cells had higher maximum

responses to familiar than novel stimuli. Could this difference
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account for these cells’ increased sparseness? We addressed

this question by subtracting for each putative excitatory cell its

maximum response across the novel set from its maximum

response across the familiar set and then by correlating these

differences with the differences between familiar and novel

sparseness (Figure 6). Indeed, the experience-dependent

increase in maximum response of putative excitatory cells was

a good predictor of how much more selective individual cells

were to stimuli within familiar compared to novel sets (Pearson’s

r = 0.77, p < 0.001; r = 0.80 in monkey D, r = 0.75 in monkey I).

No such relationship was observed in the late epoch (r = 0.00;

p = 0.998) or in the early or late epochs of putative inhibitory cells

(early, r = 0.27, p = 0.33; late, r = �0.06, p = 0.82) (data not

shown). We further confirmed the robust contribution of the

differences in maximum firing rates to selectivity changes with

a randomization procedure (Figure S6). We conclude that, in

the early epoch, experience-dependent increases in the putative

excitatory cells’ maximum responses contributed to a sparser

(more selective) representation of familiar compared to novel

stimuli. It is important to note that this conclusion is different

from the more traditional concept of a sparse neuron as an infre-

quently active neuron (Haider et al., 2010; Rolls and Tovee, 1995;

Tolhurst et al., 2009; Vinje and Gallant, 2000). Here, the analyses

suggest that increased sparseness resulted in a neuron that fired

more spikes to its preferred stimulus. Only in the late epoch (of

both putative excitatory and inhibitory cells) did we find that

the experience-dependent increases in sparseness could be

better accounted for by decreases in the proportion of familiar

stimuli eliciting a significantly elevated response (data not

shown).

Visual Experience Does Not Impede the Ability
of Putative Excitatory and Inhibitory Cells
to Discriminate between Novel Stimuli
In our experiments, visual experience caused marked differ-

ences in neuronal responses to familiar versus novel stimuli.

Nonetheless, novel stimuli elicited robust activity from the popu-

lation of recorded ITC neurons, indicating that neuronal activity in
ITC can contribute to the recognition of both stimulus sets.

Could ITC neurons discriminate as well among members of the

novel set as of the familiar set? We probed this question with

a receiver operating characteristic (ROC) analysis. In particular,

we performed ROC analyses on all possible pairwise combina-

tions of stimuli (within a set), each time summarizing the discrim-

inability of the two firing rate distributions with the area under

ROC curve (AUC) (Rust and Dicarlo, 2010). We took the average

of the AUC values as a metric of overall discriminability, which

captured how well, on average, a single neuron’s spike counts

could discriminate between the identities of any two arbitrarily

chosen stimuli.

We first note that putative inhibitory cells conveyedmore infor-

mation about stimuli, familiar and novel, than did putative excit-

atory cells (Figures 7A and 7B, compare blue to red points)

(mean ± SEM putative excitatory versus putative inhibitory;

familiar early, 0.673 ± 0.008 versus 0.702 ± 0.011; familiar late,

0.648 ± 0.007 versus 0.698 ± 0.011; novel early, 0.665 ± 0.008

versus 0.729 ± 0.013; novel late, 0.682 ± 0.009 versus 0.778 ±

0.009; p = 0.04 for familiar early comparison, where the differ-

ence was not significant in one monkey; p < 0.001 for all other

comparisons, familiar late comparison was not significant in

same monkey, uncorrected, two-sample t tests). This finding is

consistent with the broader tuning of putative inhibitory cells,

which allowed them to respond in a stimulus-selective manner

to more than just the top few stimuli.

Notably, we found that spike counts of both putative excitatory

and inhibitory cells could be used to discriminate between novel

stimuli as well as, or even better than, familiar stimuli. The only

case in which the familiar set fared better was the early epoch

of putative excitatory cells, but this difference was small and

not significant in eithermonkey separately (Figure 7A, blue points

and arrow; mean familiar AUC = 0.673, mean novel AUC = 0.665;

p = 0.046, paired t test). Furthermore, note that the late epoch of

putative excitatory cells more than compensated for this initial

difference (Figure 7B, blue points and arrow; mean familiar

AUC = 0.648, mean novel AUC = 0.682; p < 0.001). For the puta-

tive inhibitory cells, the novel stimuli could be better discrimi-

nated in both epochs (Figures 7A and 7B, red points; early

epoch, mean familiar AUC = 0.702, mean novel AUC =

0.729 p = 0.004; late epoch, mean familiar AUC = 0.698, mean

novel AUC = 0.778, p < 0.001), with one monkey showing

much stronger and reliable differences than the other. Visual

experience, therefore, did not prevent neurons in ITC from

contributing reliably to the encoding of both familiar and novel

stimuli.

Given that putative inhibitory cells had lower sparseness than

putative excitatory cells but were better able to discriminate

between any two arbitrarily chosen images, we wondered

whether there was a relationship between sparseness and

mean pairwise AUC values. In Figures 7C and 7D, we have

plotted individual cells’ sparseness and mean pairwise AUC

values for the early and late epochs (putative inhibitory units

are indicated by open symbols). For both familiar (Figures 7C

and 7D, black points and lines) and novel (green points and lines)

stimuli, we observed a strong linear correlation between the two

metrics. The correlation held even when we restricted the anal-

ysis to just the putative excitatory cells (Figures 7C and 7D, filled
Neuron 74, 193–205, April 12, 2012 ª2012 Elsevier Inc. 199
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during the early epoch (75–200 ms). Putative inhibitory
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Neuron

Experience-Dependent Changes in IT Neurons
circles). This suggests that an increase in sparseness precluded

a neuron from discriminating stimuli at the lower end of its firing

rate distribution. Because visual experience led to a considerable

increase in sparseness, we conclude that individual ITC neurons

contributed to the encoding of a smaller number of familiar

compared to novel stimuli.

DISCUSSION

Here, we askedwhether visual long-term experience’s effects on

single-neuron responses in ITC vary with cell type. We first

showed that the best stimulus from the familiar set drove puta-

tive excitatory cells much more robustly than the best stimulus

from the novel set. This effect was reversed for putative inhibitory

cells. We further showed that, on average, both putative excit-

atory and putative inhibitory neurons responded with a smaller

response to a randomly chosen familiar compared to novel stim-

ulus, but this difference wasmuch larger in the putative inhibitory

population. We then went on to show that experience increased

sparseness in putative excitatory neurons and, to a lesser

degree, in putative inhibitory neurons. For the putative excitatory

neurons, the experience-dependent increase in sparseness

could be well accounted for by an increased firing rate to the

top familiar stimulus. Finally, we demonstrated that the experi-

ence-dependent modifications have a minimal impact on the

ability of ITC neurons to discriminate between the stimuli in

the novel set. In Figure 8, we provide a schematic summarizing

the observed firing rate changes in both classes of neurons.

Methodological Approach
Neurons in neocortex can be classified on the basis of

morphology, physiology, connectivity, laminar distribution,

neurotransmitter content, and/or expression of calcium-binding

proteins, to name the most common schemes (Markram et al.,

2004). In extracellular recording studies, most of these charac-

teristics remain unknown, leading many to simply average
200 Neuron 74, 193–205, April 12, 2012 ª2012 Elsevier Inc.
results over all recorded cells, potentially obscuring important

cell class-dependent differences. However, a growing body of

evidence supports the utility of dividing extracellularly recorded

spikes into putative excitatory and inhibitory classes based on

spike shape (Barthó et al., 2004; Johnston et al., 2009; Tamura

et al., 2004). The technique’s foundation rests on results sug-

gesting that fast-spiking, parvalbumin-positive inhibitory inter-

neurons express an abundance of Kv3 voltage-gated potassium

channels, which endow them with their unique narrow action

potentials (Kawaguchi and Kubota, 1997; McCormick et al.,

1985; Rudy and McBain, 2001).

As with any classification scheme, caution should be exer-

cised with this method’s application. Indeed, a recent electro-

physiological study from the primary motor cortex of themonkey

showed that pyramidal tract neurons can also emit narrow

spikes (Vigneswaran et al., 2011). Whether such results will be

extended to cortical areas with a less-specialized corticospinal

projection, a more representative distribution of cell types, and

a more typical laminar profile remains an open question, but it

is unlikely neuronal classification based on spikewaveform alone

can represent a one-to-one mapping (Nowak et al., 2003). None-

theless, the method offers an important first step for dividing

a sample of neurons into putatively different cell classes, i.e., it

is better than no division at all if functional differences between

the two classes can be shown to exist (Diester and Nieder,

2008; Hussar and Pasternak, 2009; Mitchell et al., 2007). For

ease of exposition we thus assume this division in the following

discussion.

Putative Excitatory Cells
Several studies have explored the impact of visual experience on

the maximum response magnitude of single ITC neurons. Early

work showed that the best familiar stimulus elicits a higher firing

rate than the best novel stimulus (Kobatake et al., 1998; Miya-

shita, 1993; Sakai and Miyashita, 1994). More recent work,

however, has revealed that the best familiar and best novel
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stimuli, on average, evoke equivalent firing rates (Baker et al.,

2002; Freedman et al., 2006; Op de Beeck et al., 2007). Here,

we have provided data reconciling these disparate results by

showing that whether experience increases or decreases the

maximum response depends on both cell class and over what

time epoch firing rates are computed. In particular, putative

excitatory cells responded more strongly to the best familiar

stimulus, but only in the early epoch, whereas putative inhibitory

cells responded more strongly to the best novel stimulus, partic-

ularly in the late epoch. Given that excitatory cells are estimated

to outnumber inhibitory cells by a ratio of about 4:1 (Markram

et al., 2004), can the averaging across the two cell classes

account for the recent absence of maximum response differ-

ences? In principle, this is possible because the absolute

magnitude of the experience-dependent maximum response

modulation wasmuch larger for the putative inhibitory than puta-

tive excitatory cells (absolute difference, putative excitatory early

phase = 16.55 Hz, putative inhibitory late phase = 53.65 Hz).

Indeed, calculating firing rates over the window 75–325ms post-

stimulus onset and collapsing across the two cell classes leads

to a much reduced and in one monkey a nonsignificant

maximum response difference between the familiar and novel

stimulus sets (two monkeys combined, best familiar � best

novel = 2.64 Hz, paired t test, p = 0.40; monkey D, �0.21 Hz,

p = 0.97; monkey I, 6.40 Hz, p = 0.02; in the monkey in which

the difference remained significant, the difference decreased

from 11.93 Hz when computing it from early epoch spike counts

of putative excitatory cells alone, nearly a 50% decrease).

Another potential explanation as to why some reports have

failed to observe an enhanced response to the best familiar stim-

ulus concerns the size of the stimulus sets. In the studies where

the best familiar stimulus failed to elicit a stronger response, the

familiar and novel sets each consisted of no more than 20 stimuli

(Baker et al., 2002; Freedman et al., 2006; Op de Beeck et al.,

2007). Conversely, each of the studies that have reported

stronger familiar responses used stimulus sets with at least

that many stimuli (Kobatake et al., 1998; Logothetis et al.,

1995; Miyashita, 1993; Sakai and Miyashita, 1994). With a small

and/or relatively homogeneous stimulus set, it is plausible that

the lack of enhanced familiar responses is a consequence of
exploring only the low-response regions of the high-dimensional

image space in which ITC responses lie, regions in which

responses to familiar and novel stimuli are similar. Consistent

with this proposal, when we randomly selected smaller subsets

of familiar and novel responses (from our own data set), and thus

were more likely to exclude the response from the best familiar

stimulus, we observed that the population level difference in

maximum firing rates decreased (Figure S5). Further supporting

the suggestion that the differences in maximum firing rate

depend on finding the appropriate stimuli, two of the studies

that failed to observe an enhanced familiar response reported

the firing rates to the best familiar stimuli to be <25 Hz (Baker

et al., 2002; Freedman et al., 2006). Because this value presum-

ably included both excitatory and inhibitory neurons, it is likely to

be even lower for just excitatory neurons. In the present study we

recorded from putative excitatory cells that had an average

maximum response to the familiar set of 52.69 Hz (taken over

the epoch 75–200 ms) and a peak maximum response, depend-

ing on the monkey, of around 70–110 Hz.

What could the increased response magnitude of the putative

excitatory cells to the best familiar stimulus reflect in terms of the

underlying neuronal circuitry? Because the experience-depen-

dent enhancement was present at the time of visual response

onset, the most parsimonious explanation is to posit a potenti-

ated excitatory input from areas upstream of ITC, such as V4

(Seltzer and Pandya, 1978). This hypothesis is consistent with

the present conception of ventral visual stream function. In

particular, the ventral visual stream is thought to elaborate on

the shape, color, and texture attributes of visual input (Anzai

et al., 2007; Brincat and Connor, 2004, 2006; Gallant et al.,

1993; Hubel and Wiesel, 1959; Kobatake and Tanaka, 1994;

Logothetis et al., 1996; Pasupathy and Connor, 1999; Rust and

Dicarlo, 2010; Tanaka, 1996; Tanaka et al., 1991; Yamane

et al., 2008). The gradual increase in optimal stimulus complexity

as one traverses the ventral pathway has been interpreted as an

increase in sensitivity for particular combinations of local

features. This sort of image transformation makes explicit, and

thus easier to readout, the higher-order correlations present in

the visual input. This process is thought to culminate in ITC.

Because the local feature responses of neurons at early stages
Neuron 74, 193–205, April 12, 2012 ª2012 Elsevier Inc. 201
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in the visual system can be recombined in a virtually infinite

number of ways, there is no need for their experience-dependent

modification beyond that observed in the critical period. Indeed,

modification of these building blocks of stimulus encoding

could dramatically disrupt responses of downstream neurons

dependent on a stable foundation of local responses. The partic-

ular combinations of local features that the organism learns to

recognize, however, will depend on its recent perceptual history.

We propose that one of ITC’s computational roles is to learn and

encode with a higher maximum response those conjunctions

that occur frequently and reliably. To do so, neurons in ITC

strengthen the influence of those synaptic inputs that have

a tendency to frequently and reliably excite them. Such learning

can be implemented through classical Hebbian plasticity mech-

anisms, and in particular, NMDA receptor (NMDAR)-mediated

long-term potentiation (LTP) (Feldman, 2009). Supporting this

hypothesis, stimulus-specific, NMDAR-mediated response

potentiation has previously been reported in mouse visual cortex

(Frenkel et al., 2006). It will be important for future studies to

determine whether the neuronal changes to the stimuli we

used can or cannot be detected earlier in the visual system

(Rainer et al., 2004; Yang and Maunsell, 2004). Under our

proposed scheme, such changes should be minimal.

We showed that a direct result of experience-dependent

maximum response increases in putative excitatory cells is

increased sparseness (selectivity) for stimuli within the familiar

set. This is consistent with earlier work (Kobatake et al., 1998;

Logothetis et al., 1995) but stands in contrast to recent data

showing that selectivity increases in ITC are a consequence

only of decreased responses to stimuli at the lower end of the

firing rate distribution (Baker et al., 2002; Freedman et al.,

2006). While we were able to replicate the decrease in average

stimulus-evoked responses, this effect’s presence (Freedman

et al., 2006), as well as its relationship to increased selectivity,

held only in the late phase of the visual response. The late emer-

gence of this suppression suggests that experience not only

strengthens feed-forward input but also likely prunes and/or

weakens synaptic connections within ITC (Feldman, 2009).

Taken together, these results argue that experience steers puta-

tive excitatory neurons to contribute to the encoding of only their

most effective stimuli at the expense of less-effective stimuli.

Supporting this assertion, we showed that there is an inverse

relationship between the selectivity of neurons and their ability

to discriminate arbitrarily chosen pairs of stimuli. We speculate

that a smaller population of projection neurons each firing

many, very informative spikes may be better at driving down-

stream neurons and thus have more impact on perceptually

guided behavior compared to a large population of neurons

each firing a few, less-informative spikes.

Putative Inhibitory Cells
Putative inhibitory cells also showed average response

decreases to familiar stimuli. The magnitude of this effect, how-

ever, was much larger in the inhibitory population. This observa-

tion adds to recent reports showing that behavioral factors can

affect putative inhibitory cells to a much greater degree (Mitchell

et al., 2007; Niell and Stryker, 2010). One intriguing possible role

for increased inhibitory output is that it serves to detect novelty
202 Neuron 74, 193–205, April 12, 2012 ª2012 Elsevier Inc.
and initiate the cascade of events that underlie the subsequent

plasticity. Research over the past decade has revealed that

critical period plasticity within primary visual cortex is closely

linked with the maturation of GABAergic transmission, with

anecdotal reports implicating, in particular, inhibition mediated

by parvalbumin-positive interneurons (Hensch, 2005). Indeed,

a recent report indicates that interneurons of this class broaden

their orientation tuning in parallel with the onset of the critical

period (Kuhlman et al., 2011). We thus propose that the

increased activity of our putative inhibitory cells is the neuro-

chemical trigger for the robust selectivity changes within the

putative excitatory population. If this hypothesis is true, the chal-

lenge will be to elucidate what allows the inhibitory cells within

ITC to mediate plasticity into adulthood. That is, even though

in primary visual cortex critical period plasticity can be prema-

turely triggered by enhancing GABAergic transmission, the

plastic window still has a finite duration, and importantly, once

it ends, it cannot be reinitiated (Fagiolini and Hensch, 2000).

Further work suggests that there is a developmental trajectory

intrinsic to inhibitory cells, which allows them to control the

temporal specificity of plasticity (Southwell et al., 2010). Whether

this maturational program is in some important ways different in

inhibitory cells further along the visual hierarchy, where plasticity

can extend into adulthood, is a question for future research.

Our observation that putative inhibitory cells were much less

selective than putative excitatory cells, regardless of stimulus

set and time epoch analyzed, is consistent with a previous result

(Zoccolan et al., 2007). In areas where columnar structure with

regard to some feature dimension is well defined (e.g., orienta-

tion columns in cat and primate primary visual cortex), inhibitory

neurons have narrow tuning. In areas lacking such an organiza-

tion (e.g., primary visual cortex of mice and rabbits), inhibitory

neurons have broader tuning. Thus, an emerging view is that

the amount of selectivity within the inhibitory population reflects

the degree to which excitatory neurons with similar receptive

field properties are in spatial proximity to one another (Bock

et al., 2011; Cardin et al., 2007; Kerlin et al., 2010; Liu et al.,

2009; Sohya et al., 2007). To the extent that this hypothesis is

true, our results indicate that columnar organization within ITC,

with respect to the stimulus set employed, is moderate at best

(Fujita et al., 1992; Tsunoda et al., 2001). Otherwise, we should

have seen selectivity values within the putative inhibitory popula-

tion mirror the selectivity values within the putative excitatory

population. Importantly, we can extend this line of reasoning

and propose that inhibitory activity serves as a proxy for the

amount of surrounding excitatory activity. Viewed in this light,

the massive increase in the average response of our putative

inhibitory population to the novel stimuli further speaks to the

robust effects that experience exerts on neuronal circuitry in

ITC. In other words the increased inhibitory activity is consistent

with the hypothesis that novel compared to familiar stimuli

activate a much larger number of excitatory cells and/or drive

them, on average, to fire many more spikes. It is worth noting

that perhaps the reason why putative inhibitory cells are better

at detecting the novelty of stimuli is because they ‘‘listen’’ to

the summed excitatory output of a fairly large collection of

surrounding neurons. In this manner, the massive increase in

inhibitory output would serve to not only signal novelty but also
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to maintain an appropriate level of excitatory to inhibitory

balance. In fact, maintenance of this balance could be crucial

to the normal operation of this sensory circuit while it undergoes

robust remodeling. Alternatively, another nonmutually exclusive

hypothesis is that this balance is important for putting the brakes

on too much plasticity occurring too rapidly. Answers to these

questions await further experimental exploration.

EXPERIMENTAL PROCEDURES

All experimental procedures were in accordance with the guidelines published

in the National Institutes of Health Guide for the Care and Use of Laboratory

Animals and were approved by the Brown University Institutional Animal

Care and Use Committee. Two male adult macaque monkeys were used in

this study. Standard operant conditioning techniques were used to train the

subjects to fixate and to press buttons for a small liquid reward. Eye move-

ments were recorded using the EyeLink II video tracking system (SRResearch,

Osgoode, Ontario, Canada) running at 500 Hz. When the monkeys were ready

for recordings, we implanted custom chambers that allowed for a dorsal

access to ITC (Horsley-Clark coordinates, +15 anterior, +20 lateral). Based

on reconstructed electrode trajectories, we believe most of our recordings

took place from the lateral convexity of ITC, ventral to the lower bank of the

superior temporal sulcus (STS) and lateral to the perirhinal cortex (Figure S2).

Recordings were obtained with fine tungsten microelectrodes (Alpha Omega

Engineering, Alpharetta, GA, USA, or Frederic Haer Company, Bowdoinham,

ME, USA). Single units were isolated online using a threshold and dual-ampli-

tude windows, while analog signals were streamed to disk for offline analysis.

All stimuli used were taken from Hemera Photo-Objects Vols. 1, 2, and 3

(Hemera Technologies), subtended about 2� 3 2� of visual angle at a viewing

distance of 90 cm, and were presented centrally on top of a uniform gray

background. Both monkeys were familiarized with the same set of 125 stimuli

(Figure S1A). During the familiarization phase the monkeys saw the images in

either a passive fixation task or in a delayed match-to-sample task. When

the familiarization phase was completed, we began the recordings. All record-

ings were obtained during a passive fixation task in which eye position was

constrained to be within 1� of the center of the screen, as ten stimuli (no

repeats) were presented. At the end of the stimulus presentation epoch, an

extrafoveal square target was presented (eccentricity = 6�) to which the

monkey had to saccade to obtain its juice reward. Because the goal of

this experiment was to compare neuronal responses to familiar and novel

stimuli, for every recording session we selected a new set of 125 never before

seen stimuli. Although the selection process was random, we used the

scale invariant feature transform and the dot product of normalized color

histograms to eliminate from this novel set stimuli which looked either too

similar to the familiar ones or to one another (see Supplemental Experimental

Procedures).

We attempted to record from every well-isolated and visually responsive unit

in ITC. To avoid a neuronal selection bias, the vast majority of visually respon-

sive units (n = 40/50, 80% for monkey D; n = 35/38, 92% for monkey I) were

found and isolated with an independent set of 50 initially novel stimuli that

gradually became familiar as the recording sessions accumulated. Thus, the

results presented here are not a consequence of selecting units that we

knew ahead of timewould be responsive to familiar items. All neurons reported

were held for at least five repetitions of each unique stimulus, but most were

held for ten (n = 46/50, 92% for monkey D; n = 35/38, 92% for monkey I).

We divided the sample of neurons into two classes based on the widths

(trough-to-peak durations) of their extracellularly recorded spike waveforms.

Clustering was performed with a k-means algorithm. We labeled the broad-

spiking class as putative excitatory and the narrow spiking as putative

inhibitory.

Although we recorded the neuronal activity in a rapid serial visual presenta-

tion paradigm to allow each one of the large number of unique stimuli to be pre-

sented many times while simultaneously maintaining single-unit isolation, the

stimulus presentation durations (200 ms) and interstimulus durations (50 ms)

were long enough to allow for a separate analysis of the early and late compo-

nents of the neuronal response. The early phase was defined as the epoch
75–200 ms, and the late phase was defined as the epoch 200–325 ms, both

relative to stimulus onset. The main firing rate metrics used throughout this

study were the maximum response and the average response. The maximum

response was defined as the maximum across the mean firing rates to the 125

stimuli in either the familiar or novel set. The average response was defined as

the average over the mean firing rates.

To determine, for a single cell, whether the maximum response across the

familiar set was significantly different from the maximum response across

the novel set, we used the Mann-Whitney U test (histograms in Figures 3C

and 3E). To compare statistically the average stimulus-evoked response

across the 125 familiar stimuli to that across the 125 novel stimuli, we used

a t test (histograms in Figures 4C and 4D). To assess whether population-aver-

aged data were different from a null hypothesis, we applied the appropriate

(paired or unpaired) t tests, always two-tailed. As a measure of selectivity,

we used the sparseness metric (Olshausen and Field, 2004; Rolls and Tovee,

1995; Vinje andGallant, 2000; Zoccolan et al., 2007). Thismetric takes the form

S= ð1� AÞ=ð1� 1=nÞ, where A = ðPn
i ri=nÞ2=

Pn
i ðr2i =nÞ, n is the number of

stimuli, and ri are the mean firing rates to a set of stimuli. S takes values

between 0 and 1. We evaluated the significance of sparseness differences

between the familiar and novel sets with a randomization test (histograms in

Figures 5C and 5D). We also used randomization test (corrected for multiple

comparisons) to determine the time points at which the sliding window firing

rates from two conditions, averaged across the population of neurons, were

different from one another (see Supplemental Experimental Procedures for

more details on the randomization tests). To establish how well a single

neuron’s spike counts could discriminate between any two randomly chosen

stimuli within either the familiar or novel sets, we used the AUC, which

measures the discriminability of two spike count distributions (Green and

Swets, 1966). In particular, we computed all pairwise AUC values in the set

of 125 familiar or 125 novel stimuli, reflected about 0.5 values below 0.5

(e.g., 0.35 became 0.65), and took their average (Figure 7).
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Barthó, P., Hirase, H., Monconduit, L., Zugaro, M., Harris, K.D., and Buzsáki,
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