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Probabilistic reasoning by neurons
Tianming Yang1 & Michael N. Shadlen1

Our brains allow us to reason about alternatives and to make choices that are likely to pay off. Often there is no one correct
answer, but instead one that is favoured simply because it is more likely to lead to reward. A variety of probabilistic
classification tasks probe the covert strategies that humans use to decide among alternatives based on evidence that bears
only probabilistically on outcome. Here we show that rhesus monkeys can also achieve such reasoning. We have trained two
monkeys to choose between a pair of coloured targets after viewing four shapes, shown sequentially, that governed the
probability that one of the targets would furnish reward. Monkeys learned to combine probabilistic information from the
shape combinations. Moreover, neurons in the parietal cortex reveal the addition and subtraction of probabilistic quantities
that underlie decision-making on this task.

Decision-making is a complicated process that is often based on
more than one source of evidence. The brain needs to combine
these sources to maximize the chance of achieving a correct decision
or to achieve another related goal. Recent advances in neuroscience
are beginning to expose the neurobiological mechanisms that
underlie simple decisions1–6. It has been demonstrated that, when
the outcome of a decision is an eye movement, a neural correlate of
the evolving decision can be recorded in brain areas associated with
high level motor planning and attention allocation7–11. More spe-
cifically, neurons in the lateral intraparietal area (LIP) have been
shown to accumulate sensory information provided by earlier visual
cortex when a decision is being formed8,9,12,13. The mechanism
mimics statistical decision processes that accrue evidence sequen-
tially in the form of a log likelihood ratio (logLR) that favours
one outcome over another4,14,15. Therefore, it has been hypothesized
that a neuronal substrate of probability integration exists in area
LIP16.

To test this hypothesis, we trained two monkeys to perform a
probabilistic categorization task (Fig. 1a). The task was adapted from
the well-known weather-prediction task17,18 used to study human
learning and memory. In each trial the monkey viewed four highly
discriminable shapes; these were sampled randomly (with replace-
ment) from a set of ten possible shapes. The shapes were added
successively to the display over four half-second epochs. The monkey
then made an eye movement to either a red or a green target to receive
a reward. Reward was not guaranteed, but was instead governed by a
random process based on the combination of preset weights (w) that
were assigned to the ten shapes {w1, w2, ..., w10}. The sum of the four
weights associated with the shapes shown in a trial established the log
of the odds that reward would accompany a red or a green choice (see
Methods Summary).

The large number of possible shape combinations (104 permuta-
tions; 715 unique combinations) prohibits memorization of specific
four-shape patterns and encourages the monkeys to combine evid-
ence from the probabilistic information conferred by each shape in
each experimental trial. The optimal strategy is to choose the target
with the larger reward probability. However, even when the odds
favour red, for example, it is possible that green rather than red will
be rewarded. We hoped that the sequential presentation of the shapes
would permit a glimpse at how the brain combines probabilities to
reach a decision.

Monkeys associated shapes with logLR

After extensive training (see Methods), the monkeys learned to base
their decisions on the combined probabilities of the four shapes
(Fig. 1b). They chose the red target when the evidence in favour of
red was large, and chose the green target when the evidence in favour
of green was large (large negative values in Fig. 1b). When the prob-
ability was between the two extremes, both monkeys chose either
target, but tended to favour the one that was more likely to lead to
reward.

To assess the degree to which each shape affected the monkeys’
choices, we performed logistic regression (equation (7)), which mod-
els the log odds of a red choice as a sum of the weights assigned to each
of the four shapes shown in each trial. Logistic regression thus pro-
vides a convenient estimate of the leverage that each of the ten shapes
exerted on the monkeys’ choices; this is given in units of log odds of
producing a red choice. These weights, which we term the subjective
weight of evidence (subjective WOE), bear a clear resemblance to the
weights that were originally assigned to the ten shapes (Fig. 1c;
P , 10–5 for both monkeys, Spearman’s rank correlation test). The
rank ordering of the subjective WOE suggests that both monkeys
learned the rules of the task, although neither monkey learned the
weights perfectly (monkey J was clearly better than monkey H) (see
Supplementary Fig. 6 for further analysis of the subjective WOE).

LIP responses are modulated by logLR

We recorded the activity of 64 neurons in the parietal lobe (area LIP)
while the monkeys performed the probabilistic classification task.
Many neurons in area LIP exhibit spatially selective persistent activity
that reliably predicts whether an eye movement is planned into or out
of the neuron’s response field19–22. The graded activity of these neu-
rons is thought to represent a quantity used by the brain to make
simple perceptual decisions8,9,11,12,23,24. We hypothesized that these
neural responses encode the logLR that the target in the neuron’s
response field is the one that will be rewarded.

To test this, we measured the firing rates from these neurons while
the monkeys viewed the sequence of shapes that provided them with
evidence in favour of reward at the red or green target. In each trial,
either the red or the green target was in the neuron’s response field
(Tin). The other target (Tout) and the four shapes were placed outside
the response field. The logLR is updated with the addition of each
of each shape shown in the four presentation epochs. After the nth
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shape (sn), the WOE is:

WOE : logLRn : log10

P s1, :::, sn rewardj at Tinð Þ
P s1, :::, sn rewardj at Toutð Þ n~ 1, 2, 3 or 4f g ð1Þ

where P x yjð Þ denotes the probability of observing x, given that con-
dition y holds true. If the red target is in the neuron’s response field,
then this value is roughly proportional to the sum of the weights
assigned to the n shapes shown in the first n epochs; it equals exactly
the sum of the weights once all four shapes are shown (n 5 4) in the
final epoch. The sign is reversed if the green target is in the response

field. In equation (1), one unit of WOE is called a ‘ban’25. We next
show that LIP neurons modulate their firing rates as a function of
these bans of evidence. Not surprisingly, LIP neurons were more
responsive near the end of the trials when the monkeys chose Tin, as
shown by the example neuron in Fig. 2a. The association between
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Figure 1 | Probabilistic categorization task. a, Task sequence. Four shapes
were presented sequentially on the computer monitor near the centre of gaze.
After a brief delay period, the monkey made an eye movement (saccade) to
either the red or green choice target. During neural recording, one of the
choice targets was in the response field of the neuron. The shapes were
selected randomly in each trial from a larger set of ten (inset). The reward was
determined probabilistically by summing the weights associated with the four
shapes. The sum is the logarithm of the odds that the red target will be the one
rewarded. b, Performance. The fraction of red choices is plotted as a function
of the logLR conferred by the four shapes in favour of red. Curves are logistic
fits to the data (equation (5)). Only trials that have finite logLR are included
in this graph. c, Effect of individual shapes on choice. The leverage of each of
the ten shapes on the probability of a red choice was inferred using logistic
regression. This is the contribution that the shape has on the log10 of the odds
of a red choice. These values are plotted as a function of the assigned weights.
Standard errors are smaller than the data points in b and c.
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Figure 2 | Responses of an LIP neuron during probabilistic classification.
a, Evolution of activity. The average firing rate is sorted by the monkeys’ choices.
The response averages reflect information from shapes shown in all four epochs.
Response averages are drawn from 547 Tin and 575 Tout trials; bin width, 5 ms.
b, Effect of logLR on firing rate. Response averages are aligned to the onset of the
shapes and extend 100 ms into the subsequent epoch. The averages were
computed for five quintiles of logLR in each epoch (indicated by shading). Note
that a single trial contributes to only one curve in each epoch, but that the
quintile can change depending on the sequence of shapes. c, Firing rate is
affected by logLR. Average firing rate was calculated in the epochs indicated by
the grey bars on the x axis of the graphs in b. The line is the weighted least-
squares fit. The slope (6 s.e.) provides a modulation index. Sample responses
from this neuron can be viewed as Supplementary Movies 1–3.
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firing rate and choice is a hallmark of LIP neurons and was nearly
guaranteed by our sampling procedure (see Methods). In the present
context, the LIP response reveals the outcome of a decision. Far more
interesting is the evolution of the response that accompanied the
sequential presentation of the shapes. Although a final decision must
await the presence of all four shapes, the responses of this neuron were
modulated by partial evidence as the shapes appeared in sequence.

The example neuron shown in Fig. 2a responded strongly to the
onset of the choice targets that accompanied the first shape. This short
latency response is probably caused by the appearance of Tin (ref. 26),
but by the end of the first epoch the firing rate was affected by one of
the ten shapes that appeared near the fixation point. The response was
greater for shapes that provided evidence in favour of Tin (Fig. 2b).
The response curves shown in this epoch sort the 20 possible condi-
tions (10 shapes 3 2 choice target configurations) into quintiles that
rank the total logLR for the choice target in the response field. (Note
that the logLR quantifies the WOE in favour of Tin, regardless of its
colour. We use this convention throughout the article for simplicity;
but see Appendix C in Supplementary Information.) This difference
was even more striking in the second epoch. Again, we grouped the
200 possible conditions (100 possible 2-shape sequences 3 2 choice
target configurations) into 5 groups based on the total logLR for
reward at Tin. The same analysis was performed in the next two
epochs. In each epoch, the firing rates are affected by the logLR.

To quantify the effect of logLR on the neural response, we calcu-
lated the average firing rate for each trial in the epoch from 300 to

600 ms after shape onset, and plotted this value as a function of the
logLR (Fig. 2c). The slope of the line of best fit provides an index of
the response modulation by logLR and a test of statistical reliability
(null hypothesis, H0: slope 5 0). This neuron exhibited clear modu-
lation of its firing rate as a function of logLR in all epochs (P , 0.01).
The change in spike rate per ban is indicated in each panel. The
positive value implies that the neuron increased its firing rate when
the logLR favoured the target in its response field.

We observed a similar pattern of results for the sample of 64 neu-
rons (Fig. 3). The response averages reveal a graded modulation of
firing rates that correspond to the magnitude of logLR that favours
the target in their response field. When the evidence was against
the target in the response field, the population neuronal response
decreased. The population average firing rate is well described by
a linear function of logLR (Fig. 3b; P , 0.01; see equation (8) for
H0 : bn~0). The modulation indices (in units of spikes per second
per ban) are shown for each neuron from the two monkeys (Fig. 3c).
Although there is some heterogeneity across the population, the
histograms reveal that the change in firing rate per ban is remarkably
similar in all four epochs. This finding is supported by data from both
monkeys (see Supplementary Fig. 5). In each epoch, LIP registers the
appearance of a new shape by adjusting its firing rate to reflect the
updated logLR in favour of Tin (see Supplementary Movies, which
are described briefly in Supplementary Appendix D).

According to this theory, each of the ten shapes should cause a
change in LIP activity in accordance with the weight it was assigned.
We estimated these changes from the population by attempting to
isolate the response to each new shape in each of the four epochs. The
responses in the first epoch are obscured by the large visual response
accompanying the onset of the choice targets. However, in epochs
2–4, we subtracted the firing rate that the neuron achieved in the
previous epoch (see Methods). This procedure yields an estimate of
the magnitude and time course of the change in firing rate caused by
each of the ten stimuli (Fig. 4).

The shapes caused the firing rate to change with a fairly stereo-
typical time course, beginning ,150–200 ms after shape onset without
any obvious sign of decay (Fig. 4a). The change in firing rate appears to
reflect both the sign and the magnitude of the assigned weights. This is
easier to discern from Fig. 4b, which shows the average change in firing
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Figure 4 | Effect of individual shapes on LIP activity. The responses are
computed by subtracting the firing rate preceding onset of the shape from
the recorded value and then averaging the residual perturbations for each
shape (see Methods). a, Time course of the change in firing rate caused by
each of the ten shapes. The darkest curve corresponds to the shape that has
the largest weight for Tin (semicircle shape when Tin is red; diamond shape
when Tin is green); the lightest line corresponds to the shape that has the
largest weight for Tout. b, The average change of firing rate induced by the ten
shapes is plotted as a function of the change in logLR associated with the
display of the shape in each of the epochs (Table 1). The two trump shapes
are excluded in epoch 4.
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rates in the epoch from 300 to 600 ms after shape onset, plotted
as a function of logLR. Again, the change in firing rate is proportional
to the change in logLR that accompanied addition of the shapes
during the trial sequence. The change in spike rate per ban of evidence
is similar to the values obtained from the total logLR (Fig. 3b).
Furthermore, the changes in firing rate induced by the individual
shapes are fairly similar in the three epochs depicted in Fig. 4.

Effect of logLR is not due to shape selectivity or eye movements

At face value, these results indicate that LIP neurons are capable of
representing a quantity proportional to logLR. However, two
important alternatives deserve consideration: first, LIP neurons
might respond to the shapes themselves, independent of the prob-
abilities they confer, and, second, the LIP might simply represent a
commitment to move the eyes into or outside of the response field,
regardless of the evidence that underlies that plan.

In principle, the observed changes in firing rates could be explained
if LIP neurons responded better to some shapes than others27,28. For
example, such selectivity could arise as the monkeys learned that some
stimuli are more predictive of reward than others11,24. This idea can
easily be dismissed. In this investigation, the colour of the target
shown in the neuron’s response field was randomized from trial to
trial. Therefore, each shape combination could furnish evidence in
favour either of or against the Tin target. In fact, the trials in the first
and fifth quintiles in Figs 2b and 3a share the same shape combina-
tions; the same is true for the second and fourth quintiles. Clearly, the
responses are not determined by the shapes themselves, but by the
bearing the shapes have on the pending decision.

A more serious concern is that the responses are associated with
the monkeys’ choice rather than with the evidence conferred by the
shapes. After all, greater logLR in favour of Tin is associated with
more neural activity and an increase in the likelihood of an eye
movement to the response field. We wished to ascertain whether
the effect of logLR on neural response is merely a reflection of the
choice made at the end of the trial. In each epoch, we sorted the trials
by the choice the monkey made (Tin or Tout) and subtracted the mean
firing rate associated with that choice. The residual firing rates retain
a strong dependency on the logLR (Fig. 5a; see also Supplementary
Figs 7 and 8). Formally, this analysis is a simple extension of the linear
regression depicted in Fig. 3b (see equation (9)). It allows us firmly to
reject the hypothesis that the effect of logLR on firing rate is mediated
by the eye movement choice (P , 0.01 in all epochs, equation (9),
H0 : bn~0). This is true even in the later epochs (Tout choices), in
which the monkeys’ eye movement choice clearly affects the res-
ponses. The same analysis performed on individual neurons also
supports this conclusion: 84%, 76%, 60% and 28% of neurons
in which logLR had significant effects on firing rate (epochs 1–4,
respectively; filled bars in Fig. 3c) retained this significance when
we controlled for choice (P , 0.05, equation (9)).

The preceding analysis indicates that the monkeys’ choice does not
explain the effect of logLR on firing rate, but it is possible that the
monkey favours one choice or the other in each epoch and simply
changes this binary commitment in the subsequent epoch upon
acquisition of new information. This idea could explain the weak
effect of choice on neural response in early epochs while leaving open
the possibility that logLR is not in fact represented. According to this
formulation, the intermediate levels of activity that appear to corre-
spond to different levels of logLR are actually mixtures of responses
associated with just two ‘states’ of commitment, albeit temporary.

To test for this possibility, we measured the variance in firing rates
across trials. If intermediate levels of firing are mixtures of high and
low firing rate states, then the variance should be predicted by sam-
pling responses from the distributions of responses associated with
the highest and lowest quintiles (grey curves, Fig. 5b; see Methods).
In contrast, if the intermediate firing rates represent actual firing rate
modes, the variance should be approximately proportional to the
mean firing rate29–31, corresponding to straight lines in Fig. 5b. This
analysis firmly rejects the conjecture that the intermediate firing rates
are actually mixtures of trials drawn from the extreme quintiles (H0:
mixture; P , 0.01 in the four shape epochs, F-test). It provides clear
evidence that the intermediate firing rates represent a graded quant-
ity that is proportional to logLR. In fact, a significant deviation from
a graded representation of logLR (straight lines in Fig. 5b) is only
observed in the fourth epoch and in the delay period (H0: non-
mixture; P , 0.01), when a categorical decision is expected.

Together, the analyses in Fig. 5 indicate that the LIP activity repre-
sents both the outcome of the decision process—an eye movement—
and the accumulated evidence on which this decision is based. The
evidence in the form of logLR affects both LIP firing rates and the
choice. In early epochs the firing rates are predominantly affected by
the logLR, whereas in later epochs the rates are associated with both
logLR and choice. Note, however, that the effect of logLR on firing
rate is nearly the same in all epochs (Fig. 3b); it is also the same for the
individual shapes (Fig. 4b). Therefore, even in the later epochs when
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Table 1 | Change in logLR conferred by the ten shapes in each epoch

DlogLR (ban)

Shapes Epoch I Epoch II Epoch III Epoch IV

6 1.09
6 1.31 6 1.67 –

6 0.32 6 0.37 6 0.49 6 0.9

6 0.25 6 0.30 6 0.39 6 0.7

6 0.18 6 0.21 6 0.28 6 0.5

6 0.11 6 0.12 6 0.17 6 0.3

Values for epochs II–IV are averages, which take into account all possible shape combinations in
the preceding epochs. The sign of the change depends on whether the red or green target is in
the neuron’s response field. The change in logLR is not meaningful in epoch 4 for the trump
shapes because the majority of combinations result in 6 ‘. For the same shapes, there are 18
combinations in epoch III that result in 6 ‘; these are excluded from this average.
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the firing rates are dominated by the monkeys’ ultimate choice
(Supplementary Fig. 7), parsimony suggests that logLR causes a
change in LIP firing rate, which in turn causes (or is associated with)
a change in the probability of a Tin choice.

LIP reflects behavioural variations not explained by logLR

To date, we have focused our analyses on the relationship between
neural response and the actual logLR conferred by the ten shapes.
Although the monkeys learned these probabilistic relationships, they
were not perfect. As shown in Fig. 2, the leverage that the ten shapes
exerted on behaviour, termed the subjective WOE, was different
between the two monkeys and exhibited some departures from the
scaling imposed by the assigned weights. We wondered whether LIP
activity is correlated with these idiosyncrasies. To test this, we con-
ducted a nested regression analysis, which was designed to reveal
whether knowledge of the discrepancies between logLR and the sub-
jective WOE could explain some of the remaining variance in neural
responses (see Methods). For all four epochs tested in both monkeys,
knowledge of subjective WOE improved the regression significantly
(P , 0.005, equation (10), H0 : dn~0). We conclude that LIP neu-
rons encode the systematic biases formed by the monkeys in the
association of shape and evidence bearing on the decision.

In addition to these systematic biases, the LIP recordings help to
explain why the monkeys vary their choices even when faced with the
same evidence (for example, Supplementary Fig. 2a). The variation in
firing rate from a single neuron has a detectable effect on the choices
the monkey makes: on average, a variation of 1 spike per second from
a single neuron was equivalent to ,0.1 ban of evidence (P , 0.05 for
all but the first epoch for both monkeys; see equations (11) and (12)).
Such correlations are thought to arise because the variability in firing
rate from single neurons is shared to a small degree with other neu-
rons that underlie the choice31–33. Thus, the mechanism underlying
probabilistic behaviour in our task resembles the mechanism under-
lying errors on difficult perceptual tasks when evidence is weak—that
is, signals that affect behaviour are often contaminated by noise.

Discussion

Humans make probabilistic classifications in a variety of settings in
which information bears on—but does not guarantee—an outcome.
In the weather-prediction task, for example, a human is asked to
predict the weather based on a set of cards with symbols on them.
Like our shapes, these symbols possess probabilistic associations with
the possible outcomes (rain or sunshine), and the subject receives
feedback on his or her decision. This task is thought to rely on
procedural memory circuits that involve the basal ganglia during
learning34. Although we cannot be sure that the monkeys in this
investigation use the same strategy as humans, this study begins to
raise questions about the connection between so-called habit learn-
ing and cortical computations associated with probabilistic infer-
ence. The capacity to train monkeys on this task opens new
possibilities for further investigations.

As has been found in other decision-making tasks, when a decision
is ultimately expressed through a movement, neurons in high-level
command structures of the brain mediate the logical connection
between evidence and plan of action8,11,23,35–38. As in simple decisions,
this evolution of the LIP response represents the accumulation of
evidence leading to commitment to a behavioural choice39. Indeed,
it has been suggested that the build-up of activity in the brain assoc-
iated with a wide variety of simple decisions is an approximation to
the summation of logarithms of probabilities, likelihoods, odds, and
so on16,40–44. The present findings provide direct confirmation of
these theoretical insights for the first time. They demonstrate directly
that the firing rates of LIP neurons are proportional to the logLR
conferred by the shape stimuli in our task.

This interpretation does not exclude the possibility that LIP encodes
many other useful quantities for decision-making (for example, value,
utility or reward expectation11,24,45), especially if the encoding is in

units roughly proportional to logLR46. Even in this study, there are
alternatives to the logLR that would produce similar results. For
example, the brain might approximate the logLR associated with each
shape on the assumption of conditional independence—in essence,
that the logLR for epoch 1 holds for all epochs, what we term ‘naive
WOE’. This quantity would be easy to estimate from the frequency of
observing each shape in association with reward at the red and green
targets. It has the virtue of simplicity, and it predicts the pattern of
response seen with the two ‘trump’ shapes (half-circle and diamond;
see Supplementary Appendix A). A related alternative is the subjective
WOE—the quantity we derived from our behavioural analysis
(Fig. 1c). Not only is subjective WOE approximately proportional
to the logLR but also it reflects the systematic error in the monkeys’
choices. Indeed, we would have obtained similar results in all analyses
in this article if we substituted subjective WOE for logLR. We pre-
sented the results of behavioural measurements and neural recordings
as a function of logLR because that is the experimentally controlled
independent variable. Thus, we have established a link between logLR
and both neural activity and choice.

We do not know how the brain converts information about shape
into a number proportional to logLR, and we do not know whether
area LIP plays a role in this transformation or whether it represents only
the outcome of this conversion. Presumably, neurons in ventral stream
visual areas play a role in discriminating the shapes47, but how their
responses are converted to a logLR value is not known. In a motion-
discrimination task it has been shown that LIP neurons represent the
accumulated difference in firing rates from direction-selective neurons
with opposing direction preferences13,48. This difference approximates
a logLR43,49. It remains to be seen whether a similar readout of ventral
stream neurons occurs in our probabilistic classification task.

Although designed to test a straightforward hypothesis about a
particular representation of probability, the present study exposes
the brain’s capacity to extract probabilistic information from a set
of symbols and to combine this information over time. Thus, we have
demonstrated a crude capacity for probabilistic inference in mon-
keys—a capacity that might underlie cognitive reasoning in humans.

METHODS SUMMARY

Two monkeys (Macaca mulatta) were trained in a probabilistic categorization

task (Fig. 1). In each trial, the monkey maintained its gaze at a fixation point.

Two choice targets (red and green) were displayed in opposite hemifields

(eccentricity range 8u to 12u). Next, four shapes were presented at regular

500 ms intervals. The four shape positions (0.5u from the fixation point) were

displayed in a random order in each trial. The shapes were erased 500 ms after

onset of the fourth. A memory delay period (450–550 ms) preceded offset of the

fixation point, which instructed the monkey to make an eye movement to one of

the choice targets. A liquid reward was administered probabilistically for either

the red or green choice, as described below.

Each shape was drawn randomly from a pool of ten shapes (sampled with

replacement). We assigned each shape a unique weight: {w1, w2, ..., w10}5{2‘,

20.9, 20.7, 20.5, 20.3, 10.3, 10.5, 10.7, 10.9, 1‘}. The extreme weights,

which we term ‘trumps’, can be regarded as a pair of very large numbers,

w1 ~ lim
x??

({x), w10 ~ lim
x??

(x), which cancel when they appear together.

The sum of the weights associated with the four shapes governed the probability

that a red (R) or a green (G) choice would be rewarded.

P(R s1, s2, s3, s4)j ~
10

P4

i ~ 1

wi

1 z 10

P4

i ~ 1

wi

P(G s1, s2, s3, s4)j ~1{P(R s1, s2, s3, s4)j

ð2Þ

where si represents the shape shown in the ith epoch. The sum of weights is the

log of the posterior odds in favour of red.

log10

P(R s1, s2, s3, s4)j
P(G s1, s2, s3, s4)j ~

X4

i ~ 1

wi ð3Þ

The computer controlled the reward using P(R s1, s2, s3, s4)j .
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We recorded extracellularly from single neurons in LIP while the monkeys
performed the task with one of the choice targets (Tin) in the neuron’s response

field. Neither Tout nor the shapes were near the neuron’s response field. We

selected all well isolated neurons that had spatially selective persistent activity

during a memory delay period50. A total of 64 neurons were recorded for at least

100 trials and were included in our analysis (45 and 19 from monkeys J and H,

respectively). See Methods for further details.

All experimental procedures were performed in accordance with the NIH

Guide for the Care and Use of Laboratory Animals and were approved by the

University of Washington Animal Care Committee.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS

Here we describe important details about the behavioral and physiological meth-

ods used in this study. We also explain the analyses described in the main text.

Task. In each trial, the monkey maintained its gaze within 61u of a fixation point

(0.2u in diameter) centred on the video monitor. After a variable delay, two

choice targets (red and green) were displayed in opposite hemifields (eccentricity

range 8u to 12u; median 10 deg). At the same time (monkey J) or 500 ms later

(monkey H), the first of four shape-stimuli appeared near the fixation point.

Next, shapes 2, 3 and 4 were presented at regular 500 ms intervals. Each shape was

randomly drawn from a pool of ten shapes (probability 0.1; sampled with

replacement). The four positions (0.5u from the fixation point) were assigned

in random order in each trial. The shapes were drawn as white lines on a black

background (line length 2u; thumb print ,(0.5u)2; Fig. 1). The shapes were

erased 500 ms after onset of the fourth. A memory delay period (450–550 ms)

preceded the removal of the fixation point, which instructed the monkey to make

an eye movement to one of the choice targets. A liquid reward was administered

probabilistically for either the red or the green choice, as described below.

Training. Animals were seated comfortably in a primate chair with their

head fixed. Eye position was monitored using a scleral search coil (CNC

Engineering)51. Horizontal and vertical eye positions were sampled at 500 Hz

using the NIH Rex system52. Both animals had received prior training on delayed

eye-movement tasks. We began training with a one-shape version of the cate-

gorization task. We first used the shapes with w ~ +?, for which the ‘correct’

choice would yield reward with 100% certainty. Once animals consistently

achieved at least 70% correct choices, we enlarged the pool of possible test shapes

using the pair of shapes that had the next largest weights. Reward was adminis-

tered probabilistically for these new shapes (using a variant of equation (2) with

just one term in the sum), but we kept track of the fraction of trials in which the

monkey chose the target that was favoured by the weights, even if the choice did

not pay off. When the monkey reached 70% correct choices, we added the third

pair of shapes, and so on. Here, correct means the choice of the target that has

larger reward probability.

Once the monkey learned this one-shape version of the task (ten and four

weeks for monkeys J and H, respectively), we began training on the n-shape

version of the task. We provided only minimal exposure to versions of the task

that had two and three shapes (two and one weeks for monkeys J and H, respect-

ively), because, to our surprise, the monkeys were willing to perform the four-

shape version without these intervening steps. Monkey J underwent 8 weeks of

training in the full four-shape version of the task (,130,000 trials). By the first

recording session, this monkey was choosing the better reward target in more

than 85% of trials. Monkey H received 10 weeks of training on the full 4-shape

version of the task (,134,000 trials). Because a veterinary complication (endo-

metriosis) favoured an expedited testing schedule, we started recording when

this monkey chose the better reward target in ,75% of trials.

Recording. We recorded extracellularly from single neurons in area LIP while

the monkeys performed the task. We targeted neurons in the posterior third of

the ventral division of LIP53,54 by registering recording locations estimated from

our magnetic resonance imaging studies (Supplementary Fig. 4a) to a high reso-

lution scan supplied with the Caret atlas55 (http://brainmap.wustl.edu/caret). A

hydraulic microdrive mounted over the cylinder advanced the electrodes to the

desired depth (FHC, http://www.fh-co.com/). Spikes from individual neurons

were isolated using a dual voltage–time window discriminator (Bak Electronics).

They were recorded with a resolution of 1 ms for off-line analysis using custom

software written in Matlab (Mathworks). We screened neurons using a simple

delayed eye-movement paradigm50,56. We selected for further study all well iso-

lated neurons that had spatially selective persistent activity during the memory

delay period (500–1,000 ms) between target flash and an eye movement to its

remembered location (62.5u) (ref. 50). Neurons that have this property are

abundant in the ventral division of LIP56.

Data analysis. The main independent variable in this study is the WOE con-

ferred by the sequence of shapes (logLRn, equation (1)). Bayes’ rule ensures that

this is equal to the log of the posterior odds (equation (3)) once all four shapes

are shown. This is because the prior probability of reward at red (R) is equal to

the prior probability of reward at green (G):

log10

P(s1, s2, s3, s4 R)j
P(s1, s2, s3, s4 G)j ~ log10

P(R s1, s2, s3, s4)j
P(G s1, s2, s3, s4)j ~

X4

i ~ 1

wi ð4Þ

The logLR from partial evidence (that is, fewer than four shapes) was calcu-

lated by tabulating the expected frequencies of reward associated with each shape

combination, rather than the partial sums of weights. For an explanation of the

difference between these two approaches, see Supplementary Appendices A and

B. To calculate the logLR associated with a particular shape in each epoch

(Table 1), we averaged the change in logLR conferred by the shape; this was

done for all possible shape combinations in the preceding epochs, excluding the

appearance of the trump shapes when they guaranteed reward at red or green

(that is, an unbalanced trump in the fourth epoch and the rare run of two or

more unbalanced trumps in epoch three).

Analyses of behavioural data. We used a variety of logistic models to ascertain

the effect of the shape combinations on choice. The sigmoid in Fig. 1b is

described by

Pred ~
10Q

1z10Q
where Q~b0zb1 log10

P(s1,s2,s3,s4 R)j
P(s1,s2,s3,s4 G)j ð5Þ

where the bi are fitted coefficients (method of maximum likelihood assuming

the Bernoulli distribution of binary choices). Nearly identical results are

obtained by replacing the logLR in equation (5) by the sum of the four weights

or by an alternative to the logLR, termed naive WOE, described in the Appendix

A of the Supplementary Information. We use equation (5) for consistency with

other analyses for which WOE (as defined in equation (1)) is the only math-

ematically correct option (see Supplementary Appendix A). The trials that used

infinite total weights were not included in this analysis. In these trials, we assessed

the leverage of shapes that have finite weight on choice by letting

Pred~
10Q

1z10Q
where Q~c0zc1

X3

i ~ 1

wi ð6Þ

where the wi are the weights assigned to the three shapes that have finite weight.
We performed this test separately for the two trump shapes. The null hypothesis

is that the three shapes that have finite weight do not affect choice in the presence

of a trump shape (Supplementary Fig. 2b).

To estimate the effect of individual shapes on the monkeys’ choices, we

incorporated a term for each of the ten possible shapes in the logistic regression:

Pred~
10Q�

1z10Q�
where Q�~

X10

j~1

w�j Nj ð7Þ

and the Nj are the counts for each shape type presented in a trial. The ten fitted

coefficients w�j are the subjective WOE. Subscript j in this equation refers to

shape (see also Supplementary Fig. 6).

Analyses of physiological data. Our primary analyses test the relationship

between the logLR associated with shape sequences and the neuronal firing rate.

For most analyses, firing rates were estimated in single trials in each of the four

shape epochs from 300–600 ms after shape onset. Responses tended to be stable
in this interval and were uncontaminated by onset of choice targets (first epoch)

or the subsequent shape (epochs two and three). None of the results in this article

rest critically on the definition of this epoch. Although many graphs display data

grouped by logLR (quintiles, running means and binned data), all fits and

statistical tests were performed using individual trials rather than mean res-

ponses, unless otherwise noted. Fits to individual trials used least squares, and

fits to means (and their s.e.) used weighted least squares.

For the analyses in Figs 2 and 3, we used simple linear regression in each epoch:

yn~anzbnlogLRn ð8Þ
where yn is the firing rate (in each trial) in epoch n, and logLRn is given by

equation (1). The fitted coefficients, a and b, are the intercept and slope of the

line, respectively. We refer to the latter as a modulation index for the neuron or

the population.

To test whether the effect of logLR is explained by the eye movement made at
the end of the trial, we added a third term to this equation:

yn~anzbnlogLRnzcnIeye, Ieye~
1 if eye movement is to Tin

0 if eye movement is to Tout

�
ð9Þ

The null hypothesis is that the effect of logLR on LIP response is explained by the

eye movement (H0 : bn~0).

We also considered the possibility that firing rates might be explained better

by the weights that the monkeys gave to the shapes. To test this, we added a term

to equation (9) to represent the difference between the assigned logLR and the

subjective WOE:

yn~anzbnlogLRnzcnIeyezdnDn where Dn~
Pn
i~1

subjective WOEi{logLRn ð10Þ

The null hypothesis, dn~0, asserts that the subjective WOE affects the LIP firing

rate in a manner that is explained by the logLR assigned to the shapes.

To estimate the effect of individual shapes on LIP responses (Fig. 4), we

isolated the change in firing rate from the ‘baseline’ level attained prior to

presentation of the shape. The baseline firing rate was estimated from individual

doi:10.1038/nature05852
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trials using the average response over the 200 ms preceding the onset of the shape
(that is, from the preceding epoch). We subtracted this baseline from the res-

ponse after the onset of the shape, and averaged the resulting traces across the

population of 64 neurons.

To determine whether intermediate levels of firing rate could be explained as

mixtures of high and low firing rate states (Fig. 5b), in each epoch, we grouped

the neural responses into quintiles based on the rank of logLR. For each cell in

each epoch, we calculated five mean firing rates and their associated variances. In

the mixture model, we assumed that the responses comprising the three inter-

mediate quintiles represent mixtures of values drawn from the extreme quintiles,

termed anchors, representing high and low states. The proportion of high and

low samples in each of the mixtures was set to match the mean firing rate for each

bin. We then calculated the expected variance based on these proportions (theor-

etical curves in Fig. 5b). In the non-mixture model, the variance was established

by interpolating between the variances associated with the anchor distributions.

This is equivalent to assuming a constant Fano factor for all the quintiles, con-

sistent with the idea that the intermediate mean is not a mixture. For the graphs

in Fig. 5b, we normalized the variances (from model and data) to the mean of the

five sample variances, and we normalized the mean firing rates to the average of
the five means. This places the point for the middle quintile near [1,1] on these

plots. We then averaged these normalized values over all neurons. We used F

statistics to compare the observed variance to the value predicted from the

mixture model and to the predicted value from the non-mixture model. The P

values reported in association with Fig. 5b are based on combined data from all

neurons; data from single neurons support the trends in the figure but lack the

power to reject mixture or non-mixture, or both. Note that this analysis is more

sensitive than standard tests for bimodality. For example, Hartigan’s dip test

failed to reject unimodality of the distributions associated with intermediate

quintiles in all epochs, including the delay period (P . 0.9, combined standar-

dized responses).

Correlation between choice and neural response. To measure the relationship

between trial-by-trial variation in LIP response and behavioural choice, we

incorporated firing rate as an additional term in the logistic model that explains

the monkeys’ choices based on the shape combinations. Using a nested models

approach, we begin with the successful account of behaviour using the definition

of logLR in units referable to the target in the neuron’s response field:

PRF~
10Q

1z10Q
where Q~b0zb1 log10

P(s1,s2,s3,s4 reward at Tin)j
P(s1,s2,s3,s4 reward at Tout)j ð11Þ

This would produce the same graph as Fig. 1b with a new ordinate, labelled

‘Probability of Tin choice’. In each epoch, n 5 1 to 4, we incorporated a term that

reflects the firing rate of the neuron. This value is the residual error after fitting

firing rate as a function of logLR and subjective WOE in the nth epoch, which we

incorporated into an extended logistic model of choice:

P0RF~
10Q0

1z10Q0
where Q0~Qzb2rn ð12Þ

where rn is the residual error in the fit to equation (10) but without the eye

movement term (that is, cn~0). The ratio b2=b1 in equations (11) and (12)

furnishes an estimate of the effect that the variable discharge of a single neuron in

a single trial has on choice, in units of bans per spikes per second, that cannot be

explained by the stimulus.

Unless otherwise noted, fits were performed using the method of maximum

likelihood. Standard errors on the estimated parameters (coefficients) were

obtained using the Hessian matrix of the log likelihood. The parameter estimates

and their s.e. values were used to construct t statistics to test the null hypotheses.
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